1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 .name = "AF_VSOCK",
124 .owner = THIS_MODULE,
125 .obj_size = sizeof(struct vsock_sock),
126 .close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 .psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131
132 /* The default peer timeout indicates how long we will wait for a peer response
133 * to a control message.
134 */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136
137 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150
151 /**** UTILS ****/
152
153 /* Each bound VSocket is stored in the bind hash table and each connected
154 * VSocket is stored in the connected hash table.
155 *
156 * Unbound sockets are all put on the same list attached to the end of the hash
157 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
158 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159 * represents the list that addr hashes to).
160 *
161 * Specifically, we initialize the vsock_bind_table array to a size of
162 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
165 * mods with VSOCK_HASH_SIZE to ensure this.
166 */
167 #define MAX_PORT_RETRIES 24
168
169 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
172
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst) \
175 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst) \
177 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk) \
179 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187
188 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 struct sock *sk = sk_vsock(vsk);
192 struct sockaddr_vm local_addr;
193
194 if (vsock_addr_bound(&vsk->local_addr))
195 return 0;
196 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 return __vsock_bind(sk, &local_addr);
198 }
199
vsock_init_tables(void)200 static void vsock_init_tables(void)
201 {
202 int i;
203
204 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 INIT_LIST_HEAD(&vsock_bind_table[i]);
206
207 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 struct vsock_sock *vsk)
213 {
214 sock_hold(&vsk->sk);
215 list_add(&vsk->bound_table, list);
216 }
217
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 struct vsock_sock *vsk)
220 {
221 sock_hold(&vsk->sk);
222 list_add(&vsk->connected_table, list);
223 }
224
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 list_del_init(&vsk->bound_table);
228 sock_put(&vsk->sk);
229 }
230
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 list_del_init(&vsk->connected_table);
234 sock_put(&vsk->sk);
235 }
236
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 struct vsock_sock *vsk;
240
241 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 return sk_vsock(vsk);
244
245 if (addr->svm_port == vsk->local_addr.svm_port &&
246 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 addr->svm_cid == VMADDR_CID_ANY))
248 return sk_vsock(vsk);
249 }
250
251 return NULL;
252 }
253
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 struct sockaddr_vm *dst)
256 {
257 struct vsock_sock *vsk;
258
259 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 connected_table) {
261 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 dst->svm_port == vsk->local_addr.svm_port) {
263 return sk_vsock(vsk);
264 }
265 }
266
267 return NULL;
268 }
269
vsock_insert_unbound(struct vsock_sock * vsk)270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_insert_bound(vsock_unbound_sockets, vsk);
274 spin_unlock_bh(&vsock_table_lock);
275 }
276
vsock_insert_connected(struct vsock_sock * vsk)277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 struct list_head *list = vsock_connected_sockets(
280 &vsk->remote_addr, &vsk->local_addr);
281
282 spin_lock_bh(&vsock_table_lock);
283 __vsock_insert_connected(list, vsk);
284 spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287
vsock_remove_bound(struct vsock_sock * vsk)288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 spin_lock_bh(&vsock_table_lock);
291 if (__vsock_in_bound_table(vsk))
292 __vsock_remove_bound(vsk);
293 spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296
vsock_remove_connected(struct vsock_sock * vsk)297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 spin_lock_bh(&vsock_table_lock);
300 if (__vsock_in_connected_table(vsk))
301 __vsock_remove_connected(vsk);
302 spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305
vsock_find_bound_socket(struct sockaddr_vm * addr)306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 struct sock *sk;
309
310 spin_lock_bh(&vsock_table_lock);
311 sk = __vsock_find_bound_socket(addr);
312 if (sk)
313 sock_hold(sk);
314
315 spin_unlock_bh(&vsock_table_lock);
316
317 return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 struct sockaddr_vm *dst)
323 {
324 struct sock *sk;
325
326 spin_lock_bh(&vsock_table_lock);
327 sk = __vsock_find_connected_socket(src, dst);
328 if (sk)
329 sock_hold(sk);
330
331 spin_unlock_bh(&vsock_table_lock);
332
333 return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336
vsock_remove_sock(struct vsock_sock * vsk)337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 vsock_remove_bound(vsk);
340 vsock_remove_connected(vsk);
341 }
342 EXPORT_SYMBOL_GPL(vsock_remove_sock);
343
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))344 void vsock_for_each_connected_socket(struct vsock_transport *transport,
345 void (*fn)(struct sock *sk))
346 {
347 int i;
348
349 spin_lock_bh(&vsock_table_lock);
350
351 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
352 struct vsock_sock *vsk;
353 list_for_each_entry(vsk, &vsock_connected_table[i],
354 connected_table) {
355 if (vsk->transport != transport)
356 continue;
357
358 fn(sk_vsock(vsk));
359 }
360 }
361
362 spin_unlock_bh(&vsock_table_lock);
363 }
364 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
365
vsock_add_pending(struct sock * listener,struct sock * pending)366 void vsock_add_pending(struct sock *listener, struct sock *pending)
367 {
368 struct vsock_sock *vlistener;
369 struct vsock_sock *vpending;
370
371 vlistener = vsock_sk(listener);
372 vpending = vsock_sk(pending);
373
374 sock_hold(pending);
375 sock_hold(listener);
376 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
377 }
378 EXPORT_SYMBOL_GPL(vsock_add_pending);
379
vsock_remove_pending(struct sock * listener,struct sock * pending)380 void vsock_remove_pending(struct sock *listener, struct sock *pending)
381 {
382 struct vsock_sock *vpending = vsock_sk(pending);
383
384 list_del_init(&vpending->pending_links);
385 sock_put(listener);
386 sock_put(pending);
387 }
388 EXPORT_SYMBOL_GPL(vsock_remove_pending);
389
vsock_enqueue_accept(struct sock * listener,struct sock * connected)390 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
391 {
392 struct vsock_sock *vlistener;
393 struct vsock_sock *vconnected;
394
395 vlistener = vsock_sk(listener);
396 vconnected = vsock_sk(connected);
397
398 sock_hold(connected);
399 sock_hold(listener);
400 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
401 }
402 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
403
vsock_use_local_transport(unsigned int remote_cid)404 static bool vsock_use_local_transport(unsigned int remote_cid)
405 {
406 if (!transport_local)
407 return false;
408
409 if (remote_cid == VMADDR_CID_LOCAL)
410 return true;
411
412 if (transport_g2h) {
413 return remote_cid == transport_g2h->get_local_cid();
414 } else {
415 return remote_cid == VMADDR_CID_HOST;
416 }
417 }
418
vsock_deassign_transport(struct vsock_sock * vsk)419 static void vsock_deassign_transport(struct vsock_sock *vsk)
420 {
421 if (!vsk->transport)
422 return;
423
424 vsk->transport->destruct(vsk);
425 module_put(vsk->transport->module);
426 vsk->transport = NULL;
427 }
428
429 /* Assign a transport to a socket and call the .init transport callback.
430 *
431 * Note: for connection oriented socket this must be called when vsk->remote_addr
432 * is set (e.g. during the connect() or when a connection request on a listener
433 * socket is received).
434 * The vsk->remote_addr is used to decide which transport to use:
435 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
436 * g2h is not loaded, will use local transport;
437 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
438 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
439 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
440 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)441 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
442 {
443 const struct vsock_transport *new_transport;
444 struct sock *sk = sk_vsock(vsk);
445 unsigned int remote_cid = vsk->remote_addr.svm_cid;
446 __u8 remote_flags;
447 int ret;
448
449 /* If the packet is coming with the source and destination CIDs higher
450 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
451 * forwarded to the host should be established. Then the host will
452 * need to forward the packets to the guest.
453 *
454 * The flag is set on the (listen) receive path (psk is not NULL). On
455 * the connect path the flag can be set by the user space application.
456 */
457 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
458 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
459 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
460
461 remote_flags = vsk->remote_addr.svm_flags;
462
463 switch (sk->sk_type) {
464 case SOCK_DGRAM:
465 new_transport = transport_dgram;
466 break;
467 case SOCK_STREAM:
468 case SOCK_SEQPACKET:
469 if (vsock_use_local_transport(remote_cid))
470 new_transport = transport_local;
471 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
472 (remote_flags & VMADDR_FLAG_TO_HOST))
473 new_transport = transport_g2h;
474 else
475 new_transport = transport_h2g;
476 break;
477 default:
478 return -ESOCKTNOSUPPORT;
479 }
480
481 if (vsk->transport) {
482 if (vsk->transport == new_transport)
483 return 0;
484
485 /* transport->release() must be called with sock lock acquired.
