1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119
120 /* Protocol family. */
121 struct proto vsock_proto = {
122 .name = "AF_VSOCK",
123 .owner = THIS_MODULE,
124 .obj_size = sizeof(struct vsock_sock),
125 #ifdef CONFIG_BPF_SYSCALL
126 .psock_update_sk_prot = vsock_bpf_update_proto,
127 #endif
128 };
129
130 /* The default peer timeout indicates how long we will wait for a peer response
131 * to a control message.
132 */
133 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
134
135 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
136 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
137 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
138
139 /* Transport used for host->guest communication */
140 static const struct vsock_transport *transport_h2g;
141 /* Transport used for guest->host communication */
142 static const struct vsock_transport *transport_g2h;
143 /* Transport used for DGRAM communication */
144 static const struct vsock_transport *transport_dgram;
145 /* Transport used for local communication */
146 static const struct vsock_transport *transport_local;
147 static DEFINE_MUTEX(vsock_register_mutex);
148
149 /**** UTILS ****/
150
151 /* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
153 *
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
158 *
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
163 * mods with VSOCK_HASH_SIZE to ensure this.
164 */
165 #define MAX_PORT_RETRIES 24
166
167 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
168 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171 /* XXX This can probably be implemented in a better way. */
172 #define VSOCK_CONN_HASH(src, dst) \
173 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174 #define vsock_connected_sockets(src, dst) \
175 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176 #define vsock_connected_sockets_vsk(vsk) \
177 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
179 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180 EXPORT_SYMBOL_GPL(vsock_bind_table);
181 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182 EXPORT_SYMBOL_GPL(vsock_connected_table);
183 DEFINE_SPINLOCK(vsock_table_lock);
184 EXPORT_SYMBOL_GPL(vsock_table_lock);
185
186 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)187 static int vsock_auto_bind(struct vsock_sock *vsk)
188 {
189 struct sock *sk = sk_vsock(vsk);
190 struct sockaddr_vm local_addr;
191
192 if (vsock_addr_bound(&vsk->local_addr))
193 return 0;
194 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 return __vsock_bind(sk, &local_addr);
196 }
197
vsock_init_tables(void)198 static void vsock_init_tables(void)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 INIT_LIST_HEAD(&vsock_bind_table[i]);
204
205 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 INIT_LIST_HEAD(&vsock_connected_table[i]);
207 }
208
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)209 static void __vsock_insert_bound(struct list_head *list,
210 struct vsock_sock *vsk)
211 {
212 sock_hold(&vsk->sk);
213 list_add(&vsk->bound_table, list);
214 }
215
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)216 static void __vsock_insert_connected(struct list_head *list,
217 struct vsock_sock *vsk)
218 {
219 sock_hold(&vsk->sk);
220 list_add(&vsk->connected_table, list);
221 }
222
__vsock_remove_bound(struct vsock_sock * vsk)223 static void __vsock_remove_bound(struct vsock_sock *vsk)
224 {
225 list_del_init(&vsk->bound_table);
226 sock_put(&vsk->sk);
227 }
228
__vsock_remove_connected(struct vsock_sock * vsk)229 static void __vsock_remove_connected(struct vsock_sock *vsk)
230 {
231 list_del_init(&vsk->connected_table);
232 sock_put(&vsk->sk);
233 }
234
__vsock_find_bound_socket(struct sockaddr_vm * addr)235 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
236 {
237 struct vsock_sock *vsk;
238
239 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
240 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
241 return sk_vsock(vsk);
242
243 if (addr->svm_port == vsk->local_addr.svm_port &&
244 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
245 addr->svm_cid == VMADDR_CID_ANY))
246 return sk_vsock(vsk);
247 }
248
249 return NULL;
250 }
251
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)252 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
253 struct sockaddr_vm *dst)
254 {
255 struct vsock_sock *vsk;
256
257 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
258 connected_table) {
259 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
260 dst->svm_port == vsk->local_addr.svm_port) {
261 return sk_vsock(vsk);
262 }
263 }
264
265 return NULL;
266 }
267
vsock_insert_unbound(struct vsock_sock * vsk)268 static void vsock_insert_unbound(struct vsock_sock *vsk)
269 {
270 spin_lock_bh(&vsock_table_lock);
271 __vsock_insert_bound(vsock_unbound_sockets, vsk);
272 spin_unlock_bh(&vsock_table_lock);
273 }
274
vsock_insert_connected(struct vsock_sock * vsk)275 void vsock_insert_connected(struct vsock_sock *vsk)
276 {
277 struct list_head *list = vsock_connected_sockets(
278 &vsk->remote_addr, &vsk->local_addr);
279
280 spin_lock_bh(&vsock_table_lock);
281 __vsock_insert_connected(list, vsk);
282 spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_insert_connected);
285
vsock_remove_bound(struct vsock_sock * vsk)286 void vsock_remove_bound(struct vsock_sock *vsk)
287 {
288 spin_lock_bh(&vsock_table_lock);
289 if (__vsock_in_bound_table(vsk))
290 __vsock_remove_bound(vsk);
291 spin_unlock_bh(&vsock_table_lock);
292 }
293 EXPORT_SYMBOL_GPL(vsock_remove_bound);
294
vsock_remove_connected(struct vsock_sock * vsk)295 void vsock_remove_connected(struct vsock_sock *vsk)
296 {
297 spin_lock_bh(&vsock_table_lock);
298 if (__vsock_in_connected_table(vsk))
299 __vsock_remove_connected(vsk);
300 spin_unlock_bh(&vsock_table_lock);
301 }
302 EXPORT_SYMBOL_GPL(vsock_remove_connected);
303
vsock_find_bound_socket(struct sockaddr_vm * addr)304 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
305 {
306 struct sock *sk;
307
308 spin_lock_bh(&vsock_table_lock);
309 sk = __vsock_find_bound_socket(addr);
310 if (sk)
311 sock_hold(sk);
312
313 spin_unlock_bh(&vsock_table_lock);
314
315 return sk;
316 }
317 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
318
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)319 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
320 struct sockaddr_vm *dst)
321 {
322 struct sock *sk;
323
324 spin_lock_bh(&vsock_table_lock);
325 sk = __vsock_find_connected_socket(src, dst);
326 if (sk)
327 sock_hold(sk);
328
329 spin_unlock_bh(&vsock_table_lock);
330
331 return sk;
332 }
333 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
334
vsock_remove_sock(struct vsock_sock * vsk)335 void vsock_remove_sock(struct vsock_sock *vsk)
336 {
337 vsock_remove_bound(vsk);
338 vsock_remove_connected(vsk);
339 }
340 EXPORT_SYMBOL_GPL(vsock_remove_sock);
341
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))342 void vsock_for_each_connected_socket(struct vsock_transport *transport,
343 void (*fn)(struct sock *sk))
344 {
345 int i;
346
347 spin_lock_bh(&vsock_table_lock);
348
349 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
350 struct vsock_sock *vsk;
351 list_for_each_entry(vsk, &vsock_connected_table[i],
352 connected_table) {
353 if (vsk->transport != transport)
354 continue;
355
356 fn(sk_vsock(vsk));
357 }
358 }
359
360 spin_unlock_bh(&vsock_table_lock);
361 }
362 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
363
vsock_add_pending(struct sock * listener,struct sock * pending)364 void vsock_add_pending(struct sock *listener, struct sock *pending)
365 {
366 struct vsock_sock *vlistener;
367 struct vsock_sock *vpending;
368
369 vlistener = vsock_sk(listener);
370 vpending = vsock_sk(pending);
371
372 sock_hold(pending);
373 sock_hold(listener);
374 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
375 }
376 EXPORT_SYMBOL_GPL(vsock_add_pending);
377
vsock_remove_pending(struct sock * listener,struct sock * pending)378 void vsock_remove_pending(struct sock *listener, struct sock *pending)
379 {
380 struct vsock_sock *vpending = vsock_sk(pending);
381
382 list_del_init(&vpending->pending_links);
383 sock_put(listener);
384 sock_put(pending);
385 }
386 EXPORT_SYMBOL_GPL(vsock_remove_pending);
387
vsock_enqueue_accept(struct sock * listener,struct sock * connected)388 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
389 {
390 struct vsock_sock *vlistener;
391 struct vsock_sock *vconnected;
392
393 vlistener = vsock_sk(listener);
394 vconnected = vsock_sk(connected);
395
396 sock_hold(connected);
397 sock_hold(listener);
398 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
399 }
400 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
401
vsock_use_local_transport(unsigned int remote_cid)402 static bool vsock_use_local_transport(unsigned int remote_cid)
403 {
404 if (!transport_local)
405 return false;
406
407 if (remote_cid == VMADDR_CID_LOCAL)
408 return true;
409
410 if (transport_g2h) {
411 return remote_cid == transport_g2h->get_local_cid();
412 } else {
413 return remote_cid == VMADDR_CID_HOST;
414 }
415 }
416
vsock_deassign_transport(struct vsock_sock * vsk)417 static void vsock_deassign_transport(struct vsock_sock *vsk)
418 {
419 if (!vsk->transport)
420 return;
421
422 vsk->transport->destruct(vsk);
423 module_put(vsk->transport->module);
424 vsk->transport = NULL;
425 }
426
427 /* Assign a transport to a socket and call the .init transport callback.
