xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120 
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 	.name = "AF_VSOCK",
124 	.owner = THIS_MODULE,
125 	.obj_size = sizeof(struct vsock_sock),
126 	.close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 	.psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140 
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150 
151 /**** UTILS ****/
152 
153 /* Each bound VSocket is stored in the bind hash table and each connected
154  * VSocket is stored in the connected hash table.
155  *
156  * Unbound sockets are all put on the same list attached to the end of the hash
157  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
158  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159  * represents the list that addr hashes to).
160  *
161  * Specifically, we initialize the vsock_bind_table array to a size of
162  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
165  * mods with VSOCK_HASH_SIZE to ensure this.
166  */
167 #define MAX_PORT_RETRIES        24
168 
169 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
172 
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst)				\
175 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst)		\
177 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk)				\
179 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180 
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187 
188 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 	struct sock *sk = sk_vsock(vsk);
192 	struct sockaddr_vm local_addr;
193 
194 	if (vsock_addr_bound(&vsk->local_addr))
195 		return 0;
196 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 	return __vsock_bind(sk, &local_addr);
198 }
199 
vsock_init_tables(void)200 static void vsock_init_tables(void)
201 {
202 	int i;
203 
204 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 		INIT_LIST_HEAD(&vsock_bind_table[i]);
206 
207 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 		INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 				 struct vsock_sock *vsk)
213 {
214 	sock_hold(&vsk->sk);
215 	list_add(&vsk->bound_table, list);
216 }
217 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 				     struct vsock_sock *vsk)
220 {
221 	sock_hold(&vsk->sk);
222 	list_add(&vsk->connected_table, list);
223 }
224 
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 	list_del_init(&vsk->bound_table);
228 	sock_put(&vsk->sk);
229 }
230 
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 	list_del_init(&vsk->connected_table);
234 	sock_put(&vsk->sk);
235 }
236 
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 	struct vsock_sock *vsk;
240 
241 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 			return sk_vsock(vsk);
244 
245 		if (addr->svm_port == vsk->local_addr.svm_port &&
246 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 		     addr->svm_cid == VMADDR_CID_ANY))
248 			return sk_vsock(vsk);
249 	}
250 
251 	return NULL;
252 }
253 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 						  struct sockaddr_vm *dst)
256 {
257 	struct vsock_sock *vsk;
258 
259 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 			    connected_table) {
261 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 		    dst->svm_port == vsk->local_addr.svm_port) {
263 			return sk_vsock(vsk);
264 		}
265 	}
266 
267 	return NULL;
268 }
269 
vsock_insert_unbound(struct vsock_sock * vsk)270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 	spin_lock_bh(&vsock_table_lock);
273 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
274 	spin_unlock_bh(&vsock_table_lock);
275 }
276 
vsock_insert_connected(struct vsock_sock * vsk)277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 	struct list_head *list = vsock_connected_sockets(
280 		&vsk->remote_addr, &vsk->local_addr);
281 
282 	spin_lock_bh(&vsock_table_lock);
283 	__vsock_insert_connected(list, vsk);
284 	spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287 
vsock_remove_bound(struct vsock_sock * vsk)288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 	spin_lock_bh(&vsock_table_lock);
291 	if (__vsock_in_bound_table(vsk))
292 		__vsock_remove_bound(vsk);
293 	spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296 
vsock_remove_connected(struct vsock_sock * vsk)297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 	spin_lock_bh(&vsock_table_lock);
300 	if (__vsock_in_connected_table(vsk))
301 		__vsock_remove_connected(vsk);
302 	spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305 
vsock_find_bound_socket(struct sockaddr_vm * addr)306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 	struct sock *sk;
309 
310 	spin_lock_bh(&vsock_table_lock);
311 	sk = __vsock_find_bound_socket(addr);
312 	if (sk)
313 		sock_hold(sk);
314 
315 	spin_unlock_bh(&vsock_table_lock);
316 
317 	return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 					 struct sockaddr_vm *dst)
323 {
324 	struct sock *sk;
325 
326 	spin_lock_bh(&vsock_table_lock);
327 	sk = __vsock_find_connected_socket(src, dst);
328 	if (sk)
329 		sock_hold(sk);
330 
331 	spin_unlock_bh(&vsock_table_lock);
332 
333 	return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336 
vsock_remove_sock(struct vsock_sock * vsk)337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 	vsock_remove_bound(vsk);
340 	vsock_remove_connected(vsk);
341 }
342 EXPORT_SYMBOL_GPL(vsock_remove_sock);
343 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))344 void vsock_for_each_connected_socket(struct vsock_transport *transport,
345 				     void (*fn)(struct sock *sk))
346 {
347 	int i;
348 
349 	spin_lock_bh(&vsock_table_lock);
350 
351 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
352 		struct vsock_sock *vsk;
353 		list_for_each_entry(vsk, &vsock_connected_table[i],
354 				    connected_table) {
355 			if (vsk->transport != transport)
356 				continue;
357 
358 			fn(sk_vsock(vsk));
359 		}
360 	}
361 
362 	spin_unlock_bh(&vsock_table_lock);
363 }
364 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
365 
vsock_add_pending(struct sock * listener,struct sock * pending)366 void vsock_add_pending(struct sock *listener, struct sock *pending)
367 {
368 	struct vsock_sock *vlistener;
369 	struct vsock_sock *vpending;
370 
371 	vlistener = vsock_sk(listener);
372 	vpending = vsock_sk(pending);
373 
374 	sock_hold(pending);
375 	sock_hold(listener);
376 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
377 }
378 EXPORT_SYMBOL_GPL(vsock_add_pending);
379 
vsock_remove_pending(struct sock * listener,struct sock * pending)380 void vsock_remove_pending(struct sock *listener, struct sock *pending)
381 {
382 	struct vsock_sock *vpending = vsock_sk(pending);
383 
384 	list_del_init(&vpending->pending_links);
385 	sock_put(listener);
386 	sock_put(pending);
387 }
388 EXPORT_SYMBOL_GPL(vsock_remove_pending);
389 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)390 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
391 {
392 	struct vsock_sock *vlistener;
393 	struct vsock_sock *vconnected;
394 
395 	vlistener = vsock_sk(listener);
396 	vconnected = vsock_sk(connected);
397 
398 	sock_hold(connected);
399 	sock_hold(listener);
400 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
401 }
402 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
403 
vsock_use_local_transport(unsigned int remote_cid)404 static bool vsock_use_local_transport(unsigned int remote_cid)
405 {
406 	if (!transport_local)
407 		return false;
408 
409 	if (remote_cid == VMADDR_CID_LOCAL)
410 		return true;
411 
412 	if (transport_g2h) {
413 		return remote_cid == transport_g2h->get_local_cid();
414 	} else {
415 		return remote_cid == VMADDR_CID_HOST;
416 	}
417 }
418 
vsock_deassign_transport(struct vsock_sock * vsk)419 static void vsock_deassign_transport(struct vsock_sock *vsk)
420 {
421 	if (!vsk->transport)
422 		return;
423 
424 	vsk->transport->destruct(vsk);
425 	module_put(vsk->transport->module);
426 	vsk->transport = NULL;
427 }
428 
429 /* Assign a transport to a socket and call the .init transport callback.
430  *
431  * Note: for connection oriented socket this must be called when vsk->remote_addr
432  * is set (e.g. during the connect() or when a connection request on a listener
433  * socket is received).
434  * The vsk->remote_addr is used to decide which transport to use:
435  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
436  *    g2h is not loaded, will use local transport;
437  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
438  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
439  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
440  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)441 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
442 {
443 	const struct vsock_transport *new_transport;
444 	struct sock *sk = sk_vsock(vsk);
445 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
446 	__u8 remote_flags;
447 	int ret;
448 
449 	/* If the packet is coming with the source and destination CIDs higher
450 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
451 	 * forwarded to the host should be established. Then the host will
452 	 * need to forward the packets to the guest.
453 	 *
454 	 * The flag is set on the (listen) receive path (psk is not NULL). On
455 	 * the connect path the flag can be set by the user space application.
456 	 */
457 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
458 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
459 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
460 
461 	remote_flags = vsk->remote_addr.svm_flags;
462 
463 	switch (sk->sk_type) {
464 	case SOCK_DGRAM:
465 		new_transport = transport_dgram;
466 		break;
467 	case SOCK_STREAM:
468 	case SOCK_SEQPACKET:
469 		if (vsock_use_local_transport(remote_cid))
470 			new_transport = transport_local;
471 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
472 			 (remote_flags & VMADDR_FLAG_TO_HOST))
473 			new_transport = transport_g2h;
474 		else
475 			new_transport = transport_h2g;
476 		break;
477 	default:
478 		return -ESOCKTNOSUPPORT;
479 	}
480 
481 	if (vsk->transport) {
482 		if (vsk->transport == new_transport)
483 			return 0;
484 
485 		/* transport->release() must be called with sock lock acquired.