486 * This path can only be taken during vsock_connect(), where we
487 * have already held the sock lock. In the other cases, this
488 * function is called on a new socket which is not assigned to
489 * any transport.
490 */
491 vsk->transport->release(vsk);
492 vsock_deassign_transport(vsk);
493
494 /* transport's release() and destruct() can touch some socket
495 * state, since we are reassigning the socket to a new transport
496 * during vsock_connect(), let's reset these fields to have a
497 * clean state.
498 */
499 sock_reset_flag(sk, SOCK_DONE);
500 sk->sk_state = TCP_CLOSE;
501 vsk->peer_shutdown = 0;
502 }
503
504 /* We increase the module refcnt to prevent the transport unloading
505 * while there are open sockets assigned to it.
506 */
507 if (!new_transport || !try_module_get(new_transport->module))
508 return -ENODEV;
509
510 if (sk->sk_type == SOCK_SEQPACKET) {
511 if (!new_transport->seqpacket_allow ||
512 !new_transport->seqpacket_allow(remote_cid)) {
513 module_put(new_transport->module);
514 return -ESOCKTNOSUPPORT;
515 }
516 }
517
518 ret = new_transport->init(vsk, psk);
519 if (ret) {
520 module_put(new_transport->module);
521 return ret;
522 }
523
524 vsk->transport = new_transport;
525
526 return 0;
527 }
528 EXPORT_SYMBOL_GPL(vsock_assign_transport);
529
vsock_find_cid(unsigned int cid)530 bool vsock_find_cid(unsigned int cid)
531 {
532 if (transport_g2h && cid == transport_g2h->get_local_cid())
533 return true;
534
535 if (transport_h2g && cid == VMADDR_CID_HOST)
536 return true;
537
538 if (transport_local && cid == VMADDR_CID_LOCAL)
539 return true;
540
541 return false;
542 }
543 EXPORT_SYMBOL_GPL(vsock_find_cid);
544
vsock_dequeue_accept(struct sock * listener)545 static struct sock *vsock_dequeue_accept(struct sock *listener)
546 {
547 struct vsock_sock *vlistener;
548 struct vsock_sock *vconnected;
549
550 vlistener = vsock_sk(listener);
551
552 if (list_empty(&vlistener->accept_queue))
553 return NULL;
554
555 vconnected = list_entry(vlistener->accept_queue.next,
556 struct vsock_sock, accept_queue);
557
558 list_del_init(&vconnected->accept_queue);
559 sock_put(listener);
560 /* The caller will need a reference on the connected socket so we let
561 * it call sock_put().
562 */
563
564 return sk_vsock(vconnected);
565 }
566
vsock_is_accept_queue_empty(struct sock * sk)567 static bool vsock_is_accept_queue_empty(struct sock *sk)
568 {
569 struct vsock_sock *vsk = vsock_sk(sk);
570 return list_empty(&vsk->accept_queue);
571 }
572
vsock_is_pending(struct sock * sk)573 static bool vsock_is_pending(struct sock *sk)
574 {
575 struct vsock_sock *vsk = vsock_sk(sk);
576 return !list_empty(&vsk->pending_links);
577 }
578
vsock_send_shutdown(struct sock * sk,int mode)579 static int vsock_send_shutdown(struct sock *sk, int mode)
580 {
581 struct vsock_sock *vsk = vsock_sk(sk);
582
583 if (!vsk->transport)
584 return -ENODEV;
585
586 return vsk->transport->shutdown(vsk, mode);
587 }
588
vsock_pending_work(struct work_struct * work)589 static void vsock_pending_work(struct work_struct *work)
590 {
591 struct sock *sk;
592 struct sock *listener;
593 struct vsock_sock *vsk;
594 bool cleanup;
595
596 vsk = container_of(work, struct vsock_sock, pending_work.work);
597 sk = sk_vsock(vsk);
598 listener = vsk->listener;
599 cleanup = true;
600
601 lock_sock(listener);
602 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
603
604 if (vsock_is_pending(sk)) {
605 vsock_remove_pending(listener, sk);
606
607 sk_acceptq_removed(listener);
608 } else if (!vsk->rejected) {
609 /* We are not on the pending list and accept() did not reject
610 * us, so we must have been accepted by our user process. We
611 * just need to drop our references to the sockets and be on
612 * our way.
613 */
614 cleanup = false;
615 goto out;
616 }
617
618 /* We need to remove ourself from the global connected sockets list so
619 * incoming packets can't find this socket, and to reduce the reference
620 * count.
621 */
622 vsock_remove_connected(vsk);
623
624 sk->sk_state = TCP_CLOSE;
625
626 out:
627 release_sock(sk);
628 release_sock(listener);
629 if (cleanup)
630 sock_put(sk);
631
632 sock_put(sk);
633 sock_put(listener);
634 }
635
636 /**** SOCKET OPERATIONS ****/
637
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)638 static int __vsock_bind_connectible(struct vsock_sock *vsk,
639 struct sockaddr_vm *addr)
640 {
641 static u32 port;
642 struct sockaddr_vm new_addr;
643
644 if (!port)
645 port = get_random_u32_above(LAST_RESERVED_PORT);
646
647 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
648
649 if (addr->svm_port == VMADDR_PORT_ANY) {
650 bool found = false;
651 unsigned int i;
652
653 for (i = 0; i < MAX_PORT_RETRIES; i++) {
654 if (port <= LAST_RESERVED_PORT)
655 port = LAST_RESERVED_PORT + 1;
656
657 new_addr.svm_port = port++;
658
659 if (!__vsock_find_bound_socket(&new_addr)) {
660 found = true;
661 break;
662 }
663 }
664
665 if (!found)
666 return -EADDRNOTAVAIL;
667 } else {
668 /* If port is in reserved range, ensure caller
669 * has necessary privileges.
670 */
671 if (addr->svm_port <= LAST_RESERVED_PORT &&
672 !capable(CAP_NET_BIND_SERVICE)) {
673 return -EACCES;
674 }
675
676 if (__vsock_find_bound_socket(&new_addr))
677 return -EADDRINUSE;
678 }
679
680 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
681
682 /* Remove connection oriented sockets from the unbound list and add them
683 * to the hash table for easy lookup by its address. The unbound list
684 * is simply an extra entry at the end of the hash table, a trick used
685 * by AF_UNIX.
686 */
687 __vsock_remove_bound(vsk);
688 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
689
690 return 0;
691 }
692
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)693 static int __vsock_bind_dgram(struct vsock_sock *vsk,
694 struct sockaddr_vm *addr)
695 {
696 return vsk->transport->dgram_bind(vsk, addr);
697 }
698
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)699 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
700 {
701 struct vsock_sock *vsk = vsock_sk(sk);
702 int retval;
703
704 /* First ensure this socket isn't already bound. */
705 if (vsock_addr_bound(&vsk->local_addr))
706 return -EINVAL;
707
708 /* Now bind to the provided address or select appropriate values if
709 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
710 * like AF_INET prevents binding to a non-local IP address (in most
711 * cases), we only allow binding to a local CID.
712 */
713 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
714 return -EADDRNOTAVAIL;
715
716 switch (sk->sk_socket->type) {
717 case SOCK_STREAM:
718 case SOCK_SEQPACKET:
719 spin_lock_bh(&vsock_table_lock);
720 retval = __vsock_bind_connectible(vsk, addr);
721 spin_unlock_bh(&vsock_table_lock);
722 break;
723
724 case SOCK_DGRAM:
725 retval = __vsock_bind_dgram(vsk, addr);
726 break;
727
728 default:
729 retval = -EINVAL;
730 break;
731 }
732
733 return retval;
734 }
735
736 static void vsock_connect_timeout(struct work_struct *work);
737
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)738 static struct sock *__vsock_create(struct net *net,
739 struct socket *sock,
740 struct sock *parent,
741 gfp_t priority,
742 unsigned short type,
743 int kern)
744 {
745 struct sock *sk;
746 struct vsock_sock *psk;
747 struct vsock_sock *vsk;
748
749 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
750 if (!sk)
751 return NULL;
752
753 sock_init_data(sock, sk);
754
755 /* sk->sk_type is normally set in sock_init_data, but only if sock is
756 * non-NULL. We make sure that our sockets always have a type by
757 * setting it here if needed.
