1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2016 VMware, Inc., Palo Alto, CA., USA
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
21 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
23 * USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 */
26
27 #include <linux/objtool.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/cc_platform.h>
32
33 #include <asm/hypervisor.h>
34 #include <drm/drm_ioctl.h>
35
36 #include "vmwgfx_drv.h"
37 #include "vmwgfx_msg_x86.h"
38 #include "vmwgfx_msg_arm64.h"
39 #include "vmwgfx_mksstat.h"
40
41 #define MESSAGE_STATUS_SUCCESS 0x0001
42 #define MESSAGE_STATUS_DORECV 0x0002
43 #define MESSAGE_STATUS_CPT 0x0010
44 #define MESSAGE_STATUS_HB 0x0080
45
46 #define RPCI_PROTOCOL_NUM 0x49435052
47 #define GUESTMSG_FLAG_COOKIE 0x80000000
48
49 #define RETRIES 3
50
51 #define VMW_HYPERVISOR_MAGIC 0x564D5868
52
53 #define VMW_PORT_CMD_MSG 30
54 #define VMW_PORT_CMD_HB_MSG 0
55 #define VMW_PORT_CMD_OPEN_CHANNEL (MSG_TYPE_OPEN << 16 | VMW_PORT_CMD_MSG)
56 #define VMW_PORT_CMD_CLOSE_CHANNEL (MSG_TYPE_CLOSE << 16 | VMW_PORT_CMD_MSG)
57 #define VMW_PORT_CMD_SENDSIZE (MSG_TYPE_SENDSIZE << 16 | VMW_PORT_CMD_MSG)
58 #define VMW_PORT_CMD_RECVSIZE (MSG_TYPE_RECVSIZE << 16 | VMW_PORT_CMD_MSG)
59 #define VMW_PORT_CMD_RECVSTATUS (MSG_TYPE_RECVSTATUS << 16 | VMW_PORT_CMD_MSG)
60
61 #define VMW_PORT_CMD_MKS_GUEST_STATS 85
62 #define VMW_PORT_CMD_MKSGS_RESET (0 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS)
63 #define VMW_PORT_CMD_MKSGS_ADD_PPN (1 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS)
64 #define VMW_PORT_CMD_MKSGS_REMOVE_PPN (2 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS)
65
66 #define HIGH_WORD(X) ((X & 0xFFFF0000) >> 16)
67
68 #define MAX_USER_MSG_LENGTH PAGE_SIZE
69
70 static u32 vmw_msg_enabled = 1;
71
72 enum rpc_msg_type {
73 MSG_TYPE_OPEN,
74 MSG_TYPE_SENDSIZE,
75 MSG_TYPE_SENDPAYLOAD,
76 MSG_TYPE_RECVSIZE,
77 MSG_TYPE_RECVPAYLOAD,
78 MSG_TYPE_RECVSTATUS,
79 MSG_TYPE_CLOSE,
80 };
81
82 struct rpc_channel {
83 u16 channel_id;
84 u32 cookie_high;
85 u32 cookie_low;
86 };
87
88 #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS)
89 /* Kernel mksGuestStats counter names and desciptions; same order as enum mksstat_kern_stats_t */
90 static const char* const mksstat_kern_name_desc[MKSSTAT_KERN_COUNT][2] =
91 {
92 { "vmw_execbuf_ioctl", "vmw_execbuf_ioctl" },
93 { "vmw_cotable_resize", "vmw_cotable_resize" },
94 };
95 #endif
96
97 /**
98 * vmw_open_channel
99 *
100 * @channel: RPC channel
101 * @protocol:
102 *
103 * Returns: 0 on success
104 */
vmw_open_channel(struct rpc_channel * channel,unsigned int protocol)105 static int vmw_open_channel(struct rpc_channel *channel, unsigned int protocol)
106 {
107 unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
108
109 VMW_PORT(VMW_PORT_CMD_OPEN_CHANNEL,
110 (protocol | GUESTMSG_FLAG_COOKIE), si, di,
111 0,
112 VMW_HYPERVISOR_MAGIC,
113 eax, ebx, ecx, edx, si, di);
114
115 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0)
116 return -EINVAL;
117
118 channel->channel_id = HIGH_WORD(edx);
119 channel->cookie_high = si;
120 channel->cookie_low = di;
121
122 return 0;
123 }
124
125
126
127 /**
128 * vmw_close_channel
129 *
130 * @channel: RPC channel
131 *
132 * Returns: 0 on success
133 */
vmw_close_channel(struct rpc_channel * channel)134 static int vmw_close_channel(struct rpc_channel *channel)
135 {
136 unsigned long eax, ebx, ecx, edx, si, di;
137
138 /* Set up additional parameters */
139 si = channel->cookie_high;
140 di = channel->cookie_low;
141
142 VMW_PORT(VMW_PORT_CMD_CLOSE_CHANNEL,
143 0, si, di,
144 channel->channel_id << 16,
145 VMW_HYPERVISOR_MAGIC,
146 eax, ebx, ecx, edx, si, di);
147
148 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0)
149 return -EINVAL;
150
151 return 0;
152 }
153
154 /**
155 * vmw_port_hb_out - Send the message payload either through the
156 * high-bandwidth port if available, or through the backdoor otherwise.
157 * @channel: The rpc channel.
158 * @msg: NULL-terminated message.
159 * @hb: Whether the high-bandwidth port is available.
160 *
161 * Return: The port status.
