xref: /openbmc/linux/mm/mmap.c (revision b9349432)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58 
59 #include "internal.h"
60 
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)	(0)
63 #endif
64 
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75 
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 		struct vm_area_struct *vma, struct vm_area_struct *prev,
81 		struct vm_area_struct *next, unsigned long start,
82 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88 
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 	unsigned long vm_flags = vma->vm_flags;
93 	pgprot_t vm_page_prot;
94 
95 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 	if (vma_wants_writenotify(vma, vm_page_prot)) {
97 		vm_flags &= ~VM_SHARED;
98 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 	}
100 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103 
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 		struct file *file, struct address_space *mapping)
109 {
110 	if (vma->vm_flags & VM_SHARED)
111 		mapping_unmap_writable(mapping);
112 
113 	flush_dcache_mmap_lock(mapping);
114 	vma_interval_tree_remove(vma, &mapping->i_mmap);
115 	flush_dcache_mmap_unlock(mapping);
116 }
117 
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
unlink_file_vma(struct vm_area_struct * vma)122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 	struct file *file = vma->vm_file;
125 
126 	if (file) {
127 		struct address_space *mapping = file->f_mapping;
128 		i_mmap_lock_write(mapping);
129 		__remove_shared_vm_struct(vma, file, mapping);
130 		i_mmap_unlock_write(mapping);
131 	}
132 }
133 
134 /*
135  * Close a vm structure and free it.
136  */
remove_vma(struct vm_area_struct * vma,bool unreachable)137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 	might_sleep();
140 	if (vma->vm_ops && vma->vm_ops->close)
141 		vma->vm_ops->close(vma);
142 	if (vma->vm_file)
143 		fput(vma->vm_file);
144 	mpol_put(vma_policy(vma));
145 	if (unreachable)
146 		__vm_area_free(vma);
147 	else
148 		vm_area_free(vma);
149 }
150 
vma_prev_limit(struct vma_iterator * vmi,unsigned long min)151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 						    unsigned long min)
153 {
154 	return mas_prev(&vmi->mas, min);
155 }
156 
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
check_brk_limits(unsigned long addr,unsigned long len)165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 	unsigned long mapped_addr;
168 
169 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 	if (IS_ERR_VALUE(mapped_addr))
171 		return mapped_addr;
172 
173 	return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 		? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 		unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk,unsigned long,brk)178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 	unsigned long newbrk, oldbrk, origbrk;
181 	struct mm_struct *mm = current->mm;
182 	struct vm_area_struct *brkvma, *next = NULL;
183 	unsigned long min_brk;
184 	bool populate = false;
185 	LIST_HEAD(uf);
186 	struct vma_iterator vmi;
187 
188 	if (mmap_write_lock_killable(mm))
189 		return -EINTR;
190 
191 	origbrk = mm->brk;
192 
193 #ifdef CONFIG_COMPAT_BRK
194 	/*
195 	 * CONFIG_COMPAT_BRK can still be overridden by setting
196 	 * randomize_va_space to 2, which will still cause mm->start_brk
197 	 * to be arbitrarily shifted
198 	 */
199 	if (current->brk_randomized)
200 		min_brk = mm->start_brk;
201 	else
202 		min_brk = mm->end_data;
203 #else
204 	min_brk = mm->start_brk;
205 #endif
206 	if (brk < min_brk)
207 		goto out;
208 
209 	/*
210 	 * Check against rlimit here. If this check is done later after the test
211 	 * of oldbrk with newbrk then it can escape the test and let the data
212 	 * segment grow beyond its set limit the in case where the limit is
213 	 * not page aligned -Ram Gupta
214 	 */
215 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 			      mm->end_data, mm->start_data))
217 		goto out;
218 
219 	newbrk = PAGE_ALIGN(brk);
220 	oldbrk = PAGE_ALIGN(mm->brk);
221 	if (oldbrk == newbrk) {
222 		mm->brk = brk;
223 		goto success;
224 	}
225 
226 	/* Always allow shrinking brk. */
227 	if (brk <= mm->brk) {
228 		/* Search one past newbrk */
229 		vma_iter_init(&vmi, mm, newbrk);
230 		brkvma = vma_find(&vmi, oldbrk);
231 		if (!brkvma || brkvma->vm_start >= oldbrk)
232 			goto out; /* mapping intersects with an existing non-brk vma. */
233 		/*
234 		 * mm->brk must be protected by write mmap_lock.
235 		 * do_vma_munmap() will drop the lock on success,  so update it
236 		 * before calling do_vma_munmap().
237 		 */
238 		mm->brk = brk;
239 		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 			goto out;
241 
242 		goto success_unlocked;
243 	}
244 
245 	if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 		goto out;
247 
248 	/*
249 	 * Only check if the next VMA is within the stack_guard_gap of the
250 	 * expansion area
251 	 */
252 	vma_iter_init(&vmi, mm, oldbrk);
253 	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 		goto out;
256 
257 	brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 	/* Ok, looks good - let it rip. */
259 	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 		goto out;
261 
262 	mm->brk = brk;
263 	if (mm->def_flags & VM_LOCKED)
264 		populate = true;
265 
266 success:
267 	mmap_write_unlock(mm);
268 success_unlocked:
269 	userfaultfd_unmap_complete(mm, &uf);
270 	if (populate)
271 		mm_populate(oldbrk, newbrk - oldbrk);
272 	return brk;
273 
274 out:
275 	mm->brk = origbrk;
276 	mmap_write_unlock(mm);
277 	return origbrk;
278 }
279 
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
validate_mm(struct mm_struct * mm)281 static void validate_mm(struct mm_struct *mm)
282 {
283 	int bug = 0;
284 	int i = 0;
285 	struct vm_area_struct *vma;
286 	VMA_ITERATOR(vmi, mm, 0);
287 
288 	mt_validate(&mm->mm_mt);
289 	for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 		struct anon_vma *anon_vma = vma->anon_vma;
292 		struct anon_vma_chain *avc;
293 #endif
294 		unsigned long vmi_start, vmi_end;
295 		bool warn = 0;
296 
297 		vmi_start = vma_iter_addr(&vmi);
298 		vmi_end = vma_iter_end(&vmi);
299 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 			warn = 1;
301 
302 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 			warn = 1;
304 
305 		if (warn) {
306 			pr_emerg("issue in %s\n", current->comm);
307 			dump_stack();
308 			dump_vma(vma);
309 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 				 vmi_start, vmi_end - 1);
311 			vma_iter_dump_tree(&vmi);
312 		}
313 
314 #ifdef CONFIG_DEBUG_VM_RB
315 		if (anon_vma) {
316 			anon_vma_lock_read(anon_vma);
317 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 				anon_vma_interval_tree_verify(avc);
319 			anon_vma_unlock_read(anon_vma);
320 		}
321 #endif
322 		i++;
323 	}
324 	if (i != mm->map_count) {
325 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 		bug = 1;
327 	}
328 	VM_BUG_ON_MM(bug, mm);
329 }
330 
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334 
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 	struct anon_vma_chain *avc;
353 
354 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357 
358 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 	struct anon_vma_chain *avc;
362 
363 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366 
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 		unsigned long addr, unsigned long end)
369 {
370 	VMA_ITERATOR(vmi, mm, addr);
371 	struct vm_area_struct *vma;
372 	unsigned long nr_pages = 0;
373 
374 	for_each_vma_range(vmi, vma, end) {
375 		unsigned long vm_start = max(addr, vma->vm_start);
376 		unsigned long vm_end = min(end, vma->vm_end);
377 
378 		nr_pages += PHYS_PFN(vm_end - vm_start);
379 	}
380 
381 	return nr_pages;
382 }
383 
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)384 static void __vma_link_file(struct vm_area_struct *vma,
385 			    struct address_space *mapping)
386 {
387 	if (vma->vm_flags & VM_SHARED)
388 		mapping_allow_writable(mapping);
389 
390 	flush_dcache_mmap_lock(mapping);
391 	vma_interval_tree_insert(vma, &mapping->i_mmap);
392 	flush_dcache_mmap_unlock(mapping);
393 }
394 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 	VMA_ITERATOR(vmi, mm, 0);
398 	struct address_space *mapping = NULL;
399 
400 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 	if (vma_iter_prealloc(&vmi, vma))
402 		return -ENOMEM;
403 
404 	vma_start_write(vma);
405 
406 	vma_iter_store(&vmi, vma);
407 
408 	if (vma->vm_file) {
409 		mapping = vma->vm_file->f_mapping;
410 		i_mmap_lock_write(mapping);
411 		__vma_link_file(vma, mapping);
412 		i_mmap_unlock_write(mapping);
413 	}
414 
415 	mm->map_count++;
416 	validate_mm(mm);
417 	return 0;
418 }
419 
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vm_area_struct * next,struct vm_area_struct * remove,struct vm_area_struct * remove2)428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 		struct vm_area_struct *vma, struct vm_area_struct *next,
430 		struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 	memset(vp, 0, sizeof(struct vma_prepare));
433 	vp->vma = vma;
434 	vp->anon_vma = vma->anon_vma;
435 	vp->remove = remove;
436 	vp->remove2 = remove2;
437 	vp->adj_next = next;
438 	if (!vp->anon_vma && next)
439 		vp->anon_vma = next->anon_vma;
440 
441 	vp->file = vma->vm_file;
442 	if (vp->file)
443 		vp->mapping = vma->vm_file->f_mapping;
444 
445 }
446 
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)452 static inline void init_vma_prep(struct vma_prepare *vp,
453 				 struct vm_area_struct *vma)
454 {
455 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457 
458 
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
vma_prepare(struct vma_prepare * vp)463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 	if (vp->file) {
466 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467 
468 		if (vp->adj_next)
469 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 				      vp->adj_next->vm_end);
471 
472 		i_mmap_lock_write(vp->mapping);
473 		if (vp->insert && vp->insert->vm_file) {
474 			/*
475 			 * Put into interval tree now, so instantiated pages
476 			 * are visible to arm/parisc __flush_dcache_page
477 			 * throughout; but we cannot insert into address
478 			 * space until vma start or end is updated.
479 			 */
480 			__vma_link_file(vp->insert,
481 					vp->insert->vm_file->f_mapping);
482 		}
483 	}
484 
485 	if (vp->anon_vma) {
486 		anon_vma_lock_write(vp->anon_vma);
487 		anon_vma_interval_tree_pre_update_vma(vp->vma);
488 		if (vp->adj_next)
489 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 	}
491 
492 	if (vp->file) {
493 		flush_dcache_mmap_lock(vp->mapping);
494 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 		if (vp->adj_next)
496 			vma_interval_tree_remove(vp->adj_next,
497 						 &vp->mapping->i_mmap);
498 	}
499 
500 }
501 
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)510 static inline void vma_complete(struct vma_prepare *vp,
511 				struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 	if (vp->file) {
514 		if (vp->adj_next)
515 			vma_interval_tree_insert(vp->adj_next,
516 						 &vp->mapping->i_mmap);
517 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 		flush_dcache_mmap_unlock(vp->mapping);
519 	}
520 
521 	if (vp->remove && vp->file) {
522 		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 		if (vp->remove2)
524 			__remove_shared_vm_struct(vp->remove2, vp->file,
525 						  vp->mapping);
526 	} else if (vp->insert) {
527 		/*
528 		 * split_vma has split insert from vma, and needs
529 		 * us to insert it before dropping the locks
530 		 * (it may either follow vma or precede it).
