1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * vsp1_video.c -- R-Car VSP1 Video Node
4 *
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 *
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
9
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36
37 #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH 1024
39 #define VSP1_VIDEO_DEF_HEIGHT 768
40
41 #define VSP1_VIDEO_MAX_WIDTH 8190U
42 #define VSP1_VIDEO_MAX_HEIGHT 8190U
43
44 /* -----------------------------------------------------------------------------
45 * Helper functions
46 */
47
48 static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad * local,u32 * pad)49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
50 {
51 struct media_pad *remote;
52
53 remote = media_pad_remote_pad_first(local);
54 if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
55 return NULL;
56
57 if (pad)
58 *pad = remote->index;
59
60 return media_entity_to_v4l2_subdev(remote->entity);
61 }
62
vsp1_video_verify_format(struct vsp1_video * video)63 static int vsp1_video_verify_format(struct vsp1_video *video)
64 {
65 struct v4l2_subdev_format fmt = {
66 .which = V4L2_SUBDEV_FORMAT_ACTIVE,
67 };
68 struct v4l2_subdev *subdev;
69 int ret;
70
71 subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
72 if (subdev == NULL)
73 return -EINVAL;
74
75 ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
76 if (ret < 0)
77 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
78
79 if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
80 video->rwpf->format.height != fmt.format.height ||
81 video->rwpf->format.width != fmt.format.width)
82 return -EINVAL;
83
84 return 0;
85 }
86
__vsp1_video_try_format(struct vsp1_video * video,struct v4l2_pix_format_mplane * pix,const struct vsp1_format_info ** fmtinfo)87 static int __vsp1_video_try_format(struct vsp1_video *video,
88 struct v4l2_pix_format_mplane *pix,
89 const struct vsp1_format_info **fmtinfo)
90 {
91 static const u32 xrgb_formats[][2] = {
92 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
93 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
94 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
95 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
96 };
97
98 const struct vsp1_format_info *info;
99 unsigned int width = pix->width;
100 unsigned int height = pix->height;
101 unsigned int i;
102
103 /*
104 * Backward compatibility: replace deprecated RGB formats by their XRGB
105 * equivalent. This selects the format older userspace applications want
106 * while still exposing the new format.
107 */
108 for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
109 if (xrgb_formats[i][0] == pix->pixelformat) {
110 pix->pixelformat = xrgb_formats[i][1];
111 break;
112 }
113 }
114
115 /*
116 * Retrieve format information and select the default format if the
117 * requested format isn't supported.
118 */
119 info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
120 if (info == NULL)
121 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
122
123 pix->pixelformat = info->fourcc;
124 pix->colorspace = V4L2_COLORSPACE_SRGB;
125 pix->field = V4L2_FIELD_NONE;
126
127 if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
128 info->fourcc == V4L2_PIX_FMT_HSV32)
129 pix->hsv_enc = V4L2_HSV_ENC_256;
130
131 memset(pix->reserved, 0, sizeof(pix->reserved));
132
133 /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
134 width = round_down(width, info->hsub);
135 height = round_down(height, info->vsub);
136
137 /* Clamp the width and height. */
138 pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
139 pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
140
141 /*
142 * Compute and clamp the stride and image size. While not documented in
143 * the datasheet, strides not aligned to a multiple of 128 bytes result
144 * in image corruption.
145 */
146 for (i = 0; i < min(info->planes, 2U); ++i) {
147 unsigned int hsub = i > 0 ? info->hsub : 1;
148 unsigned int vsub = i > 0 ? info->vsub : 1;
149 unsigned int align = 128;
150 unsigned int bpl;
151
152 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
153 pix->width / hsub * info->bpp[i] / 8,
154 round_down(65535U, align));
155
156 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
157 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
158 * pix->height / vsub;
159 }
160
161 if (info->planes == 3) {
162 /* The second and third planes must have the same stride. */
163 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
164 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
165 }
166
167 pix->num_planes = info->planes;
168
169 if (fmtinfo)
170 *fmtinfo = info;
171
172 return 0;
173 }
174
175 /* -----------------------------------------------------------------------------
176 * VSP1 Partition Algorithm support
177 */
178
179 /**
180 * vsp1_video_calculate_partition - Calculate the active partition output window
181 *
182 * @pipe: the pipeline
183 * @partition: partition that will hold the calculated values
184 * @div_size: pre-determined maximum partition division size
185 * @index: partition index
186 */
vsp1_video_calculate_partition(struct vsp1_pipeline * pipe,struct vsp1_partition * partition,unsigned int div_size,unsigned int index)187 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
188 struct vsp1_partition *partition,
189 unsigned int div_size,
190 unsigned int index)
191 {
192 const struct v4l2_mbus_framefmt *format;
193 struct vsp1_partition_window window;
194 unsigned int modulus;
195
196 /*
197 * Partitions are computed on the size before rotation, use the format
198 * at the WPF sink.