162 */
vmw_port_hb_out(struct rpc_channel * channel,const char * msg,bool hb)163 static unsigned long vmw_port_hb_out(struct rpc_channel *channel,
164 const char *msg, bool hb)
165 {
166 unsigned long si, di, eax, ebx, ecx, edx;
167 unsigned long msg_len = strlen(msg);
168
169 /* HB port can't access encrypted memory. */
170 if (hb && !cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
171 unsigned long bp = channel->cookie_high;
172 u32 channel_id = (channel->channel_id << 16);
173
174 si = (uintptr_t) msg;
175 di = channel->cookie_low;
176
177 VMW_PORT_HB_OUT(
178 (MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG,
179 msg_len, si, di,
180 VMWARE_HYPERVISOR_HB | channel_id |
181 VMWARE_HYPERVISOR_OUT,
182 VMW_HYPERVISOR_MAGIC, bp,
183 eax, ebx, ecx, edx, si, di);
184
185 return ebx;
186 }
187
188 /* HB port not available. Send the message 4 bytes at a time. */
189 ecx = MESSAGE_STATUS_SUCCESS << 16;
190 while (msg_len && (HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS)) {
191 unsigned int bytes = min_t(size_t, msg_len, 4);
192 unsigned long word = 0;
193
194 memcpy(&word, msg, bytes);
195 msg_len -= bytes;
196 msg += bytes;
197 si = channel->cookie_high;
198 di = channel->cookie_low;
199
200 VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_SENDPAYLOAD << 16),
201 word, si, di,
202 channel->channel_id << 16,
203 VMW_HYPERVISOR_MAGIC,
204 eax, ebx, ecx, edx, si, di);
205 }
206
207 return ecx;
208 }
209
210 /**
211 * vmw_port_hb_in - Receive the message payload either through the
212 * high-bandwidth port if available, or through the backdoor otherwise.
213 * @channel: The rpc channel.
214 * @reply: Pointer to buffer holding reply.
215 * @reply_len: Length of the reply.
216 * @hb: Whether the high-bandwidth port is available.
217 *
218 * Return: The port status.
219 */
vmw_port_hb_in(struct rpc_channel * channel,char * reply,unsigned long reply_len,bool hb)220 static unsigned long vmw_port_hb_in(struct rpc_channel *channel, char *reply,
221 unsigned long reply_len, bool hb)
222 {
223 unsigned long si, di, eax, ebx, ecx, edx;
224
225 /* HB port can't access encrypted memory */
226 if (hb && !cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
227 unsigned long bp = channel->cookie_low;
228 u32 channel_id = (channel->channel_id << 16);
229
230 si = channel->cookie_high;
231 di = (uintptr_t) reply;
232
233 VMW_PORT_HB_IN(
234 (MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG,
235 reply_len, si, di,
236 VMWARE_HYPERVISOR_HB | channel_id,
237 VMW_HYPERVISOR_MAGIC, bp,
238 eax, ebx, ecx, edx, si, di);
239
240 return ebx;
241 }
242
243 /* HB port not available. Retrieve the message 4 bytes at a time. */
244 ecx = MESSAGE_STATUS_SUCCESS << 16;
245 while (reply_len) {
246 unsigned int bytes = min_t(unsigned long, reply_len, 4);
247
248 si = channel->cookie_high;
249 di = channel->cookie_low;
250
251 VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_RECVPAYLOAD << 16),
252 MESSAGE_STATUS_SUCCESS, si, di,
253 channel->channel_id << 16,
254 VMW_HYPERVISOR_MAGIC,
255 eax, ebx, ecx, edx, si, di);
256
257 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0)
258 break;
259
260 memcpy(reply, &ebx, bytes);
261 reply_len -= bytes;
262 reply += bytes;
263 }
264
265 return ecx;
266 }
267
268
269 /**
270 * vmw_send_msg: Sends a message to the host
271 *
272 * @channel: RPC channel
273 * @msg: NULL terminated string
274 *
275 * Returns: 0 on success
276 */
vmw_send_msg(struct rpc_channel * channel,const char * msg)277 static int vmw_send_msg(struct rpc_channel *channel, const char *msg)
278 {
279 unsigned long eax, ebx, ecx, edx, si, di;
280 size_t msg_len = strlen(msg);
281 int retries = 0;
282
283 while (retries < RETRIES) {
284 retries++;
285
286 /* Set up additional parameters */
287 si = channel->cookie_high;
288 di = channel->cookie_low;
289
290 VMW_PORT(VMW_PORT_CMD_SENDSIZE,
291 msg_len, si, di,
292 channel->channel_id << 16,
293 VMW_HYPERVISOR_MAGIC,
294 eax, ebx, ecx, edx, si, di);
295
296 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) {
297 /* Expected success. Give up. */
298 return -EINVAL;
299 }
300
301 /* Send msg */
302 ebx = vmw_port_hb_out(channel, msg,
303 !!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB));
304
305 if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) != 0) {
306 return 0;
307 } else if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) {
308 /* A checkpoint occurred. Retry. */
309 continue;
310 } else {
311 break;
312 }
313 }
314
315 return -EINVAL;
316 }
317 STACK_FRAME_NON_STANDARD(vmw_send_msg);
318
319
320 /**
321 * vmw_recv_msg: Receives a message from the host
322 *
323 * Note: It is the caller's responsibility to call kfree() on msg.