531 		 */
532 		vma_iter_store(vmi, vp->insert);
533 		mm->map_count++;
534 	}
535 
536 	if (vp->anon_vma) {
537 		anon_vma_interval_tree_post_update_vma(vp->vma);
538 		if (vp->adj_next)
539 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 		anon_vma_unlock_write(vp->anon_vma);
541 	}
542 
543 	if (vp->file) {
544 		i_mmap_unlock_write(vp->mapping);
545 		uprobe_mmap(vp->vma);
546 
547 		if (vp->adj_next)
548 			uprobe_mmap(vp->adj_next);
549 	}
550 
551 	if (vp->remove) {
552 again:
553 		vma_mark_detached(vp->remove, true);
554 		if (vp->file) {
555 			uprobe_munmap(vp->remove, vp->remove->vm_start,
556 				      vp->remove->vm_end);
557 			fput(vp->file);
558 		}
559 		if (vp->remove->anon_vma)
560 			anon_vma_merge(vp->vma, vp->remove);
561 		mm->map_count--;
562 		mpol_put(vma_policy(vp->remove));
563 		if (!vp->remove2)
564 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 		vm_area_free(vp->remove);
566 
567 		/*
568 		 * In mprotect's case 6 (see comments on vma_merge),
569 		 * we are removing both mid and next vmas
570 		 */
571 		if (vp->remove2) {
572 			vp->remove = vp->remove2;
573 			vp->remove2 = NULL;
574 			goto again;
575 		}
576 	}
577 	if (vp->insert && vp->file)
578 		uprobe_mmap(vp->insert);
579 	validate_mm(mm);
580 }
581 
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  * @dup: Pointer to the destination VMA when successful.
587  *
588  * Returns: 0 on success.
589  */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591 		struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593 	/*
594 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
595 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
596 	 * anon pages imported.
597 	 */
598 	if (src->anon_vma && !dst->anon_vma) {
599 		int ret;
600 
601 		vma_assert_write_locked(dst);
602 		dst->anon_vma = src->anon_vma;
603 		ret = anon_vma_clone(dst, src);
604 		if (ret)
605 			return ret;
606 
607 		*dup = dst;
608 	}
609 
610 	return 0;
611 }
612 
613 /*
614  * vma_expand - Expand an existing VMA
615  *
616  * @vmi: The vma iterator
617  * @vma: The vma to expand
618  * @start: The start of the vma
619  * @end: The exclusive end of the vma
620  * @pgoff: The page offset of vma
621  * @next: The current of next vma.
622  *
623  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
624  * expand over @next if it's different from @vma and @end == @next->vm_end.
625  * Checking if the @vma can expand and merge with @next needs to be handled by
626  * the caller.
627  *
628  * Returns: 0 on success
629  */
vma_expand(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * next)630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631 	       unsigned long start, unsigned long end, pgoff_t pgoff,
632 	       struct vm_area_struct *next)
633 {
634 	struct vm_area_struct *anon_dup = NULL;
635 	bool remove_next = false;
636 	struct vma_prepare vp;
637 
638 	vma_start_write(vma);
639 	if (next && (vma != next) && (end == next->vm_end)) {
640 		int ret;
641 
642 		remove_next = true;
643 		vma_start_write(next);
644 		ret = dup_anon_vma(vma, next, &anon_dup);
645 		if (ret)
646 			return ret;
647 	}
648 
649 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650 	/* Not merging but overwriting any part of next is not handled. */
651 	VM_WARN_ON(next && !vp.remove &&
652 		  next != vma && end > next->vm_start);
653 	/* Only handles expanding */
654 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655 
656 	/* Note: vma iterator must be pointing to 'start' */
657 	vma_iter_config(vmi, start, end);
658 	if (vma_iter_prealloc(vmi, vma))
659 		goto nomem;
660 
661 	vma_prepare(&vp);
662 	vma_adjust_trans_huge(vma, start, end, 0);
663 	vma->vm_start = start;
664 	vma->vm_end = end;
665 	vma->vm_pgoff = pgoff;
666 	vma_iter_store(vmi, vma);
667 
668 	vma_complete(&vp, vmi, vma->vm_mm);
669 	return 0;
670 
671 nomem:
672 	if (anon_dup)
673 		unlink_anon_vmas(anon_dup);
674 	return -ENOMEM;
675 }
676 
677 /*
678  * vma_shrink() - Reduce an existing VMAs memory area
679  * @vmi: The vma iterator
680  * @vma: The VMA to modify
681  * @start: The new start
682  * @end: The new end
683  *
684  * Returns: 0 on success, -ENOMEM otherwise
685  */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687 	       unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689 	struct vma_prepare vp;
690 
691 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692 
693 	if (vma->vm_start < start)
694 		vma_iter_config(vmi, vma->vm_start, start);
695 	else
696 		vma_iter_config(vmi, end, vma->vm_end);
697 
698 	if (vma_iter_prealloc(vmi, NULL))
699 		return -ENOMEM;
700 
701 	vma_start_write(vma);
702 
703 	init_vma_prep(&vp, vma);
704 	vma_prepare(&vp);
705 	vma_adjust_trans_huge(vma, start, end, 0);
706 
707 	vma_iter_clear(vmi);
708 	vma->vm_start = start;
709 	vma->vm_end = end;
710 	vma->vm_pgoff = pgoff;
711 	vma_complete(&vp, vmi, vma->vm_mm);
712 	return 0;
713 }
714 
715 /*
716  * If the vma has a ->close operation then the driver probably needs to release
717  * per-vma resources, so we don't attempt to merge those if the caller indicates
718  * the current vma may be removed as part of the merge.
719  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name,bool may_remove_vma)720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721 		struct file *file, unsigned long vm_flags,
722 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723 		struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725 	/*
726 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
727 	 * match the flags but dirty bit -- the caller should mark
728 	 * merged VMA as dirty. If dirty bit won't be excluded from
729 	 * comparison, we increase pressure on the memory system forcing
730 	 * the kernel to generate new VMAs when old one could be
731 	 * extended instead.
732 	 */
733 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734 		return false;
735 	if (vma->vm_file != file)
736 		return false;
737 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738 		return false;
739 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740 		return false;
741 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742 		return false;
743 	return true;
744 }
745 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749 	/*
750 	 * The list_is_singular() test is to avoid merging VMA cloned from
751 	 * parents. This can improve scalability caused by anon_vma lock.
752 	 */
753 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
754 		list_is_singular(&vma->anon_vma_chain)))
755 		return true;
756 	return anon_vma1 == anon_vma2;
757 }
758 
759 /*
760  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761  * in front of (at a lower virtual address and file offset than) the vma.
762  *
763  * We cannot merge two vmas if they have differently assigned (non-NULL)
764  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765  *
766  * We don't check here for the merged mmap wrapping around the end of pagecache
767  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768  * wrap, nor mmaps which cover the final page at index -1UL.
769  *
770  * We assume the vma may be removed as part of the merge.
771  */
772 static bool
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774 		struct anon_vma *anon_vma, struct file *file,
775 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776 		struct anon_vma_name *anon_name)
777 {
778 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780 		if (vma->vm_pgoff == vm_pgoff)
781 			return true;
782 	}
783 	return false;
784 }
785 
786 /*
787  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788  * beyond (at a higher virtual address and file offset than) the vma.
789  *
790  * We cannot merge two vmas if they have differently assigned (non-NULL)
791  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792  *
793  * We assume that vma is not removed as part of the merge.
794  */
795 static bool
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797 		struct anon_vma *anon_vma, struct file *file,
798 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799 		struct anon_vma_name *anon_name)
800 {
801 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803 		pgoff_t vm_pglen;
804 		vm_pglen = vma_pages(vma);
805 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806 			return true;
807 	}
808 	return false;
809 }
810 
811 /*
812  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813  * figure out whether that can be merged with its predecessor or its
814  * successor.  Or both (it neatly fills a hole).
815  *
816  * In most cases - when called for mmap, brk or mremap - [addr,end) is
817  * certain not to be mapped by the time vma_merge is called; but when
818  * called for mprotect, it is certain to be already mapped (either at
819  * an offset within prev, or at the start of next), and the flags of
820  * this area are about to be changed to vm_flags - and the no-change
821  * case has already been eliminated.
822  *
823  * The following mprotect cases have to be considered, where **** is
824  * the area passed down from mprotect_fixup, never extending beyond one
825  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826  * at the same address as **** and is of the same or larger span, and
827  * NNNN the next vma after ****:
828  *
829  *     ****             ****                   ****
830  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
831  *    cannot merge    might become       might become
832  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
833  *    mmap, brk or    case 4 below       case 5 below
834  *    mremap move:
835  *                        ****               ****
836  *                    PPPP    NNNN       PPPPCCCCNNNN
837  *                    might become       might become
838  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
839  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
840  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
841  *
842  * It is important for case 8 that the vma CCCC overlapping the
843  * region **** is never going to extended over NNNN. Instead NNNN must
844  * be extended in region **** and CCCC must be removed. This way in
845  * all cases where vma_merge succeeds, the moment vma_merge drops the
846  * rmap_locks, the properties of the merged vma will be already
847  * correct for the whole merged range. Some of those properties like
848  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849  * be correct for the whole merged range immediately after the
850  * rmap_locks are released. Otherwise if NNNN would be removed and
851  * CCCC would be extended over the NNNN range, remove_migration_ptes
852  * or other rmap walkers (if working on addresses beyond the "end"
853  * parameter) may establish ptes with the wrong permissions of CCCC
854  * instead of the right permissions of NNNN.
855  *
856  * In the code below:
857  * PPPP is represented by *prev
858  * CCCC is represented by *curr or not represented at all (NULL)
859  * NNNN is represented by *next or not represented at all (NULL)
860  * **** is not represented - it will be merged and the vma containing the
861  *      area is returned, or the function will return NULL
862  */
vma_merge(struct vma_iterator * vmi,struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)863 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
864 			struct vm_area_struct *prev, unsigned long addr,
865 			unsigned long end, unsigned long vm_flags,
866 			struct anon_vma *anon_vma, struct file *file,
867 			pgoff_t pgoff, struct mempolicy *policy,
868 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 			struct anon_vma_name *anon_name)
870 {
871 	struct vm_area_struct *curr, *next, *res;
872 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
873 	struct vm_area_struct *anon_dup = NULL;
874 	struct vma_prepare vp;
875 	pgoff_t vma_pgoff;
876 	int err = 0;
877 	bool merge_prev = false;
878 	bool merge_next = false;
879 	bool vma_expanded = false;
880 	unsigned long vma_start = addr;
881 	unsigned long vma_end = end;
882 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883 	long adj_start = 0;
884 
885 	/*
886 	 * We later require that vma->vm_flags == vm_flags,
887 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
888 	 */
889 	if (vm_flags & VM_SPECIAL)
890 		return NULL;
891 
892 	/* Does the input range span an existing VMA? (cases 5 - 8) */
893 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894 
895 	if (!curr ||			/* cases 1 - 4 */
896 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
897 		next = vma_lookup(mm, end);
898 	else
899 		next = NULL;		/* case 5 */
900 
901 	if (prev) {
902 		vma_start = prev->vm_start;
903 		vma_pgoff = prev->vm_pgoff;
904 
905 		/* Can we merge the predecessor? */
906 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
909 			merge_prev = true;
910 			vma_prev(vmi);
911 		}
912 	}
913 
914 	/* Can we merge the successor? */
915 	if (next && mpol_equal(policy, vma_policy(next)) &&
916 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917 				 vm_userfaultfd_ctx, anon_name)) {
918 		merge_next = true;
919 	}
920 
921 	/* Verify some invariant that must be enforced by the caller. */
922 	VM_WARN_ON(prev && addr <= prev->vm_start);
923 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924 	VM_WARN_ON(addr >= end);
925 
926 	if (!merge_prev && !merge_next)
927 		return NULL; /* Not mergeable. */
928 
929 	if (merge_prev)
930 		vma_start_write(prev);
931 
932 	res = vma = prev;
933 	remove = remove2 = adjust = NULL;
934 
935 	/* Can we merge both the predecessor and the successor? */
936 	if (merge_prev && merge_next &&
937 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938 		vma_start_write(next);
939 		remove = next;				/* case 1 */
940 		vma_end = next->vm_end;
941 		err = dup_anon_vma(prev, next, &anon_dup);
942 		if (curr) {				/* case 6 */
943 			vma_start_write(curr);
944 			remove = curr;
945 			remove2 = next;
946 			if (!next->anon_vma)
947 				err = dup_anon_vma(prev, curr, &anon_dup);
948 		}
949 	} else if (merge_prev) {			/* case 2 */
950 		if (curr) {
951 			vma_start_write(curr);
952 			if (end == curr->vm_end) {	/* case 7 */
953 				/*
954 				 * can_vma_merge_after() assumed we would not be
955 				 * removing prev vma, so it skipped the check
956 				 * for vm_ops->close, but we are removing curr
957 				 */
958 				if (curr->vm_ops && curr->vm_ops->close)
959 					err = -EINVAL;
960 				remove = curr;
961 			} else {			/* case 5 */
962 				adjust = curr;
963 				adj_start = (end - curr->vm_start);
964 			}
965 			if (!err)
966 				err = dup_anon_vma(prev, curr, &anon_dup);
967 		}
968 	} else { /* merge_next */
969 		vma_start_write(next);
970 		res = next;
971 		if (prev && addr < prev->vm_end) {	/* case 4 */
972 			vma_start_write(prev);
973 			vma_end = addr;
974 			adjust = next;
975 			adj_start = -(prev->vm_end - addr);
976 			err = dup_anon_vma(next, prev, &anon_dup);
977 		} else {
978 			/*
979 			 * Note that cases 3 and 8 are the ONLY ones where prev
980 			 * is permitted to be (but is not necessarily) NULL.
