1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KMSAN hooks for kernel subsystems.
4 *
5 * These functions handle creation of KMSAN metadata for memory allocations.
6 *
7 * Copyright (C) 2018-2022 Google LLC
8 * Author: Alexander Potapenko <glider@google.com>
9 *
10 */
11
12 #include <linux/cacheflush.h>
13 #include <linux/dma-direction.h>
14 #include <linux/gfp.h>
15 #include <linux/kmsan.h>
16 #include <linux/mm.h>
17 #include <linux/mm_types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 #include <linux/uaccess.h>
21 #include <linux/usb.h>
22
23 #include "../internal.h"
24 #include "../slab.h"
25 #include "kmsan.h"
26
27 /*
28 * Instrumented functions shouldn't be called under
29 * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
30 * skipping effects of functions like memset() inside instrumented code.
31 */
32
kmsan_task_create(struct task_struct * task)33 void kmsan_task_create(struct task_struct *task)
34 {
35 kmsan_enter_runtime();
36 kmsan_internal_task_create(task);
37 kmsan_leave_runtime();
38 }
39
kmsan_task_exit(struct task_struct * task)40 void kmsan_task_exit(struct task_struct *task)
41 {
42 struct kmsan_ctx *ctx = &task->kmsan_ctx;
43
44 if (!kmsan_enabled || kmsan_in_runtime())
45 return;
46
47 ctx->allow_reporting = false;
48 }
49
kmsan_slab_alloc(struct kmem_cache * s,void * object,gfp_t flags)50 void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
51 {
52 if (unlikely(object == NULL))
53 return;
54 if (!kmsan_enabled || kmsan_in_runtime())
55 return;
56 /*
57 * There's a ctor or this is an RCU cache - do nothing. The memory
58 * status hasn't changed since last use.
59 */
60 if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
61 return;
62
63 kmsan_enter_runtime();
64 if (flags & __GFP_ZERO)
65 kmsan_internal_unpoison_memory(object, s->object_size,
66 KMSAN_POISON_CHECK);
67 else
68 kmsan_internal_poison_memory(object, s->object_size, flags,
69 KMSAN_POISON_CHECK);
70 kmsan_leave_runtime();
71 }
72
kmsan_slab_free(struct kmem_cache * s,void * object)73 void kmsan_slab_free(struct kmem_cache *s, void *object)
74 {
75 if (!kmsan_enabled || kmsan_in_runtime())
76 return;
77
78 /* RCU slabs could be legally used after free within the RCU period */
79 if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
80 return;
81 /*
82 * If there's a constructor, freed memory must remain in the same state
83 * until the next allocation. We cannot save its state to detect
84 * use-after-free bugs, instead we just keep it unpoisoned.
85 */
86 if (s->ctor)
87 return;
88 kmsan_enter_runtime();
89 kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
90 KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
91 kmsan_leave_runtime();
92 }
93
kmsan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)94 void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
95 {
96 if (unlikely(ptr == NULL))
97 return;
98 if (!kmsan_enabled || kmsan_in_runtime())
99 return;
100 kmsan_enter_runtime();
101 if (flags & __GFP_ZERO)
102 kmsan_internal_unpoison_memory((void *)ptr, size,
103 /*checked*/ true);
104 else
105 kmsan_internal_poison_memory((void *)ptr, size, flags,
106 KMSAN_POISON_CHECK);
107 kmsan_leave_runtime();
108 }
109
kmsan_kfree_large(const void * ptr)110 void kmsan_kfree_large(const void *ptr)
111 {
112 struct page *page;
113
114 if (!kmsan_enabled || kmsan_in_runtime())
115 return;
116 kmsan_enter_runtime();
117 page = virt_to_head_page((void *)ptr);
118 KMSAN_WARN_ON(ptr != page_address(page));
119 kmsan_internal_poison_memory((void *)ptr,
120 page_size(page),
121 GFP_KERNEL,
122 KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
123 kmsan_leave_runtime();
124 }
125
vmalloc_shadow(unsigned long addr)126 static unsigned long vmalloc_shadow(unsigned long addr)
127 {
128 return (unsigned long)kmsan_get_metadata((void *)addr,
129 KMSAN_META_SHADOW);
130 }
131
vmalloc_origin(unsigned long addr)132 static unsigned long vmalloc_origin(unsigned long addr)
133 {
134 return (unsigned long)kmsan_get_metadata((void *)addr,
135 KMSAN_META_ORIGIN);
136 }
137
kmsan_vunmap_range_noflush(unsigned long start,unsigned long end)138 void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
139 {
140 __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
141 __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
142 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
143 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
144 }
145
146 /*
147 * This function creates new shadow/origin pages for the physical pages mapped
148 * into the virtual memory. If those physical pages already had shadow/origin,
149 * those are ignored.