428 *
429 * Note: for connection oriented socket this must be called when vsk->remote_addr
430 * is set (e.g. during the connect() or when a connection request on a listener
431 * socket is received).
432 * The vsk->remote_addr is used to decide which transport to use:
433 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
434 * g2h is not loaded, will use local transport;
435 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
436 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
437 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
438 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)439 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
440 {
441 const struct vsock_transport *new_transport;
442 struct sock *sk = sk_vsock(vsk);
443 unsigned int remote_cid = vsk->remote_addr.svm_cid;
444 __u8 remote_flags;
445 int ret;
446
447 /* If the packet is coming with the source and destination CIDs higher
448 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
449 * forwarded to the host should be established. Then the host will
450 * need to forward the packets to the guest.
451 *
452 * The flag is set on the (listen) receive path (psk is not NULL). On
453 * the connect path the flag can be set by the user space application.
454 */
455 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
456 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
457 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
458
459 remote_flags = vsk->remote_addr.svm_flags;
460
461 switch (sk->sk_type) {
462 case SOCK_DGRAM:
463 new_transport = transport_dgram;
464 break;
465 case SOCK_STREAM:
466 case SOCK_SEQPACKET:
467 if (vsock_use_local_transport(remote_cid))
468 new_transport = transport_local;
469 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
470 (remote_flags & VMADDR_FLAG_TO_HOST))
471 new_transport = transport_g2h;
472 else
473 new_transport = transport_h2g;
474 break;
475 default:
476 return -ESOCKTNOSUPPORT;
477 }
478
479 if (vsk->transport) {
480 if (vsk->transport == new_transport)
481 return 0;
482
483 /* transport->release() must be called with sock lock acquired.
484 * This path can only be taken during vsock_connect(), where we
485 * have already held the sock lock. In the other cases, this
486 * function is called on a new socket which is not assigned to
487 * any transport.
488 */
489 vsk->transport->release(vsk);
490 vsock_deassign_transport(vsk);
491 }
492
493 /* We increase the module refcnt to prevent the transport unloading
494 * while there are open sockets assigned to it.
495 */
496 if (!new_transport || !try_module_get(new_transport->module))
497 return -ENODEV;
498
499 if (sk->sk_type == SOCK_SEQPACKET) {
500 if (!new_transport->seqpacket_allow ||
501 !new_transport->seqpacket_allow(remote_cid)) {
502 module_put(new_transport->module);
503 return -ESOCKTNOSUPPORT;
504 }
505 }
506
507 ret = new_transport->init(vsk, psk);
508 if (ret) {
509 module_put(new_transport->module);
510 return ret;
511 }
512
513 vsk->transport = new_transport;
514
515 return 0;
516 }
517 EXPORT_SYMBOL_GPL(vsock_assign_transport);
518
vsock_find_cid(unsigned int cid)519 bool vsock_find_cid(unsigned int cid)
520 {
521 if (transport_g2h && cid == transport_g2h->get_local_cid())
522 return true;
523
524 if (transport_h2g && cid == VMADDR_CID_HOST)
525 return true;
526
527 if (transport_local && cid == VMADDR_CID_LOCAL)
528 return true;
529
530 return false;
531 }
532 EXPORT_SYMBOL_GPL(vsock_find_cid);
533
vsock_dequeue_accept(struct sock * listener)534 static struct sock *vsock_dequeue_accept(struct sock *listener)
535 {
536 struct vsock_sock *vlistener;
537 struct vsock_sock *vconnected;
538
539 vlistener = vsock_sk(listener);
540
541 if (list_empty(&vlistener->accept_queue))
542 return NULL;
543
544 vconnected = list_entry(vlistener->accept_queue.next,
545 struct vsock_sock, accept_queue);
546
547 list_del_init(&vconnected->accept_queue);
548 sock_put(listener);
549 /* The caller will need a reference on the connected socket so we let
550 * it call sock_put().
551 */
552
553 return sk_vsock(vconnected);
554 }
555
vsock_is_accept_queue_empty(struct sock * sk)556 static bool vsock_is_accept_queue_empty(struct sock *sk)
557 {
558 struct vsock_sock *vsk = vsock_sk(sk);
559 return list_empty(&vsk->accept_queue);
560 }
561
vsock_is_pending(struct sock * sk)562 static bool vsock_is_pending(struct sock *sk)
563 {
564 struct vsock_sock *vsk = vsock_sk(sk);
565 return !list_empty(&vsk->pending_links);
566 }
567
vsock_send_shutdown(struct sock * sk,int mode)568 static int vsock_send_shutdown(struct sock *sk, int mode)
569 {
570 struct vsock_sock *vsk = vsock_sk(sk);
571
572 if (!vsk->transport)
573 return -ENODEV;
574
575 return vsk->transport->shutdown(vsk, mode);
576 }
577
vsock_pending_work(struct work_struct * work)578 static void vsock_pending_work(struct work_struct *work)
579 {
580 struct sock *sk;
581 struct sock *listener;
582 struct vsock_sock *vsk;
583 bool cleanup;
584
585 vsk = container_of(work, struct vsock_sock, pending_work.work);
586 sk = sk_vsock(vsk);
587 listener = vsk->listener;
588 cleanup = true;
589
590 lock_sock(listener);
591 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
592
593 if (vsock_is_pending(sk)) {
594 vsock_remove_pending(listener, sk);
595
596 sk_acceptq_removed(listener);
597 } else if (!vsk->rejected) {
598 /* We are not on the pending list and accept() did not reject
599 * us, so we must have been accepted by our user process. We
600 * just need to drop our references to the sockets and be on
601 * our way.
602 */
603 cleanup = false;
604 goto out;
605 }
606
607 /* We need to remove ourself from the global connected sockets list so
608 * incoming packets can't find this socket, and to reduce the reference
609 * count.
610 */
611 vsock_remove_connected(vsk);
612
613 sk->sk_state = TCP_CLOSE;
614
615 out:
616 release_sock(sk);
617 release_sock(listener);
618 if (cleanup)
619 sock_put(sk);
620
621 sock_put(sk);
622 sock_put(listener);
623 }
624
625 /**** SOCKET OPERATIONS ****/
626
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)627 static int __vsock_bind_connectible(struct vsock_sock *vsk,
628 struct sockaddr_vm *addr)
629 {
630 static u32 port;
631 struct sockaddr_vm new_addr;
632
633 if (!port)
634 port = get_random_u32_above(LAST_RESERVED_PORT);
635
636 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
637
638 if (addr->svm_port == VMADDR_PORT_ANY) {
639 bool found = false;
640 unsigned int i;
641
642 for (i = 0; i < MAX_PORT_RETRIES; i++) {
643 if (port <= LAST_RESERVED_PORT)
644 port = LAST_RESERVED_PORT + 1;
645
646 new_addr.svm_port = port++;
647
648 if (!__vsock_find_bound_socket(&new_addr)) {
649 found = true;
650 break;
651 }
652 }
653
654 if (!found)
655 return -EADDRNOTAVAIL;
656 } else {
657 /* If port is in reserved range, ensure caller
658 * has necessary privileges.
659 */
660 if (addr->svm_port <= LAST_RESERVED_PORT &&
661 !capable(CAP_NET_BIND_SERVICE)) {
662 return -EACCES;
663 }
664
665 if (__vsock_find_bound_socket(&new_addr))
666 return -EADDRINUSE;
667 }
668
669 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
670
671 /* Remove connection oriented sockets from the unbound list and add them
672 * to the hash table for easy lookup by its address. The unbound list
673 * is simply an extra entry at the end of the hash table, a trick used
674 * by AF_UNIX.
675 */
676 __vsock_remove_bound(vsk);
677 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
678
679 return 0;
680 }
681
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)682 static int __vsock_bind_dgram(struct vsock_sock *vsk,
683 struct sockaddr_vm *addr)
684 {
685 return vsk->transport->dgram_bind(vsk, addr);
686 }
687
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)688 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
689 {
690 struct vsock_sock *vsk = vsock_sk(sk);
691 int retval;
692
693 /* First ensure this socket isn't already bound. */
694 if (vsock_addr_bound(&vsk->local_addr))
695 return -EINVAL;
696
697 /* Now bind to the provided address or select appropriate values if
698 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
699 * like AF_INET prevents binding to a non-local IP address (in most
700 * cases), we only allow binding to a local CID.