981 			 */
982 			vma = next;			/* case 3 */
983 			vma_start = addr;
984 			vma_end = next->vm_end;
985 			vma_pgoff = next->vm_pgoff - pglen;
986 			if (curr) {			/* case 8 */
987 				vma_pgoff = curr->vm_pgoff;
988 				vma_start_write(curr);
989 				remove = curr;
990 				err = dup_anon_vma(next, curr, &anon_dup);
991 			}
992 		}
993 	}
994 
995 	/* Error in anon_vma clone. */
996 	if (err)
997 		goto anon_vma_fail;
998 
999 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1000 		vma_expanded = true;
1001 
1002 	if (vma_expanded) {
1003 		vma_iter_config(vmi, vma_start, vma_end);
1004 	} else {
1005 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1006 				adjust->vm_end);
1007 	}
1008 
1009 	if (vma_iter_prealloc(vmi, vma))
1010 		goto prealloc_fail;
1011 
1012 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1013 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1014 		   vp.anon_vma != adjust->anon_vma);
1015 
1016 	vma_prepare(&vp);
1017 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1018 
1019 	vma->vm_start = vma_start;
1020 	vma->vm_end = vma_end;
1021 	vma->vm_pgoff = vma_pgoff;
1022 
1023 	if (vma_expanded)
1024 		vma_iter_store(vmi, vma);
1025 
1026 	if (adj_start) {
1027 		adjust->vm_start += adj_start;
1028 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1029 		if (adj_start < 0) {
1030 			WARN_ON(vma_expanded);
1031 			vma_iter_store(vmi, next);
1032 		}
1033 	}
1034 
1035 	vma_complete(&vp, vmi, mm);
1036 	khugepaged_enter_vma(res, vm_flags);
1037 	return res;
1038 
1039 prealloc_fail:
1040 	if (anon_dup)
1041 		unlink_anon_vmas(anon_dup);
1042 
1043 anon_vma_fail:
1044 	vma_iter_set(vmi, addr);
1045 	vma_iter_load(vmi);
1046 	return NULL;
1047 }
1048 
1049 /*
1050  * Rough compatibility check to quickly see if it's even worth looking
1051  * at sharing an anon_vma.
1052  *
1053  * They need to have the same vm_file, and the flags can only differ
1054  * in things that mprotect may change.
1055  *
1056  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1057  * we can merge the two vma's. For example, we refuse to merge a vma if
1058  * there is a vm_ops->close() function, because that indicates that the
1059  * driver is doing some kind of reference counting. But that doesn't
1060  * really matter for the anon_vma sharing case.
1061  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1062 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1063 {
1064 	return a->vm_end == b->vm_start &&
1065 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1066 		a->vm_file == b->vm_file &&
1067 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1068 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1069 }
1070 
1071 /*
1072  * Do some basic sanity checking to see if we can re-use the anon_vma
1073  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1074  * the same as 'old', the other will be the new one that is trying
1075  * to share the anon_vma.
1076  *
1077  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1078  * the anon_vma of 'old' is concurrently in the process of being set up
1079  * by another page fault trying to merge _that_. But that's ok: if it
1080  * is being set up, that automatically means that it will be a singleton
1081  * acceptable for merging, so we can do all of this optimistically. But
1082  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1083  *
1084  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1085  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1086  * is to return an anon_vma that is "complex" due to having gone through
1087  * a fork).
1088  *
1089  * We also make sure that the two vma's are compatible (adjacent,
1090  * and with the same memory policies). That's all stable, even with just
1091  * a read lock on the mmap_lock.
1092  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1093 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1094 {
1095 	if (anon_vma_compatible(a, b)) {
1096 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1097 
1098 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1099 			return anon_vma;
1100 	}
1101 	return NULL;
1102 }
1103 
1104 /*
1105  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1106  * neighbouring vmas for a suitable anon_vma, before it goes off
1107  * to allocate a new anon_vma.  It checks because a repetitive
1108  * sequence of mprotects and faults may otherwise lead to distinct
1109  * anon_vmas being allocated, preventing vma merge in subsequent
1110  * mprotect.
1111  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1112 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1113 {
1114 	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1115 	struct anon_vma *anon_vma = NULL;
1116 	struct vm_area_struct *prev, *next;
1117 
1118 	/* Try next first. */
1119 	next = mas_walk(&mas);
1120 	if (next) {
1121 		anon_vma = reusable_anon_vma(next, vma, next);
1122 		if (anon_vma)
1123 			return anon_vma;
1124 	}
1125 
1126 	prev = mas_prev(&mas, 0);
1127 	VM_BUG_ON_VMA(prev != vma, vma);
1128 	prev = mas_prev(&mas, 0);
1129 	/* Try prev next. */
1130 	if (prev)
1131 		anon_vma = reusable_anon_vma(prev, prev, vma);
1132 
1133 	/*
1134 	 * We might reach here with anon_vma == NULL if we can't find
1135 	 * any reusable anon_vma.
1136 	 * There's no absolute need to look only at touching neighbours:
1137 	 * we could search further afield for "compatible" anon_vmas.
1138 	 * But it would probably just be a waste of time searching,
1139 	 * or lead to too many vmas hanging off the same anon_vma.
1140 	 * We're trying to allow mprotect remerging later on,
1141 	 * not trying to minimize memory used for anon_vmas.
1142 	 */
1143 	return anon_vma;
1144 }
1145 
1146 /*
1147  * If a hint addr is less than mmap_min_addr change hint to be as
1148  * low as possible but still greater than mmap_min_addr
1149  */
round_hint_to_min(unsigned long hint)1150 static inline unsigned long round_hint_to_min(unsigned long hint)
1151 {
1152 	hint &= PAGE_MASK;
1153 	if (((void *)hint != NULL) &&
1154 	    (hint < mmap_min_addr))
1155 		return PAGE_ALIGN(mmap_min_addr);
1156 	return hint;
1157 }
1158 
mlock_future_ok(struct mm_struct * mm,unsigned long flags,unsigned long bytes)1159 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1160 			unsigned long bytes)
1161 {
1162 	unsigned long locked_pages, limit_pages;
1163 
1164 	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1165 		return true;
1166 
1167 	locked_pages = bytes >> PAGE_SHIFT;
1168 	locked_pages += mm->locked_vm;
1169 
1170 	limit_pages = rlimit(RLIMIT_MEMLOCK);
1171 	limit_pages >>= PAGE_SHIFT;
1172 
1173 	return locked_pages <= limit_pages;
1174 }
1175 
file_mmap_size_max(struct file * file,struct inode * inode)1176 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1177 {
1178 	if (S_ISREG(inode->i_mode))
1179 		return MAX_LFS_FILESIZE;
1180 
1181 	if (S_ISBLK(inode->i_mode))
1182 		return MAX_LFS_FILESIZE;
1183 
1184 	if (S_ISSOCK(inode->i_mode))
1185 		return MAX_LFS_FILESIZE;
1186 
1187 	/* Special "we do even unsigned file positions" case */
1188 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1189 		return 0;
1190 
1191 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1192 	return ULONG_MAX;
1193 }
1194 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1195 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1196 				unsigned long pgoff, unsigned long len)
1197 {
1198 	u64 maxsize = file_mmap_size_max(file, inode);
1199 
1200 	if (maxsize && len > maxsize)
1201 		return false;
1202 	maxsize -= len;
1203 	if (pgoff > maxsize >> PAGE_SHIFT)
1204 		return false;
1205 	return true;
1206 }
1207 
1208 /*
1209  * The caller must write-lock current->mm->mmap_lock.
1210  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1211 unsigned long do_mmap(struct file *file, unsigned long addr,
1212 			unsigned long len, unsigned long prot,
1213 			unsigned long flags, vm_flags_t vm_flags,
1214 			unsigned long pgoff, unsigned long *populate,
1215 			struct list_head *uf)
1216 {
1217 	struct mm_struct *mm = current->mm;
1218 	int pkey = 0;
1219 
1220 	*populate = 0;
1221 
1222 	if (!len)
1223 		return -EINVAL;
1224 
1225 	/*
1226 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1227 	 *
1228 	 * (the exception is when the underlying filesystem is noexec
1229 	 *  mounted, in which case we dont add PROT_EXEC.)
1230 	 */
1231 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1232 		if (!(file && path_noexec(&file->f_path)))
1233 			prot |= PROT_EXEC;
1234 
1235 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1236 	if (flags & MAP_FIXED_NOREPLACE)
1237 		flags |= MAP_FIXED;
1238 
1239 	if (!(flags & MAP_FIXED))
1240 		addr = round_hint_to_min(addr);
1241 
1242 	/* Careful about overflows.. */
1243 	len = PAGE_ALIGN(len);
1244 	if (!len)
1245 		return -ENOMEM;
1246 
1247 	/* offset overflow? */
1248 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1249 		return -EOVERFLOW;
1250 
1251 	/* Too many mappings? */
1252 	if (mm->map_count > sysctl_max_map_count)
1253 		return -ENOMEM;
1254 
1255 	/* Obtain the address to map to. we verify (or select) it and ensure
1256 	 * that it represents a valid section of the address space.
1257 	 */
1258 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1259 	if (IS_ERR_VALUE(addr))
1260 		return addr;
1261 
1262 	if (flags & MAP_FIXED_NOREPLACE) {
1263 		if (find_vma_intersection(mm, addr, addr + len))
1264 			return -EEXIST;
1265 	}
1266 
1267 	if (prot == PROT_EXEC) {
1268 		pkey = execute_only_pkey(mm);
1269 		if (pkey < 0)
1270 			pkey = 0;
1271 	}
1272 
1273 	/* Do simple checking here so the lower-level routines won't have
1274 	 * to. we assume access permissions have been handled by the open
1275 	 * of the memory object, so we don't do any here.