150 */
kmsan_ioremap_page_range(unsigned long start,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int page_shift)151 int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int page_shift)
154 {
155 gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
156 struct page *shadow, *origin;
157 unsigned long off = 0;
158 int nr, err = 0, clean = 0, mapped;
159
160 if (!kmsan_enabled || kmsan_in_runtime())
161 return 0;
162
163 nr = (end - start) / PAGE_SIZE;
164 kmsan_enter_runtime();
165 for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
166 shadow = alloc_pages(gfp_mask, 1);
167 origin = alloc_pages(gfp_mask, 1);
168 if (!shadow || !origin) {
169 err = -ENOMEM;
170 goto ret;
171 }
172 mapped = __vmap_pages_range_noflush(
173 vmalloc_shadow(start + off),
174 vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
175 PAGE_SHIFT);
176 if (mapped) {
177 err = mapped;
178 goto ret;
179 }
180 shadow = NULL;
181 mapped = __vmap_pages_range_noflush(
182 vmalloc_origin(start + off),
183 vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
184 PAGE_SHIFT);
185 if (mapped) {
186 __vunmap_range_noflush(
187 vmalloc_shadow(start + off),
188 vmalloc_shadow(start + off + PAGE_SIZE));
189 err = mapped;
190 goto ret;
191 }
192 origin = NULL;
193 }
194 /* Page mapping loop finished normally, nothing to clean up. */
195 clean = 0;
196
197 ret:
198 if (clean > 0) {
199 /*
200 * Something went wrong. Clean up shadow/origin pages allocated
201 * on the last loop iteration, then delete mappings created
202 * during the previous iterations.
203 */
204 if (shadow)
205 __free_pages(shadow, 1);
206 if (origin)
207 __free_pages(origin, 1);
208 __vunmap_range_noflush(
209 vmalloc_shadow(start),
210 vmalloc_shadow(start + clean * PAGE_SIZE));
211 __vunmap_range_noflush(
212 vmalloc_origin(start),
213 vmalloc_origin(start + clean * PAGE_SIZE));
214 }
215 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
216 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
217 kmsan_leave_runtime();
218 return err;
219 }
220
kmsan_iounmap_page_range(unsigned long start,unsigned long end)221 void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
222 {
223 unsigned long v_shadow, v_origin;
224 struct page *shadow, *origin;
225 int nr;
226
227 if (!kmsan_enabled || kmsan_in_runtime())
228 return;
229
230 nr = (end - start) / PAGE_SIZE;
231 kmsan_enter_runtime();
232 v_shadow = (unsigned long)vmalloc_shadow(start);
233 v_origin = (unsigned long)vmalloc_origin(start);
234 for (int i = 0; i < nr;
235 i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
236 shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
237 origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
238 __vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
239 __vunmap_range_noflush(v_origin, vmalloc_origin(end));
240 if (shadow)
241 __free_pages(shadow, 1);
242 if (origin)
243 __free_pages(origin, 1);
244 }
245 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
246 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
247 kmsan_leave_runtime();
248 }
249
kmsan_copy_to_user(void __user * to,const void * from,size_t to_copy,size_t left)250 void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
251 size_t left)
252 {
253 unsigned long ua_flags;
254
255 if (!kmsan_enabled || kmsan_in_runtime())
256 return;
257 /*
258 * At this point we've copied the memory already. It's hard to check it
259 * before copying, as the size of actually copied buffer is unknown.
260 */
261
262 /* copy_to_user() may copy zero bytes. No need to check. */
263 if (!to_copy)
264 return;
265 /* Or maybe copy_to_user() failed to copy anything. */
266 if (to_copy <= left)
267 return;
268
269 ua_flags = user_access_save();
270 if ((u64)to < TASK_SIZE) {
271 /* This is a user memory access, check it. */
272 kmsan_internal_check_memory((void *)from, to_copy - left, to,
273 REASON_COPY_TO_USER);
274 } else {
275 /* Otherwise this is a kernel memory access. This happens when a
276 * compat syscall passes an argument allocated on the kernel
277 * stack to a real syscall.
278 * Don't check anything, just copy the shadow of the copied
279 * bytes.