701 */
702 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
703 return -EADDRNOTAVAIL;
704
705 switch (sk->sk_socket->type) {
706 case SOCK_STREAM:
707 case SOCK_SEQPACKET:
708 spin_lock_bh(&vsock_table_lock);
709 retval = __vsock_bind_connectible(vsk, addr);
710 spin_unlock_bh(&vsock_table_lock);
711 break;
712
713 case SOCK_DGRAM:
714 retval = __vsock_bind_dgram(vsk, addr);
715 break;
716
717 default:
718 retval = -EINVAL;
719 break;
720 }
721
722 return retval;
723 }
724
725 static void vsock_connect_timeout(struct work_struct *work);
726
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)727 static struct sock *__vsock_create(struct net *net,
728 struct socket *sock,
729 struct sock *parent,
730 gfp_t priority,
731 unsigned short type,
732 int kern)
733 {
734 struct sock *sk;
735 struct vsock_sock *psk;
736 struct vsock_sock *vsk;
737
738 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
739 if (!sk)
740 return NULL;
741
742 sock_init_data(sock, sk);
743
744 /* sk->sk_type is normally set in sock_init_data, but only if sock is
745 * non-NULL. We make sure that our sockets always have a type by
746 * setting it here if needed.
747 */
748 if (!sock)
749 sk->sk_type = type;
750
751 vsk = vsock_sk(sk);
752 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
753 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754
755 sk->sk_destruct = vsock_sk_destruct;
756 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
757 sock_reset_flag(sk, SOCK_DONE);
758
759 INIT_LIST_HEAD(&vsk->bound_table);
760 INIT_LIST_HEAD(&vsk->connected_table);
761 vsk->listener = NULL;
762 INIT_LIST_HEAD(&vsk->pending_links);
763 INIT_LIST_HEAD(&vsk->accept_queue);
764 vsk->rejected = false;
765 vsk->sent_request = false;
766 vsk->ignore_connecting_rst = false;
767 vsk->peer_shutdown = 0;
768 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
769 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
770
771 psk = parent ? vsock_sk(parent) : NULL;
772 if (parent) {
773 vsk->trusted = psk->trusted;
774 vsk->owner = get_cred(psk->owner);
775 vsk->connect_timeout = psk->connect_timeout;
776 vsk->buffer_size = psk->buffer_size;
777 vsk->buffer_min_size = psk->buffer_min_size;
778 vsk->buffer_max_size = psk->buffer_max_size;
779 security_sk_clone(parent, sk);
780 } else {
781 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
782 vsk->owner = get_current_cred();
783 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
784 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
785 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
786 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
787 }
788
789 return sk;
790 }
791
sock_type_connectible(u16 type)792 static bool sock_type_connectible(u16 type)
793 {
794 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
795 }
796
__vsock_release(struct sock * sk,int level)797 static void __vsock_release(struct sock *sk, int level)
798 {
799 if (sk) {
800 struct sock *pending;
801 struct vsock_sock *vsk;
802
803 vsk = vsock_sk(sk);
804 pending = NULL; /* Compiler warning. */
805
806 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
807 * version to avoid the warning "possible recursive locking
808 * detected". When "level" is 0, lock_sock_nested(sk, level)
809 * is the same as lock_sock(sk).
810 */
811 lock_sock_nested(sk, level);
812
813 if (vsk->transport)
814 vsk->transport->release(vsk);
815 else if (sock_type_connectible(sk->sk_type))
816 vsock_remove_sock(vsk);
817
818 sock_orphan(sk);
819 sk->sk_shutdown = SHUTDOWN_MASK;
820
821 skb_queue_purge(&sk->sk_receive_queue);
822
823 /* Clean up any sockets that never were accepted. */
824 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
825 __vsock_release(pending, SINGLE_DEPTH_NESTING);
826 sock_put(pending);
827 }
828
829 release_sock(sk);
830 sock_put(sk);
831 }
832 }
833
vsock_sk_destruct(struct sock * sk)834 static void vsock_sk_destruct(struct sock *sk)
835 {
836 struct vsock_sock *vsk = vsock_sk(sk);
837
838 vsock_deassign_transport(vsk);
839
840 /* When clearing these addresses, there's no need to set the family and
841 * possibly register the address family with the kernel.
842 */
843 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
844 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
845
846 put_cred(vsk->owner);
847 }
848
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)849 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
850 {
851 int err;
852
853 err = sock_queue_rcv_skb(sk, skb);
854 if (err)
855 kfree_skb(skb);
856
857 return err;
858 }
859
vsock_create_connected(struct sock * parent)860 struct sock *vsock_create_connected(struct sock *parent)
861 {
862 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
863 parent->sk_type, 0);
864 }
865 EXPORT_SYMBOL_GPL(vsock_create_connected);
866
vsock_stream_has_data(struct vsock_sock * vsk)867 s64 vsock_stream_has_data(struct vsock_sock *vsk)
868 {
869 return vsk->transport->stream_has_data(vsk);
870 }
871 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
872
vsock_connectible_has_data(struct vsock_sock * vsk)873 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
874 {
875 struct sock *sk = sk_vsock(vsk);
876
877 if (sk->sk_type == SOCK_SEQPACKET)
878 return vsk->transport->seqpacket_has_data(vsk);
879 else
880 return vsock_stream_has_data(vsk);
881 }
882 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
883
vsock_stream_has_space(struct vsock_sock * vsk)884 s64 vsock_stream_has_space(struct vsock_sock *vsk)
885 {
886 return vsk->transport->stream_has_space(vsk);
887 }
888 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
889
vsock_data_ready(struct sock * sk)890 void vsock_data_ready(struct sock *sk)
891 {
892 struct vsock_sock *vsk = vsock_sk(sk);
893
894 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
895 sock_flag(sk, SOCK_DONE))
896 sk->sk_data_ready(sk);
897 }
898 EXPORT_SYMBOL_GPL(vsock_data_ready);
899
vsock_release(struct socket * sock)900 static int vsock_release(struct socket *sock)
901 {
902 __vsock_release(sock->sk, 0);
903 sock->sk = NULL;
904 sock->state = SS_FREE;
905
906 return 0;
907 }
908
909 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)910 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
911 {
912 int err;
913 struct sock *sk;
914 struct sockaddr_vm *vm_addr;
915
916 sk = sock->sk;
917
918 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
919 return -EINVAL;
920
921 lock_sock(sk);
922 err = __vsock_bind(sk, vm_addr);
923 release_sock(sk);
924
925 return err;
926 }
927
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)928 static int vsock_getname(struct socket *sock,
929 struct sockaddr *addr, int peer)
930 {
931 int err;
932 struct sock *sk;
933 struct vsock_sock *vsk;
934 struct sockaddr_vm *vm_addr;
935
936 sk = sock->sk;
937 vsk = vsock_sk(sk);
938 err = 0;
939
940 lock_sock(sk);
941
942 if (peer) {
943 if (sock->state != SS_CONNECTED) {
944 err = -ENOTCONN;
945 goto out;
946 }
947 vm_addr = &vsk->remote_addr;
948 } else {
949 vm_addr = &vsk->local_addr;
950 }
951
952 if (!vm_addr) {
953 err = -EINVAL;
954 goto out;
955 }
956
957 /* sys_getsockname() and sys_getpeername() pass us a
958 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
959 * that macro is defined in socket.c instead of .h, so we hardcode its
960 * value here.
961 */
962 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
963 memcpy(addr, vm_addr, sizeof(*vm_addr));
964 err = sizeof(*vm_addr);
965
966 out:
967 release_sock(sk);
968 return err;
969 }
970
vsock_shutdown(struct socket * sock,int mode)971 static int vsock_shutdown(struct socket *sock, int mode)
972 {
973 int err;
974 struct sock *sk;
975
976 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
977 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
978 * here like the other address families do. Note also that the
979 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
980 * which is what we want.
981 */
982 mode++;
983
984 if ((mode & ~SHUTDOWN_MASK) || !mode)
985 return -EINVAL;
986
987 /* If this is a connection oriented socket and it is not connected then
988 * bail out immediately. If it is a DGRAM socket then we must first
989 * kick the socket so that it wakes up from any sleeping calls, for
990 * example recv(), and then afterwards return the error.