486 		 * This path can only be taken during vsock_connect(), where we
487 		 * have already held the sock lock. In the other cases, this
488 		 * function is called on a new socket which is not assigned to
489 		 * any transport.
490 		 */
491 		vsk->transport->release(vsk);
492 		vsock_deassign_transport(vsk);
493 
494 		/* transport's release() and destruct() can touch some socket
495 		 * state, since we are reassigning the socket to a new transport
496 		 * during vsock_connect(), let's reset these fields to have a
497 		 * clean state.
498 		 */
499 		sock_reset_flag(sk, SOCK_DONE);
500 		sk->sk_state = TCP_CLOSE;
501 		vsk->peer_shutdown = 0;
502 	}
503 
504 	/* We increase the module refcnt to prevent the transport unloading
505 	 * while there are open sockets assigned to it.
506 	 */
507 	if (!new_transport || !try_module_get(new_transport->module))
508 		return -ENODEV;
509 
510 	if (sk->sk_type == SOCK_SEQPACKET) {
511 		if (!new_transport->seqpacket_allow ||
512 		    !new_transport->seqpacket_allow(remote_cid)) {
513 			module_put(new_transport->module);
514 			return -ESOCKTNOSUPPORT;
515 		}
516 	}
517 
518 	ret = new_transport->init(vsk, psk);
519 	if (ret) {
520 		module_put(new_transport->module);
521 		return ret;
522 	}
523 
524 	vsk->transport = new_transport;
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(vsock_assign_transport);
529 
vsock_find_cid(unsigned int cid)530 bool vsock_find_cid(unsigned int cid)
531 {
532 	if (transport_g2h && cid == transport_g2h->get_local_cid())
533 		return true;
534 
535 	if (transport_h2g && cid == VMADDR_CID_HOST)
536 		return true;
537 
538 	if (transport_local && cid == VMADDR_CID_LOCAL)
539 		return true;
540 
541 	return false;
542 }
543 EXPORT_SYMBOL_GPL(vsock_find_cid);
544 
vsock_dequeue_accept(struct sock * listener)545 static struct sock *vsock_dequeue_accept(struct sock *listener)
546 {
547 	struct vsock_sock *vlistener;
548 	struct vsock_sock *vconnected;
549 
550 	vlistener = vsock_sk(listener);
551 
552 	if (list_empty(&vlistener->accept_queue))
553 		return NULL;
554 
555 	vconnected = list_entry(vlistener->accept_queue.next,
556 				struct vsock_sock, accept_queue);
557 
558 	list_del_init(&vconnected->accept_queue);
559 	sock_put(listener);
560 	/* The caller will need a reference on the connected socket so we let
561 	 * it call sock_put().
562 	 */
563 
564 	return sk_vsock(vconnected);
565 }
566 
vsock_is_accept_queue_empty(struct sock * sk)567 static bool vsock_is_accept_queue_empty(struct sock *sk)
568 {
569 	struct vsock_sock *vsk = vsock_sk(sk);
570 	return list_empty(&vsk->accept_queue);
571 }
572 
vsock_is_pending(struct sock * sk)573 static bool vsock_is_pending(struct sock *sk)
574 {
575 	struct vsock_sock *vsk = vsock_sk(sk);
576 	return !list_empty(&vsk->pending_links);
577 }
578 
vsock_send_shutdown(struct sock * sk,int mode)579 static int vsock_send_shutdown(struct sock *sk, int mode)
580 {
581 	struct vsock_sock *vsk = vsock_sk(sk);
582 
583 	if (!vsk->transport)
584 		return -ENODEV;
585 
586 	return vsk->transport->shutdown(vsk, mode);
587 }
588 
vsock_pending_work(struct work_struct * work)589 static void vsock_pending_work(struct work_struct *work)
590 {
591 	struct sock *sk;
592 	struct sock *listener;
593 	struct vsock_sock *vsk;
594 	bool cleanup;
595 
596 	vsk = container_of(work, struct vsock_sock, pending_work.work);
597 	sk = sk_vsock(vsk);
598 	listener = vsk->listener;
599 	cleanup = true;
600 
601 	lock_sock(listener);
602 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
603 
604 	if (vsock_is_pending(sk)) {
605 		vsock_remove_pending(listener, sk);
606 
607 		sk_acceptq_removed(listener);
608 	} else if (!vsk->rejected) {
609 		/* We are not on the pending list and accept() did not reject
610 		 * us, so we must have been accepted by our user process.  We
611 		 * just need to drop our references to the sockets and be on
612 		 * our way.
613 		 */
614 		cleanup = false;
615 		goto out;
616 	}
617 
618 	/* We need to remove ourself from the global connected sockets list so
619 	 * incoming packets can't find this socket, and to reduce the reference
620 	 * count.
621 	 */
622 	vsock_remove_connected(vsk);
623 
624 	sk->sk_state = TCP_CLOSE;
625 
626 out:
627 	release_sock(sk);
628 	release_sock(listener);
629 	if (cleanup)
630 		sock_put(sk);
631 
632 	sock_put(sk);
633 	sock_put(listener);
634 }
635 
636 /**** SOCKET OPERATIONS ****/
637 
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)638 static int __vsock_bind_connectible(struct vsock_sock *vsk,
639 				    struct sockaddr_vm *addr)
640 {
641 	static u32 port;
642 	struct sockaddr_vm new_addr;
643 
644 	if (!port)
645 		port = get_random_u32_above(LAST_RESERVED_PORT);
646 
647 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
648 
649 	if (addr->svm_port == VMADDR_PORT_ANY) {
650 		bool found = false;
651 		unsigned int i;
652 
653 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
654 			if (port <= LAST_RESERVED_PORT)
655 				port = LAST_RESERVED_PORT + 1;
656 
657 			new_addr.svm_port = port++;
658 
659 			if (!__vsock_find_bound_socket(&new_addr)) {
660 				found = true;
661 				break;
662 			}
663 		}
664 
665 		if (!found)
666 			return -EADDRNOTAVAIL;
667 	} else {
668 		/* If port is in reserved range, ensure caller
669 		 * has necessary privileges.
670 		 */
671 		if (addr->svm_port <= LAST_RESERVED_PORT &&
672 		    !capable(CAP_NET_BIND_SERVICE)) {
673 			return -EACCES;
674 		}
675 
676 		if (__vsock_find_bound_socket(&new_addr))
677 			return -EADDRINUSE;
678 	}
679 
680 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
681 
682 	/* Remove connection oriented sockets from the unbound list and add them
683 	 * to the hash table for easy lookup by its address.  The unbound list
684 	 * is simply an extra entry at the end of the hash table, a trick used
685 	 * by AF_UNIX.
686 	 */
687 	__vsock_remove_bound(vsk);
688 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
689 
690 	return 0;
691 }
692 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)693 static int __vsock_bind_dgram(struct vsock_sock *vsk,
694 			      struct sockaddr_vm *addr)
695 {
696 	return vsk->transport->dgram_bind(vsk, addr);
697 }
698 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)699 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
700 {
701 	struct vsock_sock *vsk = vsock_sk(sk);
702 	int retval;
703 
704 	/* First ensure this socket isn't already bound. */
705 	if (vsock_addr_bound(&vsk->local_addr))
706 		return -EINVAL;
707 
708 	/* Now bind to the provided address or select appropriate values if
709 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
710 	 * like AF_INET prevents binding to a non-local IP address (in most
711 	 * cases), we only allow binding to a local CID.
712 	 */
713 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
714 		return -EADDRNOTAVAIL;
715 
716 	switch (sk->sk_socket->type) {
717 	case SOCK_STREAM:
718 	case SOCK_SEQPACKET:
719 		spin_lock_bh(&vsock_table_lock);
720 		retval = __vsock_bind_connectible(vsk, addr);
721 		spin_unlock_bh(&vsock_table_lock);
722 		break;
723 
724 	case SOCK_DGRAM:
725 		retval = __vsock_bind_dgram(vsk, addr);
726 		break;
727 
728 	default:
729 		retval = -EINVAL;
730 		break;
731 	}
732 
733 	return retval;
734 }
735 
736 static void vsock_connect_timeout(struct work_struct *work);
737 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)738 static struct sock *__vsock_create(struct net *net,
739 				   struct socket *sock,
740 				   struct sock *parent,
741 				   gfp_t priority,
742 				   unsigned short type,
743 				   int kern)
744 {
745 	struct sock *sk;
746 	struct vsock_sock *psk;
747 	struct vsock_sock *vsk;
748 
749 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
750 	if (!sk)
751 		return NULL;
752 
753 	sock_init_data(sock, sk);
754 
755 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
756 	 * non-NULL. We make sure that our sockets always have a type by
757 	 * setting it here if needed.