324 *
325 * @channel: channel opened by vmw_open_channel
326 * @msg: [OUT] message received from the host
327 * @msg_len: message length
328 */
vmw_recv_msg(struct rpc_channel * channel,void ** msg,size_t * msg_len)329 static int vmw_recv_msg(struct rpc_channel *channel, void **msg,
330 size_t *msg_len)
331 {
332 unsigned long eax, ebx, ecx, edx, si, di;
333 char *reply;
334 size_t reply_len;
335 int retries = 0;
336
337
338 *msg_len = 0;
339 *msg = NULL;
340
341 while (retries < RETRIES) {
342 retries++;
343
344 /* Set up additional parameters */
345 si = channel->cookie_high;
346 di = channel->cookie_low;
347
348 VMW_PORT(VMW_PORT_CMD_RECVSIZE,
349 0, si, di,
350 channel->channel_id << 16,
351 VMW_HYPERVISOR_MAGIC,
352 eax, ebx, ecx, edx, si, di);
353
354 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) {
355 DRM_ERROR("Failed to get reply size for host message.\n");
356 return -EINVAL;
357 }
358
359 /* No reply available. This is okay. */
360 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_DORECV) == 0)
361 return 0;
362
363 reply_len = ebx;
364 reply = kzalloc(reply_len + 1, GFP_KERNEL);
365 if (!reply) {
366 DRM_ERROR("Cannot allocate memory for host message reply.\n");
367 return -ENOMEM;
368 }
369
370
371 /* Receive buffer */
372 ebx = vmw_port_hb_in(channel, reply, reply_len,
373 !!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB));
374 if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) == 0) {
375 kfree(reply);
376 reply = NULL;
377 if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) {
378 /* A checkpoint occurred. Retry. */
379 continue;
380 }
381
382 return -EINVAL;
383 }
384
385 reply[reply_len] = '\0';
386
387
388 /* Ack buffer */
389 si = channel->cookie_high;
390 di = channel->cookie_low;
391
392 VMW_PORT(VMW_PORT_CMD_RECVSTATUS,
393 MESSAGE_STATUS_SUCCESS, si, di,
394 channel->channel_id << 16,
395 VMW_HYPERVISOR_MAGIC,
396 eax, ebx, ecx, edx, si, di);
397
398 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) {
399 kfree(reply);
400 reply = NULL;
401 if ((HIGH_WORD(ecx) & MESSAGE_STATUS_CPT) != 0) {
402 /* A checkpoint occurred. Retry. */
403 continue;
404 }
405
406 return -EINVAL;
407 }
408
409 break;
410 }
411
412 if (!reply)
413 return -EINVAL;
414
415 *msg_len = reply_len;
416 *msg = reply;
417
418 return 0;
419 }
420 STACK_FRAME_NON_STANDARD(vmw_recv_msg);
421
422
423 /**
424 * vmw_host_get_guestinfo: Gets a GuestInfo parameter
425 *
426 * Gets the value of a GuestInfo.* parameter. The value returned will be in
427 * a string, and it is up to the caller to post-process.
428 *
429 * @guest_info_param: Parameter to get, e.g. GuestInfo.svga.gl3
430 * @buffer: if NULL, *reply_len will contain reply size.
431 * @length: size of the reply_buf. Set to size of reply upon return
432 *
433 * Returns: 0 on success
434 */
vmw_host_get_guestinfo(const char * guest_info_param,char * buffer,size_t * length)435 int vmw_host_get_guestinfo(const char *guest_info_param,
436 char *buffer, size_t *length)
437 {
438 struct rpc_channel channel;
439 char *msg, *reply = NULL;
440 size_t reply_len = 0;
441
442 if (!vmw_msg_enabled)
443 return -ENODEV;
444
445 if (!guest_info_param || !length)
446 return -EINVAL;
447
448 msg = kasprintf(GFP_KERNEL, "info-get %s", guest_info_param);
449 if (!msg) {
450 DRM_ERROR("Cannot allocate memory to get guest info \"%s\".",
451 guest_info_param);
452 return -ENOMEM;
453 }
454
455 if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM))
456 goto out_open;
457
458 if (vmw_send_msg(&channel, msg) ||
459 vmw_recv_msg(&channel, (void *) &reply, &reply_len))
460 goto out_msg;
461
462 vmw_close_channel(&channel);
463 if (buffer && reply && reply_len > 0) {
464 /* Remove reply code, which are the first 2 characters of
465 * the reply
466 */
467 reply_len = max(reply_len - 2, (size_t) 0);
468 reply_len = min(reply_len, *length);
469
470 if (reply_len > 0)
471 memcpy(buffer, reply + 2, reply_len);
472 }
473
474 *length = reply_len;
475
476 kfree(reply);
477 kfree(msg);
478
479 return 0;
480
481 out_msg:
482 vmw_close_channel(&channel);
483 kfree(reply);
484 out_open:
485 *length = 0;
486 kfree(msg);
487 DRM_ERROR("Failed to get guest info \"%s\".", guest_info_param);
488
489 return -EINVAL;
490 }
491
492
493 /**
494 * vmw_host_printf: Sends a log message to the host
495 *
496 * @fmt: Regular printf format string and arguments
497 *
498 * Returns: 0 on success
499 */
500 __printf(1, 2)
vmw_host_printf(const char * fmt,...)501 int vmw_host_printf(const char *fmt, ...)