758 */
759 if (!sock)
760 sk->sk_type = type;
761
762 vsk = vsock_sk(sk);
763 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
764 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
765
766 sk->sk_destruct = vsock_sk_destruct;
767 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
768 sock_reset_flag(sk, SOCK_DONE);
769
770 INIT_LIST_HEAD(&vsk->bound_table);
771 INIT_LIST_HEAD(&vsk->connected_table);
772 vsk->listener = NULL;
773 INIT_LIST_HEAD(&vsk->pending_links);
774 INIT_LIST_HEAD(&vsk->accept_queue);
775 vsk->rejected = false;
776 vsk->sent_request = false;
777 vsk->ignore_connecting_rst = false;
778 vsk->peer_shutdown = 0;
779 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
780 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
781
782 psk = parent ? vsock_sk(parent) : NULL;
783 if (parent) {
784 vsk->trusted = psk->trusted;
785 vsk->owner = get_cred(psk->owner);
786 vsk->connect_timeout = psk->connect_timeout;
787 vsk->buffer_size = psk->buffer_size;
788 vsk->buffer_min_size = psk->buffer_min_size;
789 vsk->buffer_max_size = psk->buffer_max_size;
790 security_sk_clone(parent, sk);
791 } else {
792 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
793 vsk->owner = get_current_cred();
794 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
795 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
796 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
797 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
798 }
799
800 return sk;
801 }
802
sock_type_connectible(u16 type)803 static bool sock_type_connectible(u16 type)
804 {
805 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
806 }
807
__vsock_release(struct sock * sk,int level)808 static void __vsock_release(struct sock *sk, int level)
809 {
810 struct vsock_sock *vsk;
811 struct sock *pending;
812
813 vsk = vsock_sk(sk);
814 pending = NULL; /* Compiler warning. */
815
816 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
817 * version to avoid the warning "possible recursive locking
818 * detected". When "level" is 0, lock_sock_nested(sk, level)
819 * is the same as lock_sock(sk).
820 */
821 lock_sock_nested(sk, level);
822
823 if (vsk->transport)
824 vsk->transport->release(vsk);
825 else if (sock_type_connectible(sk->sk_type))
826 vsock_remove_sock(vsk);
827
828 sock_orphan(sk);
829 sk->sk_shutdown = SHUTDOWN_MASK;
830
831 skb_queue_purge(&sk->sk_receive_queue);
832
833 /* Clean up any sockets that never were accepted. */
834 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
835 __vsock_release(pending, SINGLE_DEPTH_NESTING);
836 sock_put(pending);
837 }
838
839 release_sock(sk);
840 sock_put(sk);
841 }
842
vsock_sk_destruct(struct sock * sk)843 static void vsock_sk_destruct(struct sock *sk)
844 {
845 struct vsock_sock *vsk = vsock_sk(sk);
846
847 vsock_deassign_transport(vsk);
848
849 /* When clearing these addresses, there's no need to set the family and
850 * possibly register the address family with the kernel.
851 */
852 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
853 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
854
855 put_cred(vsk->owner);
856 }
857
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)858 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
859 {
860 int err;
861
862 err = sock_queue_rcv_skb(sk, skb);
863 if (err)
864 kfree_skb(skb);
865
866 return err;
867 }
868
vsock_create_connected(struct sock * parent)869 struct sock *vsock_create_connected(struct sock *parent)
870 {
871 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
872 parent->sk_type, 0);
873 }
874 EXPORT_SYMBOL_GPL(vsock_create_connected);
875
vsock_stream_has_data(struct vsock_sock * vsk)876 s64 vsock_stream_has_data(struct vsock_sock *vsk)
877 {
878 if (WARN_ON(!vsk->transport))
879 return 0;
880
881 return vsk->transport->stream_has_data(vsk);
882 }
883 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
884
vsock_connectible_has_data(struct vsock_sock * vsk)885 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
886 {
887 struct sock *sk = sk_vsock(vsk);
888
889 if (WARN_ON(!vsk->transport))
890 return 0;
891
892 if (sk->sk_type == SOCK_SEQPACKET)
893 return vsk->transport->seqpacket_has_data(vsk);
894 else
895 return vsock_stream_has_data(vsk);
896 }
897 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
898
vsock_stream_has_space(struct vsock_sock * vsk)899 s64 vsock_stream_has_space(struct vsock_sock *vsk)
900 {
901 if (WARN_ON(!vsk->transport))
902 return 0;
903
904 return vsk->transport->stream_has_space(vsk);
905 }
906 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
907
vsock_data_ready(struct sock * sk)908 void vsock_data_ready(struct sock *sk)
909 {
910 struct vsock_sock *vsk = vsock_sk(sk);
911
912 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
913 sock_flag(sk, SOCK_DONE))
914 sk->sk_data_ready(sk);
915 }
916 EXPORT_SYMBOL_GPL(vsock_data_ready);
917
918 /* Dummy callback required by sockmap.
919 * See unconditional call of saved_close() in sock_map_close().
920 */
vsock_close(struct sock * sk,long timeout)921 static void vsock_close(struct sock *sk, long timeout)
922 {
923 }
924
vsock_release(struct socket * sock)925 static int vsock_release(struct socket *sock)
926 {
927 struct sock *sk = sock->sk;
928
929 if (!sk)
930 return 0;
931
932 sk->sk_prot->close(sk, 0);
933 __vsock_release(sk, 0);
934 sock->sk = NULL;
935 sock->state = SS_FREE;
936
937 return 0;
938 }
939
940 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)941 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
942 {
943 int err;
944 struct sock *sk;
945 struct sockaddr_vm *vm_addr;
946
947 sk = sock->sk;
948
949 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
950 return -EINVAL;
951
952 lock_sock(sk);
953 err = __vsock_bind(sk, vm_addr);
954 release_sock(sk);
955
956 return err;
957 }
958
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)959 static int vsock_getname(struct socket *sock,
960 struct sockaddr *addr, int peer)
961 {
962 int err;
963 struct sock *sk;
964 struct vsock_sock *vsk;
965 struct sockaddr_vm *vm_addr;
966
967 sk = sock->sk;
968 vsk = vsock_sk(sk);
969 err = 0;
970
971 lock_sock(sk);
972
973 if (peer) {
974 if (sock->state != SS_CONNECTED) {
975 err = -ENOTCONN;
976 goto out;
977 }
978 vm_addr = &vsk->remote_addr;
979 } else {
980 vm_addr = &vsk->local_addr;
981 }
982
983 if (!vm_addr) {
984 err = -EINVAL;
985 goto out;
986 }
987
988 /* sys_getsockname() and sys_getpeername() pass us a
989 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
990 * that macro is defined in socket.c instead of .h, so we hardcode its
991 * value here.
992 */
993 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
994 memcpy(addr, vm_addr, sizeof(*vm_addr));
995 err = sizeof(*vm_addr);
996
997 out:
998 release_sock(sk);
999 return err;
1000 }
1001
vsock_shutdown(struct socket * sock,int mode)1002 static int vsock_shutdown(struct socket *sock, int mode)
1003 {
1004 int err;
1005 struct sock *sk;
1006
1007 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1008 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1009 * here like the other address families do. Note also that the
1010 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1011 * which is what we want.
1012 */
1013 mode++;
1014
1015 if ((mode & ~SHUTDOWN_MASK) || !mode)
1016 return -EINVAL;
1017
1018 /* If this is a connection oriented socket and it is not connected then
1019 * bail out immediately. If it is a DGRAM socket then we must first
1020 * kick the socket so that it wakes up from any sleeping calls, for
1021 * example recv(), and then afterwards return the error.
1022 */
1023
1024 sk = sock->sk;
1025
1026 lock_sock(sk);
1027 if (sock->state == SS_UNCONNECTED) {
1028 err = -ENOTCONN;
1029 if (sock_type_connectible(sk->sk_type))
1030 goto out;
1031 } else {
1032 sock->state = SS_DISCONNECTING;
1033 err = 0;
1034 }
1035
1036 /* Receive and send shutdowns are treated alike. */
1037 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1038 if (mode) {
1039 sk->sk_shutdown |= mode;
1040 sk->sk_state_change(sk);
1041
1042 if (sock_type_connectible(sk->sk_type)) {
1043 sock_reset_flag(sk, SOCK_DONE);
1044 vsock_send_shutdown(sk, mode);
1045 }
1046 }
1047
1048 out:
1049 release_sock(sk);
1050 return err;
1051 }
1052
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1053 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1054 poll_table *wait)
1055 {
1056 struct sock *sk;
1057 __poll_t mask;
1058 struct vsock_sock *vsk;
1059
1060 sk = sock->sk;
1061 vsk = vsock_sk(sk);
1062
1063 poll_wait(file, sk_sleep(sk), wait);
1064 mask = 0;
1065
1066 if (sk->sk_err)
1067 /* Signify that there has been an error on this socket. */
1068 mask |= EPOLLERR;
1069
1070 /* INET sockets treat local write shutdown and peer write shutdown as a
1071 * case of EPOLLHUP set.