758 	 */
759 	if (!sock)
760 		sk->sk_type = type;
761 
762 	vsk = vsock_sk(sk);
763 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
764 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
765 
766 	sk->sk_destruct = vsock_sk_destruct;
767 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
768 	sock_reset_flag(sk, SOCK_DONE);
769 
770 	INIT_LIST_HEAD(&vsk->bound_table);
771 	INIT_LIST_HEAD(&vsk->connected_table);
772 	vsk->listener = NULL;
773 	INIT_LIST_HEAD(&vsk->pending_links);
774 	INIT_LIST_HEAD(&vsk->accept_queue);
775 	vsk->rejected = false;
776 	vsk->sent_request = false;
777 	vsk->ignore_connecting_rst = false;
778 	vsk->peer_shutdown = 0;
779 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
780 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
781 
782 	psk = parent ? vsock_sk(parent) : NULL;
783 	if (parent) {
784 		vsk->trusted = psk->trusted;
785 		vsk->owner = get_cred(psk->owner);
786 		vsk->connect_timeout = psk->connect_timeout;
787 		vsk->buffer_size = psk->buffer_size;
788 		vsk->buffer_min_size = psk->buffer_min_size;
789 		vsk->buffer_max_size = psk->buffer_max_size;
790 		security_sk_clone(parent, sk);
791 	} else {
792 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
793 		vsk->owner = get_current_cred();
794 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
795 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
796 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
797 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
798 	}
799 
800 	return sk;
801 }
802 
sock_type_connectible(u16 type)803 static bool sock_type_connectible(u16 type)
804 {
805 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
806 }
807 
__vsock_release(struct sock * sk,int level)808 static void __vsock_release(struct sock *sk, int level)
809 {
810 	struct vsock_sock *vsk;
811 	struct sock *pending;
812 
813 	vsk = vsock_sk(sk);
814 	pending = NULL;	/* Compiler warning. */
815 
816 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
817 	 * version to avoid the warning "possible recursive locking
818 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
819 	 * is the same as lock_sock(sk).
820 	 */
821 	lock_sock_nested(sk, level);
822 
823 	if (vsk->transport)
824 		vsk->transport->release(vsk);
825 	else if (sock_type_connectible(sk->sk_type))
826 		vsock_remove_sock(vsk);
827 
828 	sock_orphan(sk);
829 	sk->sk_shutdown = SHUTDOWN_MASK;
830 
831 	skb_queue_purge(&sk->sk_receive_queue);
832 
833 	/* Clean up any sockets that never were accepted. */
834 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
835 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
836 		sock_put(pending);
837 	}
838 
839 	release_sock(sk);
840 	sock_put(sk);
841 }
842 
vsock_sk_destruct(struct sock * sk)843 static void vsock_sk_destruct(struct sock *sk)
844 {
845 	struct vsock_sock *vsk = vsock_sk(sk);
846 
847 	vsock_deassign_transport(vsk);
848 
849 	/* When clearing these addresses, there's no need to set the family and
850 	 * possibly register the address family with the kernel.
851 	 */
852 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
853 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
854 
855 	put_cred(vsk->owner);
856 }
857 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)858 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
859 {
860 	int err;
861 
862 	err = sock_queue_rcv_skb(sk, skb);
863 	if (err)
864 		kfree_skb(skb);
865 
866 	return err;
867 }
868 
vsock_create_connected(struct sock * parent)869 struct sock *vsock_create_connected(struct sock *parent)
870 {
871 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
872 			      parent->sk_type, 0);
873 }
874 EXPORT_SYMBOL_GPL(vsock_create_connected);
875 
vsock_stream_has_data(struct vsock_sock * vsk)876 s64 vsock_stream_has_data(struct vsock_sock *vsk)
877 {
878 	if (WARN_ON(!vsk->transport))
879 		return 0;
880 
881 	return vsk->transport->stream_has_data(vsk);
882 }
883 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
884 
vsock_connectible_has_data(struct vsock_sock * vsk)885 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
886 {
887 	struct sock *sk = sk_vsock(vsk);
888 
889 	if (WARN_ON(!vsk->transport))
890 		return 0;
891 
892 	if (sk->sk_type == SOCK_SEQPACKET)
893 		return vsk->transport->seqpacket_has_data(vsk);
894 	else
895 		return vsock_stream_has_data(vsk);
896 }
897 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
898 
vsock_stream_has_space(struct vsock_sock * vsk)899 s64 vsock_stream_has_space(struct vsock_sock *vsk)
900 {
901 	if (WARN_ON(!vsk->transport))
902 		return 0;
903 
904 	return vsk->transport->stream_has_space(vsk);
905 }
906 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
907 
vsock_data_ready(struct sock * sk)908 void vsock_data_ready(struct sock *sk)
909 {
910 	struct vsock_sock *vsk = vsock_sk(sk);
911 
912 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
913 	    sock_flag(sk, SOCK_DONE))
914 		sk->sk_data_ready(sk);
915 }
916 EXPORT_SYMBOL_GPL(vsock_data_ready);
917 
918 /* Dummy callback required by sockmap.
919  * See unconditional call of saved_close() in sock_map_close().
920  */
vsock_close(struct sock * sk,long timeout)921 static void vsock_close(struct sock *sk, long timeout)
922 {
923 }
924 
vsock_release(struct socket * sock)925 static int vsock_release(struct socket *sock)
926 {
927 	struct sock *sk = sock->sk;
928 
929 	if (!sk)
930 		return 0;
931 
932 	sk->sk_prot->close(sk, 0);
933 	__vsock_release(sk, 0);
934 	sock->sk = NULL;
935 	sock->state = SS_FREE;
936 
937 	return 0;
938 }
939 
940 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)941 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
942 {
943 	int err;
944 	struct sock *sk;
945 	struct sockaddr_vm *vm_addr;
946 
947 	sk = sock->sk;
948 
949 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
950 		return -EINVAL;
951 
952 	lock_sock(sk);
953 	err = __vsock_bind(sk, vm_addr);
954 	release_sock(sk);
955 
956 	return err;
957 }
958 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)959 static int vsock_getname(struct socket *sock,
960 			 struct sockaddr *addr, int peer)
961 {
962 	int err;
963 	struct sock *sk;
964 	struct vsock_sock *vsk;
965 	struct sockaddr_vm *vm_addr;
966 
967 	sk = sock->sk;
968 	vsk = vsock_sk(sk);
969 	err = 0;
970 
971 	lock_sock(sk);
972 
973 	if (peer) {
974 		if (sock->state != SS_CONNECTED) {
975 			err = -ENOTCONN;
976 			goto out;
977 		}
978 		vm_addr = &vsk->remote_addr;
979 	} else {
980 		vm_addr = &vsk->local_addr;
981 	}
982 
983 	if (!vm_addr) {
984 		err = -EINVAL;
985 		goto out;
986 	}
987 
988 	/* sys_getsockname() and sys_getpeername() pass us a
989 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
990 	 * that macro is defined in socket.c instead of .h, so we hardcode its
991 	 * value here.
992 	 */
993 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
994 	memcpy(addr, vm_addr, sizeof(*vm_addr));
995 	err = sizeof(*vm_addr);
996 
997 out:
998 	release_sock(sk);
999 	return err;
1000 }
1001 
vsock_shutdown(struct socket * sock,int mode)1002 static int vsock_shutdown(struct socket *sock, int mode)
1003 {
1004 	int err;
1005 	struct sock *sk;
1006 
1007 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1008 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1009 	 * here like the other address families do.  Note also that the
1010 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1011 	 * which is what we want.
1012 	 */
1013 	mode++;
1014 
1015 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1016 		return -EINVAL;
1017 
1018 	/* If this is a connection oriented socket and it is not connected then
1019 	 * bail out immediately.  If it is a DGRAM socket then we must first
1020 	 * kick the socket so that it wakes up from any sleeping calls, for
1021 	 * example recv(), and then afterwards return the error.
1022 	 */
1023 
1024 	sk = sock->sk;
1025 
1026 	lock_sock(sk);
1027 	if (sock->state == SS_UNCONNECTED) {
1028 		err = -ENOTCONN;
1029 		if (sock_type_connectible(sk->sk_type))
1030 			goto out;
1031 	} else {
1032 		sock->state = SS_DISCONNECTING;
1033 		err = 0;
1034 	}
1035 
1036 	/* Receive and send shutdowns are treated alike. */
1037 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1038 	if (mode) {
1039 		sk->sk_shutdown |= mode;
1040 		sk->sk_state_change(sk);
1041 
1042 		if (sock_type_connectible(sk->sk_type)) {
1043 			sock_reset_flag(sk, SOCK_DONE);
1044 			vsock_send_shutdown(sk, mode);
1045 		}
1046 	}
1047 
1048 out:
1049 	release_sock(sk);
1050 	return err;
1051 }
1052 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1053 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1054 			       poll_table *wait)
1055 {
1056 	struct sock *sk;
1057 	__poll_t mask;
1058 	struct vsock_sock *vsk;
1059 
1060 	sk = sock->sk;
1061 	vsk = vsock_sk(sk);
1062 
1063 	poll_wait(file, sk_sleep(sk), wait);
1064 	mask = 0;
1065 
1066 	if (sk->sk_err)
1067 		/* Signify that there has been an error on this socket. */
1068 		mask |= EPOLLERR;
1069 
1070 	/* INET sockets treat local write shutdown and peer write shutdown as a
1071 	 * case of EPOLLHUP set.