502 {
503 va_list ap;
504 struct rpc_channel channel;
505 char *msg;
506 char *log;
507 int ret = 0;
508
509 if (!vmw_msg_enabled)
510 return -ENODEV;
511
512 if (!fmt)
513 return ret;
514
515 va_start(ap, fmt);
516 log = kvasprintf(GFP_KERNEL, fmt, ap);
517 va_end(ap);
518 if (!log) {
519 DRM_ERROR("Cannot allocate memory for the log message.\n");
520 return -ENOMEM;
521 }
522
523 msg = kasprintf(GFP_KERNEL, "log %s", log);
524 if (!msg) {
525 DRM_ERROR("Cannot allocate memory for host log message.\n");
526 kfree(log);
527 return -ENOMEM;
528 }
529
530 if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM))
531 goto out_open;
532
533 if (vmw_send_msg(&channel, msg))
534 goto out_msg;
535
536 vmw_close_channel(&channel);
537 kfree(msg);
538 kfree(log);
539
540 return 0;
541
542 out_msg:
543 vmw_close_channel(&channel);
544 out_open:
545 kfree(msg);
546 kfree(log);
547 DRM_ERROR("Failed to send host log message.\n");
548
549 return -EINVAL;
550 }
551
552
553 /**
554 * vmw_msg_ioctl: Sends and receveives a message to/from host from/to user-space
555 *
556 * Sends a message from user-space to host.
557 * Can also receive a result from host and return that to user-space.
558 *
559 * @dev: Identifies the drm device.
560 * @data: Pointer to the ioctl argument.
561 * @file_priv: Identifies the caller.
562 * Return: Zero on success, negative error code on error.
563 */
564
vmw_msg_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)565 int vmw_msg_ioctl(struct drm_device *dev, void *data,
566 struct drm_file *file_priv)
567 {
568 struct drm_vmw_msg_arg *arg =
569 (struct drm_vmw_msg_arg *)data;
570 struct rpc_channel channel;
571 char *msg;
572 int length;
573
574 msg = kmalloc(MAX_USER_MSG_LENGTH, GFP_KERNEL);
575 if (!msg) {
576 DRM_ERROR("Cannot allocate memory for log message.\n");
577 return -ENOMEM;
578 }
579
580 length = strncpy_from_user(msg, (void __user *)((unsigned long)arg->send),
581 MAX_USER_MSG_LENGTH);
582 if (length < 0 || length >= MAX_USER_MSG_LENGTH) {
583 DRM_ERROR("Userspace message access failure.\n");
584 kfree(msg);
585 return -EINVAL;
586 }
587
588
589 if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) {
590 DRM_ERROR("Failed to open channel.\n");
591 goto out_open;
592 }
593
594 if (vmw_send_msg(&channel, msg)) {
595 DRM_ERROR("Failed to send message to host.\n");
596 goto out_msg;
597 }
598
599 if (!arg->send_only) {
600 char *reply = NULL;
601 size_t reply_len = 0;
602
603 if (vmw_recv_msg(&channel, (void *) &reply, &reply_len)) {
604 DRM_ERROR("Failed to receive message from host.\n");
605 goto out_msg;
606 }
607 if (reply && reply_len > 0) {
608 if (copy_to_user((void __user *)((unsigned long)arg->receive),
609 reply, reply_len)) {
610 DRM_ERROR("Failed to copy message to userspace.\n");
611 kfree(reply);
612 goto out_msg;
613 }
614 arg->receive_len = (__u32)reply_len;
615 }
616 kfree(reply);
617 }
618
619 vmw_close_channel(&channel);
620 kfree(msg);
621
622 return 0;
623
624 out_msg:
625 vmw_close_channel(&channel);
626 out_open:
627 kfree(msg);
628
629 return -EINVAL;
630 }
631
632 /**
633 * reset_ppn_array: Resets a PPN64 array to INVALID_PPN64 content
634 *
635 * @arr: Array to reset.
636 * @size: Array length.
637 */
reset_ppn_array(PPN64 * arr,size_t size)638 static inline void reset_ppn_array(PPN64 *arr, size_t size)
639 {
640 size_t i;
641
642 BUG_ON(!arr || size == 0);
643
644 for (i = 0; i < size; ++i)
645 arr[i] = INVALID_PPN64;
646 }
647
648 /**
649 * hypervisor_ppn_reset_all: Removes all mksGuestStat instance descriptors from
650 * the hypervisor. All related pages should be subsequently unpinned or freed.
651 *
652 */
hypervisor_ppn_reset_all(void)653 static inline void hypervisor_ppn_reset_all(void)
654 {
655 unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
656
657 VMW_PORT(VMW_PORT_CMD_MKSGS_RESET,
658 0, si, di,
659 0,
660 VMW_HYPERVISOR_MAGIC,
661 eax, ebx, ecx, edx, si, di);
662 }
663
664 /**
665 * hypervisor_ppn_add: Adds a single mksGuestStat instance descriptor to the
666 * hypervisor. Any related userspace pages should be pinned in advance.
667 *
668 * @pfn: Physical page number of the instance descriptor
669 */
hypervisor_ppn_add(PPN64 pfn)670 static inline void hypervisor_ppn_add(PPN64 pfn)
671 {
672 unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
673
674 VMW_PORT(VMW_PORT_CMD_MKSGS_ADD_PPN,
675 (unsigned long)pfn, si, di,
676 0,
677 VMW_HYPERVISOR_MAGIC,
678 eax, ebx, ecx, edx, si, di);
679 }
680
681 /**
682 * hypervisor_ppn_remove: Removes a single mksGuestStat instance descriptor from
683 * the hypervisor. All related pages should be subsequently unpinned or freed.