199 */
200 format = vsp1_entity_get_pad_format(&pipe->output->entity,
201 pipe->output->entity.config,
202 RWPF_PAD_SINK);
203
204 /* A single partition simply processes the output size in full. */
205 if (pipe->partitions <= 1) {
206 window.left = 0;
207 window.width = format->width;
208
209 vsp1_pipeline_propagate_partition(pipe, partition, index,
210 &window);
211 return;
212 }
213
214 /* Initialise the partition with sane starting conditions. */
215 window.left = index * div_size;
216 window.width = div_size;
217
218 modulus = format->width % div_size;
219
220 /*
221 * We need to prevent the last partition from being smaller than the
222 * *minimum* width of the hardware capabilities.
223 *
224 * If the modulus is less than half of the partition size,
225 * the penultimate partition is reduced to half, which is added
226 * to the final partition: |1234|1234|1234|12|341|
227 * to prevent this: |1234|1234|1234|1234|1|.
228 */
229 if (modulus) {
230 /*
231 * pipe->partitions is 1 based, whilst index is a 0 based index.
232 * Normalise this locally.
233 */
234 unsigned int partitions = pipe->partitions - 1;
235
236 if (modulus < div_size / 2) {
237 if (index == partitions - 1) {
238 /* Halve the penultimate partition. */
239 window.width = div_size / 2;
240 } else if (index == partitions) {
241 /* Increase the final partition. */
242 window.width = (div_size / 2) + modulus;
243 window.left -= div_size / 2;
244 }
245 } else if (index == partitions) {
246 window.width = modulus;
247 }
248 }
249
250 vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
251 }
252
vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline * pipe)253 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
254 {
255 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
256 const struct v4l2_mbus_framefmt *format;
257 struct vsp1_entity *entity;
258 unsigned int div_size;
259 unsigned int i;
260
261 /*
262 * Partitions are computed on the size before rotation, use the format
263 * at the WPF sink.
264 */
265 format = vsp1_entity_get_pad_format(&pipe->output->entity,
266 pipe->output->entity.config,
267 RWPF_PAD_SINK);
268 div_size = format->width;
269
270 /*
271 * Only Gen3+ hardware requires image partitioning, Gen2 will operate
272 * with a single partition that covers the whole output.
273 */
274 if (vsp1->info->gen >= 3) {
275 list_for_each_entry(entity, &pipe->entities, list_pipe) {
276 unsigned int entity_max;
277
278 if (!entity->ops->max_width)
279 continue;
280
281 entity_max = entity->ops->max_width(entity, pipe);
282 if (entity_max)
283 div_size = min(div_size, entity_max);
284 }
285 }
286
287 pipe->partitions = DIV_ROUND_UP(format->width, div_size);
288 pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
289 GFP_KERNEL);
290 if (!pipe->part_table)
291 return -ENOMEM;
292
293 for (i = 0; i < pipe->partitions; ++i)
294 vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
295 div_size, i);
296
297 return 0;
298 }
299
300 /* -----------------------------------------------------------------------------
301 * Pipeline Management
302 */
303
304 /*
305 * vsp1_video_complete_buffer - Complete the current buffer
306 * @video: the video node
307 *
308 * This function completes the current buffer by filling its sequence number,
309 * time stamp and payload size, and hands it back to the vb2 core.
310 *
311 * Return the next queued buffer or NULL if the queue is empty.
312 */
313 static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video * video)314 vsp1_video_complete_buffer(struct vsp1_video *video)
315 {
316 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
317 struct vsp1_vb2_buffer *next = NULL;
318 struct vsp1_vb2_buffer *done;
319 unsigned long flags;
320 unsigned int i;
321
322 spin_lock_irqsave(&video->irqlock, flags);
323
324 if (list_empty(&video->irqqueue)) {
325 spin_unlock_irqrestore(&video->irqlock, flags);
326 return NULL;
327 }
328
329 done = list_first_entry(&video->irqqueue,
330 struct vsp1_vb2_buffer, queue);
331
332 list_del(&done->queue);
333
334 if (!list_empty(&video->irqqueue))
335 next = list_first_entry(&video->irqqueue,
336 struct vsp1_vb2_buffer, queue);
337
338 spin_unlock_irqrestore(&video->irqlock, flags);
339
340 done->buf.sequence = pipe->sequence;
341 done->buf.vb2_buf.timestamp = ktime_get_ns();
342 for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
343 vb2_set_plane_payload(&done->buf.vb2_buf, i,
344 vb2_plane_size(&done->buf.vb2_buf, i));
345 vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
346
347 return next;
348 }
349
vsp1_video_frame_end(struct vsp1_pipeline * pipe,struct vsp1_rwpf * rwpf)350 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
351 struct vsp1_rwpf *rwpf)
352 {
353 struct vsp1_video *video = rwpf->video;
354 struct vsp1_vb2_buffer *buf;
355
356 buf = vsp1_video_complete_buffer(video);
357 if (buf == NULL)
358 return;
359
360 video->rwpf->mem = buf->mem;
361 pipe->buffers_ready |= 1 << video->pipe_index;
362 }
363
vsp1_video_pipeline_run_partition(struct vsp1_pipeline * pipe,struct vsp1_dl_list * dl,unsigned int partition)364 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
365 struct vsp1_dl_list *dl,
366 unsigned int partition)
367 {
368 struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
369 struct vsp1_entity *entity;
370
371 pipe->partition = &pipe->part_table[partition];
372
373 list_for_each_entry(entity, &pipe->entities, list_pipe)
374 vsp1_entity_configure_partition(entity, pipe, dl, dlb);
375 }
376
vsp1_video_pipeline_run(struct vsp1_pipeline * pipe)377 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
378 {
379 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
380 struct vsp1_entity *entity;
381 struct vsp1_dl_body *dlb;
382 struct vsp1_dl_list *dl;
383 unsigned int partition;
384
385 dl = vsp1_dl_list_get(pipe->output->dlm);
386
387 /*
388 * If the VSP hardware isn't configured yet (which occurs either when
389 * processing the first frame or after a system suspend/resume), add the
390 * cached stream configuration to the display list to perform a full
391 * initialisation.