1072 	 */
1073 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1074 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1075 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1076 		mask |= EPOLLHUP;
1077 	}
1078 
1079 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1080 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1081 		mask |= EPOLLRDHUP;
1082 	}
1083 
1084 	if (sk_is_readable(sk))
1085 		mask |= EPOLLIN | EPOLLRDNORM;
1086 
1087 	if (sock->type == SOCK_DGRAM) {
1088 		/* For datagram sockets we can read if there is something in
1089 		 * the queue and write as long as the socket isn't shutdown for
1090 		 * sending.
1091 		 */
1092 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1093 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1094 			mask |= EPOLLIN | EPOLLRDNORM;
1095 		}
1096 
1097 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1098 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1099 
1100 	} else if (sock_type_connectible(sk->sk_type)) {
1101 		const struct vsock_transport *transport;
1102 
1103 		lock_sock(sk);
1104 
1105 		transport = vsk->transport;
1106 
1107 		/* Listening sockets that have connections in their accept
1108 		 * queue can be read.
1109 		 */
1110 		if (sk->sk_state == TCP_LISTEN
1111 		    && !vsock_is_accept_queue_empty(sk))
1112 			mask |= EPOLLIN | EPOLLRDNORM;
1113 
1114 		/* If there is something in the queue then we can read. */
1115 		if (transport && transport->stream_is_active(vsk) &&
1116 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1117 			bool data_ready_now = false;
1118 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1119 			int ret = transport->notify_poll_in(
1120 					vsk, target, &data_ready_now);
1121 			if (ret < 0) {
1122 				mask |= EPOLLERR;
1123 			} else {
1124 				if (data_ready_now)
1125 					mask |= EPOLLIN | EPOLLRDNORM;
1126 
1127 			}
1128 		}
1129 
1130 		/* Sockets whose connections have been closed, reset, or
1131 		 * terminated should also be considered read, and we check the
1132 		 * shutdown flag for that.
1133 		 */
1134 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1135 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1136 			mask |= EPOLLIN | EPOLLRDNORM;
1137 		}
1138 
1139 		/* Connected sockets that can produce data can be written. */
1140 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1141 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1142 				bool space_avail_now = false;
1143 				int ret = transport->notify_poll_out(
1144 						vsk, 1, &space_avail_now);
1145 				if (ret < 0) {
1146 					mask |= EPOLLERR;
1147 				} else {
1148 					if (space_avail_now)
1149 						/* Remove EPOLLWRBAND since INET
1150 						 * sockets are not setting it.
1151 						 */
1152 						mask |= EPOLLOUT | EPOLLWRNORM;
1153 
1154 				}
1155 			}
1156 		}
1157 
1158 		/* Simulate INET socket poll behaviors, which sets
1159 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1160 		 * but local send is not shutdown.
1161 		 */
1162 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1163 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1164 				mask |= EPOLLOUT | EPOLLWRNORM;
1165 
1166 		}
1167 
1168 		release_sock(sk);
1169 	}
1170 
1171 	return mask;
1172 }
1173 
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1174 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1175 {
1176 	struct vsock_sock *vsk = vsock_sk(sk);
1177 
1178 	return vsk->transport->read_skb(vsk, read_actor);
1179 }
1180 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1181 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1182 			       size_t len)
1183 {
1184 	int err;
1185 	struct sock *sk;
1186 	struct vsock_sock *vsk;
1187 	struct sockaddr_vm *remote_addr;
1188 	const struct vsock_transport *transport;
1189 
1190 	if (msg->msg_flags & MSG_OOB)
1191 		return -EOPNOTSUPP;
1192 
1193 	/* For now, MSG_DONTWAIT is always assumed... */
1194 	err = 0;
1195 	sk = sock->sk;
1196 	vsk = vsock_sk(sk);
1197 
1198 	lock_sock(sk);
1199 
1200 	transport = vsk->transport;
1201 
1202 	err = vsock_auto_bind(vsk);
1203 	if (err)
1204 		goto out;
1205 
1206 
1207 	/* If the provided message contains an address, use that.  Otherwise
1208 	 * fall back on the socket's remote handle (if it has been connected).
1209 	 */
1210 	if (msg->msg_name &&
1211 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1212 			    &remote_addr) == 0) {
1213 		/* Ensure this address is of the right type and is a valid
1214 		 * destination.
1215 		 */
1216 
1217 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1218 			remote_addr->svm_cid = transport->get_local_cid();
1219 
1220 		if (!vsock_addr_bound(remote_addr)) {
1221 			err = -EINVAL;
1222 			goto out;
1223 		}
1224 	} else if (sock->state == SS_CONNECTED) {
1225 		remote_addr = &vsk->remote_addr;
1226 
1227 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1228 			remote_addr->svm_cid = transport->get_local_cid();
1229 
1230 		/* XXX Should connect() or this function ensure remote_addr is
1231 		 * bound?
1232 		 */
1233 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1234 			err = -EINVAL;
1235 			goto out;
1236 		}
1237 	} else {
1238 		err = -EINVAL;
1239 		goto out;
1240 	}
1241 
1242 	if (!transport->dgram_allow(remote_addr->svm_cid,
1243 				    remote_addr->svm_port)) {
1244 		err = -EINVAL;
1245 		goto out;
1246 	}
1247 
1248 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1249 
1250 out:
1251 	release_sock(sk);
1252 	return err;
1253 }
1254 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1255 static int vsock_dgram_connect(struct socket *sock,
1256 			       struct sockaddr *addr, int addr_len, int flags)
1257 {
1258 	int err;
1259 	struct sock *sk;
1260 	struct vsock_sock *vsk;
1261 	struct sockaddr_vm *remote_addr;
1262 
1263 	sk = sock->sk;
1264 	vsk = vsock_sk(sk);
1265 
1266 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1267 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1268 		lock_sock(sk);
1269 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1270 				VMADDR_PORT_ANY);
1271 		sock->state = SS_UNCONNECTED;
1272 		release_sock(sk);
1273 		return 0;
1274 	} else if (err != 0)
1275 		return -EINVAL;
1276 
1277 	lock_sock(sk);
1278 
1279 	err = vsock_auto_bind(vsk);
1280 	if (err)
1281 		goto out;
1282 
1283 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1284 					 remote_addr->svm_port)) {
1285 		err = -EINVAL;
1286 		goto out;
1287 	}
1288 
1289 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1290 	sock->state = SS_CONNECTED;
1291 
1292 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1293 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1294 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1295 	 *
1296 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1297 	 * same approach can be see in other datagram socket types as well
1298 	 * (such as unix sockets).
1299 	 */
1300 	sk->sk_state = TCP_ESTABLISHED;
1301 
1302 out:
1303 	release_sock(sk);
1304 	return err;
1305 }
1306 
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1307 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1308 			  size_t len, int flags)
1309 {
1310 	struct sock *sk = sock->sk;
1311 	struct vsock_sock *vsk = vsock_sk(sk);
1312 
1313 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1314 }
1315 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1316 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1317 			size_t len, int flags)
1318 {
1319 #ifdef CONFIG_BPF_SYSCALL
1320 	struct sock *sk = sock->sk;
1321 	const struct proto *prot;
1322 
1323 	prot = READ_ONCE(sk->sk_prot);
1324 	if (prot != &vsock_proto)
1325 		return prot->recvmsg(sk, msg, len, flags, NULL);
1326 #endif
1327 
1328 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1329 }
1330 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1331 
1332 static const struct proto_ops vsock_dgram_ops = {
1333 	.family = PF_VSOCK,
1334 	.owner = THIS_MODULE,
1335 	.release = vsock_release,
1336 	.bind = vsock_bind,
1337 	.connect = vsock_dgram_connect,
1338 	.socketpair = sock_no_socketpair,
1339 	.accept = sock_no_accept,
1340 	.getname = vsock_getname,
1341 	.poll = vsock_poll,
1342 	.ioctl = sock_no_ioctl,
1343 	.listen = sock_no_listen,
1344 	.shutdown = vsock_shutdown,
1345 	.sendmsg = vsock_dgram_sendmsg,
1346 	.recvmsg = vsock_dgram_recvmsg,
1347 	.mmap = sock_no_mmap,
1348 	.read_skb = vsock_read_skb,
1349 };
1350 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1351 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1352 {
1353 	const struct vsock_transport *transport = vsk->transport;
1354 
1355 	if (!transport || !transport->cancel_pkt)
1356 		return -EOPNOTSUPP;
1357 
1358 	return transport->cancel_pkt(vsk);
1359 }
1360 
vsock_connect_timeout(struct work_struct * work)1361 static void vsock_connect_timeout(struct work_struct *work)
1362 {
1363 	struct sock *sk;
1364 	struct vsock_sock *vsk;
1365 
1366 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1367 	sk = sk_vsock(vsk);
1368 
1369 	lock_sock(sk);
1370 	if (sk->sk_state == TCP_SYN_SENT &&
1371 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1372 		sk->sk_state = TCP_CLOSE;
1373 		sk->sk_socket->state = SS_UNCONNECTED;
1374 		sk->sk_err = ETIMEDOUT;
1375 		sk_error_report(sk);
1376 		vsock_transport_cancel_pkt(vsk);
1377 	}
1378 	release_sock(sk);
1379 
1380 	sock_put(sk);
1381 }
1382 
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1383 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1384 			 int addr_len, int flags)
1385 {
1386 	int err;
1387 	struct sock *sk;
1388 	struct vsock_sock *vsk;
1389 	const struct vsock_transport *transport;
1390 	struct sockaddr_vm *remote_addr;
1391 	long timeout;
1392 	DEFINE_WAIT(wait);
1393 
1394 	err = 0;
1395 	sk = sock->sk;
1396 	vsk = vsock_sk(sk);
1397 
1398 	lock_sock(sk);
1399 
1400 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1401 	switch (sock->state) {
1402 	case SS_CONNECTED:
1403 		err = -EISCONN;
1404 		goto out;
1405 	case SS_DISCONNECTING:
1406 		err = -EINVAL;
1407 		goto out;
1408 	case SS_CONNECTING:
1409 		/* This continues on so we can move sock into the SS_CONNECTED
1410 		 * state once the connection has completed (at which point err
1411 		 * will be set to zero also).  Otherwise, we will either wait
1412 		 * for the connection or return -EALREADY should this be a
1413 		 * non-blocking call.