1276 	 */
1277 	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1278 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1279 
1280 	if (flags & MAP_LOCKED)
1281 		if (!can_do_mlock())
1282 			return -EPERM;
1283 
1284 	if (!mlock_future_ok(mm, vm_flags, len))
1285 		return -EAGAIN;
1286 
1287 	if (file) {
1288 		struct inode *inode = file_inode(file);
1289 		unsigned long flags_mask;
1290 
1291 		if (!file_mmap_ok(file, inode, pgoff, len))
1292 			return -EOVERFLOW;
1293 
1294 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1295 
1296 		switch (flags & MAP_TYPE) {
1297 		case MAP_SHARED:
1298 			/*
1299 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1300 			 * flags. E.g. MAP_SYNC is dangerous to use with
1301 			 * MAP_SHARED as you don't know which consistency model
1302 			 * you will get. We silently ignore unsupported flags
1303 			 * with MAP_SHARED to preserve backward compatibility.
1304 			 */
1305 			flags &= LEGACY_MAP_MASK;
1306 			fallthrough;
1307 		case MAP_SHARED_VALIDATE:
1308 			if (flags & ~flags_mask)
1309 				return -EOPNOTSUPP;
1310 			if (prot & PROT_WRITE) {
1311 				if (!(file->f_mode & FMODE_WRITE))
1312 					return -EACCES;
1313 				if (IS_SWAPFILE(file->f_mapping->host))
1314 					return -ETXTBSY;
1315 			}
1316 
1317 			/*
1318 			 * Make sure we don't allow writing to an append-only
1319 			 * file..
1320 			 */
1321 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1322 				return -EACCES;
1323 
1324 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1325 			if (!(file->f_mode & FMODE_WRITE))
1326 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1327 			fallthrough;
1328 		case MAP_PRIVATE:
1329 			if (!(file->f_mode & FMODE_READ))
1330 				return -EACCES;
1331 			if (path_noexec(&file->f_path)) {
1332 				if (vm_flags & VM_EXEC)
1333 					return -EPERM;
1334 				vm_flags &= ~VM_MAYEXEC;
1335 			}
1336 
1337 			if (!file->f_op->mmap)
1338 				return -ENODEV;
1339 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1340 				return -EINVAL;
1341 			break;
1342 
1343 		default:
1344 			return -EINVAL;
1345 		}
1346 	} else {
1347 		switch (flags & MAP_TYPE) {
1348 		case MAP_SHARED:
1349 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1350 				return -EINVAL;
1351 			/*
1352 			 * Ignore pgoff.
1353 			 */
1354 			pgoff = 0;
1355 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1356 			break;
1357 		case MAP_PRIVATE:
1358 			/*
1359 			 * Set pgoff according to addr for anon_vma.
1360 			 */
1361 			pgoff = addr >> PAGE_SHIFT;
1362 			break;
1363 		default:
1364 			return -EINVAL;
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * Set 'VM_NORESERVE' if we should not account for the
1370 	 * memory use of this mapping.
1371 	 */
1372 	if (flags & MAP_NORESERVE) {
1373 		/* We honor MAP_NORESERVE if allowed to overcommit */
1374 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1375 			vm_flags |= VM_NORESERVE;
1376 
1377 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1378 		if (file && is_file_hugepages(file))
1379 			vm_flags |= VM_NORESERVE;
1380 	}
1381 
1382 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1383 	if (!IS_ERR_VALUE(addr) &&
1384 	    ((vm_flags & VM_LOCKED) ||
1385 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1386 		*populate = len;
1387 	return addr;
1388 }
1389 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1390 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1391 			      unsigned long prot, unsigned long flags,
1392 			      unsigned long fd, unsigned long pgoff)
1393 {
1394 	struct file *file = NULL;
1395 	unsigned long retval;
1396 
1397 	if (!(flags & MAP_ANONYMOUS)) {
1398 		audit_mmap_fd(fd, flags);
1399 		file = fget(fd);
1400 		if (!file)
1401 			return -EBADF;
1402 		if (is_file_hugepages(file)) {
1403 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1404 		} else if (unlikely(flags & MAP_HUGETLB)) {
1405 			retval = -EINVAL;
1406 			goto out_fput;
1407 		}
1408 	} else if (flags & MAP_HUGETLB) {
1409 		struct hstate *hs;
1410 
1411 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1412 		if (!hs)
1413 			return -EINVAL;
1414 
1415 		len = ALIGN(len, huge_page_size(hs));
1416 		/*
1417 		 * VM_NORESERVE is used because the reservations will be
1418 		 * taken when vm_ops->mmap() is called
1419 		 */
1420 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1421 				VM_NORESERVE,
1422 				HUGETLB_ANONHUGE_INODE,
1423 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1424 		if (IS_ERR(file))
1425 			return PTR_ERR(file);
1426 	}
1427 
1428 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1429 out_fput:
1430 	if (file)
1431 		fput(file);
1432 	return retval;
1433 }
1434 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436 		unsigned long, prot, unsigned long, flags,
1437 		unsigned long, fd, unsigned long, pgoff)
1438 {
1439 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1440 }
1441 
1442 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1443 struct mmap_arg_struct {
1444 	unsigned long addr;
1445 	unsigned long len;
1446 	unsigned long prot;
1447 	unsigned long flags;
1448 	unsigned long fd;
1449 	unsigned long offset;
1450 };
1451 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1452 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1453 {
1454 	struct mmap_arg_struct a;
1455 
1456 	if (copy_from_user(&a, arg, sizeof(a)))
1457 		return -EFAULT;
1458 	if (offset_in_page(a.offset))
1459 		return -EINVAL;
1460 
1461 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1462 			       a.offset >> PAGE_SHIFT);
1463 }
1464 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1465 
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1466 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1467 {
1468 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1469 }
1470 
vma_is_shared_writable(struct vm_area_struct * vma)1471 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1472 {
1473 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1474 		(VM_WRITE | VM_SHARED);
1475 }
1476 
vma_fs_can_writeback(struct vm_area_struct * vma)1477 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1478 {
1479 	/* No managed pages to writeback. */
1480 	if (vma->vm_flags & VM_PFNMAP)
1481 		return false;
1482 
1483 	return vma->vm_file && vma->vm_file->f_mapping &&
1484 		mapping_can_writeback(vma->vm_file->f_mapping);
1485 }
1486 
1487 /*
1488  * Does this VMA require the underlying folios to have their dirty state
1489  * tracked?
1490  */
vma_needs_dirty_tracking(struct vm_area_struct * vma)1491 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1492 {
1493 	/* Only shared, writable VMAs require dirty tracking. */
1494 	if (!vma_is_shared_writable(vma))
1495 		return false;
1496 
1497 	/* Does the filesystem need to be notified? */
1498 	if (vm_ops_needs_writenotify(vma->vm_ops))
1499 		return true;
1500 
1501 	/*
1502 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1503 	 * can writeback, dirty tracking is still required.
1504 	 */
1505 	return vma_fs_can_writeback(vma);
1506 }
1507 
1508 /*
1509  * Some shared mappings will want the pages marked read-only
1510  * to track write events. If so, we'll downgrade vm_page_prot
1511  * to the private version (using protection_map[] without the
1512  * VM_SHARED bit).
1513  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1514 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1515 {
1516 	/* If it was private or non-writable, the write bit is already clear */
1517 	if (!vma_is_shared_writable(vma))
1518 		return 0;
1519 
1520 	/* The backer wishes to know when pages are first written to? */
1521 	if (vm_ops_needs_writenotify(vma->vm_ops))
1522 		return 1;
1523 
1524 	/* The open routine did something to the protections that pgprot_modify
1525 	 * won't preserve? */
1526 	if (pgprot_val(vm_page_prot) !=
1527 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1528 		return 0;
1529 
1530 	/*
1531 	 * Do we need to track softdirty? hugetlb does not support softdirty
1532 	 * tracking yet.
1533 	 */
1534 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1535 		return 1;
1536 
1537 	/* Do we need write faults for uffd-wp tracking? */
1538 	if (userfaultfd_wp(vma))
1539 		return 1;
1540 
1541 	/* Can the mapping track the dirty pages? */
1542 	return vma_fs_can_writeback(vma);
1543 }
1544 
1545 /*
1546  * We account for memory if it's a private writeable mapping,
1547  * not hugepages and VM_NORESERVE wasn't set.
1548  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1549 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1550 {
1551 	/*
1552 	 * hugetlb has its own accounting separate from the core VM
1553 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1554 	 */
1555 	if (file && is_file_hugepages(file))
1556 		return 0;
1557 
1558 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1559 }
1560 
1561 /**
1562  * unmapped_area() - Find an area between the low_limit and the high_limit with
1563  * the correct alignment and offset, all from @info. Note: current->mm is used
1564  * for the search.
1565  *
1566  * @info: The unmapped area information including the range [low_limit -
1567  * high_limit), the alignment offset and mask.
1568  *
1569  * Return: A memory address or -ENOMEM.
1570  */
unmapped_area(struct vm_unmapped_area_info * info)1571 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1572 {
1573 	unsigned long length, gap;
1574 	unsigned long low_limit, high_limit;
1575 	struct vm_area_struct *tmp;
1576 
1577 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1578 
1579 	/* Adjust search length to account for worst case alignment overhead */
1580 	length = info->length + info->align_mask;
1581 	if (length < info->length)
1582 		return -ENOMEM;
1583 
1584 	low_limit = info->low_limit;
1585 	if (low_limit < mmap_min_addr)
1586 		low_limit = mmap_min_addr;
1587 	high_limit = info->high_limit;
1588 retry:
1589 	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1590 		return -ENOMEM;
1591 
1592 	gap = mas.index;
1593 	gap += (info->align_offset - gap) & info->align_mask;
1594 	tmp = mas_next(&mas, ULONG_MAX);
1595 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1596 		if (vm_start_gap(tmp) < gap + length - 1) {
1597 			low_limit = tmp->vm_end;
1598 			mas_reset(&mas);
1599 			goto retry;
1600 		}
1601 	} else {
1602 		tmp = mas_prev(&mas, 0);
1603 		if (tmp && vm_end_gap(tmp) > gap) {
1604 			low_limit = vm_end_gap(tmp);
1605 			mas_reset(&mas);
1606 			goto retry;
1607 		}
1608 	}
1609 
1610 	return gap;
1611 }
1612 
1613 /**
1614  * unmapped_area_topdown() - Find an area between the low_limit and the
1615  * high_limit with the correct alignment and offset at the highest available
1616  * address, all from @info. Note: current->mm is used for the search.
1617  *
1618  * @info: The unmapped area information including the range [low_limit -
1619  * high_limit), the alignment offset and mask.
1620  *
1621  * Return: A memory address or -ENOMEM.
1622  */
unmapped_area_topdown(struct vm_unmapped_area_info * info)1623 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1624 {
1625 	unsigned long length, gap, gap_end;
1626 	unsigned long low_limit, high_limit;
1627 	struct vm_area_struct *tmp;
1628 
1629 	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1630 	/* Adjust search length to account for worst case alignment overhead */
1631 	length = info->length + info->align_mask;
1632 	if (length < info->length)
1633 		return -ENOMEM;
1634 
1635 	low_limit = info->low_limit;
1636 	if (low_limit < mmap_min_addr)
1637 		low_limit = mmap_min_addr;
1638 	high_limit = info->high_limit;
1639 retry:
1640 	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1641 		return -ENOMEM;
1642 
1643 	gap = mas.last + 1 - info->length;
1644 	gap -= (gap - info->align_offset) & info->align_mask;
1645 	gap_end = mas.last;
1646 	tmp = mas_next(&mas, ULONG_MAX);
1647 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1648 		if (vm_start_gap(tmp) <= gap_end) {
1649 			high_limit = vm_start_gap(tmp);
1650 			mas_reset(&mas);
1651 			goto retry;
1652 		}
1653 	} else {
1654 		tmp = mas_prev(&mas, 0);
1655 		if (tmp && vm_end_gap(tmp) > gap) {
1656 			high_limit = tmp->vm_start;
1657 			mas_reset(&mas);
1658 			goto retry;
1659 		}
1660 	}
1661 
1662 	return gap;
1663 }
1664 
1665 /*
1666  * Search for an unmapped address range.