392 */
393 if (!pipe->configured)
394 vsp1_dl_list_add_body(dl, pipe->stream_config);
395
396 dlb = vsp1_dl_list_get_body0(dl);
397
398 list_for_each_entry(entity, &pipe->entities, list_pipe)
399 vsp1_entity_configure_frame(entity, pipe, dl, dlb);
400
401 /* Run the first partition. */
402 vsp1_video_pipeline_run_partition(pipe, dl, 0);
403
404 /* Process consecutive partitions as necessary. */
405 for (partition = 1; partition < pipe->partitions; ++partition) {
406 struct vsp1_dl_list *dl_next;
407
408 dl_next = vsp1_dl_list_get(pipe->output->dlm);
409
410 /*
411 * An incomplete chain will still function, but output only
412 * the partitions that had a dl available. The frame end
413 * interrupt will be marked on the last dl in the chain.
414 */
415 if (!dl_next) {
416 dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
417 break;
418 }
419
420 vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
421 vsp1_dl_list_add_chain(dl, dl_next);
422 }
423
424 /* Complete, and commit the head display list. */
425 vsp1_dl_list_commit(dl, 0);
426 pipe->configured = true;
427
428 vsp1_pipeline_run(pipe);
429 }
430
vsp1_video_pipeline_frame_end(struct vsp1_pipeline * pipe,unsigned int completion)431 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
432 unsigned int completion)
433 {
434 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
435 enum vsp1_pipeline_state state;
436 unsigned long flags;
437 unsigned int i;
438
439 /* M2M Pipelines should never call here with an incomplete frame. */
440 WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
441
442 spin_lock_irqsave(&pipe->irqlock, flags);
443
444 /* Complete buffers on all video nodes. */
445 for (i = 0; i < vsp1->info->rpf_count; ++i) {
446 if (!pipe->inputs[i])
447 continue;
448
449 vsp1_video_frame_end(pipe, pipe->inputs[i]);
450 }
451
452 vsp1_video_frame_end(pipe, pipe->output);
453
454 state = pipe->state;
455 pipe->state = VSP1_PIPELINE_STOPPED;
456
457 /*
458 * If a stop has been requested, mark the pipeline as stopped and
459 * return. Otherwise restart the pipeline if ready.
460 */
461 if (state == VSP1_PIPELINE_STOPPING)
462 wake_up(&pipe->wq);
463 else if (vsp1_pipeline_ready(pipe))
464 vsp1_video_pipeline_run(pipe);
465
466 spin_unlock_irqrestore(&pipe->irqlock, flags);
467 }
468
vsp1_video_pipeline_build_branch(struct vsp1_pipeline * pipe,struct vsp1_rwpf * input,struct vsp1_rwpf * output)469 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
470 struct vsp1_rwpf *input,
471 struct vsp1_rwpf *output)
472 {
473 struct media_entity_enum ent_enum;
474 struct vsp1_entity *entity;
475 struct media_pad *pad;
476 struct vsp1_brx *brx = NULL;
477 int ret;
478
479 ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
480 if (ret < 0)
481 return ret;
482
483 /*
484 * The main data path doesn't include the HGO or HGT, use
485 * vsp1_entity_remote_pad() to traverse the graph.
486 */
487
488 pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
489
490 while (1) {
491 if (pad == NULL) {
492 ret = -EPIPE;
493 goto out;
494 }
495
496 /* We've reached a video node, that shouldn't have happened. */
497 if (!is_media_entity_v4l2_subdev(pad->entity)) {
498 ret = -EPIPE;
499 goto out;
500 }
501
502 entity = to_vsp1_entity(
503 media_entity_to_v4l2_subdev(pad->entity));
504
505 /*
506 * A BRU or BRS is present in the pipeline, store its input pad
507 * number in the input RPF for use when configuring the RPF.