684 *
685 * @pfn: Physical page number of the instance descriptor
686 */
hypervisor_ppn_remove(PPN64 pfn)687 static inline void hypervisor_ppn_remove(PPN64 pfn)
688 {
689 unsigned long eax, ebx, ecx, edx, si = 0, di = 0;
690
691 VMW_PORT(VMW_PORT_CMD_MKSGS_REMOVE_PPN,
692 (unsigned long)pfn, si, di,
693 0,
694 VMW_HYPERVISOR_MAGIC,
695 eax, ebx, ecx, edx, si, di);
696 }
697
698 #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS)
699
700 /* Order of the total number of pages used for kernel-internal mksGuestStat; at least 2 */
701 #define MKSSTAT_KERNEL_PAGES_ORDER 2
702 /* Header to the text description of mksGuestStat instance descriptor */
703 #define MKSSTAT_KERNEL_DESCRIPTION "vmwgfx"
704
705 /**
706 * mksstat_init_record_time: Initializes an MKSGuestStatCounterTime-based record
707 * for the respective mksGuestStat index.
708 *
709 * @stat_idx: Index of the MKSGuestStatCounterTime-based mksGuestStat record.
710 * @pstat: Pointer to array of MKSGuestStatCounterTime.
711 * @pinfo: Pointer to array of MKSGuestStatInfoEntry.
712 * @pstrs: Pointer to current end of the name/description sequence.
713 * Return: Pointer to the new end of the names/description sequence.
714 */
715
mksstat_init_record_time(mksstat_kern_stats_t stat_idx,MKSGuestStatCounterTime * pstat,MKSGuestStatInfoEntry * pinfo,char * pstrs)716 static inline char *mksstat_init_record_time(mksstat_kern_stats_t stat_idx,
717 MKSGuestStatCounterTime *pstat, MKSGuestStatInfoEntry *pinfo, char *pstrs)
718 {
719 char *const pstrd = pstrs + strlen(mksstat_kern_name_desc[stat_idx][0]) + 1;
720 strcpy(pstrs, mksstat_kern_name_desc[stat_idx][0]);
721 strcpy(pstrd, mksstat_kern_name_desc[stat_idx][1]);
722
723 pinfo[stat_idx].name.s = pstrs;
724 pinfo[stat_idx].description.s = pstrd;
725 pinfo[stat_idx].flags = MKS_GUEST_STAT_FLAG_TIME;
726 pinfo[stat_idx].stat.counterTime = &pstat[stat_idx];
727
728 return pstrd + strlen(mksstat_kern_name_desc[stat_idx][1]) + 1;
729 }
730
731 /**
732 * mksstat_init_kern_id: Creates a single mksGuestStat instance descriptor and
733 * kernel-internal counters. Adds PFN mapping to the hypervisor.
734 *
735 * Create a single mksGuestStat instance descriptor and corresponding structures
736 * for all kernel-internal counters. The corresponding PFNs are mapped with the
737 * hypervisor.
738 *
739 * @ppage: Output pointer to page containing the instance descriptor.
740 * Return: Zero on success, negative error code on error.
741 */
742
mksstat_init_kern_id(struct page ** ppage)743 static int mksstat_init_kern_id(struct page **ppage)
744 {
745 MKSGuestStatInstanceDescriptor *pdesc;
746 MKSGuestStatCounterTime *pstat;
747 MKSGuestStatInfoEntry *pinfo;
748 char *pstrs, *pstrs_acc;
749
750 /* Allocate pages for the kernel-internal instance descriptor */
751 struct page *page = alloc_pages(GFP_KERNEL | __GFP_ZERO, MKSSTAT_KERNEL_PAGES_ORDER);
752
753 if (!page)
754 return -ENOMEM;
755
756 pdesc = page_address(page);
757 pstat = vmw_mksstat_get_kern_pstat(pdesc);
758 pinfo = vmw_mksstat_get_kern_pinfo(pdesc);
759 pstrs = vmw_mksstat_get_kern_pstrs(pdesc);
760
761 /* Set up all kernel-internal counters and corresponding structures */
762 pstrs_acc = pstrs;
763 pstrs_acc = mksstat_init_record_time(MKSSTAT_KERN_EXECBUF, pstat, pinfo, pstrs_acc);
764 pstrs_acc = mksstat_init_record_time(MKSSTAT_KERN_COTABLE_RESIZE, pstat, pinfo, pstrs_acc);
765
766 /* Add new counters above, in their order of appearance in mksstat_kern_stats_t */
767
768 BUG_ON(pstrs_acc - pstrs > PAGE_SIZE);
769
770 /* Set up the kernel-internal instance descriptor */
771 pdesc->reservedMBZ = 0;
772 pdesc->statStartVA = (uintptr_t)pstat;
773 pdesc->strsStartVA = (uintptr_t)pstrs;
774 pdesc->statLength = sizeof(*pstat) * MKSSTAT_KERN_COUNT;
775 pdesc->infoLength = sizeof(*pinfo) * MKSSTAT_KERN_COUNT;
776 pdesc->strsLength = pstrs_acc - pstrs;
777 snprintf(pdesc->description, ARRAY_SIZE(pdesc->description) - 1, "%s pid=%d",
778 MKSSTAT_KERNEL_DESCRIPTION, current->pid);
779
780 pdesc->statPPNs[0] = page_to_pfn(virt_to_page(pstat));
781 reset_ppn_array(pdesc->statPPNs + 1, ARRAY_SIZE(pdesc->statPPNs) - 1);
782
783 pdesc->infoPPNs[0] = page_to_pfn(virt_to_page(pinfo));
784 reset_ppn_array(pdesc->infoPPNs + 1, ARRAY_SIZE(pdesc->infoPPNs) - 1);
785
786 pdesc->strsPPNs[0] = page_to_pfn(virt_to_page(pstrs));
787 reset_ppn_array(pdesc->strsPPNs + 1, ARRAY_SIZE(pdesc->strsPPNs) - 1);
788
789 *ppage = page;
790
791 hypervisor_ppn_add((PPN64)page_to_pfn(page));
792
793 return 0;
794 }
795
796 /**
797 * vmw_mksstat_get_kern_slot: Acquires a slot for a single kernel-internal
798 * mksGuestStat instance descriptor.