1414 		 */
1415 		err = -EALREADY;
1416 		if (flags & O_NONBLOCK)
1417 			goto out;
1418 		break;
1419 	default:
1420 		if ((sk->sk_state == TCP_LISTEN) ||
1421 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1422 			err = -EINVAL;
1423 			goto out;
1424 		}
1425 
1426 		/* Set the remote address that we are connecting to. */
1427 		memcpy(&vsk->remote_addr, remote_addr,
1428 		       sizeof(vsk->remote_addr));
1429 
1430 		err = vsock_assign_transport(vsk, NULL);
1431 		if (err)
1432 			goto out;
1433 
1434 		transport = vsk->transport;
1435 
1436 		/* The hypervisor and well-known contexts do not have socket
1437 		 * endpoints.
1438 		 */
1439 		if (!transport ||
1440 		    !transport->stream_allow(remote_addr->svm_cid,
1441 					     remote_addr->svm_port)) {
1442 			err = -ENETUNREACH;
1443 			goto out;
1444 		}
1445 
1446 		err = vsock_auto_bind(vsk);
1447 		if (err)
1448 			goto out;
1449 
1450 		sk->sk_state = TCP_SYN_SENT;
1451 
1452 		err = transport->connect(vsk);
1453 		if (err < 0)
1454 			goto out;
1455 
1456 		/* sk_err might have been set as a result of an earlier
1457 		 * (failed) connect attempt.
1458 		 */
1459 		sk->sk_err = 0;
1460 
1461 		/* Mark sock as connecting and set the error code to in
1462 		 * progress in case this is a non-blocking connect.
1463 		 */
1464 		sock->state = SS_CONNECTING;
1465 		err = -EINPROGRESS;
1466 	}
1467 
1468 	/* The receive path will handle all communication until we are able to
1469 	 * enter the connected state.  Here we wait for the connection to be
1470 	 * completed or a notification of an error.
1471 	 */
1472 	timeout = vsk->connect_timeout;
1473 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1474 
1475 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1476 		if (flags & O_NONBLOCK) {
1477 			/* If we're not going to block, we schedule a timeout
1478 			 * function to generate a timeout on the connection
1479 			 * attempt, in case the peer doesn't respond in a
1480 			 * timely manner. We hold on to the socket until the
1481 			 * timeout fires.
1482 			 */
1483 			sock_hold(sk);
1484 
1485 			/* If the timeout function is already scheduled,
1486 			 * reschedule it, then ungrab the socket refcount to
1487 			 * keep it balanced.
1488 			 */
1489 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1490 					     timeout))
1491 				sock_put(sk);
1492 
1493 			/* Skip ahead to preserve error code set above. */
1494 			goto out_wait;
1495 		}
1496 
1497 		release_sock(sk);
1498 		timeout = schedule_timeout(timeout);
1499 		lock_sock(sk);
1500 
1501 		if (signal_pending(current)) {
1502 			err = sock_intr_errno(timeout);
1503 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1504 			sock->state = SS_UNCONNECTED;
1505 			vsock_transport_cancel_pkt(vsk);
1506 			vsock_remove_connected(vsk);
1507 			goto out_wait;
1508 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1509 			err = -ETIMEDOUT;
1510 			sk->sk_state = TCP_CLOSE;
1511 			sock->state = SS_UNCONNECTED;
1512 			vsock_transport_cancel_pkt(vsk);
1513 			goto out_wait;
1514 		}
1515 
1516 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1517 	}
1518 
1519 	if (sk->sk_err) {
1520 		err = -sk->sk_err;
1521 		sk->sk_state = TCP_CLOSE;
1522 		sock->state = SS_UNCONNECTED;
1523 	} else {
1524 		err = 0;
1525 	}
1526 
1527 out_wait:
1528 	finish_wait(sk_sleep(sk), &wait);
1529 out:
1530 	release_sock(sk);
1531 	return err;
1532 }
1533 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1534 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1535 			bool kern)
1536 {
1537 	struct sock *listener;
1538 	int err;
1539 	struct sock *connected;
1540 	struct vsock_sock *vconnected;
1541 	long timeout;
1542 	DEFINE_WAIT(wait);
1543 
1544 	err = 0;
1545 	listener = sock->sk;
1546 
1547 	lock_sock(listener);
1548 
1549 	if (!sock_type_connectible(sock->type)) {
1550 		err = -EOPNOTSUPP;
1551 		goto out;
1552 	}
1553 
1554 	if (listener->sk_state != TCP_LISTEN) {
1555 		err = -EINVAL;
1556 		goto out;
1557 	}
1558 
1559 	/* Wait for children sockets to appear; these are the new sockets
1560 	 * created upon connection establishment.
1561 	 */
1562 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1563 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1564 
1565 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1566 	       listener->sk_err == 0) {
1567 		release_sock(listener);
1568 		timeout = schedule_timeout(timeout);
1569 		finish_wait(sk_sleep(listener), &wait);
1570 		lock_sock(listener);
1571 
1572 		if (signal_pending(current)) {
1573 			err = sock_intr_errno(timeout);
1574 			goto out;
1575 		} else if (timeout == 0) {
1576 			err = -EAGAIN;
1577 			goto out;
1578 		}
1579 
1580 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1581 	}
1582 	finish_wait(sk_sleep(listener), &wait);
1583 
1584 	if (listener->sk_err)
1585 		err = -listener->sk_err;
1586 
1587 	if (connected) {
1588 		sk_acceptq_removed(listener);
1589 
1590 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1591 		vconnected = vsock_sk(connected);
1592 
1593 		/* If the listener socket has received an error, then we should
1594 		 * reject this socket and return.  Note that we simply mark the
1595 		 * socket rejected, drop our reference, and let the cleanup
1596 		 * function handle the cleanup; the fact that we found it in
1597 		 * the listener's accept queue guarantees that the cleanup
1598 		 * function hasn't run yet.