1072 */
1073 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1074 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1075 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1076 mask |= EPOLLHUP;
1077 }
1078
1079 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1080 vsk->peer_shutdown & SEND_SHUTDOWN) {
1081 mask |= EPOLLRDHUP;
1082 }
1083
1084 if (sk_is_readable(sk))
1085 mask |= EPOLLIN | EPOLLRDNORM;
1086
1087 if (sock->type == SOCK_DGRAM) {
1088 /* For datagram sockets we can read if there is something in
1089 * the queue and write as long as the socket isn't shutdown for
1090 * sending.
1091 */
1092 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1093 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1094 mask |= EPOLLIN | EPOLLRDNORM;
1095 }
1096
1097 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1098 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1099
1100 } else if (sock_type_connectible(sk->sk_type)) {
1101 const struct vsock_transport *transport;
1102
1103 lock_sock(sk);
1104
1105 transport = vsk->transport;
1106
1107 /* Listening sockets that have connections in their accept
1108 * queue can be read.
1109 */
1110 if (sk->sk_state == TCP_LISTEN
1111 && !vsock_is_accept_queue_empty(sk))
1112 mask |= EPOLLIN | EPOLLRDNORM;
1113
1114 /* If there is something in the queue then we can read. */
1115 if (transport && transport->stream_is_active(vsk) &&
1116 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1117 bool data_ready_now = false;
1118 int target = sock_rcvlowat(sk, 0, INT_MAX);
1119 int ret = transport->notify_poll_in(
1120 vsk, target, &data_ready_now);
1121 if (ret < 0) {
1122 mask |= EPOLLERR;
1123 } else {
1124 if (data_ready_now)
1125 mask |= EPOLLIN | EPOLLRDNORM;
1126
1127 }
1128 }
1129
1130 /* Sockets whose connections have been closed, reset, or
1131 * terminated should also be considered read, and we check the
1132 * shutdown flag for that.
1133 */
1134 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1135 vsk->peer_shutdown & SEND_SHUTDOWN) {
1136 mask |= EPOLLIN | EPOLLRDNORM;
1137 }
1138
1139 /* Connected sockets that can produce data can be written. */
1140 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1141 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1142 bool space_avail_now = false;
1143 int ret = transport->notify_poll_out(
1144 vsk, 1, &space_avail_now);
1145 if (ret < 0) {
1146 mask |= EPOLLERR;
1147 } else {
1148 if (space_avail_now)
1149 /* Remove EPOLLWRBAND since INET
1150 * sockets are not setting it.
1151 */
1152 mask |= EPOLLOUT | EPOLLWRNORM;
1153
1154 }
1155 }
1156 }
1157
1158 /* Simulate INET socket poll behaviors, which sets
1159 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1160 * but local send is not shutdown.
1161 */
1162 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1163 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1164 mask |= EPOLLOUT | EPOLLWRNORM;
1165
1166 }
1167
1168 release_sock(sk);
1169 }
1170
1171 return mask;
1172 }
1173
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1174 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1175 {
1176 struct vsock_sock *vsk = vsock_sk(sk);
1177
1178 return vsk->transport->read_skb(vsk, read_actor);
1179 }
1180
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1181 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1182 size_t len)
1183 {
1184 int err;
1185 struct sock *sk;
1186 struct vsock_sock *vsk;
1187 struct sockaddr_vm *remote_addr;
1188 const struct vsock_transport *transport;
1189
1190 if (msg->msg_flags & MSG_OOB)
1191 return -EOPNOTSUPP;
1192
1193 /* For now, MSG_DONTWAIT is always assumed... */
1194 err = 0;
1195 sk = sock->sk;
1196 vsk = vsock_sk(sk);
1197
1198 lock_sock(sk);
1199
1200 transport = vsk->transport;
1201
1202 err = vsock_auto_bind(vsk);
1203 if (err)
1204 goto out;
1205
1206
1207 /* If the provided message contains an address, use that. Otherwise
1208 * fall back on the socket's remote handle (if it has been connected).
1209 */
1210 if (msg->msg_name &&
1211 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1212 &remote_addr) == 0) {
1213 /* Ensure this address is of the right type and is a valid
1214 * destination.
1215 */
1216
1217 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1218 remote_addr->svm_cid = transport->get_local_cid();
1219
1220 if (!vsock_addr_bound(remote_addr)) {
1221 err = -EINVAL;
1222 goto out;
1223 }
1224 } else if (sock->state == SS_CONNECTED) {
1225 remote_addr = &vsk->remote_addr;
1226
1227 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1228 remote_addr->svm_cid = transport->get_local_cid();
1229
1230 /* XXX Should connect() or this function ensure remote_addr is
1231 * bound?
1232 */
1233 if (!vsock_addr_bound(&vsk->remote_addr)) {
1234 err = -EINVAL;
1235 goto out;
1236 }
1237 } else {
1238 err = -EINVAL;
1239 goto out;
1240 }
1241
1242 if (!transport->dgram_allow(remote_addr->svm_cid,
1243 remote_addr->svm_port)) {
1244 err = -EINVAL;
1245 goto out;
1246 }
1247
1248 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1249
1250 out:
1251 release_sock(sk);
1252 return err;
1253 }
1254
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1255 static int vsock_dgram_connect(struct socket *sock,
1256 struct sockaddr *addr, int addr_len, int flags)
1257 {
1258 int err;
1259 struct sock *sk;
1260 struct vsock_sock *vsk;
1261 struct sockaddr_vm *remote_addr;
1262
1263 sk = sock->sk;
1264 vsk = vsock_sk(sk);
1265
1266 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1267 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1268 lock_sock(sk);
1269 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1270 VMADDR_PORT_ANY);
1271 sock->state = SS_UNCONNECTED;
1272 release_sock(sk);
1273 return 0;
1274 } else if (err != 0)
1275 return -EINVAL;
1276
1277 lock_sock(sk);
1278
1279 err = vsock_auto_bind(vsk);
1280 if (err)
1281 goto out;
1282
1283 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1284 remote_addr->svm_port)) {
1285 err = -EINVAL;
1286 goto out;
1287 }
1288
1289 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1290 sock->state = SS_CONNECTED;
1291
1292 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1293 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1294 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1295 *
1296 * This doesn't seem to be abnormal state for datagram sockets, as the
1297 * same approach can be see in other datagram socket types as well
1298 * (such as unix sockets).