799 *
800 * Find a slot for a single kernel-internal mksGuestStat instance descriptor.
801 * In case no such was already present, allocate a new one and set up a kernel-
802 * internal mksGuestStat instance descriptor for the former.
803 *
804 * @pid: Process for which a slot is sought.
805 * @dev_priv: Identifies the drm private device.
806 * Return: Non-negative slot on success, negative error code on error.
807 */
808
vmw_mksstat_get_kern_slot(pid_t pid,struct vmw_private * dev_priv)809 int vmw_mksstat_get_kern_slot(pid_t pid, struct vmw_private *dev_priv)
810 {
811 const size_t base = (u32)hash_32(pid, MKSSTAT_CAPACITY_LOG2);
812 size_t i;
813
814 for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) {
815 const size_t slot = (i + base) % ARRAY_SIZE(dev_priv->mksstat_kern_pids);
816
817 /* Check if an instance descriptor for this pid is already present */
818 if (pid == (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[slot]))
819 return (int)slot;
820
821 /* Set up a new instance descriptor for this pid */
822 if (!atomic_cmpxchg(&dev_priv->mksstat_kern_pids[slot], 0, MKSSTAT_PID_RESERVED)) {
823 const int ret = mksstat_init_kern_id(&dev_priv->mksstat_kern_pages[slot]);
824
825 if (!ret) {
826 /* Reset top-timer tracking for this slot */
827 dev_priv->mksstat_kern_top_timer[slot] = MKSSTAT_KERN_COUNT;
828
829 atomic_set(&dev_priv->mksstat_kern_pids[slot], pid);
830 return (int)slot;
831 }
832
833 atomic_set(&dev_priv->mksstat_kern_pids[slot], 0);
834 return ret;
835 }
836 }
837
838 return -ENOSPC;
839 }
840
841 #endif
842
843 /**
844 * vmw_mksstat_cleanup_descriptor: Frees a single userspace-originating
845 * mksGuestStat instance-descriptor page and unpins all related user pages.
846 *
847 * Unpin all user pages realated to this instance descriptor and free
848 * the instance-descriptor page itself.
849 *
850 * @page: Page of the instance descriptor.
851 */
852
vmw_mksstat_cleanup_descriptor(struct page * page)853 static void vmw_mksstat_cleanup_descriptor(struct page *page)
854 {
855 MKSGuestStatInstanceDescriptor *pdesc = page_address(page);
856 size_t i;
857
858 for (i = 0; i < ARRAY_SIZE(pdesc->statPPNs) && pdesc->statPPNs[i] != INVALID_PPN64; ++i)
859 unpin_user_page(pfn_to_page(pdesc->statPPNs[i]));
860
861 for (i = 0; i < ARRAY_SIZE(pdesc->infoPPNs) && pdesc->infoPPNs[i] != INVALID_PPN64; ++i)
862 unpin_user_page(pfn_to_page(pdesc->infoPPNs[i]));
863
864 for (i = 0; i < ARRAY_SIZE(pdesc->strsPPNs) && pdesc->strsPPNs[i] != INVALID_PPN64; ++i)
865 unpin_user_page(pfn_to_page(pdesc->strsPPNs[i]));
866
867 __free_page(page);
868 }
869
870 /**
871 * vmw_mksstat_remove_all: Resets all mksGuestStat instance descriptors
872 * from the hypervisor.
873 *
874 * Discard all hypervisor PFN mappings, containing active mksGuestState instance
875 * descriptors, unpin the related userspace pages and free the related kernel pages.
876 *
877 * @dev_priv: Identifies the drm private device.
878 * Return: Zero on success, negative error code on error.
879 */
880
vmw_mksstat_remove_all(struct vmw_private * dev_priv)881 int vmw_mksstat_remove_all(struct vmw_private *dev_priv)
882 {
883 int ret = 0;
884 size_t i;
885
886 /* Discard all PFN mappings with the hypervisor */
887 hypervisor_ppn_reset_all();
888
889 /* Discard all userspace-originating instance descriptors and unpin all related pages */
890 for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++i) {
891 const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_user_pids[i]);
892
893 if (!pid0)
894 continue;
895
896 if (pid0 != MKSSTAT_PID_RESERVED) {
897 const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_user_pids[i], pid0, MKSSTAT_PID_RESERVED);
898
899 if (!pid1)
900 continue;
901
902 if (pid1 == pid0) {
903 struct page *const page = dev_priv->mksstat_user_pages[i];
904
905 BUG_ON(!page);
906
907 dev_priv->mksstat_user_pages[i] = NULL;
908 atomic_set(&dev_priv->mksstat_user_pids[i], 0);
909
910 vmw_mksstat_cleanup_descriptor(page);
911 continue;
912 }
913 }
914
915 ret = -EAGAIN;
916 }
917
918 #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS)
919 /* Discard all kernel-internal instance descriptors and free all related pages */
920 for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) {
921 const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[i]);
922
923 if (!pid0)
924 continue;
925
926 if (pid0 != MKSSTAT_PID_RESERVED) {
927 const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_kern_pids[i], pid0, MKSSTAT_PID_RESERVED);
928
929 if (!pid1)
930 continue;
931
932 if (pid1 == pid0) {
933 struct page *const page = dev_priv->mksstat_kern_pages[i];
934
935 BUG_ON(!page);
936
937 dev_priv->mksstat_kern_pages[i] = NULL;
938 atomic_set(&dev_priv->mksstat_kern_pids[i], 0);
939
940 __free_pages(page, MKSSTAT_KERNEL_PAGES_ORDER);
941 continue;
942 }
943 }
944
945 ret = -EAGAIN;
946 }
947
948 #endif
949 return ret;
950 }
951
952 /**
953 * vmw_mksstat_reset_ioctl: Resets all mksGuestStat instance descriptors
954 * from the hypervisor.