508 */
509 if (entity->type == VSP1_ENTITY_BRU ||
510 entity->type == VSP1_ENTITY_BRS) {
511 /* BRU and BRS can't be chained. */
512 if (brx) {
513 ret = -EPIPE;
514 goto out;
515 }
516
517 brx = to_brx(&entity->subdev);
518 brx->inputs[pad->index].rpf = input;
519 input->brx_input = pad->index;
520 }
521
522 /* We've reached the WPF, we're done. */
523 if (entity->type == VSP1_ENTITY_WPF)
524 break;
525
526 /* Ensure the branch has no loop. */
527 if (media_entity_enum_test_and_set(&ent_enum,
528 &entity->subdev.entity)) {
529 ret = -EPIPE;
530 goto out;
531 }
532
533 /* UDS can't be chained. */
534 if (entity->type == VSP1_ENTITY_UDS) {
535 if (pipe->uds) {
536 ret = -EPIPE;
537 goto out;
538 }
539
540 pipe->uds = entity;
541 pipe->uds_input = brx ? &brx->entity : &input->entity;
542 }
543
544 /* Follow the source link, ignoring any HGO or HGT. */
545 pad = &entity->pads[entity->source_pad];
546 pad = vsp1_entity_remote_pad(pad);
547 }
548
549 /* The last entity must be the output WPF. */
550 if (entity != &output->entity)
551 ret = -EPIPE;
552
553 out:
554 media_entity_enum_cleanup(&ent_enum);
555
556 return ret;
557 }
558
vsp1_video_pipeline_build(struct vsp1_pipeline * pipe,struct vsp1_video * video)559 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
560 struct vsp1_video *video)
561 {
562 struct media_graph graph;
563 struct media_entity *entity = &video->video.entity;
564 struct media_device *mdev = entity->graph_obj.mdev;
565 unsigned int i;
566 int ret;
567
568 /* Walk the graph to locate the entities and video nodes. */
569 ret = media_graph_walk_init(&graph, mdev);
570 if (ret)
571 return ret;
572
573 media_graph_walk_start(&graph, entity);
574
575 while ((entity = media_graph_walk_next(&graph))) {
576 struct v4l2_subdev *subdev;
577 struct vsp1_rwpf *rwpf;
578 struct vsp1_entity *e;
579
580 if (!is_media_entity_v4l2_subdev(entity))
581 continue;
582
583 subdev = media_entity_to_v4l2_subdev(entity);
584 e = to_vsp1_entity(subdev);
585 list_add_tail(&e->list_pipe, &pipe->entities);
586 e->pipe = pipe;
587
588 switch (e->type) {
589 case VSP1_ENTITY_RPF:
590 rwpf = to_rwpf(subdev);
591 pipe->inputs[rwpf->entity.index] = rwpf;
592 rwpf->video->pipe_index = ++pipe->num_inputs;
593 break;
594
595 case VSP1_ENTITY_WPF:
596 rwpf = to_rwpf(subdev);
597 pipe->output = rwpf;
598 rwpf->video->pipe_index = 0;
599 break;
600
601 case VSP1_ENTITY_LIF:
602 pipe->lif = e;
603 break;
604
605 case VSP1_ENTITY_BRU:
606 case VSP1_ENTITY_BRS:
607 pipe->brx = e;
608 break;
609
610 case VSP1_ENTITY_HGO:
611 pipe->hgo = e;
612 break;
613
614 case VSP1_ENTITY_HGT:
615 pipe->hgt = e;
616 break;
617
618 default:
619 break;
620 }
621 }
622
623 media_graph_walk_cleanup(&graph);
624
625 /* We need one output and at least one input. */
626 if (pipe->num_inputs == 0 || !pipe->output)
627 return -EPIPE;
628
629 /*
630 * Follow links downstream for each input and make sure the graph
631 * contains no loop and that all branches end at the output WPF.
632 */
633 for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
634 if (!pipe->inputs[i])
635 continue;
636
637 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
638 pipe->output);
639 if (ret < 0)
640 return ret;
641 }
642
643 return 0;
644 }
645
vsp1_video_pipeline_init(struct vsp1_pipeline * pipe,struct vsp1_video * video)646 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
647 struct vsp1_video *video)
648 {
649 vsp1_pipeline_init(pipe);
650
651 pipe->frame_end = vsp1_video_pipeline_frame_end;
652
653 return vsp1_video_pipeline_build(pipe, video);
654 }
655
vsp1_video_pipeline_get(struct vsp1_video * video)656 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
657 {
658 struct vsp1_pipeline *pipe;
659 int ret;
660
661 /*
662 * Get a pipeline object for the video node. If a pipeline has already
663 * been allocated just increment its reference count and return it.
664 * Otherwise allocate a new pipeline and initialize it, it will be freed
665 * when the last reference is released.