280 */
281 kmsan_internal_memmove_metadata((void *)to, (void *)from,
282 to_copy - left);
283 }
284 user_access_restore(ua_flags);
285 }
286 EXPORT_SYMBOL(kmsan_copy_to_user);
287
288 /* Helper function to check an URB. */
kmsan_handle_urb(const struct urb * urb,bool is_out)289 void kmsan_handle_urb(const struct urb *urb, bool is_out)
290 {
291 if (!urb)
292 return;
293 if (is_out)
294 kmsan_internal_check_memory(urb->transfer_buffer,
295 urb->transfer_buffer_length,
296 /*user_addr*/ 0, REASON_SUBMIT_URB);
297 else
298 kmsan_internal_unpoison_memory(urb->transfer_buffer,
299 urb->transfer_buffer_length,
300 /*checked*/ false);
301 }
302 EXPORT_SYMBOL_GPL(kmsan_handle_urb);
303
kmsan_handle_dma_page(const void * addr,size_t size,enum dma_data_direction dir)304 static void kmsan_handle_dma_page(const void *addr, size_t size,
305 enum dma_data_direction dir)
306 {
307 switch (dir) {
308 case DMA_BIDIRECTIONAL:
309 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
310 REASON_ANY);
311 kmsan_internal_unpoison_memory((void *)addr, size,
312 /*checked*/ false);
313 break;
314 case DMA_TO_DEVICE:
315 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
316 REASON_ANY);
317 break;
318 case DMA_FROM_DEVICE:
319 kmsan_internal_unpoison_memory((void *)addr, size,
320 /*checked*/ false);
321 break;
322 case DMA_NONE:
323 break;
324 }
325 }
326
327 /* Helper function to handle DMA data transfers. */
kmsan_handle_dma(struct page * page,size_t offset,size_t size,enum dma_data_direction dir)328 void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
329 enum dma_data_direction dir)
330 {
331 u64 page_offset, to_go, addr;
332
333 if (PageHighMem(page))
334 return;
335 addr = (u64)page_address(page) + offset;
336 /*
337 * The kernel may occasionally give us adjacent DMA pages not belonging
338 * to the same allocation. Process them separately to avoid triggering
339 * internal KMSAN checks.
340 */
341 while (size > 0) {
342 page_offset = offset_in_page(addr);
343 to_go = min(PAGE_SIZE - page_offset, (u64)size);
344 kmsan_handle_dma_page((void *)addr, to_go, dir);
345 addr += to_go;
346 size -= to_go;
347 }
348 }
349
kmsan_handle_dma_sg(struct scatterlist * sg,int nents,enum dma_data_direction dir)350 void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
351 enum dma_data_direction dir)
352 {
353 struct scatterlist *item;
354 int i;
355
356 for_each_sg(sg, item, nents, i)
357 kmsan_handle_dma(sg_page(item), item->offset, item->length,
358 dir);
359 }
360
361 /* Functions from kmsan-checks.h follow. */
kmsan_poison_memory(const void * address,size_t size,gfp_t flags)362 void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
363 {
364 if (!kmsan_enabled || kmsan_in_runtime())
365 return;
366 kmsan_enter_runtime();
367 /* The users may want to poison/unpoison random memory. */
368 kmsan_internal_poison_memory((void *)address, size, flags,
369 KMSAN_POISON_NOCHECK);
370 kmsan_leave_runtime();
371 }
372 EXPORT_SYMBOL(kmsan_poison_memory);
373
kmsan_unpoison_memory(const void * address,size_t size)374 void kmsan_unpoison_memory(const void *address, size_t size)
375 {
376 unsigned long ua_flags;
377
378 if (!kmsan_enabled || kmsan_in_runtime())
379 return;
380
381 ua_flags = user_access_save();
382 kmsan_enter_runtime();
383 /* The users may want to poison/unpoison random memory. */
384 kmsan_internal_unpoison_memory((void *)address, size,
385 KMSAN_POISON_NOCHECK);
386 kmsan_leave_runtime();
387 user_access_restore(ua_flags);
388 }
389 EXPORT_SYMBOL(kmsan_unpoison_memory);
390
391 /*
392 * Version of kmsan_unpoison_memory() that can be called from within the KMSAN
393 * runtime.
394 *
395 * Non-instrumented IRQ entry functions receive struct pt_regs from assembly
396 * code. Those regs need to be unpoisoned, otherwise using them will result in
397 * false positives.
398 * Using kmsan_unpoison_memory() is not an option in entry code, because the
399 * return value of in_task() is inconsistent - as a result, certain calls to
400 * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that
401 * the registers are unpoisoned even if kmsan_in_runtime() is true in the early
402 * entry code.
403 */
kmsan_unpoison_entry_regs(const struct pt_regs * regs)404 void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
405 {
406 unsigned long ua_flags;
407
408 if (!kmsan_enabled)
409 return;
410
411 ua_flags = user_access_save();
412 kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs),
413 KMSAN_POISON_NOCHECK);
414 user_access_restore(ua_flags);
415 }
416
kmsan_check_memory(const void * addr,size_t size)417 void kmsan_check_memory(const void *addr, size_t size)
418 {
419 if (!kmsan_enabled)
420 return;
421 return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
422 REASON_ANY);
423 }
424 EXPORT_SYMBOL(kmsan_check_memory);
425