1599 		 */
1600 		if (err) {
1601 			vconnected->rejected = true;
1602 		} else {
1603 			newsock->state = SS_CONNECTED;
1604 			sock_graft(connected, newsock);
1605 		}
1606 
1607 		release_sock(connected);
1608 		sock_put(connected);
1609 	}
1610 
1611 out:
1612 	release_sock(listener);
1613 	return err;
1614 }
1615 
vsock_listen(struct socket * sock,int backlog)1616 static int vsock_listen(struct socket *sock, int backlog)
1617 {
1618 	int err;
1619 	struct sock *sk;
1620 	struct vsock_sock *vsk;
1621 
1622 	sk = sock->sk;
1623 
1624 	lock_sock(sk);
1625 
1626 	if (!sock_type_connectible(sk->sk_type)) {
1627 		err = -EOPNOTSUPP;
1628 		goto out;
1629 	}
1630 
1631 	if (sock->state != SS_UNCONNECTED) {
1632 		err = -EINVAL;
1633 		goto out;
1634 	}
1635 
1636 	vsk = vsock_sk(sk);
1637 
1638 	if (!vsock_addr_bound(&vsk->local_addr)) {
1639 		err = -EINVAL;
1640 		goto out;
1641 	}
1642 
1643 	sk->sk_max_ack_backlog = backlog;
1644 	sk->sk_state = TCP_LISTEN;
1645 
1646 	err = 0;
1647 
1648 out:
1649 	release_sock(sk);
1650 	return err;
1651 }
1652 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1653 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1654 				     const struct vsock_transport *transport,
1655 				     u64 val)
1656 {
1657 	if (val > vsk->buffer_max_size)
1658 		val = vsk->buffer_max_size;
1659 
1660 	if (val < vsk->buffer_min_size)
1661 		val = vsk->buffer_min_size;
1662 
1663 	if (val != vsk->buffer_size &&
1664 	    transport && transport->notify_buffer_size)
1665 		transport->notify_buffer_size(vsk, &val);
1666 
1667 	vsk->buffer_size = val;
1668 }
1669 
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1670 static int vsock_connectible_setsockopt(struct socket *sock,
1671 					int level,
1672 					int optname,
1673 					sockptr_t optval,
1674 					unsigned int optlen)
1675 {
1676 	int err;
1677 	struct sock *sk;
1678 	struct vsock_sock *vsk;
1679 	const struct vsock_transport *transport;
1680 	u64 val;
1681 
1682 	if (level != AF_VSOCK)
1683 		return -ENOPROTOOPT;
1684 
1685 #define COPY_IN(_v)                                       \
1686 	do {						  \
1687 		if (optlen < sizeof(_v)) {		  \
1688 			err = -EINVAL;			  \
1689 			goto exit;			  \
1690 		}					  \
1691 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1692 			err = -EFAULT;					\
1693 			goto exit;					\
1694 		}							\
1695 	} while (0)
1696 
1697 	err = 0;
1698 	sk = sock->sk;
1699 	vsk = vsock_sk(sk);
1700 
1701 	lock_sock(sk);
1702 
1703 	transport = vsk->transport;
1704 
1705 	switch (optname) {
1706 	case SO_VM_SOCKETS_BUFFER_SIZE:
1707 		COPY_IN(val);
1708 		vsock_update_buffer_size(vsk, transport, val);
1709 		break;
1710 
1711 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1712 		COPY_IN(val);
1713 		vsk->buffer_max_size = val;
1714 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1715 		break;
1716 
1717 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1718 		COPY_IN(val);
1719 		vsk->buffer_min_size = val;
1720 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1721 		break;
1722 
1723 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1724 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1725 		struct __kernel_sock_timeval tv;
1726 
1727 		err = sock_copy_user_timeval(&tv, optval, optlen,
1728 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1729 		if (err)
1730 			break;
1731 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1732 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1733 			vsk->connect_timeout = tv.tv_sec * HZ +
1734 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1735 			if (vsk->connect_timeout == 0)
1736 				vsk->connect_timeout =
1737 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1738 
1739 		} else {
1740 			err = -ERANGE;
1741 		}
1742 		break;
1743 	}
1744 
1745 	default:
1746 		err = -ENOPROTOOPT;
1747 		break;
1748 	}
1749 
1750 #undef COPY_IN
1751 
1752 exit:
1753 	release_sock(sk);
1754 	return err;
1755 }
1756 
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1757 static int vsock_connectible_getsockopt(struct socket *sock,
1758 					int level, int optname,
1759 					char __user *optval,
1760 					int __user *optlen)
1761 {
1762 	struct sock *sk = sock->sk;
1763 	struct vsock_sock *vsk = vsock_sk(sk);
1764 
1765 	union {
1766 		u64 val64;
1767 		struct old_timeval32 tm32;
1768 		struct __kernel_old_timeval tm;
1769 		struct  __kernel_sock_timeval stm;
1770 	} v;
1771 
1772 	int lv = sizeof(v.val64);
1773 	int len;
1774 
1775 	if (level != AF_VSOCK)
1776 		return -ENOPROTOOPT;
1777 
1778 	if (get_user(len, optlen))
1779 		return -EFAULT;
1780 
1781 	memset(&v, 0, sizeof(v));
1782 
1783 	switch (optname) {
1784 	case SO_VM_SOCKETS_BUFFER_SIZE:
1785 		v.val64 = vsk->buffer_size;
1786 		break;
1787 
1788 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1789 		v.val64 = vsk->buffer_max_size;
1790 		break;
1791 
1792 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1793 		v.val64 = vsk->buffer_min_size;
1794 		break;
1795 
1796 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1797 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1798 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1799 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1800 		break;
1801 
1802 	default:
1803 		return -ENOPROTOOPT;
1804 	}
1805 
1806 	if (len < lv)
1807 		return -EINVAL;
1808 	if (len > lv)
1809 		len = lv;
1810 	if (copy_to_user(optval, &v, len))
1811 		return -EFAULT;
1812 
1813 	if (put_user(len, optlen))
1814 		return -EFAULT;
1815 
1816 	return 0;
1817 }
1818 
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1819 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1820 				     size_t len)
1821 {
1822 	struct sock *sk;
1823 	struct vsock_sock *vsk;
1824 	const struct vsock_transport *transport;
1825 	ssize_t total_written;
1826 	long timeout;
1827 	int err;
1828 	struct vsock_transport_send_notify_data send_data;
1829 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1830 
1831 	sk = sock->sk;
1832 	vsk = vsock_sk(sk);
1833 	total_written = 0;
1834 	err = 0;
1835 
1836 	if (msg->msg_flags & MSG_OOB)
1837 		return -EOPNOTSUPP;
1838 
1839 	lock_sock(sk);
1840 
1841 	transport = vsk->transport;
1842 
1843 	/* Callers should not provide a destination with connection oriented
1844 	 * sockets.
1845 	 */
1846 	if (msg->msg_namelen) {
1847 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1848 		goto out;
1849 	}
1850 
1851 	/* Send data only if both sides are not shutdown in the direction. */
1852 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1853 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1854 		err = -EPIPE;
1855 		goto out;
1856 	}
1857 
1858 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1859 	    !vsock_addr_bound(&vsk->local_addr)) {
1860 		err = -ENOTCONN;
1861 		goto out;
1862 	}
1863 
1864 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1865 		err = -EDESTADDRREQ;
1866 		goto out;
1867 	}
1868 
1869 	/* Wait for room in the produce queue to enqueue our user's data. */
1870 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1871 
1872 	err = transport->notify_send_init(vsk, &send_data);
1873 	if (err < 0)
1874 		goto out;
1875 
1876 	while (total_written < len) {
1877 		ssize_t written;
1878 
1879 		add_wait_queue(sk_sleep(sk), &wait);
1880 		while (vsock_stream_has_space(vsk) == 0 &&
1881 		       sk->sk_err == 0 &&
1882 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1883 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1884 
1885 			/* Don't wait for non-blocking sockets. */
1886 			if (timeout == 0) {
1887 				err = -EAGAIN;
1888 				remove_wait_queue(sk_sleep(sk), &wait);
1889 				goto out_err;
1890 			}
1891 
1892 			err = transport->notify_send_pre_block(vsk, &send_data);
1893 			if (err < 0) {
1894 				remove_wait_queue(sk_sleep(sk), &wait);
1895 				goto out_err;
1896 			}
1897 
1898 			release_sock(sk);
1899 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1900 			lock_sock(sk);
1901 			if (signal_pending(current)) {
1902 				err = sock_intr_errno(timeout);
1903 				remove_wait_queue(sk_sleep(sk), &wait);
1904 				goto out_err;
1905 			} else if (timeout == 0) {
1906 				err = -EAGAIN;
1907 				remove_wait_queue(sk_sleep(sk), &wait);
1908 				goto out_err;
1909 			}
1910 		}
1911 		remove_wait_queue(sk_sleep(sk), &wait);
1912 
1913 		/* These checks occur both as part of and after the loop
1914 		 * conditional since we need to check before and after
1915 		 * sleeping.
1916 		 */
1917 		if (sk->sk_err) {
1918 			err = -sk->sk_err;
1919 			goto out_err;
1920 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1921 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1922 			err = -EPIPE;
1923 			goto out_err;
1924 		}
1925 
1926 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1927 		if (err < 0)
1928 			goto out_err;
1929 
1930 		/* Note that enqueue will only write as many bytes as are free
1931 		 * in the produce queue, so we don't need to ensure len is
1932 		 * smaller than the queue size.  It is the caller's
1933 		 * responsibility to check how many bytes we were able to send.
1934 		 */
1935 
1936 		if (sk->sk_type == SOCK_SEQPACKET) {
1937 			written = transport->seqpacket_enqueue(vsk,
1938 						msg, len - total_written);
1939 		} else {
1940 			written = transport->stream_enqueue(vsk,
1941 					msg, len - total_written);
1942 		}
1943 
1944 		if (written < 0) {
1945 			err = written;
1946 			goto out_err;
1947 		}
1948 
1949 		total_written += written;
1950 
1951 		err = transport->notify_send_post_enqueue(
1952 				vsk, written, &send_data);
1953 		if (err < 0)
1954 			goto out_err;
1955 
1956 	}
1957 
1958 out_err:
1959 	if (total_written > 0) {
1960 		/* Return number of written bytes only if:
1961 		 * 1) SOCK_STREAM socket.