1299 */
1300 sk->sk_state = TCP_ESTABLISHED;
1301
1302 out:
1303 release_sock(sk);
1304 return err;
1305 }
1306
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1307 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1308 size_t len, int flags)
1309 {
1310 struct sock *sk = sock->sk;
1311 struct vsock_sock *vsk = vsock_sk(sk);
1312
1313 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1314 }
1315
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1316 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1317 size_t len, int flags)
1318 {
1319 #ifdef CONFIG_BPF_SYSCALL
1320 struct sock *sk = sock->sk;
1321 const struct proto *prot;
1322
1323 prot = READ_ONCE(sk->sk_prot);
1324 if (prot != &vsock_proto)
1325 return prot->recvmsg(sk, msg, len, flags, NULL);
1326 #endif
1327
1328 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1329 }
1330 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1331
1332 static const struct proto_ops vsock_dgram_ops = {
1333 .family = PF_VSOCK,
1334 .owner = THIS_MODULE,
1335 .release = vsock_release,
1336 .bind = vsock_bind,
1337 .connect = vsock_dgram_connect,
1338 .socketpair = sock_no_socketpair,
1339 .accept = sock_no_accept,
1340 .getname = vsock_getname,
1341 .poll = vsock_poll,
1342 .ioctl = sock_no_ioctl,
1343 .listen = sock_no_listen,
1344 .shutdown = vsock_shutdown,
1345 .sendmsg = vsock_dgram_sendmsg,
1346 .recvmsg = vsock_dgram_recvmsg,
1347 .mmap = sock_no_mmap,
1348 .read_skb = vsock_read_skb,
1349 };
1350
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1351 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1352 {
1353 const struct vsock_transport *transport = vsk->transport;
1354
1355 if (!transport || !transport->cancel_pkt)
1356 return -EOPNOTSUPP;
1357
1358 return transport->cancel_pkt(vsk);
1359 }
1360
vsock_connect_timeout(struct work_struct * work)1361 static void vsock_connect_timeout(struct work_struct *work)
1362 {
1363 struct sock *sk;
1364 struct vsock_sock *vsk;
1365
1366 vsk = container_of(work, struct vsock_sock, connect_work.work);
1367 sk = sk_vsock(vsk);
1368
1369 lock_sock(sk);
1370 if (sk->sk_state == TCP_SYN_SENT &&
1371 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1372 sk->sk_state = TCP_CLOSE;
1373 sk->sk_socket->state = SS_UNCONNECTED;
1374 sk->sk_err = ETIMEDOUT;
1375 sk_error_report(sk);
1376 vsock_transport_cancel_pkt(vsk);
1377 }
1378 release_sock(sk);
1379
1380 sock_put(sk);
1381 }
1382
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1383 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1384 int addr_len, int flags)
1385 {
1386 int err;
1387 struct sock *sk;
1388 struct vsock_sock *vsk;
1389 const struct vsock_transport *transport;
1390 struct sockaddr_vm *remote_addr;
1391 long timeout;
1392 DEFINE_WAIT(wait);
1393
1394 err = 0;
1395 sk = sock->sk;
1396 vsk = vsock_sk(sk);
1397
1398 lock_sock(sk);
1399
1400 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1401 switch (sock->state) {
1402 case SS_CONNECTED:
1403 err = -EISCONN;
1404 goto out;
1405 case SS_DISCONNECTING:
1406 err = -EINVAL;
1407 goto out;
1408 case SS_CONNECTING:
1409 /* This continues on so we can move sock into the SS_CONNECTED
1410 * state once the connection has completed (at which point err
1411 * will be set to zero also). Otherwise, we will either wait
1412 * for the connection or return -EALREADY should this be a
1413 * non-blocking call.
1414 */
1415 err = -EALREADY;
1416 if (flags & O_NONBLOCK)
1417 goto out;
1418 break;
1419 default:
1420 if ((sk->sk_state == TCP_LISTEN) ||
1421 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1422 err = -EINVAL;
1423 goto out;
1424 }
1425
1426 /* Set the remote address that we are connecting to. */
1427 memcpy(&vsk->remote_addr, remote_addr,
1428 sizeof(vsk->remote_addr));
1429
1430 err = vsock_assign_transport(vsk, NULL);
1431 if (err)
1432 goto out;
1433
1434 transport = vsk->transport;
1435
1436 /* The hypervisor and well-known contexts do not have socket
1437 * endpoints.
1438 */
1439 if (!transport ||
1440 !transport->stream_allow(remote_addr->svm_cid,
1441 remote_addr->svm_port)) {
1442 err = -ENETUNREACH;
1443 goto out;
1444 }
1445
1446 err = vsock_auto_bind(vsk);
1447 if (err)
1448 goto out;
1449
1450 sk->sk_state = TCP_SYN_SENT;
1451
1452 err = transport->connect(vsk);
1453 if (err < 0)
1454 goto out;
1455
1456 /* sk_err might have been set as a result of an earlier
1457 * (failed) connect attempt.
1458 */
1459 sk->sk_err = 0;
1460
1461 /* Mark sock as connecting and set the error code to in
1462 * progress in case this is a non-blocking connect.
1463 */
1464 sock->state = SS_CONNECTING;
1465 err = -EINPROGRESS;
1466 }
1467
1468 /* The receive path will handle all communication until we are able to
1469 * enter the connected state. Here we wait for the connection to be
1470 * completed or a notification of an error.
1471 */
1472 timeout = vsk->connect_timeout;
1473 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1474
1475 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1476 if (flags & O_NONBLOCK) {
1477 /* If we're not going to block, we schedule a timeout
1478 * function to generate a timeout on the connection
1479 * attempt, in case the peer doesn't respond in a
1480 * timely manner. We hold on to the socket until the
1481 * timeout fires.
1482 */
1483 sock_hold(sk);
1484
1485 /* If the timeout function is already scheduled,
1486 * reschedule it, then ungrab the socket refcount to
1487 * keep it balanced.
1488 */
1489 if (mod_delayed_work(system_wq, &vsk->connect_work,
1490 timeout))
1491 sock_put(sk);
1492
1493 /* Skip ahead to preserve error code set above. */
1494 goto out_wait;
1495 }
1496
1497 release_sock(sk);
1498 timeout = schedule_timeout(timeout);
1499 lock_sock(sk);
1500
1501 if (signal_pending(current)) {
1502 err = sock_intr_errno(timeout);
1503 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1504 sock->state = SS_UNCONNECTED;
1505 vsock_transport_cancel_pkt(vsk);
1506 vsock_remove_connected(vsk);
1507 goto out_wait;
1508 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1509 err = -ETIMEDOUT;
1510 sk->sk_state = TCP_CLOSE;
1511 sock->state = SS_UNCONNECTED;
1512 vsock_transport_cancel_pkt(vsk);
1513 goto out_wait;
1514 }
1515
1516 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1517 }
1518
1519 if (sk->sk_err) {
1520 err = -sk->sk_err;
1521 sk->sk_state = TCP_CLOSE;
1522 sock->state = SS_UNCONNECTED;
1523 } else {
1524 err = 0;
1525 }
1526
1527 out_wait:
1528 finish_wait(sk_sleep(sk), &wait);
1529 out:
1530 release_sock(sk);
1531 return err;
1532 }
1533
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1534 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1535 bool kern)
1536 {
1537 struct sock *listener;
1538 int err;
1539 struct sock *connected;
1540 struct vsock_sock *vconnected;
1541 long timeout;
1542 DEFINE_WAIT(wait);
1543
1544 err = 0;
1545 listener = sock->sk;
1546
1547 lock_sock(listener);
1548
1549 if (!sock_type_connectible(sock->type)) {
1550 err = -EOPNOTSUPP;
1551 goto out;
1552 }
1553
1554 if (listener->sk_state != TCP_LISTEN) {
1555 err = -EINVAL;
1556 goto out;
1557 }
1558
1559 /* Wait for children sockets to appear; these are the new sockets
1560 * created upon connection establishment.
1561 */
1562 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1563 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1564
1565 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1566 listener->sk_err == 0) {
1567 release_sock(listener);
1568 timeout = schedule_timeout(timeout);
1569 finish_wait(sk_sleep(listener), &wait);
1570 lock_sock(listener);
1571
1572 if (signal_pending(current)) {
1573 err = sock_intr_errno(timeout);
1574 goto out;
1575 } else if (timeout == 0) {
1576 err = -EAGAIN;
1577 goto out;
1578 }
1579
1580 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1581 }
1582 finish_wait(sk_sleep(listener), &wait);
1583
1584 if (listener->sk_err)
1585 err = -listener->sk_err;
1586
1587 if (connected) {
1588 sk_acceptq_removed(listener);
1589
1590 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1591 vconnected = vsock_sk(connected);
1592
1593 /* If the listener socket has received an error, then we should
1594 * reject this socket and return. Note that we simply mark the
1595 * socket rejected, drop our reference, and let the cleanup
1596 * function handle the cleanup; the fact that we found it in
1597 * the listener's accept queue guarantees that the cleanup
1598 * function hasn't run yet.