991 */
992
993 sk = sock->sk;
994
995 lock_sock(sk);
996 if (sock->state == SS_UNCONNECTED) {
997 err = -ENOTCONN;
998 if (sock_type_connectible(sk->sk_type))
999 goto out;
1000 } else {
1001 sock->state = SS_DISCONNECTING;
1002 err = 0;
1003 }
1004
1005 /* Receive and send shutdowns are treated alike. */
1006 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1007 if (mode) {
1008 sk->sk_shutdown |= mode;
1009 sk->sk_state_change(sk);
1010
1011 if (sock_type_connectible(sk->sk_type)) {
1012 sock_reset_flag(sk, SOCK_DONE);
1013 vsock_send_shutdown(sk, mode);
1014 }
1015 }
1016
1017 out:
1018 release_sock(sk);
1019 return err;
1020 }
1021
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1022 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1023 poll_table *wait)
1024 {
1025 struct sock *sk;
1026 __poll_t mask;
1027 struct vsock_sock *vsk;
1028
1029 sk = sock->sk;
1030 vsk = vsock_sk(sk);
1031
1032 poll_wait(file, sk_sleep(sk), wait);
1033 mask = 0;
1034
1035 if (sk->sk_err)
1036 /* Signify that there has been an error on this socket. */
1037 mask |= EPOLLERR;
1038
1039 /* INET sockets treat local write shutdown and peer write shutdown as a
1040 * case of EPOLLHUP set.
1041 */
1042 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1043 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1044 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1045 mask |= EPOLLHUP;
1046 }
1047
1048 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1049 vsk->peer_shutdown & SEND_SHUTDOWN) {
1050 mask |= EPOLLRDHUP;
1051 }
1052
1053 if (sock->type == SOCK_DGRAM) {
1054 /* For datagram sockets we can read if there is something in
1055 * the queue and write as long as the socket isn't shutdown for
1056 * sending.
1057 */
1058 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1059 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1060 mask |= EPOLLIN | EPOLLRDNORM;
1061 }
1062
1063 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1064 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1065
1066 } else if (sock_type_connectible(sk->sk_type)) {
1067 const struct vsock_transport *transport;
1068
1069 lock_sock(sk);
1070
1071 transport = vsk->transport;
1072
1073 /* Listening sockets that have connections in their accept
1074 * queue can be read.
1075 */
1076 if (sk->sk_state == TCP_LISTEN
1077 && !vsock_is_accept_queue_empty(sk))
1078 mask |= EPOLLIN | EPOLLRDNORM;
1079
1080 /* If there is something in the queue then we can read. */
1081 if (transport && transport->stream_is_active(vsk) &&
1082 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1083 bool data_ready_now = false;
1084 int target = sock_rcvlowat(sk, 0, INT_MAX);
1085 int ret = transport->notify_poll_in(
1086 vsk, target, &data_ready_now);
1087 if (ret < 0) {
1088 mask |= EPOLLERR;
1089 } else {
1090 if (data_ready_now)
1091 mask |= EPOLLIN | EPOLLRDNORM;
1092
1093 }
1094 }
1095
1096 /* Sockets whose connections have been closed, reset, or
1097 * terminated should also be considered read, and we check the
1098 * shutdown flag for that.
1099 */
1100 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1101 vsk->peer_shutdown & SEND_SHUTDOWN) {
1102 mask |= EPOLLIN | EPOLLRDNORM;
1103 }
1104
1105 /* Connected sockets that can produce data can be written. */
1106 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1108 bool space_avail_now = false;
1109 int ret = transport->notify_poll_out(
1110 vsk, 1, &space_avail_now);
1111 if (ret < 0) {
1112 mask |= EPOLLERR;
1113 } else {
1114 if (space_avail_now)
1115 /* Remove EPOLLWRBAND since INET
1116 * sockets are not setting it.
1117 */
1118 mask |= EPOLLOUT | EPOLLWRNORM;
1119
1120 }
1121 }
1122 }
1123
1124 /* Simulate INET socket poll behaviors, which sets
1125 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1126 * but local send is not shutdown.
1127 */
1128 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1129 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1130 mask |= EPOLLOUT | EPOLLWRNORM;
1131
1132 }
1133
1134 release_sock(sk);
1135 }
1136
1137 return mask;
1138 }
1139
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1140 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1141 {
1142 struct vsock_sock *vsk = vsock_sk(sk);
1143
1144 return vsk->transport->read_skb(vsk, read_actor);
1145 }
1146
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1147 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1148 size_t len)
1149 {
1150 int err;
1151 struct sock *sk;
1152 struct vsock_sock *vsk;
1153 struct sockaddr_vm *remote_addr;
1154 const struct vsock_transport *transport;
1155
1156 if (msg->msg_flags & MSG_OOB)
1157 return -EOPNOTSUPP;
1158
1159 /* For now, MSG_DONTWAIT is always assumed... */
1160 err = 0;
1161 sk = sock->sk;
1162 vsk = vsock_sk(sk);
1163
1164 lock_sock(sk);
1165
1166 transport = vsk->transport;
1167
1168 err = vsock_auto_bind(vsk);
1169 if (err)
1170 goto out;
1171
1172
1173 /* If the provided message contains an address, use that. Otherwise
1174 * fall back on the socket's remote handle (if it has been connected).
1175 */
1176 if (msg->msg_name &&
1177 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1178 &remote_addr) == 0) {
1179 /* Ensure this address is of the right type and is a valid
1180 * destination.
1181 */
1182
1183 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1184 remote_addr->svm_cid = transport->get_local_cid();
1185
1186 if (!vsock_addr_bound(remote_addr)) {
1187 err = -EINVAL;
1188 goto out;
1189 }
1190 } else if (sock->state == SS_CONNECTED) {
1191 remote_addr = &vsk->remote_addr;
1192
1193 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1194 remote_addr->svm_cid = transport->get_local_cid();
1195
1196 /* XXX Should connect() or this function ensure remote_addr is
1197 * bound?
1198 */
1199 if (!vsock_addr_bound(&vsk->remote_addr)) {
1200 err = -EINVAL;
1201 goto out;
1202 }
1203 } else {
1204 err = -EINVAL;
1205 goto out;
1206 }
1207
1208 if (!transport->dgram_allow(remote_addr->svm_cid,
1209 remote_addr->svm_port)) {
1210 err = -EINVAL;
1211 goto out;
1212 }
1213
1214 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1215
1216 out:
1217 release_sock(sk);
1218 return err;
1219 }
1220
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1221 static int vsock_dgram_connect(struct socket *sock,
1222 struct sockaddr *addr, int addr_len, int flags)
1223 {
1224 int err;
1225 struct sock *sk;
1226 struct vsock_sock *vsk;
1227 struct sockaddr_vm *remote_addr;
1228
1229 sk = sock->sk;
1230 vsk = vsock_sk(sk);
1231
1232 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1233 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1234 lock_sock(sk);
1235 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1236 VMADDR_PORT_ANY);
1237 sock->state = SS_UNCONNECTED;
1238 release_sock(sk);
1239 return 0;
1240 } else if (err != 0)
1241 return -EINVAL;
1242
1243 lock_sock(sk);
1244
1245 err = vsock_auto_bind(vsk);
1246 if (err)
1247 goto out;
1248
1249 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1250 remote_addr->svm_port)) {
1251 err = -EINVAL;
1252 goto out;
1253 }
1254
1255 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1256 sock->state = SS_CONNECTED;
1257
1258 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1259 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1260 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1261 *
1262 * This doesn't seem to be abnormal state for datagram sockets, as the
1263 * same approach can be see in other datagram socket types as well
1264 * (such as unix sockets).