955 *
956 * Discard all hypervisor PFN mappings, containing active mksGuestStat instance
957 * descriptors, unpin the related userspace pages and free the related kernel pages.
958 *
959 * @dev: Identifies the drm device.
960 * @data: Pointer to the ioctl argument.
961 * @file_priv: Identifies the caller; unused.
962 * Return: Zero on success, negative error code on error.
963 */
964
vmw_mksstat_reset_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)965 int vmw_mksstat_reset_ioctl(struct drm_device *dev, void *data,
966 struct drm_file *file_priv)
967 {
968 struct vmw_private *const dev_priv = vmw_priv(dev);
969 return vmw_mksstat_remove_all(dev_priv);
970 }
971
972 /**
973 * vmw_mksstat_add_ioctl: Creates a single userspace-originating mksGuestStat
974 * instance descriptor and registers that with the hypervisor.
975 *
976 * Create a hypervisor PFN mapping, containing a single mksGuestStat instance
977 * descriptor and pin the corresponding userspace pages.
978 *
979 * @dev: Identifies the drm device.
980 * @data: Pointer to the ioctl argument.
981 * @file_priv: Identifies the caller; unused.
982 * Return: Zero on success, negative error code on error.
983 */
984
vmw_mksstat_add_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)985 int vmw_mksstat_add_ioctl(struct drm_device *dev, void *data,
986 struct drm_file *file_priv)
987 {
988 struct drm_vmw_mksstat_add_arg *arg =
989 (struct drm_vmw_mksstat_add_arg *) data;
990
991 struct vmw_private *const dev_priv = vmw_priv(dev);
992
993 const size_t num_pages_stat = PFN_UP(arg->stat_len);
994 const size_t num_pages_info = PFN_UP(arg->info_len);
995 const size_t num_pages_strs = PFN_UP(arg->strs_len);
996 long desc_len;
997 long nr_pinned_stat;
998 long nr_pinned_info;
999 long nr_pinned_strs;
1000 MKSGuestStatInstanceDescriptor *pdesc;
1001 struct page *page = NULL;
1002 struct page **pages_stat = NULL;
1003 struct page **pages_info = NULL;
1004 struct page **pages_strs = NULL;
1005 size_t i, slot;
1006 int ret_err = -ENOMEM;
1007
1008 arg->id = -1;
1009
1010 if (!arg->stat || !arg->info || !arg->strs)
1011 return -EINVAL;
1012
1013 if (!arg->stat_len || !arg->info_len || !arg->strs_len)
1014 return -EINVAL;
1015
1016 if (!arg->description)
1017 return -EINVAL;
1018
1019 if (num_pages_stat > ARRAY_SIZE(pdesc->statPPNs) ||
1020 num_pages_info > ARRAY_SIZE(pdesc->infoPPNs) ||
1021 num_pages_strs > ARRAY_SIZE(pdesc->strsPPNs))
1022 return -EINVAL;
1023
1024 /* Find an available slot in the mksGuestStats user array and reserve it */
1025 for (slot = 0; slot < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++slot)
1026 if (!atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], 0, MKSSTAT_PID_RESERVED))
1027 break;
1028
1029 if (slot == ARRAY_SIZE(dev_priv->mksstat_user_pids))
1030 return -ENOSPC;
1031
1032 BUG_ON(dev_priv->mksstat_user_pages[slot]);
1033
1034 /* Allocate statically-sized temp arrays for pages -- too big to keep in frame */
1035 pages_stat = (struct page **)kmalloc_array(
1036 ARRAY_SIZE(pdesc->statPPNs) +
1037 ARRAY_SIZE(pdesc->infoPPNs) +
1038 ARRAY_SIZE(pdesc->strsPPNs), sizeof(*pages_stat), GFP_KERNEL);
1039
1040 if (!pages_stat)
1041 goto err_nomem;
1042
1043 pages_info = pages_stat + ARRAY_SIZE(pdesc->statPPNs);
1044 pages_strs = pages_info + ARRAY_SIZE(pdesc->infoPPNs);
1045
1046 /* Allocate a page for the instance descriptor */
1047 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1048
1049 if (!page)
1050 goto err_nomem;
1051
1052 /* Set up the instance descriptor */
1053 pdesc = page_address(page);
1054
1055 pdesc->reservedMBZ = 0;
1056 pdesc->statStartVA = arg->stat;
1057 pdesc->strsStartVA = arg->strs;
1058 pdesc->statLength = arg->stat_len;
1059 pdesc->infoLength = arg->info_len;
1060 pdesc->strsLength = arg->strs_len;
1061 desc_len = strncpy_from_user(pdesc->description, u64_to_user_ptr(arg->description),
1062 ARRAY_SIZE(pdesc->description) - 1);
1063
1064 if (desc_len < 0) {
1065 ret_err = -EFAULT;
1066 goto err_nomem;
1067 }
1068