1667  *
1668  * We are looking for a range that:
1669  * - does not intersect with any VMA;
1670  * - is contained within the [low_limit, high_limit) interval;
1671  * - is at least the desired size.
1672  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1673  */
vm_unmapped_area(struct vm_unmapped_area_info * info)1674 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1675 {
1676 	unsigned long addr;
1677 
1678 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1679 		addr = unmapped_area_topdown(info);
1680 	else
1681 		addr = unmapped_area(info);
1682 
1683 	trace_vm_unmapped_area(addr, info);
1684 	return addr;
1685 }
1686 
1687 /* Get an address range which is currently unmapped.
1688  * For shmat() with addr=0.
1689  *
1690  * Ugly calling convention alert:
1691  * Return value with the low bits set means error value,
1692  * ie
1693  *	if (ret & ~PAGE_MASK)
1694  *		error = ret;
1695  *
1696  * This function "knows" that -ENOMEM has the bits set.
1697  */
1698 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1699 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1700 			  unsigned long len, unsigned long pgoff,
1701 			  unsigned long flags)
1702 {
1703 	struct mm_struct *mm = current->mm;
1704 	struct vm_area_struct *vma, *prev;
1705 	struct vm_unmapped_area_info info;
1706 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1707 
1708 	if (len > mmap_end - mmap_min_addr)
1709 		return -ENOMEM;
1710 
1711 	if (flags & MAP_FIXED)
1712 		return addr;
1713 
1714 	if (addr) {
1715 		addr = PAGE_ALIGN(addr);
1716 		vma = find_vma_prev(mm, addr, &prev);
1717 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1718 		    (!vma || addr + len <= vm_start_gap(vma)) &&
1719 		    (!prev || addr >= vm_end_gap(prev)))
1720 			return addr;
1721 	}
1722 
1723 	info.flags = 0;
1724 	info.length = len;
1725 	info.low_limit = mm->mmap_base;
1726 	info.high_limit = mmap_end;
1727 	info.align_mask = 0;
1728 	info.align_offset = 0;
1729 	return vm_unmapped_area(&info);
1730 }
1731 
1732 #ifndef HAVE_ARCH_UNMAPPED_AREA
1733 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1734 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1735 		       unsigned long len, unsigned long pgoff,
1736 		       unsigned long flags)
1737 {
1738 	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1739 }
1740 #endif
1741 
1742 /*
1743  * This mmap-allocator allocates new areas top-down from below the
1744  * stack's low limit (the base):
1745  */
1746 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1747 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1748 				  unsigned long len, unsigned long pgoff,
1749 				  unsigned long flags)
1750 {
1751 	struct vm_area_struct *vma, *prev;
1752 	struct mm_struct *mm = current->mm;
1753 	struct vm_unmapped_area_info info;
1754 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1755 
1756 	/* requested length too big for entire address space */
1757 	if (len > mmap_end - mmap_min_addr)
1758 		return -ENOMEM;
1759 
1760 	if (flags & MAP_FIXED)
1761 		return addr;
1762 
1763 	/* requesting a specific address */
1764 	if (addr) {
1765 		addr = PAGE_ALIGN(addr);
1766 		vma = find_vma_prev(mm, addr, &prev);
1767 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1768 				(!vma || addr + len <= vm_start_gap(vma)) &&
1769 				(!prev || addr >= vm_end_gap(prev)))
1770 			return addr;
1771 	}
1772 
1773 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1774 	info.length = len;
1775 	info.low_limit = PAGE_SIZE;
1776 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1777 	info.align_mask = 0;
1778 	info.align_offset = 0;
1779 	addr = vm_unmapped_area(&info);
1780 
1781 	/*
1782 	 * A failed mmap() very likely causes application failure,
1783 	 * so fall back to the bottom-up function here. This scenario
1784 	 * can happen with large stack limits and large mmap()
1785 	 * allocations.
1786 	 */
1787 	if (offset_in_page(addr)) {
1788 		VM_BUG_ON(addr != -ENOMEM);
1789 		info.flags = 0;
1790 		info.low_limit = TASK_UNMAPPED_BASE;
1791 		info.high_limit = mmap_end;
1792 		addr = vm_unmapped_area(&info);
1793 	}
1794 
1795 	return addr;
1796 }
1797 
1798 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1799 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1800 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1801 			       unsigned long len, unsigned long pgoff,
1802 			       unsigned long flags)
1803 {
1804 	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1805 }
1806 #endif
1807 
1808 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1809 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1810 		unsigned long pgoff, unsigned long flags)
1811 {
1812 	unsigned long (*get_area)(struct file *, unsigned long,
1813 				  unsigned long, unsigned long, unsigned long);
1814 
1815 	unsigned long error = arch_mmap_check(addr, len, flags);
1816 	if (error)
1817 		return error;
1818 
1819 	/* Careful about overflows.. */
1820 	if (len > TASK_SIZE)
1821 		return -ENOMEM;
1822 
1823 	get_area = current->mm->get_unmapped_area;
1824 	if (file) {
1825 		if (file->f_op->get_unmapped_area)
1826 			get_area = file->f_op->get_unmapped_area;
1827 	} else if (flags & MAP_SHARED) {
1828 		/*
1829 		 * mmap_region() will call shmem_zero_setup() to create a file,
1830 		 * so use shmem's get_unmapped_area in case it can be huge.
1831 		 * do_mmap() will clear pgoff, so match alignment.
1832 		 */
1833 		pgoff = 0;
1834 		get_area = shmem_get_unmapped_area;
1835 	}
1836 
1837 	addr = get_area(file, addr, len, pgoff, flags);
1838 	if (IS_ERR_VALUE(addr))
1839 		return addr;
1840 
1841 	if (addr > TASK_SIZE - len)
1842 		return -ENOMEM;
1843 	if (offset_in_page(addr))
1844 		return -EINVAL;
1845 
1846 	error = security_mmap_addr(addr);
1847 	return error ? error : addr;
1848 }
1849 
1850 EXPORT_SYMBOL(get_unmapped_area);
1851 
1852 /**
1853  * find_vma_intersection() - Look up the first VMA which intersects the interval
1854  * @mm: The process address space.
1855  * @start_addr: The inclusive start user address.
1856  * @end_addr: The exclusive end user address.
1857  *
1858  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1859  * start_addr < end_addr.
1860  */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1861 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1862 					     unsigned long start_addr,
1863 					     unsigned long end_addr)
1864 {
1865 	unsigned long index = start_addr;
1866 
1867 	mmap_assert_locked(mm);
1868 	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1869 }
1870 EXPORT_SYMBOL(find_vma_intersection);
1871 
1872 /**
1873  * find_vma() - Find the VMA for a given address, or the next VMA.
1874  * @mm: The mm_struct to check
1875  * @addr: The address
1876  *
1877  * Returns: The VMA associated with addr, or the next VMA.
1878  * May return %NULL in the case of no VMA at addr or above.
1879  */
find_vma(struct mm_struct * mm,unsigned long addr)1880 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1881 {
1882 	unsigned long index = addr;
1883 
1884 	mmap_assert_locked(mm);
1885 	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1886 }
1887 EXPORT_SYMBOL(find_vma);
1888 
1889 /**
1890  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1891  * set %pprev to the previous VMA, if any.
1892  * @mm: The mm_struct to check
1893  * @addr: The address
1894  * @pprev: The pointer to set to the previous VMA
1895  *
1896  * Note that RCU lock is missing here since the external mmap_lock() is used
1897  * instead.
1898  *
1899  * Returns: The VMA associated with @addr, or the next vma.
1900  * May return %NULL in the case of no vma at addr or above.
1901  */
1902 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1903 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1904 			struct vm_area_struct **pprev)
1905 {
1906 	struct vm_area_struct *vma;
1907 	MA_STATE(mas, &mm->mm_mt, addr, addr);
1908 
1909 	vma = mas_walk(&mas);
1910 	*pprev = mas_prev(&mas, 0);
1911 	if (!vma)
1912 		vma = mas_next(&mas, ULONG_MAX);
1913 	return vma;
1914 }
1915 
1916 /*
1917  * Verify that the stack growth is acceptable and
1918  * update accounting. This is shared with both the
1919  * grow-up and grow-down cases.
1920  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1921 static int acct_stack_growth(struct vm_area_struct *vma,
1922 			     unsigned long size, unsigned long grow)
1923 {
1924 	struct mm_struct *mm = vma->vm_mm;
1925 	unsigned long new_start;
1926 
1927 	/* address space limit tests */
1928 	if (!may_expand_vm(mm, vma->vm_flags, grow))
1929 		return -ENOMEM;
1930 
1931 	/* Stack limit test */
1932 	if (size > rlimit(RLIMIT_STACK))
1933 		return -ENOMEM;
1934 
1935 	/* mlock limit tests */
1936 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1937 		return -ENOMEM;
1938 
1939 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1940 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1941 			vma->vm_end - size;
1942 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1943 		return -EFAULT;
1944 
1945 	/*
1946 	 * Overcommit..  This must be the final test, as it will
1947 	 * update security statistics.
1948 	 */
1949 	if (security_vm_enough_memory_mm(mm, grow))
1950 		return -ENOMEM;
1951 
1952 	return 0;
1953 }
1954 
1955 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1956 /*
1957  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1958  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1959  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1960 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1961 {
1962 	struct mm_struct *mm = vma->vm_mm;
1963 	struct vm_area_struct *next;
1964 	unsigned long gap_addr;
1965 	int error = 0;
1966 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1967 
1968 	if (!(vma->vm_flags & VM_GROWSUP))
1969 		return -EFAULT;
1970 
1971 	/* Guard against exceeding limits of the address space. */
1972 	address &= PAGE_MASK;
1973 	if (address >= (TASK_SIZE & PAGE_MASK))
1974 		return -ENOMEM;
1975 	address += PAGE_SIZE;
1976 
1977 	/* Enforce stack_guard_gap */
1978 	gap_addr = address + stack_guard_gap;
1979 
1980 	/* Guard against overflow */
1981 	if (gap_addr < address || gap_addr > TASK_SIZE)
1982 		gap_addr = TASK_SIZE;
1983 
1984 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1985 	if (next && vma_is_accessible(next)) {
1986 		if (!(next->vm_flags & VM_GROWSUP))
1987 			return -ENOMEM;
1988 		/* Check that both stack segments have the same anon_vma? */
1989 	}
1990 
1991 	if (next)
1992 		mas_prev_range(&mas, address);
1993 
1994 	__mas_set_range(&mas, vma->vm_start, address - 1);
1995 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
1996 		return -ENOMEM;
1997 
1998 	/* We must make sure the anon_vma is allocated. */
1999 	if (unlikely(anon_vma_prepare(vma))) {
2000 		mas_destroy(&mas);
2001 		return -ENOMEM;
2002 	}
2003 
2004 	/* Lock the VMA before expanding to prevent concurrent page faults */
2005 	vma_start_write(vma);
2006 	/*
2007 	 * vma->vm_start/vm_end cannot change under us because the caller
2008 	 * is required to hold the mmap_lock in read mode.  We need the
2009 	 * anon_vma lock to serialize against concurrent expand_stacks.