666 */
667 if (!video->rwpf->entity.pipe) {
668 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
669 if (!pipe)
670 return ERR_PTR(-ENOMEM);
671
672 ret = vsp1_video_pipeline_init(pipe, video);
673 if (ret < 0) {
674 vsp1_pipeline_reset(pipe);
675 kfree(pipe);
676 return ERR_PTR(ret);
677 }
678 } else {
679 pipe = video->rwpf->entity.pipe;
680 kref_get(&pipe->kref);
681 }
682
683 return pipe;
684 }
685
vsp1_video_pipeline_release(struct kref * kref)686 static void vsp1_video_pipeline_release(struct kref *kref)
687 {
688 struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
689
690 vsp1_pipeline_reset(pipe);
691 kfree(pipe);
692 }
693
vsp1_video_pipeline_put(struct vsp1_pipeline * pipe)694 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
695 {
696 struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
697
698 mutex_lock(&mdev->graph_mutex);
699 kref_put(&pipe->kref, vsp1_video_pipeline_release);
700 mutex_unlock(&mdev->graph_mutex);
701 }
702
703 /* -----------------------------------------------------------------------------
704 * videobuf2 Queue Operations
705 */
706
707 static int
vsp1_video_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])708 vsp1_video_queue_setup(struct vb2_queue *vq,
709 unsigned int *nbuffers, unsigned int *nplanes,
710 unsigned int sizes[], struct device *alloc_devs[])
711 {
712 struct vsp1_video *video = vb2_get_drv_priv(vq);
713 const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
714 unsigned int i;
715
716 if (*nplanes) {
717 if (*nplanes != format->num_planes)
718 return -EINVAL;
719
720 for (i = 0; i < *nplanes; i++)
721 if (sizes[i] < format->plane_fmt[i].sizeimage)
722 return -EINVAL;
723 return 0;
724 }
725
726 *nplanes = format->num_planes;
727
728 for (i = 0; i < format->num_planes; ++i)
729 sizes[i] = format->plane_fmt[i].sizeimage;
730
731 return 0;
732 }
733
vsp1_video_buffer_prepare(struct vb2_buffer * vb)734 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
735 {
736 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
737 struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
738 struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
739 const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
740 unsigned int i;
741
742 if (vb->num_planes < format->num_planes)
743 return -EINVAL;
744
745 for (i = 0; i < vb->num_planes; ++i) {
746 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
747
748 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
749 return -EINVAL;
750 }
751
752 for ( ; i < 3; ++i)
753 buf->mem.addr[i] = 0;
754
755 return 0;
756 }
757
vsp1_video_buffer_queue(struct vb2_buffer * vb)758 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
759 {
760 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
761 struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
762 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
763 struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
764 unsigned long flags;
765 bool empty;
766
767 spin_lock_irqsave(&video->irqlock, flags);
768 empty = list_empty(&video->irqqueue);
769 list_add_tail(&buf->queue, &video->irqqueue);
770 spin_unlock_irqrestore(&video->irqlock, flags);
771
772 if (!empty)
773 return;
774
775 spin_lock_irqsave(&pipe->irqlock, flags);
776
777 video->rwpf->mem = buf->mem;
778 pipe->buffers_ready |= 1 << video->pipe_index;
779
780 if (vb2_start_streaming_called(&video->queue) &&
781 vsp1_pipeline_ready(pipe))
782 vsp1_video_pipeline_run(pipe);
783
784 spin_unlock_irqrestore(&pipe->irqlock, flags);
785 }
786
vsp1_video_setup_pipeline(struct vsp1_pipeline * pipe)787 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
788 {
789 struct vsp1_entity *entity;
790 int ret;
791
792 /* Determine this pipelines sizes for image partitioning support. */
793 ret = vsp1_video_pipeline_setup_partitions(pipe);
794 if (ret < 0)
795 return ret;
796
797 if (pipe->uds) {
798 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
799
800 /*
801 * If a BRU or BRS is present in the pipeline before the UDS,
802 * the alpha component doesn't need to be scaled as the BRU and
803 * BRS output alpha value is fixed to 255. Otherwise we need to
804 * scale the alpha component only when available at the input
805 * RPF.
806 */
807 if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
808 pipe->uds_input->type == VSP1_ENTITY_BRS) {
809 uds->scale_alpha = false;
810 } else {
811 struct vsp1_rwpf *rpf =
812 to_rwpf(&pipe->uds_input->subdev);
813
814 uds->scale_alpha = rpf->fmtinfo->alpha;
815 }
816 }
817
818 /*
819 * Compute and cache the stream configuration into a body. The cached
820 * body will be added to the display list by vsp1_video_pipeline_run()
821 * whenever the pipeline needs to be fully reconfigured.