1069 reset_ppn_array(pdesc->statPPNs, ARRAY_SIZE(pdesc->statPPNs));
1070 reset_ppn_array(pdesc->infoPPNs, ARRAY_SIZE(pdesc->infoPPNs));
1071 reset_ppn_array(pdesc->strsPPNs, ARRAY_SIZE(pdesc->strsPPNs));
1072
1073 /* Pin mksGuestStat user pages and store those in the instance descriptor */
1074 nr_pinned_stat = pin_user_pages_fast(arg->stat, num_pages_stat, FOLL_LONGTERM, pages_stat);
1075 if (num_pages_stat != nr_pinned_stat)
1076 goto err_pin_stat;
1077
1078 for (i = 0; i < num_pages_stat; ++i)
1079 pdesc->statPPNs[i] = page_to_pfn(pages_stat[i]);
1080
1081 nr_pinned_info = pin_user_pages_fast(arg->info, num_pages_info, FOLL_LONGTERM, pages_info);
1082 if (num_pages_info != nr_pinned_info)
1083 goto err_pin_info;
1084
1085 for (i = 0; i < num_pages_info; ++i)
1086 pdesc->infoPPNs[i] = page_to_pfn(pages_info[i]);
1087
1088 nr_pinned_strs = pin_user_pages_fast(arg->strs, num_pages_strs, FOLL_LONGTERM, pages_strs);
1089 if (num_pages_strs != nr_pinned_strs)
1090 goto err_pin_strs;
1091
1092 for (i = 0; i < num_pages_strs; ++i)
1093 pdesc->strsPPNs[i] = page_to_pfn(pages_strs[i]);
1094
1095 /* Send the descriptor to the host via a hypervisor call. The mksGuestStat
1096 pages will remain in use until the user requests a matching remove stats
1097 or a stats reset occurs. */
1098 hypervisor_ppn_add((PPN64)page_to_pfn(page));
1099
1100 dev_priv->mksstat_user_pages[slot] = page;
1101 atomic_set(&dev_priv->mksstat_user_pids[slot], task_pgrp_vnr(current));
1102
1103 arg->id = slot;
1104
1105 DRM_DEV_INFO(dev->dev, "pid=%d arg.description='%.*s' id=%zu\n", current->pid, (int)desc_len, pdesc->description, slot);
1106
1107 kfree(pages_stat);
1108 return 0;
1109
1110 err_pin_strs:
1111 if (nr_pinned_strs > 0)
1112 unpin_user_pages(pages_strs, nr_pinned_strs);
1113
1114 err_pin_info:
1115 if (nr_pinned_info > 0)
1116 unpin_user_pages(pages_info, nr_pinned_info);
1117
1118 err_pin_stat:
1119 if (nr_pinned_stat > 0)
1120 unpin_user_pages(pages_stat, nr_pinned_stat);
1121
1122 err_nomem:
1123 atomic_set(&dev_priv->mksstat_user_pids[slot], 0);
1124 if (page)
1125 __free_page(page);
1126 kfree(pages_stat);
1127
1128 return ret_err;
1129 }
1130
1131 /**
1132 * vmw_mksstat_remove_ioctl: Removes a single userspace-originating mksGuestStat
1133 * instance descriptor from the hypervisor.
1134 *
1135 * Discard a hypervisor PFN mapping, containing a single mksGuestStat instance
1136 * descriptor and unpin the corresponding userspace pages.
1137 *
1138 * @dev: Identifies the drm device.
1139 * @data: Pointer to the ioctl argument.
1140 * @file_priv: Identifies the caller; unused.
1141 * Return: Zero on success, negative error code on error.
1142 */
1143
vmw_mksstat_remove_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1144 int vmw_mksstat_remove_ioctl(struct drm_device *dev, void *data,
1145 struct drm_file *file_priv)
1146 {
1147 struct drm_vmw_mksstat_remove_arg *arg =
1148 (struct drm_vmw_mksstat_remove_arg *) data;
1149
1150 struct vmw_private *const dev_priv = vmw_priv(dev);
1151
1152 const size_t slot = arg->id;
1153 pid_t pgid, pid;
1154
1155 if (slot >= ARRAY_SIZE(dev_priv->mksstat_user_pids))
1156 return -EINVAL;
1157
1158 DRM_DEV_INFO(dev->dev, "pid=%d arg.id=%zu\n", current->pid, slot);
1159
1160 pgid = task_pgrp_vnr(current);
1161 pid = atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], pgid, MKSSTAT_PID_RESERVED);
1162
1163 if (!pid)
1164 return 0;
1165
1166 if (pid == pgid) {
1167 struct page *const page = dev_priv->mksstat_user_pages[slot];
1168
1169 BUG_ON(!page);
1170
1171 dev_priv->mksstat_user_pages[slot] = NULL;
1172 atomic_set(&dev_priv->mksstat_user_pids[slot], 0);
1173
1174 hypervisor_ppn_remove((PPN64)page_to_pfn(page));
1175
1176 vmw_mksstat_cleanup_descriptor(page);
1177 return 0;
1178 }
1179
1180 return -EAGAIN;
1181 }
1182
1183 /**
1184 * vmw_disable_backdoor: Disables all backdoor communication
1185 * with the hypervisor.
1186 */
vmw_disable_backdoor(void)1187 void vmw_disable_backdoor(void)
1188 {
1189 vmw_msg_enabled = 0;
1190 }
1191