1962 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1963 		 */
1964 		if (sk->sk_type == SOCK_STREAM || total_written == len)
1965 			err = total_written;
1966 	}
1967 out:
1968 	release_sock(sk);
1969 	return err;
1970 }
1971 
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1972 static int vsock_connectible_wait_data(struct sock *sk,
1973 				       struct wait_queue_entry *wait,
1974 				       long timeout,
1975 				       struct vsock_transport_recv_notify_data *recv_data,
1976 				       size_t target)
1977 {
1978 	const struct vsock_transport *transport;
1979 	struct vsock_sock *vsk;
1980 	s64 data;
1981 	int err;
1982 
1983 	vsk = vsock_sk(sk);
1984 	err = 0;
1985 	transport = vsk->transport;
1986 
1987 	while (1) {
1988 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1989 		data = vsock_connectible_has_data(vsk);
1990 		if (data != 0)
1991 			break;
1992 
1993 		if (sk->sk_err != 0 ||
1994 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1995 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1996 			break;
1997 		}
1998 
1999 		/* Don't wait for non-blocking sockets. */
2000 		if (timeout == 0) {
2001 			err = -EAGAIN;
2002 			break;
2003 		}
2004 
2005 		if (recv_data) {
2006 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2007 			if (err < 0)
2008 				break;
2009 		}
2010 
2011 		release_sock(sk);
2012 		timeout = schedule_timeout(timeout);
2013 		lock_sock(sk);
2014 
2015 		if (signal_pending(current)) {
2016 			err = sock_intr_errno(timeout);
2017 			break;
2018 		} else if (timeout == 0) {
2019 			err = -EAGAIN;
2020 			break;
2021 		}
2022 	}
2023 
2024 	finish_wait(sk_sleep(sk), wait);
2025 
2026 	if (err)
2027 		return err;
2028 
2029 	/* Internal transport error when checking for available
2030 	 * data. XXX This should be changed to a connection
2031 	 * reset in a later change.
2032 	 */
2033 	if (data < 0)
2034 		return -ENOMEM;
2035 
2036 	return data;
2037 }
2038 
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2039 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2040 				  size_t len, int flags)
2041 {
2042 	struct vsock_transport_recv_notify_data recv_data;
2043 	const struct vsock_transport *transport;
2044 	struct vsock_sock *vsk;
2045 	ssize_t copied;
2046 	size_t target;
2047 	long timeout;
2048 	int err;
2049 
2050 	DEFINE_WAIT(wait);
2051 
2052 	vsk = vsock_sk(sk);
2053 	transport = vsk->transport;
2054 
2055 	/* We must not copy less than target bytes into the user's buffer
2056 	 * before returning successfully, so we wait for the consume queue to
2057 	 * have that much data to consume before dequeueing.  Note that this
2058 	 * makes it impossible to handle cases where target is greater than the
2059 	 * queue size.
2060 	 */
2061 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2062 	if (target >= transport->stream_rcvhiwat(vsk)) {
2063 		err = -ENOMEM;
2064 		goto out;
2065 	}
2066 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2067 	copied = 0;
2068 
2069 	err = transport->notify_recv_init(vsk, target, &recv_data);
2070 	if (err < 0)
2071 		goto out;
2072 
2073 
2074 	while (1) {
2075 		ssize_t read;
2076 
2077 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2078 						  &recv_data, target);
2079 		if (err <= 0)
2080 			break;
2081 
2082 		err = transport->notify_recv_pre_dequeue(vsk, target,
2083 							 &recv_data);
2084 		if (err < 0)
2085 			break;
2086 
2087 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2088 		if (read < 0) {
2089 			err = read;
2090 			break;
2091 		}
2092 
2093 		copied += read;
2094 
2095 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2096 						!(flags & MSG_PEEK), &recv_data);
2097 		if (err < 0)
2098 			goto out;
2099 
2100 		if (read >= target || flags & MSG_PEEK)
2101 			break;
2102 
2103 		target -= read;
2104 	}
2105 
2106 	if (sk->sk_err)
2107 		err = -sk->sk_err;
2108 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2109 		err = 0;
2110 
2111 	if (copied > 0)
2112 		err = copied;
2113 
2114 out:
2115 	return err;
2116 }
2117 
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2118 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2119 				     size_t len, int flags)
2120 {
2121 	const struct vsock_transport *transport;
2122 	struct vsock_sock *vsk;
2123 	ssize_t msg_len;
2124 	long timeout;
2125 	int err = 0;
2126 	DEFINE_WAIT(wait);
2127 
2128 	vsk = vsock_sk(sk);
2129 	transport = vsk->transport;
2130 
2131 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2132 
2133 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2134 	if (err <= 0)
2135 		goto out;
2136 
2137 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2138 
2139 	if (msg_len < 0) {
2140 		err = msg_len;
2141 		goto out;
2142 	}
2143 
2144 	if (sk->sk_err) {
2145 		err = -sk->sk_err;
2146 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2147 		err = 0;
2148 	} else {
2149 		/* User sets MSG_TRUNC, so return real length of
2150 		 * packet.
2151 		 */
2152 		if (flags & MSG_TRUNC)
2153 			err = msg_len;
2154 		else
2155 			err = len - msg_data_left(msg);
2156 
2157 		/* Always set MSG_TRUNC if real length of packet is
2158 		 * bigger than user's buffer.
2159 		 */
2160 		if (msg_len > len)
2161 			msg->msg_flags |= MSG_TRUNC;
2162 	}
2163 
2164 out:
2165 	return err;
2166 }
2167 
2168 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2169 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2170 			    int flags)
2171 {
2172 	struct sock *sk;
2173 	struct vsock_sock *vsk;
2174 	const struct vsock_transport *transport;
2175 	int err;
2176 
2177 	sk = sock->sk;
2178 
2179 	if (unlikely(flags & MSG_ERRQUEUE))
2180 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2181 
2182 	vsk = vsock_sk(sk);
2183 	err = 0;
2184 
2185 	lock_sock(sk);
2186 
2187 	transport = vsk->transport;
2188 
2189 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2190 		/* Recvmsg is supposed to return 0 if a peer performs an
2191 		 * orderly shutdown. Differentiate between that case and when a
2192 		 * peer has not connected or a local shutdown occurred with the
2193 		 * SOCK_DONE flag.
2194 		 */
2195 		if (sock_flag(sk, SOCK_DONE))
2196 			err = 0;
2197 		else
2198 			err = -ENOTCONN;
2199 
2200 		goto out;
2201 	}
2202 
2203 	if (flags & MSG_OOB) {
2204 		err = -EOPNOTSUPP;
2205 		goto out;
2206 	}
2207 
2208 	/* We don't check peer_shutdown flag here since peer may actually shut
2209 	 * down, but there can be data in the queue that a local socket can
2210 	 * receive.
2211 	 */
2212 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2213 		err = 0;
2214 		goto out;
2215 	}
2216 
2217 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2218 	 * is not an error.  We may as well bail out now.