1265 */
1266 sk->sk_state = TCP_ESTABLISHED;
1267
1268 out:
1269 release_sock(sk);
1270 return err;
1271 }
1272
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1273 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1274 size_t len, int flags)
1275 {
1276 struct sock *sk = sock->sk;
1277 struct vsock_sock *vsk = vsock_sk(sk);
1278
1279 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1280 }
1281
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1282 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1283 size_t len, int flags)
1284 {
1285 #ifdef CONFIG_BPF_SYSCALL
1286 struct sock *sk = sock->sk;
1287 const struct proto *prot;
1288
1289 prot = READ_ONCE(sk->sk_prot);
1290 if (prot != &vsock_proto)
1291 return prot->recvmsg(sk, msg, len, flags, NULL);
1292 #endif
1293
1294 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1295 }
1296 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1297
1298 static const struct proto_ops vsock_dgram_ops = {
1299 .family = PF_VSOCK,
1300 .owner = THIS_MODULE,
1301 .release = vsock_release,
1302 .bind = vsock_bind,
1303 .connect = vsock_dgram_connect,
1304 .socketpair = sock_no_socketpair,
1305 .accept = sock_no_accept,
1306 .getname = vsock_getname,
1307 .poll = vsock_poll,
1308 .ioctl = sock_no_ioctl,
1309 .listen = sock_no_listen,
1310 .shutdown = vsock_shutdown,
1311 .sendmsg = vsock_dgram_sendmsg,
1312 .recvmsg = vsock_dgram_recvmsg,
1313 .mmap = sock_no_mmap,
1314 .read_skb = vsock_read_skb,
1315 };
1316
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1317 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1318 {
1319 const struct vsock_transport *transport = vsk->transport;
1320
1321 if (!transport || !transport->cancel_pkt)
1322 return -EOPNOTSUPP;
1323
1324 return transport->cancel_pkt(vsk);
1325 }
1326
vsock_connect_timeout(struct work_struct * work)1327 static void vsock_connect_timeout(struct work_struct *work)
1328 {
1329 struct sock *sk;
1330 struct vsock_sock *vsk;
1331
1332 vsk = container_of(work, struct vsock_sock, connect_work.work);
1333 sk = sk_vsock(vsk);
1334
1335 lock_sock(sk);
1336 if (sk->sk_state == TCP_SYN_SENT &&
1337 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1338 sk->sk_state = TCP_CLOSE;
1339 sk->sk_socket->state = SS_UNCONNECTED;
1340 sk->sk_err = ETIMEDOUT;
1341 sk_error_report(sk);
1342 vsock_transport_cancel_pkt(vsk);
1343 }
1344 release_sock(sk);
1345
1346 sock_put(sk);
1347 }
1348
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1349 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1350 int addr_len, int flags)
1351 {
1352 int err;
1353 struct sock *sk;
1354 struct vsock_sock *vsk;
1355 const struct vsock_transport *transport;
1356 struct sockaddr_vm *remote_addr;
1357 long timeout;
1358 DEFINE_WAIT(wait);
1359
1360 err = 0;
1361 sk = sock->sk;
1362 vsk = vsock_sk(sk);
1363
1364 lock_sock(sk);
1365
1366 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1367 switch (sock->state) {
1368 case SS_CONNECTED:
1369 err = -EISCONN;
1370 goto out;
1371 case SS_DISCONNECTING:
1372 err = -EINVAL;
1373 goto out;
1374 case SS_CONNECTING:
1375 /* This continues on so we can move sock into the SS_CONNECTED
1376 * state once the connection has completed (at which point err
1377 * will be set to zero also). Otherwise, we will either wait
1378 * for the connection or return -EALREADY should this be a
1379 * non-blocking call.
1380 */
1381 err = -EALREADY;
1382 if (flags & O_NONBLOCK)
1383 goto out;
1384 break;
1385 default:
1386 if ((sk->sk_state == TCP_LISTEN) ||
1387 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1388 err = -EINVAL;
1389 goto out;
1390 }
1391
1392 /* Set the remote address that we are connecting to. */
1393 memcpy(&vsk->remote_addr, remote_addr,
1394 sizeof(vsk->remote_addr));
1395
1396 err = vsock_assign_transport(vsk, NULL);
1397 if (err)
1398 goto out;
1399
1400 transport = vsk->transport;
1401
1402 /* The hypervisor and well-known contexts do not have socket
1403 * endpoints.
1404 */
1405 if (!transport ||
1406 !transport->stream_allow(remote_addr->svm_cid,
1407 remote_addr->svm_port)) {
1408 err = -ENETUNREACH;
1409 goto out;
1410 }
1411
1412 err = vsock_auto_bind(vsk);
1413 if (err)
1414 goto out;
1415
1416 sk->sk_state = TCP_SYN_SENT;
1417
1418 err = transport->connect(vsk);
1419 if (err < 0)
1420 goto out;
1421
1422 /* Mark sock as connecting and set the error code to in
1423 * progress in case this is a non-blocking connect.
1424 */
1425 sock->state = SS_CONNECTING;
1426 err = -EINPROGRESS;
1427 }
1428
1429 /* The receive path will handle all communication until we are able to
1430 * enter the connected state. Here we wait for the connection to be
1431 * completed or a notification of an error.
1432 */
1433 timeout = vsk->connect_timeout;
1434 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1435
1436 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1437 if (flags & O_NONBLOCK) {
1438 /* If we're not going to block, we schedule a timeout
1439 * function to generate a timeout on the connection
1440 * attempt, in case the peer doesn't respond in a
1441 * timely manner. We hold on to the socket until the
1442 * timeout fires.
1443 */
1444 sock_hold(sk);
1445
1446 /* If the timeout function is already scheduled,
1447 * reschedule it, then ungrab the socket refcount to
1448 * keep it balanced.
1449 */
1450 if (mod_delayed_work(system_wq, &vsk->connect_work,
1451 timeout))
1452 sock_put(sk);
1453
1454 /* Skip ahead to preserve error code set above. */
1455 goto out_wait;
1456 }
1457
1458 release_sock(sk);
1459 timeout = schedule_timeout(timeout);
1460 lock_sock(sk);
1461
1462 if (signal_pending(current)) {
1463 err = sock_intr_errno(timeout);
1464 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1465 sock->state = SS_UNCONNECTED;
1466 vsock_transport_cancel_pkt(vsk);
1467 vsock_remove_connected(vsk);
1468 goto out_wait;
1469 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1470 err = -ETIMEDOUT;
1471 sk->sk_state = TCP_CLOSE;
1472 sock->state = SS_UNCONNECTED;
1473 vsock_transport_cancel_pkt(vsk);
1474 goto out_wait;
1475 }
1476
1477 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1478 }
1479
1480 if (sk->sk_err) {
1481 err = -sk->sk_err;
1482 sk->sk_state = TCP_CLOSE;
1483 sock->state = SS_UNCONNECTED;
1484 } else {
1485 err = 0;
1486 }
1487
1488 out_wait:
1489 finish_wait(sk_sleep(sk), &wait);
1490 out:
1491 release_sock(sk);
1492 return err;
1493 }
1494
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1495 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1496 bool kern)
1497 {
1498 struct sock *listener;
1499 int err;
1500 struct sock *connected;
1501 struct vsock_sock *vconnected;
1502 long timeout;
1503 DEFINE_WAIT(wait);
1504
1505 err = 0;
1506 listener = sock->sk;
1507
1508 lock_sock(listener);
1509
1510 if (!sock_type_connectible(sock->type)) {
1511 err = -EOPNOTSUPP;
1512 goto out;
1513 }
1514
1515 if (listener->sk_state != TCP_LISTEN) {
1516 err = -EINVAL;
1517 goto out;
1518 }
1519
1520 /* Wait for children sockets to appear; these are the new sockets
1521 * created upon connection establishment.
1522 */
1523 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1524 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1525
1526 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1527 listener->sk_err == 0) {
1528 release_sock(listener);
1529 timeout = schedule_timeout(timeout);
1530 finish_wait(sk_sleep(listener), &wait);
1531 lock_sock(listener);
1532
1533 if (signal_pending(current)) {
1534 err = sock_intr_errno(timeout);
1535 goto out;
1536 } else if (timeout == 0) {
1537 err = -EAGAIN;
1538 goto out;
1539 }
1540
1541 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1542 }
1543 finish_wait(sk_sleep(listener), &wait);
1544
1545 if (listener->sk_err)
1546 err = -listener->sk_err;
1547
1548 if (connected) {
1549 sk_acceptq_removed(listener);
1550
1551 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1552 vconnected = vsock_sk(connected);
1553
1554 /* If the listener socket has received an error, then we should
1555 * reject this socket and return. Note that we simply mark the
1556 * socket rejected, drop our reference, and let the cleanup
1557 * function handle the cleanup; the fact that we found it in
1558 * the listener's accept queue guarantees that the cleanup
1559 * function hasn't run yet.