1599 */
1600 if (err) {
1601 vconnected->rejected = true;
1602 } else {
1603 newsock->state = SS_CONNECTED;
1604 sock_graft(connected, newsock);
1605 }
1606
1607 release_sock(connected);
1608 sock_put(connected);
1609 }
1610
1611 out:
1612 release_sock(listener);
1613 return err;
1614 }
1615
vsock_listen(struct socket * sock,int backlog)1616 static int vsock_listen(struct socket *sock, int backlog)
1617 {
1618 int err;
1619 struct sock *sk;
1620 struct vsock_sock *vsk;
1621
1622 sk = sock->sk;
1623
1624 lock_sock(sk);
1625
1626 if (!sock_type_connectible(sk->sk_type)) {
1627 err = -EOPNOTSUPP;
1628 goto out;
1629 }
1630
1631 if (sock->state != SS_UNCONNECTED) {
1632 err = -EINVAL;
1633 goto out;
1634 }
1635
1636 vsk = vsock_sk(sk);
1637
1638 if (!vsock_addr_bound(&vsk->local_addr)) {
1639 err = -EINVAL;
1640 goto out;
1641 }
1642
1643 sk->sk_max_ack_backlog = backlog;
1644 sk->sk_state = TCP_LISTEN;
1645
1646 err = 0;
1647
1648 out:
1649 release_sock(sk);
1650 return err;
1651 }
1652
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1653 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1654 const struct vsock_transport *transport,
1655 u64 val)
1656 {
1657 if (val > vsk->buffer_max_size)
1658 val = vsk->buffer_max_size;
1659
1660 if (val < vsk->buffer_min_size)
1661 val = vsk->buffer_min_size;
1662
1663 if (val != vsk->buffer_size &&
1664 transport && transport->notify_buffer_size)
1665 transport->notify_buffer_size(vsk, &val);
1666
1667 vsk->buffer_size = val;
1668 }
1669
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1670 static int vsock_connectible_setsockopt(struct socket *sock,
1671 int level,
1672 int optname,
1673 sockptr_t optval,
1674 unsigned int optlen)
1675 {
1676 int err;
1677 struct sock *sk;
1678 struct vsock_sock *vsk;
1679 const struct vsock_transport *transport;
1680 u64 val;
1681
1682 if (level != AF_VSOCK)
1683 return -ENOPROTOOPT;
1684
1685 #define COPY_IN(_v) \
1686 do { \
1687 if (optlen < sizeof(_v)) { \
1688 err = -EINVAL; \
1689 goto exit; \
1690 } \
1691 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1692 err = -EFAULT; \
1693 goto exit; \
1694 } \
1695 } while (0)
1696
1697 err = 0;
1698 sk = sock->sk;
1699 vsk = vsock_sk(sk);
1700
1701 lock_sock(sk);
1702
1703 transport = vsk->transport;
1704
1705 switch (optname) {
1706 case SO_VM_SOCKETS_BUFFER_SIZE:
1707 COPY_IN(val);
1708 vsock_update_buffer_size(vsk, transport, val);
1709 break;
1710
1711 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1712 COPY_IN(val);
1713 vsk->buffer_max_size = val;
1714 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1715 break;
1716
1717 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1718 COPY_IN(val);
1719 vsk->buffer_min_size = val;
1720 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1721 break;
1722
1723 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1724 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1725 struct __kernel_sock_timeval tv;
1726
1727 err = sock_copy_user_timeval(&tv, optval, optlen,
1728 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1729 if (err)
1730 break;
1731 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1732 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1733 vsk->connect_timeout = tv.tv_sec * HZ +
1734 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1735 if (vsk->connect_timeout == 0)
1736 vsk->connect_timeout =
1737 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1738
1739 } else {
1740 err = -ERANGE;
1741 }
1742 break;
1743 }
1744
1745 default:
1746 err = -ENOPROTOOPT;
1747 break;
1748 }
1749
1750 #undef COPY_IN
1751
1752 exit:
1753 release_sock(sk);
1754 return err;
1755 }
1756
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1757 static int vsock_connectible_getsockopt(struct socket *sock,
1758 int level, int optname,
1759 char __user *optval,
1760 int __user *optlen)
1761 {
1762 struct sock *sk = sock->sk;
1763 struct vsock_sock *vsk = vsock_sk(sk);
1764
1765 union {
1766 u64 val64;
1767 struct old_timeval32 tm32;
1768 struct __kernel_old_timeval tm;
1769 struct __kernel_sock_timeval stm;
1770 } v;
1771
1772 int lv = sizeof(v.val64);
1773 int len;
1774
1775 if (level != AF_VSOCK)
1776 return -ENOPROTOOPT;
1777
1778 if (get_user(len, optlen))
1779 return -EFAULT;
1780
1781 memset(&v, 0, sizeof(v));
1782
1783 switch (optname) {
1784 case SO_VM_SOCKETS_BUFFER_SIZE:
1785 v.val64 = vsk->buffer_size;
1786 break;
1787
1788 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1789 v.val64 = vsk->buffer_max_size;
1790 break;
1791
1792 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1793 v.val64 = vsk->buffer_min_size;
1794 break;
1795
1796 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1797 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1798 lv = sock_get_timeout(vsk->connect_timeout, &v,
1799 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1800 break;
1801
1802 default:
1803 return -ENOPROTOOPT;
1804 }
1805
1806 if (len < lv)
1807 return -EINVAL;
1808 if (len > lv)
1809 len = lv;
1810 if (copy_to_user(optval, &v, len))
1811 return -EFAULT;
1812
1813 if (put_user(len, optlen))
1814 return -EFAULT;
1815
1816 return 0;
1817 }
1818
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1819 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1820 size_t len)
1821 {
1822 struct sock *sk;
1823 struct vsock_sock *vsk;
1824 const struct vsock_transport *transport;
1825 ssize_t total_written;
1826 long timeout;
1827 int err;
1828 struct vsock_transport_send_notify_data send_data;
1829 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1830
1831 sk = sock->sk;
1832 vsk = vsock_sk(sk);
1833 total_written = 0;
1834 err = 0;
1835
1836 if (msg->msg_flags & MSG_OOB)
1837 return -EOPNOTSUPP;
1838
1839 lock_sock(sk);
1840
1841 transport = vsk->transport;
1842
1843 /* Callers should not provide a destination with connection oriented
1844 * sockets.
1845 */
1846 if (msg->msg_namelen) {
1847 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1848 goto out;
1849 }
1850
1851 /* Send data only if both sides are not shutdown in the direction. */
1852 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1853 vsk->peer_shutdown & RCV_SHUTDOWN) {
1854 err = -EPIPE;
1855 goto out;
1856 }
1857
1858 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1859 !vsock_addr_bound(&vsk->local_addr)) {
1860 err = -ENOTCONN;
1861 goto out;
1862 }
1863
1864 if (!vsock_addr_bound(&vsk->remote_addr)) {
1865 err = -EDESTADDRREQ;
1866 goto out;
1867 }
1868
1869 /* Wait for room in the produce queue to enqueue our user's data. */
1870 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1871
1872 err = transport->notify_send_init(vsk, &send_data);
1873 if (err < 0)
1874 goto out;
1875
1876 while (total_written < len) {
1877 ssize_t written;
1878
1879 add_wait_queue(sk_sleep(sk), &wait);
1880 while (vsock_stream_has_space(vsk) == 0 &&
1881 sk->sk_err == 0 &&
1882 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1883 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1884
1885 /* Don't wait for non-blocking sockets. */
1886 if (timeout == 0) {
1887 err = -EAGAIN;
1888 remove_wait_queue(sk_sleep(sk), &wait);
1889 goto out_err;
1890 }
1891
1892 err = transport->notify_send_pre_block(vsk, &send_data);
1893 if (err < 0) {
1894 remove_wait_queue(sk_sleep(sk), &wait);
1895 goto out_err;
1896 }
1897
1898 release_sock(sk);
1899 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1900 lock_sock(sk);
1901 if (signal_pending(current)) {
1902 err = sock_intr_errno(timeout);
1903 remove_wait_queue(sk_sleep(sk), &wait);
1904 goto out_err;
1905 } else if (timeout == 0) {
1906 err = -EAGAIN;
1907 remove_wait_queue(sk_sleep(sk), &wait);
1908 goto out_err;
1909 }
1910 }
1911 remove_wait_queue(sk_sleep(sk), &wait);
1912
1913 /* These checks occur both as part of and after the loop
1914 * conditional since we need to check before and after
1915 * sleeping.
1916 */
1917 if (sk->sk_err) {
1918 err = -sk->sk_err;
1919 goto out_err;
1920 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1921 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1922 err = -EPIPE;
1923 goto out_err;
1924 }
1925
1926 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1927 if (err < 0)
1928 goto out_err;
1929
1930 /* Note that enqueue will only write as many bytes as are free
1931 * in the produce queue, so we don't need to ensure len is
1932 * smaller than the queue size. It is the caller's
1933 * responsibility to check how many bytes we were able to send.
1934 */
1935
1936 if (sk->sk_type == SOCK_SEQPACKET) {
1937 written = transport->seqpacket_enqueue(vsk,
1938 msg, len - total_written);
1939 } else {
1940 written = transport->stream_enqueue(vsk,
1941 msg, len - total_written);
1942 }
1943
1944 if (written < 0) {
1945 err = written;
1946 goto out_err;
1947 }
1948
1949 total_written += written;
1950
1951 err = transport->notify_send_post_enqueue(
1952 vsk, written, &send_data);
1953 if (err < 0)
1954 goto out_err;
1955
1956 }
1957
1958 out_err:
1959 if (total_written > 0) {
1960 /* Return number of written bytes only if:
1961 * 1) SOCK_STREAM socket.