822 */
823 pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
824 if (!pipe->stream_config)
825 return -ENOMEM;
826
827 list_for_each_entry(entity, &pipe->entities, list_pipe) {
828 vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
829 vsp1_entity_configure_stream(entity, pipe, NULL,
830 pipe->stream_config);
831 }
832
833 return 0;
834 }
835
vsp1_video_release_buffers(struct vsp1_video * video)836 static void vsp1_video_release_buffers(struct vsp1_video *video)
837 {
838 struct vsp1_vb2_buffer *buffer;
839 unsigned long flags;
840
841 /* Remove all buffers from the IRQ queue. */
842 spin_lock_irqsave(&video->irqlock, flags);
843 list_for_each_entry(buffer, &video->irqqueue, queue)
844 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
845 INIT_LIST_HEAD(&video->irqqueue);
846 spin_unlock_irqrestore(&video->irqlock, flags);
847 }
848
vsp1_video_cleanup_pipeline(struct vsp1_pipeline * pipe)849 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
850 {
851 lockdep_assert_held(&pipe->lock);
852
853 /* Release any cached configuration from our output video. */
854 vsp1_dl_body_put(pipe->stream_config);
855 pipe->stream_config = NULL;
856 pipe->configured = false;
857
858 /* Release our partition table allocation. */
859 kfree(pipe->part_table);
860 pipe->part_table = NULL;
861 }
862
vsp1_video_start_streaming(struct vb2_queue * vq,unsigned int count)863 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
864 {
865 struct vsp1_video *video = vb2_get_drv_priv(vq);
866 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
867 bool start_pipeline = false;
868 unsigned long flags;
869 int ret;
870
871 mutex_lock(&pipe->lock);
872 if (pipe->stream_count == pipe->num_inputs) {
873 ret = vsp1_video_setup_pipeline(pipe);
874 if (ret < 0) {
875 vsp1_video_release_buffers(video);
876 vsp1_video_cleanup_pipeline(pipe);
877 mutex_unlock(&pipe->lock);
878 return ret;
879 }
880
881 start_pipeline = true;
882 }
883
884 pipe->stream_count++;
885 mutex_unlock(&pipe->lock);
886
887 /*
888 * vsp1_pipeline_ready() is not sufficient to establish that all streams
889 * are prepared and the pipeline is configured, as multiple streams
890 * can race through streamon with buffers already queued; Therefore we
891 * don't even attempt to start the pipeline until the last stream has
892 * called through here.
893 */
894 if (!start_pipeline)
895 return 0;
896
897 spin_lock_irqsave(&pipe->irqlock, flags);
898 if (vsp1_pipeline_ready(pipe))
899 vsp1_video_pipeline_run(pipe);
900 spin_unlock_irqrestore(&pipe->irqlock, flags);
901
902 return 0;
903 }
904
vsp1_video_stop_streaming(struct vb2_queue * vq)905 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
906 {
907 struct vsp1_video *video = vb2_get_drv_priv(vq);
908 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
909 unsigned long flags;
910 int ret;
911
912 /*
913 * Clear the buffers ready flag to make sure the device won't be started
914 * by a QBUF on the video node on the other side of the pipeline.
915 */
916 spin_lock_irqsave(&video->irqlock, flags);
917 pipe->buffers_ready &= ~(1 << video->pipe_index);
918 spin_unlock_irqrestore(&video->irqlock, flags);
919
920 mutex_lock(&pipe->lock);
921 if (--pipe->stream_count == pipe->num_inputs) {
922 /* Stop the pipeline. */
923 ret = vsp1_pipeline_stop(pipe);
924 if (ret == -ETIMEDOUT)
925 dev_err(video->vsp1->dev, "pipeline stop timeout\n");
926
927 vsp1_video_cleanup_pipeline(pipe);
928 }
929 mutex_unlock(&pipe->lock);
930
931 video_device_pipeline_stop(&video->video);
932 vsp1_video_release_buffers(video);
933 vsp1_video_pipeline_put(pipe);
934 }
935
936 static const struct vb2_ops vsp1_video_queue_qops = {
937 .queue_setup = vsp1_video_queue_setup,
938 .buf_prepare = vsp1_video_buffer_prepare,
939 .buf_queue = vsp1_video_buffer_queue,
940 .wait_prepare = vb2_ops_wait_prepare,
941 .wait_finish = vb2_ops_wait_finish,
942 .start_streaming = vsp1_video_start_streaming,
943 .stop_streaming = vsp1_video_stop_streaming,
944 };
945
946 /* -----------------------------------------------------------------------------
947 * V4L2 ioctls
948 */
949
950 static int
vsp1_video_querycap(struct file * file,void * fh,struct v4l2_capability * cap)951 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
952 {
953 struct v4l2_fh *vfh = file->private_data;
954 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
955
956 cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
957 | V4L2_CAP_VIDEO_CAPTURE_MPLANE
958 | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
959
960
961 strscpy(cap->driver, "vsp1", sizeof(cap->driver));
962 strscpy(cap->card, video->video.name, sizeof(cap->card));
963
964 return 0;
965 }
966
967 static int
vsp1_video_get_format(struct file * file,void * fh,struct v4l2_format * format)968 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
969 {
970 struct v4l2_fh *vfh = file->private_data;
971 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
972
973 if (format->type != video->queue.type)
974 return -EINVAL;
975
976 mutex_lock(&video->lock);
977 format->fmt.pix_mp = video->rwpf->format;
978 mutex_unlock(&video->lock);
979
980 return 0;
981 }
982
983 static int
vsp1_video_try_format(struct file * file,void * fh,struct v4l2_format * format)984 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
985 {
986 struct v4l2_fh *vfh = file->private_data;
987 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
988
989 if (format->type != video->queue.type)
990 return -EINVAL;
991
992 return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
993 }
994
995 static int
vsp1_video_set_format(struct file * file,void * fh,struct v4l2_format * format)996 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
997 {
998 struct v4l2_fh *vfh = file->private_data;
999 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1000 const struct vsp1_format_info *info;
1001 int ret;
1002
1003 if (format->type != video->queue.type)
1004 return -EINVAL;
1005
1006 ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1007 if (ret < 0)
1008 return ret;
1009
1010 mutex_lock(&video->lock);
1011
1012 if (vb2_is_busy(&video->queue)) {
1013 ret = -EBUSY;
1014 goto done;
1015 }
1016
1017 video->rwpf->format = format->fmt.pix_mp;
1018 video->rwpf->fmtinfo = info;
1019
1020 done:
1021 mutex_unlock(&video->lock);
1022 return ret;
1023 }
1024
1025 static int
vsp1_video_streamon(struct file * file,void * fh,enum v4l2_buf_type type)1026 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1027 {
1028 struct v4l2_fh *vfh = file->private_data;
1029 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1030 struct media_device *mdev = &video->vsp1->media_dev;
1031 struct vsp1_pipeline *pipe;
1032 int ret;
1033
1034 if (vb2_queue_is_busy(&video->queue, file))
1035 return -EBUSY;
1036
1037 /*
1038 * Get a pipeline for the video node and start streaming on it. No link
1039 * touching an entity in the pipeline can be activated or deactivated
1040 * once streaming is started.