1560 */
1561 if (err) {
1562 vconnected->rejected = true;
1563 } else {
1564 newsock->state = SS_CONNECTED;
1565 sock_graft(connected, newsock);
1566 }
1567
1568 release_sock(connected);
1569 sock_put(connected);
1570 }
1571
1572 out:
1573 release_sock(listener);
1574 return err;
1575 }
1576
vsock_listen(struct socket * sock,int backlog)1577 static int vsock_listen(struct socket *sock, int backlog)
1578 {
1579 int err;
1580 struct sock *sk;
1581 struct vsock_sock *vsk;
1582
1583 sk = sock->sk;
1584
1585 lock_sock(sk);
1586
1587 if (!sock_type_connectible(sk->sk_type)) {
1588 err = -EOPNOTSUPP;
1589 goto out;
1590 }
1591
1592 if (sock->state != SS_UNCONNECTED) {
1593 err = -EINVAL;
1594 goto out;
1595 }
1596
1597 vsk = vsock_sk(sk);
1598
1599 if (!vsock_addr_bound(&vsk->local_addr)) {
1600 err = -EINVAL;
1601 goto out;
1602 }
1603
1604 sk->sk_max_ack_backlog = backlog;
1605 sk->sk_state = TCP_LISTEN;
1606
1607 err = 0;
1608
1609 out:
1610 release_sock(sk);
1611 return err;
1612 }
1613
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1614 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1615 const struct vsock_transport *transport,
1616 u64 val)
1617 {
1618 if (val > vsk->buffer_max_size)
1619 val = vsk->buffer_max_size;
1620
1621 if (val < vsk->buffer_min_size)
1622 val = vsk->buffer_min_size;
1623
1624 if (val != vsk->buffer_size &&
1625 transport && transport->notify_buffer_size)
1626 transport->notify_buffer_size(vsk, &val);
1627
1628 vsk->buffer_size = val;
1629 }
1630
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1631 static int vsock_connectible_setsockopt(struct socket *sock,
1632 int level,
1633 int optname,
1634 sockptr_t optval,
1635 unsigned int optlen)
1636 {
1637 int err;
1638 struct sock *sk;
1639 struct vsock_sock *vsk;
1640 const struct vsock_transport *transport;
1641 u64 val;
1642
1643 if (level != AF_VSOCK)
1644 return -ENOPROTOOPT;
1645
1646 #define COPY_IN(_v) \
1647 do { \
1648 if (optlen < sizeof(_v)) { \
1649 err = -EINVAL; \
1650 goto exit; \
1651 } \
1652 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1653 err = -EFAULT; \
1654 goto exit; \
1655 } \
1656 } while (0)
1657
1658 err = 0;
1659 sk = sock->sk;
1660 vsk = vsock_sk(sk);
1661
1662 lock_sock(sk);
1663
1664 transport = vsk->transport;
1665
1666 switch (optname) {
1667 case SO_VM_SOCKETS_BUFFER_SIZE:
1668 COPY_IN(val);
1669 vsock_update_buffer_size(vsk, transport, val);
1670 break;
1671
1672 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1673 COPY_IN(val);
1674 vsk->buffer_max_size = val;
1675 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1676 break;
1677
1678 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1679 COPY_IN(val);
1680 vsk->buffer_min_size = val;
1681 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1682 break;
1683
1684 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1685 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1686 struct __kernel_sock_timeval tv;
1687
1688 err = sock_copy_user_timeval(&tv, optval, optlen,
1689 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1690 if (err)
1691 break;
1692 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1693 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1694 vsk->connect_timeout = tv.tv_sec * HZ +
1695 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1696 if (vsk->connect_timeout == 0)
1697 vsk->connect_timeout =
1698 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1699
1700 } else {
1701 err = -ERANGE;
1702 }
1703 break;
1704 }
1705
1706 default:
1707 err = -ENOPROTOOPT;
1708 break;
1709 }
1710
1711 #undef COPY_IN
1712
1713 exit:
1714 release_sock(sk);
1715 return err;
1716 }
1717
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1718 static int vsock_connectible_getsockopt(struct socket *sock,
1719 int level, int optname,
1720 char __user *optval,
1721 int __user *optlen)
1722 {
1723 struct sock *sk = sock->sk;
1724 struct vsock_sock *vsk = vsock_sk(sk);
1725
1726 union {
1727 u64 val64;
1728 struct old_timeval32 tm32;
1729 struct __kernel_old_timeval tm;
1730 struct __kernel_sock_timeval stm;
1731 } v;
1732
1733 int lv = sizeof(v.val64);
1734 int len;
1735
1736 if (level != AF_VSOCK)
1737 return -ENOPROTOOPT;
1738
1739 if (get_user(len, optlen))
1740 return -EFAULT;
1741
1742 memset(&v, 0, sizeof(v));
1743
1744 switch (optname) {
1745 case SO_VM_SOCKETS_BUFFER_SIZE:
1746 v.val64 = vsk->buffer_size;
1747 break;
1748
1749 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1750 v.val64 = vsk->buffer_max_size;
1751 break;
1752
1753 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1754 v.val64 = vsk->buffer_min_size;
1755 break;
1756
1757 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1758 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1759 lv = sock_get_timeout(vsk->connect_timeout, &v,
1760 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1761 break;
1762
1763 default:
1764 return -ENOPROTOOPT;
1765 }
1766
1767 if (len < lv)
1768 return -EINVAL;
1769 if (len > lv)
1770 len = lv;
1771 if (copy_to_user(optval, &v, len))
1772 return -EFAULT;
1773
1774 if (put_user(len, optlen))
1775 return -EFAULT;
1776
1777 return 0;
1778 }
1779
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1780 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1781 size_t len)
1782 {
1783 struct sock *sk;
1784 struct vsock_sock *vsk;
1785 const struct vsock_transport *transport;
1786 ssize_t total_written;
1787 long timeout;
1788 int err;
1789 struct vsock_transport_send_notify_data send_data;
1790 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1791
1792 sk = sock->sk;
1793 vsk = vsock_sk(sk);
1794 total_written = 0;
1795 err = 0;
1796
1797 if (msg->msg_flags & MSG_OOB)
1798 return -EOPNOTSUPP;
1799
1800 lock_sock(sk);
1801
1802 transport = vsk->transport;
1803
1804 /* Callers should not provide a destination with connection oriented
1805 * sockets.
1806 */
1807 if (msg->msg_namelen) {
1808 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1809 goto out;
1810 }
1811
1812 /* Send data only if both sides are not shutdown in the direction. */
1813 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1814 vsk->peer_shutdown & RCV_SHUTDOWN) {
1815 err = -EPIPE;
1816 goto out;
1817 }
1818
1819 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1820 !vsock_addr_bound(&vsk->local_addr)) {
1821 err = -ENOTCONN;
1822 goto out;
1823 }
1824
1825 if (!vsock_addr_bound(&vsk->remote_addr)) {
1826 err = -EDESTADDRREQ;
1827 goto out;
1828 }
1829
1830 /* Wait for room in the produce queue to enqueue our user's data. */
1831 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1832
1833 err = transport->notify_send_init(vsk, &send_data);
1834 if (err < 0)
1835 goto out;
1836
1837 while (total_written < len) {
1838 ssize_t written;
1839
1840 add_wait_queue(sk_sleep(sk), &wait);
1841 while (vsock_stream_has_space(vsk) == 0 &&
1842 sk->sk_err == 0 &&
1843 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1844 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1845
1846 /* Don't wait for non-blocking sockets. */
1847 if (timeout == 0) {
1848 err = -EAGAIN;
1849 remove_wait_queue(sk_sleep(sk), &wait);
1850 goto out_err;
1851 }
1852
1853 err = transport->notify_send_pre_block(vsk, &send_data);
1854 if (err < 0) {
1855 remove_wait_queue(sk_sleep(sk), &wait);
1856 goto out_err;
1857 }
1858
1859 release_sock(sk);
1860 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1861 lock_sock(sk);
1862 if (signal_pending(current)) {
1863 err = sock_intr_errno(timeout);
1864 remove_wait_queue(sk_sleep(sk), &wait);
1865 goto out_err;
1866 } else if (timeout == 0) {
1867 err = -EAGAIN;
1868 remove_wait_queue(sk_sleep(sk), &wait);
1869 goto out_err;
1870 }
1871 }
1872 remove_wait_queue(sk_sleep(sk), &wait);
1873
1874 /* These checks occur both as part of and after the loop
1875 * conditional since we need to check before and after
1876 * sleeping.
1877 */
1878 if (sk->sk_err) {
1879 err = -sk->sk_err;
1880 goto out_err;
1881 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1882 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1883 err = -EPIPE;
1884 goto out_err;
1885 }
1886
1887 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1888 if (err < 0)
1889 goto out_err;
1890
1891 /* Note that enqueue will only write as many bytes as are free
1892 * in the produce queue, so we don't need to ensure len is
1893 * smaller than the queue size. It is the caller's
1894 * responsibility to check how many bytes we were able to send.
1895 */
1896
1897 if (sk->sk_type == SOCK_SEQPACKET) {
1898 written = transport->seqpacket_enqueue(vsk,
1899 msg, len - total_written);
1900 } else {
1901 written = transport->stream_enqueue(vsk,
1902 msg, len - total_written);
1903 }
1904
1905 if (written < 0) {
1906 err = written;
1907 goto out_err;
1908 }
1909
1910 total_written += written;
1911
1912 err = transport->notify_send_post_enqueue(
1913 vsk, written, &send_data);
1914 if (err < 0)
1915 goto out_err;
1916
1917 }
1918
1919 out_err:
1920 if (total_written > 0) {
1921 /* Return number of written bytes only if:
1922 * 1) SOCK_STREAM socket.