1962 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1963 */
1964 if (sk->sk_type == SOCK_STREAM || total_written == len)
1965 err = total_written;
1966 }
1967 out:
1968 release_sock(sk);
1969 return err;
1970 }
1971
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1972 static int vsock_connectible_wait_data(struct sock *sk,
1973 struct wait_queue_entry *wait,
1974 long timeout,
1975 struct vsock_transport_recv_notify_data *recv_data,
1976 size_t target)
1977 {
1978 const struct vsock_transport *transport;
1979 struct vsock_sock *vsk;
1980 s64 data;
1981 int err;
1982
1983 vsk = vsock_sk(sk);
1984 err = 0;
1985 transport = vsk->transport;
1986
1987 while (1) {
1988 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1989 data = vsock_connectible_has_data(vsk);
1990 if (data != 0)
1991 break;
1992
1993 if (sk->sk_err != 0 ||
1994 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1995 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1996 break;
1997 }
1998
1999 /* Don't wait for non-blocking sockets. */
2000 if (timeout == 0) {
2001 err = -EAGAIN;
2002 break;
2003 }
2004
2005 if (recv_data) {
2006 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2007 if (err < 0)
2008 break;
2009 }
2010
2011 release_sock(sk);
2012 timeout = schedule_timeout(timeout);
2013 lock_sock(sk);
2014
2015 if (signal_pending(current)) {
2016 err = sock_intr_errno(timeout);
2017 break;
2018 } else if (timeout == 0) {
2019 err = -EAGAIN;
2020 break;
2021 }
2022 }
2023
2024 finish_wait(sk_sleep(sk), wait);
2025
2026 if (err)
2027 return err;
2028
2029 /* Internal transport error when checking for available
2030 * data. XXX This should be changed to a connection
2031 * reset in a later change.
2032 */
2033 if (data < 0)
2034 return -ENOMEM;
2035
2036 return data;
2037 }
2038
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2039 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2040 size_t len, int flags)
2041 {
2042 struct vsock_transport_recv_notify_data recv_data;
2043 const struct vsock_transport *transport;
2044 struct vsock_sock *vsk;
2045 ssize_t copied;
2046 size_t target;
2047 long timeout;
2048 int err;
2049
2050 DEFINE_WAIT(wait);
2051
2052 vsk = vsock_sk(sk);
2053 transport = vsk->transport;
2054
2055 /* We must not copy less than target bytes into the user's buffer
2056 * before returning successfully, so we wait for the consume queue to
2057 * have that much data to consume before dequeueing. Note that this
2058 * makes it impossible to handle cases where target is greater than the
2059 * queue size.
2060 */
2061 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2062 if (target >= transport->stream_rcvhiwat(vsk)) {
2063 err = -ENOMEM;
2064 goto out;
2065 }
2066 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2067 copied = 0;
2068
2069 err = transport->notify_recv_init(vsk, target, &recv_data);
2070 if (err < 0)
2071 goto out;
2072
2073
2074 while (1) {
2075 ssize_t read;
2076
2077 err = vsock_connectible_wait_data(sk, &wait, timeout,
2078 &recv_data, target);
2079 if (err <= 0)
2080 break;
2081
2082 err = transport->notify_recv_pre_dequeue(vsk, target,
2083 &recv_data);
2084 if (err < 0)
2085 break;
2086
2087 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2088 if (read < 0) {
2089 err = read;
2090 break;
2091 }
2092
2093 copied += read;
2094
2095 err = transport->notify_recv_post_dequeue(vsk, target, read,
2096 !(flags & MSG_PEEK), &recv_data);
2097 if (err < 0)
2098 goto out;
2099
2100 if (read >= target || flags & MSG_PEEK)
2101 break;
2102
2103 target -= read;
2104 }
2105
2106 if (sk->sk_err)
2107 err = -sk->sk_err;
2108 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2109 err = 0;
2110
2111 if (copied > 0)
2112 err = copied;
2113
2114 out:
2115 return err;
2116 }
2117
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2118 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2119 size_t len, int flags)
2120 {
2121 const struct vsock_transport *transport;
2122 struct vsock_sock *vsk;
2123 ssize_t msg_len;
2124 long timeout;
2125 int err = 0;
2126 DEFINE_WAIT(wait);
2127
2128 vsk = vsock_sk(sk);
2129 transport = vsk->transport;
2130
2131 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2132
2133 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2134 if (err <= 0)
2135 goto out;
2136
2137 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2138
2139 if (msg_len < 0) {
2140 err = msg_len;
2141 goto out;
2142 }
2143
2144 if (sk->sk_err) {
2145 err = -sk->sk_err;
2146 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2147 err = 0;
2148 } else {
2149 /* User sets MSG_TRUNC, so return real length of
2150 * packet.
2151 */
2152 if (flags & MSG_TRUNC)
2153 err = msg_len;
2154 else
2155 err = len - msg_data_left(msg);
2156
2157 /* Always set MSG_TRUNC if real length of packet is
2158 * bigger than user's buffer.
2159 */
2160 if (msg_len > len)
2161 msg->msg_flags |= MSG_TRUNC;
2162 }
2163
2164 out:
2165 return err;
2166 }
2167
2168 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2169 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2170 int flags)
2171 {
2172 struct sock *sk;
2173 struct vsock_sock *vsk;
2174 const struct vsock_transport *transport;
2175 int err;
2176
2177 sk = sock->sk;
2178
2179 if (unlikely(flags & MSG_ERRQUEUE))
2180 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2181
2182 vsk = vsock_sk(sk);
2183 err = 0;
2184
2185 lock_sock(sk);
2186
2187 transport = vsk->transport;
2188
2189 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2190 /* Recvmsg is supposed to return 0 if a peer performs an
2191 * orderly shutdown. Differentiate between that case and when a
2192 * peer has not connected or a local shutdown occurred with the
2193 * SOCK_DONE flag.
2194 */
2195 if (sock_flag(sk, SOCK_DONE))
2196 err = 0;
2197 else
2198 err = -ENOTCONN;
2199
2200 goto out;
2201 }
2202
2203 if (flags & MSG_OOB) {
2204 err = -EOPNOTSUPP;
2205 goto out;
2206 }
2207
2208 /* We don't check peer_shutdown flag here since peer may actually shut
2209 * down, but there can be data in the queue that a local socket can
2210 * receive.
2211 */
2212 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2213 err = 0;
2214 goto out;
2215 }
2216
2217 /* It is valid on Linux to pass in a zero-length receive buffer. This
2218 * is not an error. We may as well bail out now.