1041 */
1042 mutex_lock(&mdev->graph_mutex);
1043
1044 pipe = vsp1_video_pipeline_get(video);
1045 if (IS_ERR(pipe)) {
1046 mutex_unlock(&mdev->graph_mutex);
1047 return PTR_ERR(pipe);
1048 }
1049
1050 ret = __video_device_pipeline_start(&video->video, &pipe->pipe);
1051 if (ret < 0) {
1052 mutex_unlock(&mdev->graph_mutex);
1053 goto err_pipe;
1054 }
1055
1056 mutex_unlock(&mdev->graph_mutex);
1057
1058 /*
1059 * Verify that the configured format matches the output of the connected
1060 * subdev.
1061 */
1062 ret = vsp1_video_verify_format(video);
1063 if (ret < 0)
1064 goto err_stop;
1065
1066 /* Start the queue. */
1067 ret = vb2_streamon(&video->queue, type);
1068 if (ret < 0)
1069 goto err_stop;
1070
1071 return 0;
1072
1073 err_stop:
1074 video_device_pipeline_stop(&video->video);
1075 err_pipe:
1076 vsp1_video_pipeline_put(pipe);
1077 return ret;
1078 }
1079
1080 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1081 .vidioc_querycap = vsp1_video_querycap,
1082 .vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format,
1083 .vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format,
1084 .vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format,
1085 .vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format,
1086 .vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format,
1087 .vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format,
1088 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1089 .vidioc_querybuf = vb2_ioctl_querybuf,
1090 .vidioc_qbuf = vb2_ioctl_qbuf,
1091 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1092 .vidioc_expbuf = vb2_ioctl_expbuf,
1093 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1094 .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1095 .vidioc_streamon = vsp1_video_streamon,
1096 .vidioc_streamoff = vb2_ioctl_streamoff,
1097 };
1098
1099 /* -----------------------------------------------------------------------------
1100 * V4L2 File Operations
1101 */
1102
vsp1_video_open(struct file * file)1103 static int vsp1_video_open(struct file *file)
1104 {
1105 struct vsp1_video *video = video_drvdata(file);
1106 struct v4l2_fh *vfh;
1107 int ret = 0;
1108
1109 vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1110 if (vfh == NULL)
1111 return -ENOMEM;
1112
1113 v4l2_fh_init(vfh, &video->video);
1114 v4l2_fh_add(vfh);
1115
1116 file->private_data = vfh;
1117
1118 ret = vsp1_device_get(video->vsp1);
1119 if (ret < 0) {
1120 v4l2_fh_del(vfh);
1121 v4l2_fh_exit(vfh);
1122 kfree(vfh);
1123 }
1124
1125 return ret;
1126 }
1127
vsp1_video_release(struct file * file)1128 static int vsp1_video_release(struct file *file)
1129 {
1130 struct vsp1_video *video = video_drvdata(file);
1131
1132 vb2_fop_release(file);
1133
1134 vsp1_device_put(video->vsp1);
1135
1136 return 0;
1137 }
1138
1139 static const struct v4l2_file_operations vsp1_video_fops = {
1140 .owner = THIS_MODULE,
1141 .unlocked_ioctl = video_ioctl2,
1142 .open = vsp1_video_open,
1143 .release = vsp1_video_release,
1144 .poll = vb2_fop_poll,
1145 .mmap = vb2_fop_mmap,
1146 };
1147
1148 /* -----------------------------------------------------------------------------
1149 * Suspend and Resume
1150 */
1151
vsp1_video_suspend(struct vsp1_device * vsp1)1152 void vsp1_video_suspend(struct vsp1_device *vsp1)
1153 {
1154 unsigned long flags;
1155 unsigned int i;
1156 int ret;
1157
1158 /*
1159 * To avoid increasing the system suspend time needlessly, loop over the
1160 * pipelines twice, first to set them all to the stopping state, and
1161 * then to wait for the stop to complete.