1923 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1924 */
1925 if (sk->sk_type == SOCK_STREAM || total_written == len)
1926 err = total_written;
1927 }
1928 out:
1929 release_sock(sk);
1930 return err;
1931 }
1932
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1933 static int vsock_connectible_wait_data(struct sock *sk,
1934 struct wait_queue_entry *wait,
1935 long timeout,
1936 struct vsock_transport_recv_notify_data *recv_data,
1937 size_t target)
1938 {
1939 const struct vsock_transport *transport;
1940 struct vsock_sock *vsk;
1941 s64 data;
1942 int err;
1943
1944 vsk = vsock_sk(sk);
1945 err = 0;
1946 transport = vsk->transport;
1947
1948 while (1) {
1949 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1950 data = vsock_connectible_has_data(vsk);
1951 if (data != 0)
1952 break;
1953
1954 if (sk->sk_err != 0 ||
1955 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1956 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1957 break;
1958 }
1959
1960 /* Don't wait for non-blocking sockets. */
1961 if (timeout == 0) {
1962 err = -EAGAIN;
1963 break;
1964 }
1965
1966 if (recv_data) {
1967 err = transport->notify_recv_pre_block(vsk, target, recv_data);
1968 if (err < 0)
1969 break;
1970 }
1971
1972 release_sock(sk);
1973 timeout = schedule_timeout(timeout);
1974 lock_sock(sk);
1975
1976 if (signal_pending(current)) {
1977 err = sock_intr_errno(timeout);
1978 break;
1979 } else if (timeout == 0) {
1980 err = -EAGAIN;
1981 break;
1982 }
1983 }
1984
1985 finish_wait(sk_sleep(sk), wait);
1986
1987 if (err)
1988 return err;
1989
1990 /* Internal transport error when checking for available
1991 * data. XXX This should be changed to a connection
1992 * reset in a later change.
1993 */
1994 if (data < 0)
1995 return -ENOMEM;
1996
1997 return data;
1998 }
1999
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2000 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2001 size_t len, int flags)
2002 {
2003 struct vsock_transport_recv_notify_data recv_data;
2004 const struct vsock_transport *transport;
2005 struct vsock_sock *vsk;
2006 ssize_t copied;
2007 size_t target;
2008 long timeout;
2009 int err;
2010
2011 DEFINE_WAIT(wait);
2012
2013 vsk = vsock_sk(sk);
2014 transport = vsk->transport;
2015
2016 /* We must not copy less than target bytes into the user's buffer
2017 * before returning successfully, so we wait for the consume queue to
2018 * have that much data to consume before dequeueing. Note that this
2019 * makes it impossible to handle cases where target is greater than the
2020 * queue size.
2021 */
2022 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2023 if (target >= transport->stream_rcvhiwat(vsk)) {
2024 err = -ENOMEM;
2025 goto out;
2026 }
2027 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2028 copied = 0;
2029
2030 err = transport->notify_recv_init(vsk, target, &recv_data);
2031 if (err < 0)
2032 goto out;
2033
2034
2035 while (1) {
2036 ssize_t read;
2037
2038 err = vsock_connectible_wait_data(sk, &wait, timeout,
2039 &recv_data, target);
2040 if (err <= 0)
2041 break;
2042
2043 err = transport->notify_recv_pre_dequeue(vsk, target,
2044 &recv_data);
2045 if (err < 0)
2046 break;
2047
2048 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2049 if (read < 0) {
2050 err = read;
2051 break;
2052 }
2053
2054 copied += read;
2055
2056 err = transport->notify_recv_post_dequeue(vsk, target, read,
2057 !(flags & MSG_PEEK), &recv_data);
2058 if (err < 0)
2059 goto out;
2060
2061 if (read >= target || flags & MSG_PEEK)
2062 break;
2063
2064 target -= read;
2065 }
2066
2067 if (sk->sk_err)
2068 err = -sk->sk_err;
2069 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2070 err = 0;
2071
2072 if (copied > 0)
2073 err = copied;
2074
2075 out:
2076 return err;
2077 }
2078
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2079 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2080 size_t len, int flags)
2081 {
2082 const struct vsock_transport *transport;
2083 struct vsock_sock *vsk;
2084 ssize_t msg_len;
2085 long timeout;
2086 int err = 0;
2087 DEFINE_WAIT(wait);
2088
2089 vsk = vsock_sk(sk);
2090 transport = vsk->transport;
2091
2092 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2093
2094 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2095 if (err <= 0)
2096 goto out;
2097
2098 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2099
2100 if (msg_len < 0) {
2101 err = msg_len;
2102 goto out;
2103 }
2104
2105 if (sk->sk_err) {
2106 err = -sk->sk_err;
2107 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2108 err = 0;
2109 } else {
2110 /* User sets MSG_TRUNC, so return real length of
2111 * packet.
2112 */
2113 if (flags & MSG_TRUNC)
2114 err = msg_len;
2115 else
2116 err = len - msg_data_left(msg);
2117
2118 /* Always set MSG_TRUNC if real length of packet is
2119 * bigger than user's buffer.
2120 */
2121 if (msg_len > len)
2122 msg->msg_flags |= MSG_TRUNC;
2123 }
2124
2125 out:
2126 return err;
2127 }
2128
2129 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2130 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2131 int flags)
2132 {
2133 struct sock *sk;
2134 struct vsock_sock *vsk;
2135 const struct vsock_transport *transport;
2136 int err;
2137
2138 sk = sock->sk;
2139
2140 if (unlikely(flags & MSG_ERRQUEUE))
2141 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2142
2143 vsk = vsock_sk(sk);
2144 err = 0;
2145
2146 lock_sock(sk);
2147
2148 transport = vsk->transport;
2149
2150 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2151 /* Recvmsg is supposed to return 0 if a peer performs an
2152 * orderly shutdown. Differentiate between that case and when a
2153 * peer has not connected or a local shutdown occurred with the
2154 * SOCK_DONE flag.
2155 */
2156 if (sock_flag(sk, SOCK_DONE))
2157 err = 0;
2158 else
2159 err = -ENOTCONN;
2160
2161 goto out;
2162 }
2163
2164 if (flags & MSG_OOB) {
2165 err = -EOPNOTSUPP;
2166 goto out;
2167 }
2168
2169 /* We don't check peer_shutdown flag here since peer may actually shut
2170 * down, but there can be data in the queue that a local socket can
2171 * receive.
2172 */
2173 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2174 err = 0;
2175 goto out;
2176 }
2177
2178 /* It is valid on Linux to pass in a zero-length receive buffer. This
2179 * is not an error. We may as well bail out now.