2219 */
2220 if (!len) {
2221 err = 0;
2222 goto out;
2223 }
2224
2225 if (sk->sk_type == SOCK_STREAM)
2226 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2227 else
2228 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2229
2230 out:
2231 release_sock(sk);
2232 return err;
2233 }
2234
2235 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2236 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2237 int flags)
2238 {
2239 #ifdef CONFIG_BPF_SYSCALL
2240 struct sock *sk = sock->sk;
2241 const struct proto *prot;
2242
2243 prot = READ_ONCE(sk->sk_prot);
2244 if (prot != &vsock_proto)
2245 return prot->recvmsg(sk, msg, len, flags, NULL);
2246 #endif
2247
2248 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2249 }
2250 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2251
vsock_set_rcvlowat(struct sock * sk,int val)2252 static int vsock_set_rcvlowat(struct sock *sk, int val)
2253 {
2254 const struct vsock_transport *transport;
2255 struct vsock_sock *vsk;
2256
2257 vsk = vsock_sk(sk);
2258
2259 if (val > vsk->buffer_size)
2260 return -EINVAL;
2261
2262 transport = vsk->transport;
2263
2264 if (transport && transport->notify_set_rcvlowat) {
2265 int err;
2266
2267 err = transport->notify_set_rcvlowat(vsk, val);
2268 if (err)
2269 return err;
2270 }
2271
2272 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2273 return 0;
2274 }
2275
2276 static const struct proto_ops vsock_stream_ops = {
2277 .family = PF_VSOCK,
2278 .owner = THIS_MODULE,
2279 .release = vsock_release,
2280 .bind = vsock_bind,
2281 .connect = vsock_connect,
2282 .socketpair = sock_no_socketpair,
2283 .accept = vsock_accept,
2284 .getname = vsock_getname,
2285 .poll = vsock_poll,
2286 .ioctl = sock_no_ioctl,
2287 .listen = vsock_listen,
2288 .shutdown = vsock_shutdown,
2289 .setsockopt = vsock_connectible_setsockopt,
2290 .getsockopt = vsock_connectible_getsockopt,
2291 .sendmsg = vsock_connectible_sendmsg,
2292 .recvmsg = vsock_connectible_recvmsg,
2293 .mmap = sock_no_mmap,
2294 .set_rcvlowat = vsock_set_rcvlowat,
2295 .read_skb = vsock_read_skb,
2296 };
2297
2298 static const struct proto_ops vsock_seqpacket_ops = {
2299 .family = PF_VSOCK,
2300 .owner = THIS_MODULE,
2301 .release = vsock_release,
2302 .bind = vsock_bind,
2303 .connect = vsock_connect,
2304 .socketpair = sock_no_socketpair,
2305 .accept = vsock_accept,
2306 .getname = vsock_getname,
2307 .poll = vsock_poll,
2308 .ioctl = sock_no_ioctl,
2309 .listen = vsock_listen,
2310 .shutdown = vsock_shutdown,
2311 .setsockopt = vsock_connectible_setsockopt,
2312 .getsockopt = vsock_connectible_getsockopt,
2313 .sendmsg = vsock_connectible_sendmsg,
2314 .recvmsg = vsock_connectible_recvmsg,
2315 .mmap = sock_no_mmap,
2316 .read_skb = vsock_read_skb,
2317 };
2318
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2319 static int vsock_create(struct net *net, struct socket *sock,
2320 int protocol, int kern)
2321 {
2322 struct vsock_sock *vsk;
2323 struct sock *sk;
2324 int ret;
2325
2326 if (!sock)
2327 return -EINVAL;
2328
2329 if (protocol && protocol != PF_VSOCK)
2330 return -EPROTONOSUPPORT;
2331
2332 switch (sock->type) {
2333 case SOCK_DGRAM:
2334 sock->ops = &vsock_dgram_ops;
2335 break;
2336 case SOCK_STREAM:
2337 sock->ops = &vsock_stream_ops;
2338 break;
2339 case SOCK_SEQPACKET:
2340 sock->ops = &vsock_seqpacket_ops;
2341 break;
2342 default:
2343 return -ESOCKTNOSUPPORT;
2344 }
2345
2346 sock->state = SS_UNCONNECTED;
2347
2348 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2349 if (!sk)
2350 return -ENOMEM;
2351
2352 vsk = vsock_sk(sk);
2353
2354 if (sock->type == SOCK_DGRAM) {
2355 ret = vsock_assign_transport(vsk, NULL);
2356 if (ret < 0) {
2357 sock_put(sk);
2358 return ret;
2359 }
2360 }
2361
2362 vsock_insert_unbound(vsk);
2363
2364 return 0;
2365 }
2366
2367 static const struct net_proto_family vsock_family_ops = {
2368 .family = AF_VSOCK,
2369 .create = vsock_create,
2370 .owner = THIS_MODULE,
2371 };
2372
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2373 static long vsock_dev_do_ioctl(struct file *filp,
2374 unsigned int cmd, void __user *ptr)
2375 {
2376 u32 __user *p = ptr;
2377 u32 cid = VMADDR_CID_ANY;
2378 int retval = 0;
2379
2380 switch (cmd) {
2381 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2382 /* To be compatible with the VMCI behavior, we prioritize the
2383 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2384 */
2385 if (transport_g2h)
2386 cid = transport_g2h->get_local_cid();
2387 else if (transport_h2g)
2388 cid = transport_h2g->get_local_cid();
2389
2390 if (put_user(cid, p) != 0)
2391 retval = -EFAULT;
2392 break;
2393
2394 default:
2395 retval = -ENOIOCTLCMD;
2396 }
2397
2398 return retval;
2399 }
2400
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2401 static long vsock_dev_ioctl(struct file *filp,
2402 unsigned int cmd, unsigned long arg)
2403 {
2404 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2405 }
2406
2407 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2408 static long vsock_dev_compat_ioctl(struct file *filp,
2409 unsigned int cmd, unsigned long arg)
2410 {
2411 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2412 }
2413 #endif
2414
2415 static const struct file_operations vsock_device_ops = {
2416 .owner = THIS_MODULE,
2417 .unlocked_ioctl = vsock_dev_ioctl,
2418 #ifdef CONFIG_COMPAT
2419 .compat_ioctl = vsock_dev_compat_ioctl,
2420 #endif
2421 .open = nonseekable_open,
2422 };
2423
2424 static struct miscdevice vsock_device = {
2425 .name = "vsock",
2426 .fops = &vsock_device_ops,
2427 };
2428
vsock_init(void)2429 static int __init vsock_init(void)
2430 {
2431 int err = 0;
2432
2433 vsock_init_tables();
2434
2435 vsock_proto.owner = THIS_MODULE;
2436 vsock_device.minor = MISC_DYNAMIC_MINOR;
2437 err = misc_register(&vsock_device);
2438 if (err) {
2439 pr_err("Failed to register misc device\n");
2440 goto err_reset_transport;
2441 }
2442
2443 err = proto_register(&vsock_proto, 1); /* we want our slab */
2444 if (err) {
2445 pr_err("Cannot register vsock protocol\n");
2446 goto err_deregister_misc;
2447 }
2448
2449 err = sock_register(&vsock_family_ops);
2450 if (err) {
2451 pr_err("could not register af_vsock (%d) address family: %d\n",
2452 AF_VSOCK, err);
2453 goto err_unregister_proto;
2454 }
2455
2456 vsock_bpf_build_proto();
2457
2458 return 0;
2459
2460 err_unregister_proto:
2461 proto_unregister(&vsock_proto);
2462 err_deregister_misc:
2463 misc_deregister(&vsock_device);
2464 err_reset_transport:
2465 return err;
2466 }
2467
vsock_exit(void)2468 static void __exit vsock_exit(void)
2469 {
2470 misc_deregister(&vsock_device);
2471 sock_unregister(AF_VSOCK);
2472 proto_unregister(&vsock_proto);
2473 }
2474
vsock_core_get_transport(struct vsock_sock * vsk)2475 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2476 {
2477 return vsk->transport;
2478 }
2479 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2480
vsock_core_register(const struct vsock_transport * t,int features)2481 int vsock_core_register(const struct vsock_transport *t, int features)
2482 {
2483 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2484 int err = mutex_lock_interruptible(&vsock_register_mutex);
2485
2486 if (err)
2487 return err;
2488
2489 t_h2g = transport_h2g;
2490 t_g2h = transport_g2h;
2491 t_dgram = transport_dgram;
2492 t_local = transport_local;
2493
2494 if (features & VSOCK_TRANSPORT_F_H2G) {
2495 if (t_h2g) {
2496 err = -EBUSY;
2497 goto err_busy;
2498 }
2499 t_h2g = t;
2500 }
2501
2502 if (features & VSOCK_TRANSPORT_F_G2H) {
2503 if (t_g2h) {
2504 err = -EBUSY;
2505 goto err_busy;
2506 }
2507 t_g2h = t;
2508 }
2509
2510 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2511 if (t_dgram) {
2512 err = -EBUSY;
2513 goto err_busy;
2514 }
2515 t_dgram = t;
2516 }
2517
2518 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2519 if (t_local) {
2520 err = -EBUSY;
2521 goto err_busy;
2522 }
2523 t_local = t;
2524 }
2525
2526 transport_h2g = t_h2g;
2527 transport_g2h = t_g2h;
2528 transport_dgram = t_dgram;
2529 transport_local = t_local;
2530
2531 err_busy:
2532 mutex_unlock(&vsock_register_mutex);
2533 return err;
2534 }
2535 EXPORT_SYMBOL_GPL(vsock_core_register);
2536
vsock_core_unregister(const struct vsock_transport * t)2537 void vsock_core_unregister(const struct vsock_transport *t)
2538 {
2539 mutex_lock(&vsock_register_mutex);
2540
2541 if (transport_h2g == t)
2542 transport_h2g = NULL;
2543
2544 if (transport_g2h == t)
2545 transport_g2h = NULL;
2546
2547 if (transport_dgram == t)
2548 transport_dgram = NULL;
2549
2550 if (transport_local == t)
2551 transport_local = NULL;
2552
2553 mutex_unlock(&vsock_register_mutex);
2554 }
2555 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2556
2557 module_init(vsock_init);
2558 module_exit(vsock_exit);
2559
2560 MODULE_AUTHOR("VMware, Inc.");
2561 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2562 MODULE_VERSION("1.0.2.0-k");
2563 MODULE_LICENSE("GPL v2");
2564