1162 */
1163 for (i = 0; i < vsp1->info->wpf_count; ++i) {
1164 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1165 struct vsp1_pipeline *pipe;
1166
1167 if (wpf == NULL)
1168 continue;
1169
1170 pipe = wpf->entity.pipe;
1171 if (pipe == NULL)
1172 continue;
1173
1174 spin_lock_irqsave(&pipe->irqlock, flags);
1175 if (pipe->state == VSP1_PIPELINE_RUNNING)
1176 pipe->state = VSP1_PIPELINE_STOPPING;
1177 spin_unlock_irqrestore(&pipe->irqlock, flags);
1178 }
1179
1180 for (i = 0; i < vsp1->info->wpf_count; ++i) {
1181 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1182 struct vsp1_pipeline *pipe;
1183
1184 if (wpf == NULL)
1185 continue;
1186
1187 pipe = wpf->entity.pipe;
1188 if (pipe == NULL)
1189 continue;
1190
1191 ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1192 msecs_to_jiffies(500));
1193 if (ret == 0)
1194 dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1195 wpf->entity.index);
1196 }
1197 }
1198
vsp1_video_resume(struct vsp1_device * vsp1)1199 void vsp1_video_resume(struct vsp1_device *vsp1)
1200 {
1201 unsigned long flags;
1202 unsigned int i;
1203
1204 /* Resume all running pipelines. */
1205 for (i = 0; i < vsp1->info->wpf_count; ++i) {
1206 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1207 struct vsp1_pipeline *pipe;
1208
1209 if (wpf == NULL)
1210 continue;
1211
1212 pipe = wpf->entity.pipe;
1213 if (pipe == NULL)
1214 continue;
1215
1216 /*
1217 * The hardware may have been reset during a suspend and will
1218 * need a full reconfiguration.
1219 */
1220 pipe->configured = false;
1221
1222 spin_lock_irqsave(&pipe->irqlock, flags);
1223 if (vsp1_pipeline_ready(pipe))
1224 vsp1_video_pipeline_run(pipe);
1225 spin_unlock_irqrestore(&pipe->irqlock, flags);
1226 }
1227 }
1228
1229 /* -----------------------------------------------------------------------------
1230 * Initialization and Cleanup
1231 */
1232
vsp1_video_create(struct vsp1_device * vsp1,struct vsp1_rwpf * rwpf)1233 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1234 struct vsp1_rwpf *rwpf)
1235 {
1236 struct vsp1_video *video;
1237 const char *direction;
1238 int ret;
1239
1240 video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1241 if (!video)
1242 return ERR_PTR(-ENOMEM);
1243
1244 rwpf->video = video;
1245
1246 video->vsp1 = vsp1;
1247 video->rwpf = rwpf;
1248
1249 if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1250 direction = "input";
1251 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1252 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1253 video->video.vfl_dir = VFL_DIR_TX;
1254 video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1255 V4L2_CAP_STREAMING;
1256 } else {
1257 direction = "output";
1258 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1259 video->pad.flags = MEDIA_PAD_FL_SINK;
1260 video->video.vfl_dir = VFL_DIR_RX;
1261 video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1262 V4L2_CAP_STREAMING;
1263 }
1264
1265 mutex_init(&video->lock);
1266 spin_lock_init(&video->irqlock);
1267 INIT_LIST_HEAD(&video->irqqueue);
1268
1269 /* Initialize the media entity... */
1270 ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1271 if (ret < 0)
1272 return ERR_PTR(ret);
1273
1274 /* ... and the format ... */
1275 rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1276 rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1277 rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1278 __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1279
1280 /* ... and the video node... */
1281 video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1282 video->video.fops = &vsp1_video_fops;
1283 snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1284 rwpf->entity.subdev.name, direction);
1285 video->video.vfl_type = VFL_TYPE_VIDEO;
1286 video->video.release = video_device_release_empty;
1287 video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1288
1289 video_set_drvdata(&video->video, video);
1290
1291 video->queue.type = video->type;
1292 video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1293 video->queue.lock = &video->lock;
1294 video->queue.drv_priv = video;
1295 video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1296 video->queue.ops = &vsp1_video_queue_qops;
1297 video->queue.mem_ops = &vb2_dma_contig_memops;
1298 video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1299 video->queue.dev = video->vsp1->bus_master;
1300 ret = vb2_queue_init(&video->queue);
1301 if (ret < 0) {
1302 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1303 goto error;
1304 }
1305
1306 /* ... and register the video device. */
1307 video->video.queue = &video->queue;
1308 ret = video_register_device(&video->video, VFL_TYPE_VIDEO, -1);
1309 if (ret < 0) {
1310 dev_err(video->vsp1->dev, "failed to register video device\n");
1311 goto error;
1312 }
1313
1314 return video;
1315
1316 error:
1317 vsp1_video_cleanup(video);
1318 return ERR_PTR(ret);
1319 }
1320
vsp1_video_cleanup(struct vsp1_video * video)1321 void vsp1_video_cleanup(struct vsp1_video *video)
1322 {
1323 if (video_is_registered(&video->video))
1324 video_unregister_device(&video->video);
1325
1326 media_entity_cleanup(&video->video.entity);
1327 }
1328