2010 	 */
2011 	anon_vma_lock_write(vma->anon_vma);
2012 
2013 	/* Somebody else might have raced and expanded it already */
2014 	if (address > vma->vm_end) {
2015 		unsigned long size, grow;
2016 
2017 		size = address - vma->vm_start;
2018 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2019 
2020 		error = -ENOMEM;
2021 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2022 			error = acct_stack_growth(vma, size, grow);
2023 			if (!error) {
2024 				/*
2025 				 * We only hold a shared mmap_lock lock here, so
2026 				 * we need to protect against concurrent vma
2027 				 * expansions.  anon_vma_lock_write() doesn't
2028 				 * help here, as we don't guarantee that all
2029 				 * growable vmas in a mm share the same root
2030 				 * anon vma.  So, we reuse mm->page_table_lock
2031 				 * to guard against concurrent vma expansions.
2032 				 */
2033 				spin_lock(&mm->page_table_lock);
2034 				if (vma->vm_flags & VM_LOCKED)
2035 					mm->locked_vm += grow;
2036 				vm_stat_account(mm, vma->vm_flags, grow);
2037 				anon_vma_interval_tree_pre_update_vma(vma);
2038 				vma->vm_end = address;
2039 				/* Overwrite old entry in mtree. */
2040 				mas_store_prealloc(&mas, vma);
2041 				anon_vma_interval_tree_post_update_vma(vma);
2042 				spin_unlock(&mm->page_table_lock);
2043 
2044 				perf_event_mmap(vma);
2045 			}
2046 		}
2047 	}
2048 	anon_vma_unlock_write(vma->anon_vma);
2049 	khugepaged_enter_vma(vma, vma->vm_flags);
2050 	mas_destroy(&mas);
2051 	validate_mm(mm);
2052 	return error;
2053 }
2054 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2055 
2056 /*
2057  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2058  * mmap_lock held for writing.
2059  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2060 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2061 {
2062 	struct mm_struct *mm = vma->vm_mm;
2063 	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2064 	struct vm_area_struct *prev;
2065 	int error = 0;
2066 
2067 	if (!(vma->vm_flags & VM_GROWSDOWN))
2068 		return -EFAULT;
2069 
2070 	address &= PAGE_MASK;
2071 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2072 		return -EPERM;
2073 
2074 	/* Enforce stack_guard_gap */
2075 	prev = mas_prev(&mas, 0);
2076 	/* Check that both stack segments have the same anon_vma? */
2077 	if (prev) {
2078 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2079 		    vma_is_accessible(prev) &&
2080 		    (address - prev->vm_end < stack_guard_gap))
2081 			return -ENOMEM;
2082 	}
2083 
2084 	if (prev)
2085 		mas_next_range(&mas, vma->vm_start);
2086 
2087 	__mas_set_range(&mas, address, vma->vm_end - 1);
2088 	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2089 		return -ENOMEM;
2090 
2091 	/* We must make sure the anon_vma is allocated. */
2092 	if (unlikely(anon_vma_prepare(vma))) {
2093 		mas_destroy(&mas);
2094 		return -ENOMEM;
2095 	}
2096 
2097 	/* Lock the VMA before expanding to prevent concurrent page faults */
2098 	vma_start_write(vma);
2099 	/*
2100 	 * vma->vm_start/vm_end cannot change under us because the caller
2101 	 * is required to hold the mmap_lock in read mode.  We need the
2102 	 * anon_vma lock to serialize against concurrent expand_stacks.
2103 	 */
2104 	anon_vma_lock_write(vma->anon_vma);
2105 
2106 	/* Somebody else might have raced and expanded it already */
2107 	if (address < vma->vm_start) {
2108 		unsigned long size, grow;
2109 
2110 		size = vma->vm_end - address;
2111 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2112 
2113 		error = -ENOMEM;
2114 		if (grow <= vma->vm_pgoff) {
2115 			error = acct_stack_growth(vma, size, grow);
2116 			if (!error) {
2117 				/*
2118 				 * We only hold a shared mmap_lock lock here, so
2119 				 * we need to protect against concurrent vma
2120 				 * expansions.  anon_vma_lock_write() doesn't
2121 				 * help here, as we don't guarantee that all
2122 				 * growable vmas in a mm share the same root
2123 				 * anon vma.  So, we reuse mm->page_table_lock
2124 				 * to guard against concurrent vma expansions.
2125 				 */
2126 				spin_lock(&mm->page_table_lock);
2127 				if (vma->vm_flags & VM_LOCKED)
2128 					mm->locked_vm += grow;
2129 				vm_stat_account(mm, vma->vm_flags, grow);
2130 				anon_vma_interval_tree_pre_update_vma(vma);
2131 				vma->vm_start = address;
2132 				vma->vm_pgoff -= grow;
2133 				/* Overwrite old entry in mtree. */
2134 				mas_store_prealloc(&mas, vma);
2135 				anon_vma_interval_tree_post_update_vma(vma);
2136 				spin_unlock(&mm->page_table_lock);
2137 
2138 				perf_event_mmap(vma);
2139 			}
2140 		}
2141 	}
2142 	anon_vma_unlock_write(vma->anon_vma);
2143 	khugepaged_enter_vma(vma, vma->vm_flags);
2144 	mas_destroy(&mas);
2145 	validate_mm(mm);
2146 	return error;
2147 }
2148 
2149 /* enforced gap between the expanding stack and other mappings. */
2150 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2151 
cmdline_parse_stack_guard_gap(char * p)2152 static int __init cmdline_parse_stack_guard_gap(char *p)
2153 {
2154 	unsigned long val;
2155 	char *endptr;
2156 
2157 	val = simple_strtoul(p, &endptr, 10);
2158 	if (!*endptr)
2159 		stack_guard_gap = val << PAGE_SHIFT;
2160 
2161 	return 1;
2162 }
2163 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2164 
2165 #ifdef CONFIG_STACK_GROWSUP
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)2166 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2167 {
2168 	return expand_upwards(vma, address);
2169 }
2170 
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)2171 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2172 {
2173 	struct vm_area_struct *vma, *prev;
2174 
2175 	addr &= PAGE_MASK;
2176 	vma = find_vma_prev(mm, addr, &prev);
2177 	if (vma && (vma->vm_start <= addr))
2178 		return vma;
2179 	if (!prev)
2180 		return NULL;
2181 	if (expand_stack_locked(prev, addr))
2182 		return NULL;
2183 	if (prev->vm_flags & VM_LOCKED)
2184 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2185 	return prev;
2186 }
2187 #else
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)2188 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2189 {
2190 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2191 		return -EINVAL;
2192 	return expand_downwards(vma, address);
2193 }
2194 
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)2195 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2196 {
2197 	struct vm_area_struct *vma;
2198 	unsigned long start;
2199 
2200 	addr &= PAGE_MASK;
2201 	vma = find_vma(mm, addr);
2202 	if (!vma)
2203 		return NULL;
2204 	if (vma->vm_start <= addr)
2205 		return vma;
2206 	start = vma->vm_start;
2207 	if (expand_stack_locked(vma, addr))
2208 		return NULL;
2209 	if (vma->vm_flags & VM_LOCKED)
2210 		populate_vma_page_range(vma, addr, start, NULL);
2211 	return vma;
2212 }
2213 #endif
2214 
2215 /*
2216  * IA64 has some horrid mapping rules: it can expand both up and down,
2217  * but with various special rules.
2218  *
2219  * We'll get rid of this architecture eventually, so the ugliness is
2220  * temporary.
2221  */
2222 #ifdef CONFIG_IA64
vma_expand_ok(struct vm_area_struct * vma,unsigned long addr)2223 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2224 {
2225 	return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2226 		REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2227 }
2228 
2229 /*
2230  * IA64 stacks grow down, but there's a special register backing store
2231  * that can grow up. Only sequentially, though, so the new address must
2232  * match vm_end.
2233  */
vma_expand_up(struct vm_area_struct * vma,unsigned long addr)2234 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2235 {
2236 	if (!vma_expand_ok(vma, addr))
2237 		return -EFAULT;
2238 	if (vma->vm_end != (addr & PAGE_MASK))
2239 		return -EFAULT;
2240 	return expand_upwards(vma, addr);
2241 }
2242 
vma_expand_down(struct vm_area_struct * vma,unsigned long addr)2243 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2244 {
2245 	if (!vma_expand_ok(vma, addr))
2246 		return -EFAULT;
2247 	return expand_downwards(vma, addr);
2248 }
2249 
2250 #elif defined(CONFIG_STACK_GROWSUP)
2251 
2252 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2253 #define vma_expand_down(vma, addr) (-EFAULT)
2254 
2255 #else
2256 
2257 #define vma_expand_up(vma,addr) (-EFAULT)
2258 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2259 
2260 #endif
2261 
2262 /*
2263  * expand_stack(): legacy interface for page faulting. Don't use unless
2264  * you have to.
2265  *
2266  * This is called with the mm locked for reading, drops the lock, takes
2267  * the lock for writing, tries to look up a vma again, expands it if
2268  * necessary, and downgrades the lock to reading again.
2269  *
2270  * If no vma is found or it can't be expanded, it returns NULL and has
2271  * dropped the lock.
2272  */
expand_stack(struct mm_struct * mm,unsigned long addr)2273 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2274 {
2275 	struct vm_area_struct *vma, *prev;
2276 
2277 	mmap_read_unlock(mm);
2278 	if (mmap_write_lock_killable(mm))
2279 		return NULL;
2280 
2281 	vma = find_vma_prev(mm, addr, &prev);
2282 	if (vma && vma->vm_start <= addr)
2283 		goto success;
2284 
2285 	if (prev && !vma_expand_up(prev, addr)) {
2286 		vma = prev;
2287 		goto success;
2288 	}
2289 
2290 	if (vma && !vma_expand_down(vma, addr))
2291 		goto success;
2292 
2293 	mmap_write_unlock(mm);
2294 	return NULL;
2295 
2296 success:
2297 	mmap_write_downgrade(mm);
2298 	return vma;
2299 }
2300 
2301 /*
2302  * Ok - we have the memory areas we should free on a maple tree so release them,
2303  * and do the vma updates.
2304  *
2305  * Called with the mm semaphore held.
2306  */
remove_mt(struct mm_struct * mm,struct ma_state * mas)2307 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2308 {
2309 	unsigned long nr_accounted = 0;
2310 	struct vm_area_struct *vma;
2311 
2312 	/* Update high watermark before we lower total_vm */
2313 	update_hiwater_vm(mm);
2314 	mas_for_each(mas, vma, ULONG_MAX) {
2315 		long nrpages = vma_pages(vma);
2316 
2317 		if (vma->vm_flags & VM_ACCOUNT)
2318 			nr_accounted += nrpages;
2319 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2320 		remove_vma(vma, false);
2321 	}
2322 	vm_unacct_memory(nr_accounted);
2323 }
2324 
2325 /*
2326  * Get rid of page table information in the indicated region.
2327  *
2328  * Called with the mm semaphore held.
2329  */
unmap_region(struct mm_struct * mm,struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next,unsigned long start,unsigned long end,unsigned long tree_end,bool mm_wr_locked)2330 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2331 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2332 		struct vm_area_struct *next, unsigned long start,
2333 		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2334 {
2335 	struct mmu_gather tlb;
2336 	unsigned long mt_start = mas->index;
2337 
2338 	lru_add_drain();
2339 	tlb_gather_mmu(&tlb, mm);
2340 	update_hiwater_rss(mm);
2341 	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2342 	mas_set(mas, mt_start);
2343 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2344 				 next ? next->vm_start : USER_PGTABLES_CEILING,
2345 				 mm_wr_locked);
2346 	tlb_finish_mmu(&tlb);
2347 }
2348 
2349 /*
2350  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2351  * has already been checked or doesn't make sense to fail.
2352  * VMA Iterator will point to the end VMA.