2180 */
2181 if (!len) {
2182 err = 0;
2183 goto out;
2184 }
2185
2186 if (sk->sk_type == SOCK_STREAM)
2187 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2188 else
2189 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2190
2191 out:
2192 release_sock(sk);
2193 return err;
2194 }
2195
2196 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2197 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2198 int flags)
2199 {
2200 #ifdef CONFIG_BPF_SYSCALL
2201 struct sock *sk = sock->sk;
2202 const struct proto *prot;
2203
2204 prot = READ_ONCE(sk->sk_prot);
2205 if (prot != &vsock_proto)
2206 return prot->recvmsg(sk, msg, len, flags, NULL);
2207 #endif
2208
2209 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2210 }
2211 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2212
vsock_set_rcvlowat(struct sock * sk,int val)2213 static int vsock_set_rcvlowat(struct sock *sk, int val)
2214 {
2215 const struct vsock_transport *transport;
2216 struct vsock_sock *vsk;
2217
2218 vsk = vsock_sk(sk);
2219
2220 if (val > vsk->buffer_size)
2221 return -EINVAL;
2222
2223 transport = vsk->transport;
2224
2225 if (transport && transport->notify_set_rcvlowat) {
2226 int err;
2227
2228 err = transport->notify_set_rcvlowat(vsk, val);
2229 if (err)
2230 return err;
2231 }
2232
2233 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2234 return 0;
2235 }
2236
2237 static const struct proto_ops vsock_stream_ops = {
2238 .family = PF_VSOCK,
2239 .owner = THIS_MODULE,
2240 .release = vsock_release,
2241 .bind = vsock_bind,
2242 .connect = vsock_connect,
2243 .socketpair = sock_no_socketpair,
2244 .accept = vsock_accept,
2245 .getname = vsock_getname,
2246 .poll = vsock_poll,
2247 .ioctl = sock_no_ioctl,
2248 .listen = vsock_listen,
2249 .shutdown = vsock_shutdown,
2250 .setsockopt = vsock_connectible_setsockopt,
2251 .getsockopt = vsock_connectible_getsockopt,
2252 .sendmsg = vsock_connectible_sendmsg,
2253 .recvmsg = vsock_connectible_recvmsg,
2254 .mmap = sock_no_mmap,
2255 .set_rcvlowat = vsock_set_rcvlowat,
2256 .read_skb = vsock_read_skb,
2257 };
2258
2259 static const struct proto_ops vsock_seqpacket_ops = {
2260 .family = PF_VSOCK,
2261 .owner = THIS_MODULE,
2262 .release = vsock_release,
2263 .bind = vsock_bind,
2264 .connect = vsock_connect,
2265 .socketpair = sock_no_socketpair,
2266 .accept = vsock_accept,
2267 .getname = vsock_getname,
2268 .poll = vsock_poll,
2269 .ioctl = sock_no_ioctl,
2270 .listen = vsock_listen,
2271 .shutdown = vsock_shutdown,
2272 .setsockopt = vsock_connectible_setsockopt,
2273 .getsockopt = vsock_connectible_getsockopt,
2274 .sendmsg = vsock_connectible_sendmsg,
2275 .recvmsg = vsock_connectible_recvmsg,
2276 .mmap = sock_no_mmap,
2277 .read_skb = vsock_read_skb,
2278 };
2279
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2280 static int vsock_create(struct net *net, struct socket *sock,
2281 int protocol, int kern)
2282 {
2283 struct vsock_sock *vsk;
2284 struct sock *sk;
2285 int ret;
2286
2287 if (!sock)
2288 return -EINVAL;
2289
2290 if (protocol && protocol != PF_VSOCK)
2291 return -EPROTONOSUPPORT;
2292
2293 switch (sock->type) {
2294 case SOCK_DGRAM:
2295 sock->ops = &vsock_dgram_ops;
2296 break;
2297 case SOCK_STREAM:
2298 sock->ops = &vsock_stream_ops;
2299 break;
2300 case SOCK_SEQPACKET:
2301 sock->ops = &vsock_seqpacket_ops;
2302 break;
2303 default:
2304 return -ESOCKTNOSUPPORT;
2305 }
2306
2307 sock->state = SS_UNCONNECTED;
2308
2309 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2310 if (!sk)
2311 return -ENOMEM;
2312
2313 vsk = vsock_sk(sk);
2314
2315 if (sock->type == SOCK_DGRAM) {
2316 ret = vsock_assign_transport(vsk, NULL);
2317 if (ret < 0) {
2318 sock_put(sk);
2319 return ret;
2320 }
2321 }
2322
2323 vsock_insert_unbound(vsk);
2324
2325 return 0;
2326 }
2327
2328 static const struct net_proto_family vsock_family_ops = {
2329 .family = AF_VSOCK,
2330 .create = vsock_create,
2331 .owner = THIS_MODULE,
2332 };
2333
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2334 static long vsock_dev_do_ioctl(struct file *filp,
2335 unsigned int cmd, void __user *ptr)
2336 {
2337 u32 __user *p = ptr;
2338 u32 cid = VMADDR_CID_ANY;
2339 int retval = 0;
2340
2341 switch (cmd) {
2342 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2343 /* To be compatible with the VMCI behavior, we prioritize the
2344 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2345 */
2346 if (transport_g2h)
2347 cid = transport_g2h->get_local_cid();
2348 else if (transport_h2g)
2349 cid = transport_h2g->get_local_cid();
2350
2351 if (put_user(cid, p) != 0)
2352 retval = -EFAULT;
2353 break;
2354
2355 default:
2356 retval = -ENOIOCTLCMD;
2357 }
2358
2359 return retval;
2360 }
2361
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2362 static long vsock_dev_ioctl(struct file *filp,
2363 unsigned int cmd, unsigned long arg)
2364 {
2365 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2366 }
2367
2368 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2369 static long vsock_dev_compat_ioctl(struct file *filp,
2370 unsigned int cmd, unsigned long arg)
2371 {
2372 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2373 }
2374 #endif
2375
2376 static const struct file_operations vsock_device_ops = {
2377 .owner = THIS_MODULE,
2378 .unlocked_ioctl = vsock_dev_ioctl,
2379 #ifdef CONFIG_COMPAT
2380 .compat_ioctl = vsock_dev_compat_ioctl,
2381 #endif
2382 .open = nonseekable_open,
2383 };
2384
2385 static struct miscdevice vsock_device = {
2386 .name = "vsock",
2387 .fops = &vsock_device_ops,
2388 };
2389
vsock_init(void)2390 static int __init vsock_init(void)
2391 {
2392 int err = 0;
2393
2394 vsock_init_tables();
2395
2396 vsock_proto.owner = THIS_MODULE;
2397 vsock_device.minor = MISC_DYNAMIC_MINOR;
2398 err = misc_register(&vsock_device);
2399 if (err) {
2400 pr_err("Failed to register misc device\n");
2401 goto err_reset_transport;
2402 }
2403
2404 err = proto_register(&vsock_proto, 1); /* we want our slab */
2405 if (err) {
2406 pr_err("Cannot register vsock protocol\n");
2407 goto err_deregister_misc;
2408 }
2409
2410 err = sock_register(&vsock_family_ops);
2411 if (err) {
2412 pr_err("could not register af_vsock (%d) address family: %d\n",
2413 AF_VSOCK, err);
2414 goto err_unregister_proto;
2415 }
2416
2417 vsock_bpf_build_proto();
2418
2419 return 0;
2420
2421 err_unregister_proto:
2422 proto_unregister(&vsock_proto);
2423 err_deregister_misc:
2424 misc_deregister(&vsock_device);
2425 err_reset_transport:
2426 return err;
2427 }
2428
vsock_exit(void)2429 static void __exit vsock_exit(void)
2430 {
2431 misc_deregister(&vsock_device);
2432 sock_unregister(AF_VSOCK);
2433 proto_unregister(&vsock_proto);
2434 }
2435
vsock_core_get_transport(struct vsock_sock * vsk)2436 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2437 {
2438 return vsk->transport;
2439 }
2440 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2441
vsock_core_register(const struct vsock_transport * t,int features)2442 int vsock_core_register(const struct vsock_transport *t, int features)
2443 {
2444 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2445 int err = mutex_lock_interruptible(&vsock_register_mutex);
2446
2447 if (err)
2448 return err;
2449
2450 t_h2g = transport_h2g;
2451 t_g2h = transport_g2h;
2452 t_dgram = transport_dgram;
2453 t_local = transport_local;
2454
2455 if (features & VSOCK_TRANSPORT_F_H2G) {
2456 if (t_h2g) {
2457 err = -EBUSY;
2458 goto err_busy;
2459 }
2460 t_h2g = t;
2461 }
2462
2463 if (features & VSOCK_TRANSPORT_F_G2H) {
2464 if (t_g2h) {
2465 err = -EBUSY;
2466 goto err_busy;
2467 }
2468 t_g2h = t;
2469 }
2470
2471 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2472 if (t_dgram) {
2473 err = -EBUSY;
2474 goto err_busy;
2475 }
2476 t_dgram = t;
2477 }
2478
2479 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2480 if (t_local) {
2481 err = -EBUSY;
2482 goto err_busy;
2483 }
2484 t_local = t;
2485 }
2486
2487 transport_h2g = t_h2g;
2488 transport_g2h = t_g2h;
2489 transport_dgram = t_dgram;
2490 transport_local = t_local;
2491
2492 err_busy:
2493 mutex_unlock(&vsock_register_mutex);
2494 return err;
2495 }
2496 EXPORT_SYMBOL_GPL(vsock_core_register);
2497
vsock_core_unregister(const struct vsock_transport * t)2498 void vsock_core_unregister(const struct vsock_transport *t)
2499 {
2500 mutex_lock(&vsock_register_mutex);
2501
2502 if (transport_h2g == t)
2503 transport_h2g = NULL;
2504
2505 if (transport_g2h == t)
2506 transport_g2h = NULL;
2507
2508 if (transport_dgram == t)
2509 transport_dgram = NULL;
2510
2511 if (transport_local == t)
2512 transport_local = NULL;
2513
2514 mutex_unlock(&vsock_register_mutex);
2515 }
2516 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2517
2518 module_init(vsock_init);
2519 module_exit(vsock_exit);
2520
2521 MODULE_AUTHOR("VMware, Inc.");
2522 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2523 MODULE_VERSION("1.0.2.0-k");
2524 MODULE_LICENSE("GPL v2");
2525