2219 	 */
2220 	if (!len) {
2221 		err = 0;
2222 		goto out;
2223 	}
2224 
2225 	if (sk->sk_type == SOCK_STREAM)
2226 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2227 	else
2228 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2229 
2230 out:
2231 	release_sock(sk);
2232 	return err;
2233 }
2234 
2235 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2236 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2237 			  int flags)
2238 {
2239 #ifdef CONFIG_BPF_SYSCALL
2240 	struct sock *sk = sock->sk;
2241 	const struct proto *prot;
2242 
2243 	prot = READ_ONCE(sk->sk_prot);
2244 	if (prot != &vsock_proto)
2245 		return prot->recvmsg(sk, msg, len, flags, NULL);
2246 #endif
2247 
2248 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2249 }
2250 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2251 
vsock_set_rcvlowat(struct sock * sk,int val)2252 static int vsock_set_rcvlowat(struct sock *sk, int val)
2253 {
2254 	const struct vsock_transport *transport;
2255 	struct vsock_sock *vsk;
2256 
2257 	vsk = vsock_sk(sk);
2258 
2259 	if (val > vsk->buffer_size)
2260 		return -EINVAL;
2261 
2262 	transport = vsk->transport;
2263 
2264 	if (transport && transport->notify_set_rcvlowat) {
2265 		int err;
2266 
2267 		err = transport->notify_set_rcvlowat(vsk, val);
2268 		if (err)
2269 			return err;
2270 	}
2271 
2272 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2273 	return 0;
2274 }
2275 
2276 static const struct proto_ops vsock_stream_ops = {
2277 	.family = PF_VSOCK,
2278 	.owner = THIS_MODULE,
2279 	.release = vsock_release,
2280 	.bind = vsock_bind,
2281 	.connect = vsock_connect,
2282 	.socketpair = sock_no_socketpair,
2283 	.accept = vsock_accept,
2284 	.getname = vsock_getname,
2285 	.poll = vsock_poll,
2286 	.ioctl = sock_no_ioctl,
2287 	.listen = vsock_listen,
2288 	.shutdown = vsock_shutdown,
2289 	.setsockopt = vsock_connectible_setsockopt,
2290 	.getsockopt = vsock_connectible_getsockopt,
2291 	.sendmsg = vsock_connectible_sendmsg,
2292 	.recvmsg = vsock_connectible_recvmsg,
2293 	.mmap = sock_no_mmap,
2294 	.set_rcvlowat = vsock_set_rcvlowat,
2295 	.read_skb = vsock_read_skb,
2296 };
2297 
2298 static const struct proto_ops vsock_seqpacket_ops = {
2299 	.family = PF_VSOCK,
2300 	.owner = THIS_MODULE,
2301 	.release = vsock_release,
2302 	.bind = vsock_bind,
2303 	.connect = vsock_connect,
2304 	.socketpair = sock_no_socketpair,
2305 	.accept = vsock_accept,
2306 	.getname = vsock_getname,
2307 	.poll = vsock_poll,
2308 	.ioctl = sock_no_ioctl,
2309 	.listen = vsock_listen,
2310 	.shutdown = vsock_shutdown,
2311 	.setsockopt = vsock_connectible_setsockopt,
2312 	.getsockopt = vsock_connectible_getsockopt,
2313 	.sendmsg = vsock_connectible_sendmsg,
2314 	.recvmsg = vsock_connectible_recvmsg,
2315 	.mmap = sock_no_mmap,
2316 	.read_skb = vsock_read_skb,
2317 };
2318 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2319 static int vsock_create(struct net *net, struct socket *sock,
2320 			int protocol, int kern)
2321 {
2322 	struct vsock_sock *vsk;
2323 	struct sock *sk;
2324 	int ret;
2325 
2326 	if (!sock)
2327 		return -EINVAL;
2328 
2329 	if (protocol && protocol != PF_VSOCK)
2330 		return -EPROTONOSUPPORT;
2331 
2332 	switch (sock->type) {
2333 	case SOCK_DGRAM:
2334 		sock->ops = &vsock_dgram_ops;
2335 		break;
2336 	case SOCK_STREAM:
2337 		sock->ops = &vsock_stream_ops;
2338 		break;
2339 	case SOCK_SEQPACKET:
2340 		sock->ops = &vsock_seqpacket_ops;
2341 		break;
2342 	default:
2343 		return -ESOCKTNOSUPPORT;
2344 	}
2345 
2346 	sock->state = SS_UNCONNECTED;
2347 
2348 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2349 	if (!sk)
2350 		return -ENOMEM;
2351 
2352 	vsk = vsock_sk(sk);
2353 
2354 	if (sock->type == SOCK_DGRAM) {
2355 		ret = vsock_assign_transport(vsk, NULL);
2356 		if (ret < 0) {
2357 			sock_put(sk);
2358 			return ret;
2359 		}
2360 	}
2361 
2362 	vsock_insert_unbound(vsk);
2363 
2364 	return 0;
2365 }
2366 
2367 static const struct net_proto_family vsock_family_ops = {
2368 	.family = AF_VSOCK,
2369 	.create = vsock_create,
2370 	.owner = THIS_MODULE,
2371 };
2372 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2373 static long vsock_dev_do_ioctl(struct file *filp,
2374 			       unsigned int cmd, void __user *ptr)
2375 {
2376 	u32 __user *p = ptr;
2377 	u32 cid = VMADDR_CID_ANY;
2378 	int retval = 0;
2379 
2380 	switch (cmd) {
2381 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2382 		/* To be compatible with the VMCI behavior, we prioritize the
2383 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2384 		 */
2385 		if (transport_g2h)
2386 			cid = transport_g2h->get_local_cid();
2387 		else if (transport_h2g)
2388 			cid = transport_h2g->get_local_cid();
2389 
2390 		if (put_user(cid, p) != 0)
2391 			retval = -EFAULT;
2392 		break;
2393 
2394 	default:
2395 		retval = -ENOIOCTLCMD;
2396 	}
2397 
2398 	return retval;
2399 }
2400 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2401 static long vsock_dev_ioctl(struct file *filp,
2402 			    unsigned int cmd, unsigned long arg)
2403 {
2404 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2405 }
2406 
2407 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2408 static long vsock_dev_compat_ioctl(struct file *filp,
2409 				   unsigned int cmd, unsigned long arg)
2410 {
2411 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2412 }
2413 #endif
2414 
2415 static const struct file_operations vsock_device_ops = {
2416 	.owner		= THIS_MODULE,
2417 	.unlocked_ioctl	= vsock_dev_ioctl,
2418 #ifdef CONFIG_COMPAT
2419 	.compat_ioctl	= vsock_dev_compat_ioctl,
2420 #endif
2421 	.open		= nonseekable_open,
2422 };
2423 
2424 static struct miscdevice vsock_device = {
2425 	.name		= "vsock",
2426 	.fops		= &vsock_device_ops,
2427 };
2428 
vsock_init(void)2429 static int __init vsock_init(void)
2430 {
2431 	int err = 0;
2432 
2433 	vsock_init_tables();
2434 
2435 	vsock_proto.owner = THIS_MODULE;
2436 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2437 	err = misc_register(&vsock_device);
2438 	if (err) {
2439 		pr_err("Failed to register misc device\n");
2440 		goto err_reset_transport;
2441 	}
2442 
2443 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2444 	if (err) {
2445 		pr_err("Cannot register vsock protocol\n");
2446 		goto err_deregister_misc;
2447 	}
2448 
2449 	err = sock_register(&vsock_family_ops);
2450 	if (err) {
2451 		pr_err("could not register af_vsock (%d) address family: %d\n",
2452 		       AF_VSOCK, err);
2453 		goto err_unregister_proto;
2454 	}
2455 
2456 	vsock_bpf_build_proto();
2457 
2458 	return 0;
2459 
2460 err_unregister_proto:
2461 	proto_unregister(&vsock_proto);
2462 err_deregister_misc:
2463 	misc_deregister(&vsock_device);
2464 err_reset_transport:
2465 	return err;
2466 }
2467 
vsock_exit(void)2468 static void __exit vsock_exit(void)
2469 {
2470 	misc_deregister(&vsock_device);
2471 	sock_unregister(AF_VSOCK);
2472 	proto_unregister(&vsock_proto);
2473 }
2474 
vsock_core_get_transport(struct vsock_sock * vsk)2475 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2476 {
2477 	return vsk->transport;
2478 }
2479 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2480 
vsock_core_register(const struct vsock_transport * t,int features)2481 int vsock_core_register(const struct vsock_transport *t, int features)
2482 {
2483 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2484 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2485 
2486 	if (err)
2487 		return err;
2488 
2489 	t_h2g = transport_h2g;
2490 	t_g2h = transport_g2h;
2491 	t_dgram = transport_dgram;
2492 	t_local = transport_local;
2493 
2494 	if (features & VSOCK_TRANSPORT_F_H2G) {
2495 		if (t_h2g) {
2496 			err = -EBUSY;
2497 			goto err_busy;
2498 		}
2499 		t_h2g = t;
2500 	}
2501 
2502 	if (features & VSOCK_TRANSPORT_F_G2H) {
2503 		if (t_g2h) {
2504 			err = -EBUSY;
2505 			goto err_busy;
2506 		}
2507 		t_g2h = t;
2508 	}
2509 
2510 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2511 		if (t_dgram) {
2512 			err = -EBUSY;
2513 			goto err_busy;
2514 		}
2515 		t_dgram = t;
2516 	}
2517 
2518 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2519 		if (t_local) {
2520 			err = -EBUSY;
2521 			goto err_busy;
2522 		}
2523 		t_local = t;
2524 	}
2525 
2526 	transport_h2g = t_h2g;
2527 	transport_g2h = t_g2h;
2528 	transport_dgram = t_dgram;
2529 	transport_local = t_local;
2530 
2531 err_busy:
2532 	mutex_unlock(&vsock_register_mutex);
2533 	return err;
2534 }
2535 EXPORT_SYMBOL_GPL(vsock_core_register);
2536 
vsock_core_unregister(const struct vsock_transport * t)2537 void vsock_core_unregister(const struct vsock_transport *t)
2538 {
2539 	mutex_lock(&vsock_register_mutex);
2540 
2541 	if (transport_h2g == t)
2542 		transport_h2g = NULL;
2543 
2544 	if (transport_g2h == t)
2545 		transport_g2h = NULL;
2546 
2547 	if (transport_dgram == t)
2548 		transport_dgram = NULL;
2549 
2550 	if (transport_local == t)
2551 		transport_local = NULL;
2552 
2553 	mutex_unlock(&vsock_register_mutex);
2554 }
2555 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2556 
2557 module_init(vsock_init);
2558 module_exit(vsock_exit);
2559 
2560 MODULE_AUTHOR("VMware, Inc.");
2561 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2562 MODULE_VERSION("1.0.2.0-k");
2563 MODULE_LICENSE("GPL v2");
2564