2353  */
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)2354 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2355 		unsigned long addr, int new_below)
2356 {
2357 	struct vma_prepare vp;
2358 	struct vm_area_struct *new;
2359 	int err;
2360 
2361 	WARN_ON(vma->vm_start >= addr);
2362 	WARN_ON(vma->vm_end <= addr);
2363 
2364 	if (vma->vm_ops && vma->vm_ops->may_split) {
2365 		err = vma->vm_ops->may_split(vma, addr);
2366 		if (err)
2367 			return err;
2368 	}
2369 
2370 	new = vm_area_dup(vma);
2371 	if (!new)
2372 		return -ENOMEM;
2373 
2374 	if (new_below) {
2375 		new->vm_end = addr;
2376 	} else {
2377 		new->vm_start = addr;
2378 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2379 	}
2380 
2381 	err = -ENOMEM;
2382 	vma_iter_config(vmi, new->vm_start, new->vm_end);
2383 	if (vma_iter_prealloc(vmi, new))
2384 		goto out_free_vma;
2385 
2386 	err = vma_dup_policy(vma, new);
2387 	if (err)
2388 		goto out_free_vmi;
2389 
2390 	err = anon_vma_clone(new, vma);
2391 	if (err)
2392 		goto out_free_mpol;
2393 
2394 	if (new->vm_file)
2395 		get_file(new->vm_file);
2396 
2397 	if (new->vm_ops && new->vm_ops->open)
2398 		new->vm_ops->open(new);
2399 
2400 	vma_start_write(vma);
2401 	vma_start_write(new);
2402 
2403 	init_vma_prep(&vp, vma);
2404 	vp.insert = new;
2405 	vma_prepare(&vp);
2406 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2407 
2408 	if (new_below) {
2409 		vma->vm_start = addr;
2410 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2411 	} else {
2412 		vma->vm_end = addr;
2413 	}
2414 
2415 	/* vma_complete stores the new vma */
2416 	vma_complete(&vp, vmi, vma->vm_mm);
2417 
2418 	/* Success. */
2419 	if (new_below)
2420 		vma_next(vmi);
2421 	return 0;
2422 
2423 out_free_mpol:
2424 	mpol_put(vma_policy(new));
2425 out_free_vmi:
2426 	vma_iter_free(vmi);
2427 out_free_vma:
2428 	vm_area_free(new);
2429 	return err;
2430 }
2431 
2432 /*
2433  * Split a vma into two pieces at address 'addr', a new vma is allocated
2434  * either for the first part or the tail.
2435  */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)2436 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2437 	      unsigned long addr, int new_below)
2438 {
2439 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2440 		return -ENOMEM;
2441 
2442 	return __split_vma(vmi, vma, addr, new_below);
2443 }
2444 
2445 /*
2446  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2447  * @vmi: The vma iterator
2448  * @vma: The starting vm_area_struct
2449  * @mm: The mm_struct
2450  * @start: The aligned start address to munmap.
2451  * @end: The aligned end address to munmap.
2452  * @uf: The userfaultfd list_head
2453  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2454  * success.
2455  *
2456  * Return: 0 on success and drops the lock if so directed, error and leaves the
2457  * lock held otherwise.
2458  */
2459 static int
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)2460 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2461 		    struct mm_struct *mm, unsigned long start,
2462 		    unsigned long end, struct list_head *uf, bool unlock)
2463 {
2464 	struct vm_area_struct *prev, *next = NULL;
2465 	struct maple_tree mt_detach;
2466 	int count = 0;
2467 	int error = -ENOMEM;
2468 	unsigned long locked_vm = 0;
2469 	MA_STATE(mas_detach, &mt_detach, 0, 0);
2470 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2471 	mt_on_stack(mt_detach);
2472 
2473 	/*
2474 	 * If we need to split any vma, do it now to save pain later.
2475 	 *
2476 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2477 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2478 	 * places tmp vma above, and higher split_vma places tmp vma below.
2479 	 */
2480 
2481 	/* Does it split the first one? */
2482 	if (start > vma->vm_start) {
2483 
2484 		/*
2485 		 * Make sure that map_count on return from munmap() will
2486 		 * not exceed its limit; but let map_count go just above
2487 		 * its limit temporarily, to help free resources as expected.
2488 		 */
2489 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2490 			goto map_count_exceeded;
2491 
2492 		error = __split_vma(vmi, vma, start, 1);
2493 		if (error)
2494 			goto start_split_failed;
2495 	}
2496 
2497 	/*
2498 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2499 	 * it is always overwritten.
2500 	 */
2501 	next = vma;
2502 	do {
2503 		/* Does it split the end? */
2504 		if (next->vm_end > end) {
2505 			error = __split_vma(vmi, next, end, 0);
2506 			if (error)
2507 				goto end_split_failed;
2508 		}
2509 		vma_start_write(next);
2510 		mas_set(&mas_detach, count);
2511 		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2512 		if (error)
2513 			goto munmap_gather_failed;
2514 		vma_mark_detached(next, true);
2515 		if (next->vm_flags & VM_LOCKED)
2516 			locked_vm += vma_pages(next);
2517 
2518 		count++;
2519 		if (unlikely(uf)) {
2520 			/*
2521 			 * If userfaultfd_unmap_prep returns an error the vmas
2522 			 * will remain split, but userland will get a
2523 			 * highly unexpected error anyway. This is no
2524 			 * different than the case where the first of the two
2525 			 * __split_vma fails, but we don't undo the first
2526 			 * split, despite we could. This is unlikely enough
2527 			 * failure that it's not worth optimizing it for.
2528 			 */
2529 			error = userfaultfd_unmap_prep(next, start, end, uf);
2530 
2531 			if (error)
2532 				goto userfaultfd_error;
2533 		}
2534 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2535 		BUG_ON(next->vm_start < start);
2536 		BUG_ON(next->vm_start > end);
2537 #endif
2538 	} for_each_vma_range(*vmi, next, end);
2539 
2540 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2541 	/* Make sure no VMAs are about to be lost. */
2542 	{
2543 		MA_STATE(test, &mt_detach, 0, 0);
2544 		struct vm_area_struct *vma_mas, *vma_test;
2545 		int test_count = 0;
2546 
2547 		vma_iter_set(vmi, start);
2548 		rcu_read_lock();
2549 		vma_test = mas_find(&test, count - 1);
2550 		for_each_vma_range(*vmi, vma_mas, end) {
2551 			BUG_ON(vma_mas != vma_test);
2552 			test_count++;
2553 			vma_test = mas_next(&test, count - 1);
2554 		}
2555 		rcu_read_unlock();
2556 		BUG_ON(count != test_count);
2557 	}
2558 #endif
2559 
2560 	while (vma_iter_addr(vmi) > start)
2561 		vma_iter_prev_range(vmi);
2562 
2563 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2564 	if (error)
2565 		goto clear_tree_failed;
2566 
2567 	/* Point of no return */
2568 	mm->locked_vm -= locked_vm;
2569 	mm->map_count -= count;
2570 	if (unlock)
2571 		mmap_write_downgrade(mm);
2572 
2573 	prev = vma_iter_prev_range(vmi);
2574 	next = vma_next(vmi);
2575 	if (next)
2576 		vma_iter_prev_range(vmi);
2577 
2578 	/*
2579 	 * We can free page tables without write-locking mmap_lock because VMAs
2580 	 * were isolated before we downgraded mmap_lock.
2581 	 */
2582 	mas_set(&mas_detach, 1);
2583 	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2584 		     !unlock);
2585 	/* Statistics and freeing VMAs */
2586 	mas_set(&mas_detach, 0);
2587 	remove_mt(mm, &mas_detach);
2588 	validate_mm(mm);
2589 	if (unlock)
2590 		mmap_read_unlock(mm);
2591 
2592 	__mt_destroy(&mt_detach);
2593 	return 0;
2594 
2595 clear_tree_failed:
2596 userfaultfd_error:
2597 munmap_gather_failed:
2598 end_split_failed:
2599 	mas_set(&mas_detach, 0);
2600 	mas_for_each(&mas_detach, next, end)
2601 		vma_mark_detached(next, false);
2602 
2603 	__mt_destroy(&mt_detach);
2604 start_split_failed:
2605 map_count_exceeded:
2606 	validate_mm(mm);
2607 	return error;
2608 }
2609 
2610 /*
2611  * do_vmi_munmap() - munmap a given range.
2612  * @vmi: The vma iterator
2613  * @mm: The mm_struct
2614  * @start: The start address to munmap
2615  * @len: The length of the range to munmap
2616  * @uf: The userfaultfd list_head
2617  * @unlock: set to true if the user wants to drop the mmap_lock on success
2618  *
2619  * This function takes a @mas that is either pointing to the previous VMA or set
2620  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2621  * aligned and any arch_unmap work will be preformed.
2622  *
2623  * Return: 0 on success and drops the lock if so directed, error and leaves the
2624  * lock held otherwise.
2625  */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)2626 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2627 		  unsigned long start, size_t len, struct list_head *uf,
2628 		  bool unlock)
2629 {
2630 	unsigned long end;
2631 	struct vm_area_struct *vma;
2632 
2633 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2634 		return -EINVAL;
2635 
2636 	end = start + PAGE_ALIGN(len);
2637 	if (end == start)
2638 		return -EINVAL;
2639 
2640 	 /* arch_unmap() might do unmaps itself.  */
2641 	arch_unmap(mm, start, end);
2642 
2643 	/* Find the first overlapping VMA */
2644 	vma = vma_find(vmi, end);
2645 	if (!vma) {
2646 		if (unlock)
2647 			mmap_write_unlock(mm);
2648 		return 0;
2649 	}
2650 
2651 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2652 }
2653 
2654 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2655  * @mm: The mm_struct
2656  * @start: The start address to munmap
2657  * @len: The length to be munmapped.
2658  * @uf: The userfaultfd list_head
2659  *
2660  * Return: 0 on success, error otherwise.
2661  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2662 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2663 	      struct list_head *uf)
2664 {
2665 	VMA_ITERATOR(vmi, mm, start);
2666 
2667 	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2668 }
2669 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2670 unsigned long mmap_region(struct file *file, unsigned long addr,
2671 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2672 		struct list_head *uf)
2673 {
2674 	struct mm_struct *mm = current->mm;
2675 	struct vm_area_struct *vma = NULL;
2676 	struct vm_area_struct *next, *prev, *merge;
2677 	pgoff_t pglen = len >> PAGE_SHIFT;
2678 	unsigned long charged = 0;
2679 	unsigned long end = addr + len;
2680 	unsigned long merge_start = addr, merge_end = end;
2681 	pgoff_t vm_pgoff;
2682 	int error;
2683 	VMA_ITERATOR(vmi, mm, addr);
2684 
2685 	/* Check against address space limit. */
2686 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2687 		unsigned long nr_pages;
2688 
2689 		/*
2690 		 * MAP_FIXED may remove pages of mappings that intersects with
2691 		 * requested mapping. Account for the pages it would unmap.
2692 		 */
2693 		nr_pages = count_vma_pages_range(mm, addr, end);
2694 
2695 		if (!may_expand_vm(mm, vm_flags,
2696 					(len >> PAGE_SHIFT) - nr_pages))
2697 			return -ENOMEM;
2698 	}
2699 
2700 	/* Unmap any existing mapping in the area */
2701 	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2702 		return -ENOMEM;
2703 
2704 	/*
2705 	 * Private writable mapping: check memory availability
2706 	 */
2707 	if (accountable_mapping(file, vm_flags)) {
2708 		charged = len >> PAGE_SHIFT;
2709 		if (security_vm_enough_memory_mm(mm, charged))
2710 			return -ENOMEM;
2711 		vm_flags |= VM_ACCOUNT;
2712 	}
2713 
2714 	next = vma_next(&vmi);
2715 	prev = vma_prev(&vmi);
2716 	if (vm_flags & VM_SPECIAL) {
2717 		if (prev)
2718 			vma_iter_next_range(&vmi);
2719 		goto cannot_expand;
2720 	}
2721 
2722 	/* Attempt to expand an old mapping */
2723 	/* Check next */
2724 	if (next && next->vm_start == end && !vma_policy(next) &&
2725 	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2726 				 NULL_VM_UFFD_CTX, NULL)) {
2727 		merge_end = next->vm_end;
2728 		vma = next;
2729 		vm_pgoff = next->vm_pgoff - pglen;
2730 	}
2731 
2732 	/* Check prev */
2733 	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2734 	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2735 				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2736 		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2737 				       NULL_VM_UFFD_CTX, NULL))) {
2738 		merge_start = prev->vm_start;
2739 		vma = prev;
2740 		vm_pgoff = prev->vm_pgoff;
2741 	} else if (prev) {
2742 		vma_iter_next_range(&vmi);
2743 	}
2744 
2745 	/* Actually expand, if possible */
2746 	if (vma &&
2747 	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2748 		khugepaged_enter_vma(vma, vm_flags);
2749 		goto expanded;
2750 	}
2751 
2752 	if (vma == prev)
2753 		vma_iter_set(&vmi, addr);
2754 cannot_expand:
2755 
2756 	/*
2757 	 * Determine the object being mapped and call the appropriate
2758 	 * specific mapper. the address has already been validated, but
2759 	 * not unmapped, but the maps are removed from the list.
2760 	 */
2761 	vma = vm_area_alloc(mm);
2762 	if (!vma) {
2763 		error = -ENOMEM;
2764 		goto unacct_error;
2765 	}
2766 
2767 	vma_iter_config(&vmi, addr, end);
2768 	vma->vm_start = addr;
2769 	vma->vm_end = end;
2770 	vm_flags_init(vma, vm_flags);
2771 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2772 	vma->vm_pgoff = pgoff;
2773 
2774 	if (file) {
2775 		if (vm_flags & VM_SHARED) {
2776 			error = mapping_map_writable(file->f_mapping);
2777 			if (error)
2778 				goto free_vma;
2779 		}
2780 
2781 		vma->vm_file = get_file(file);
2782 		error = call_mmap(file, vma);
2783 		if (error)
2784 			goto unmap_and_free_vma;
2785 
2786 		/*
2787 		 * Expansion is handled above, merging is handled below.
2788 		 * Drivers should not alter the address of the VMA.
2789 		 */
2790 		error = -EINVAL;
2791 		if (WARN_ON((addr != vma->vm_start)))
2792 			goto close_and_free_vma;
2793 
2794 		vma_iter_config(&vmi, addr, end);
2795 		/*
2796 		 * If vm_flags changed after call_mmap(), we should try merge
2797 		 * vma again as we may succeed this time.
2798 		 */
2799 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2800 			merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2801 				    vma->vm_end, vma->vm_flags, NULL,
2802 				    vma->vm_file, vma->vm_pgoff, NULL,
2803 				    NULL_VM_UFFD_CTX, NULL);
2804 			if (merge) {
2805 				/*
2806 				 * ->mmap() can change vma->vm_file and fput
2807 				 * the original file. So fput the vma->vm_file
2808 				 * here or we would add an extra fput for file
2809 				 * and cause general protection fault
2810 				 * ultimately.
2811 				 */
2812 				fput(vma->vm_file);
2813 				vm_area_free(vma);
2814 				vma = merge;
2815 				/* Update vm_flags to pick up the change. */
2816 				vm_flags = vma->vm_flags;
2817 				goto unmap_writable;
2818 			}
2819 		}
2820 
2821 		vm_flags = vma->vm_flags;
2822 	} else if (vm_flags & VM_SHARED) {
2823 		error = shmem_zero_setup(vma);
2824 		if (error)
2825 			goto free_vma;
2826 	} else {
2827 		vma_set_anonymous(vma);
2828 	}
2829 
2830 	if (map_deny_write_exec(vma, vma->vm_flags)) {
2831 		error = -EACCES;
2832 		goto close_and_free_vma;
2833 	}
2834 
2835 	/* Allow architectures to sanity-check the vm_flags */
2836 	error = -EINVAL;
2837 	if (!arch_validate_flags(vma->vm_flags))
2838 		goto close_and_free_vma;
2839 
2840 	error = -ENOMEM;
2841 	if (vma_iter_prealloc(&vmi, vma))
2842 		goto close_and_free_vma;
2843 
2844 	/* Lock the VMA since it is modified after insertion into VMA tree */
2845 	vma_start_write(vma);
2846 	vma_iter_store(&vmi, vma);
2847 	mm->map_count++;
2848 	if (vma->vm_file) {
2849 		i_mmap_lock_write(vma->vm_file->f_mapping);
2850 		if (vma->vm_flags & VM_SHARED)
2851 			mapping_allow_writable(vma->vm_file->f_mapping);
2852 
2853 		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2854 		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2855 		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2856 		i_mmap_unlock_write(vma->vm_file->f_mapping);
2857 	}
2858 
2859 	/*
2860 	 * vma_merge() calls khugepaged_enter_vma() either, the below
2861 	 * call covers the non-merge case.
2862 	 */
2863 	khugepaged_enter_vma(vma, vma->vm_flags);
2864 
2865 	/* Once vma denies write, undo our temporary denial count */
2866 unmap_writable:
2867 	if (file && vm_flags & VM_SHARED)
2868 		mapping_unmap_writable(file->f_mapping);
2869 	file = vma->vm_file;
2870 	ksm_add_vma(vma);
2871 expanded:
2872 	perf_event_mmap(vma);
2873 
2874 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2875 	if (vm_flags & VM_LOCKED) {
2876 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2877 					is_vm_hugetlb_page(vma) ||
2878 					vma == get_gate_vma(current->mm))
2879 			vm_flags_clear(vma, VM_LOCKED_MASK);
2880 		else
2881 			mm->locked_vm += (len >> PAGE_SHIFT);
2882 	}
2883 
2884 	if (file)
2885 		uprobe_mmap(vma);
2886 
2887 	/*
2888 	 * New (or expanded) vma always get soft dirty status.
2889 	 * Otherwise user-space soft-dirty page tracker won't
2890 	 * be able to distinguish situation when vma area unmapped,
2891 	 * then new mapped in-place (which must be aimed as
2892 	 * a completely new data area).
2893 	 */
2894 	vm_flags_set(vma, VM_SOFTDIRTY);
2895 
2896 	vma_set_page_prot(vma);
2897 
2898 	validate_mm(mm);
2899 	return addr;
2900 
2901 close_and_free_vma:
2902 	if (file && vma->vm_ops && vma->vm_ops->close)
2903 		vma->vm_ops->close(vma);
2904 
2905 	if (file || vma->vm_file) {
2906 unmap_and_free_vma:
2907 		fput(vma->vm_file);
2908 		vma->vm_file = NULL;
2909 
2910 		vma_iter_set(&vmi, vma->vm_end);
2911 		/* Undo any partial mapping done by a device driver. */
2912 		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2913 			     vma->vm_end, vma->vm_end, true);
2914 	}
2915 	if (file && (vm_flags & VM_SHARED))
2916 		mapping_unmap_writable(file->f_mapping);
2917 free_vma:
2918 	vm_area_free(vma);
2919 unacct_error:
2920 	if (charged)
2921 		vm_unacct_memory(charged);
2922 	validate_mm(mm);
2923 	return error;
2924 }
2925 
__vm_munmap(unsigned long start,size_t len,bool unlock)2926 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2927 {
2928 	int ret;
2929 	struct mm_struct *mm = current->mm;
2930 	LIST_HEAD(uf);
2931 	VMA_ITERATOR(vmi, mm, start);
2932 
2933 	if (mmap_write_lock_killable(mm))
2934 		return -EINTR;
2935 
2936 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2937 	if (ret || !unlock)
2938 		mmap_write_unlock(mm);
2939 
2940 	userfaultfd_unmap_complete(mm, &uf);
2941 	return ret;
2942 }
2943 
vm_munmap(unsigned long start,size_t len)2944 int vm_munmap(unsigned long start, size_t len)
2945 {
2946 	return __vm_munmap(start, len, false);
2947 }
2948 EXPORT_SYMBOL(vm_munmap);
2949 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2951 {
2952 	addr = untagged_addr(addr);
2953 	return __vm_munmap(addr, len, true);
2954 }
2955 
2956 
2957 /*
2958  * Emulation of deprecated remap_file_pages() syscall.
2959  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2960 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2961 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2962 {
2963 
2964 	struct mm_struct *mm = current->mm;
2965 	struct vm_area_struct *vma;
2966 	unsigned long populate = 0;
2967 	unsigned long ret = -EINVAL;
2968 	struct file *file;
2969 
2970 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2971 		     current->comm, current->pid);
2972 
2973 	if (prot)
2974 		return ret;
2975 	start = start & PAGE_MASK;
2976 	size = size & PAGE_MASK;
2977 
2978 	if (start + size <= start)
2979 		return ret;
2980 
2981 	/* Does pgoff wrap? */
2982 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2983 		return ret;
2984 
2985 	if (mmap_write_lock_killable(mm))
2986 		return -EINTR;
2987 
2988 	vma = vma_lookup(mm, start);
2989 
2990 	if (!vma || !(vma->vm_flags & VM_SHARED))
2991 		goto out;
2992 
2993 	if (start + size > vma->vm_end) {
2994 		VMA_ITERATOR(vmi, mm, vma->vm_end);
2995 		struct vm_area_struct *next, *prev = vma;
2996 
2997 		for_each_vma_range(vmi, next, start + size) {
2998 			/* hole between vmas ? */
2999 			if (next->vm_start != prev->vm_end)
3000 				goto out;
3001 
3002 			if (next->vm_file != vma->vm_file)
3003 				goto out;
3004 
3005 			if (next->vm_flags != vma->vm_flags)
3006 				goto out;
3007 
3008 			if (start + size <= next->vm_end)
3009 				break;
3010 
3011 			prev = next;
3012 		}
3013 
3014 		if (!next)
3015 			goto out;
3016 	}
3017 
3018 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3019 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3020 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3021 
3022 	flags &= MAP_NONBLOCK;
3023 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3024 	if (vma->vm_flags & VM_LOCKED)
3025 		flags |= MAP_LOCKED;
3026 
3027 	file = get_file(vma->vm_file);
3028 	ret = do_mmap(vma->vm_file, start, size,
3029 			prot, flags, 0, pgoff, &populate, NULL);
3030 	fput(file);
3031 out:
3032 	mmap_write_unlock(mm);
3033 	if (populate)
3034 		mm_populate(ret, populate);
3035 	if (!IS_ERR_VALUE(ret))
3036 		ret = 0;
3037 	return ret;
3038 }
3039 
3040 /*
3041  * do_vma_munmap() - Unmap a full or partial vma.
3042  * @vmi: The vma iterator pointing at the vma
3043  * @vma: The first vma to be munmapped
3044  * @start: the start of the address to unmap
3045  * @end: The end of the address to unmap
3046  * @uf: The userfaultfd list_head
3047  * @unlock: Drop the lock on success
3048  *
3049  * unmaps a VMA mapping when the vma iterator is already in position.
3050  * Does not handle alignment.
3051  *
3052  * Return: 0 on success drops the lock of so directed, error on failure and will
3053  * still hold the lock.
3054  */
do_vma_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)3055 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3056 		unsigned long start, unsigned long end, struct list_head *uf,
3057 		bool unlock)
3058 {
3059 	struct mm_struct *mm = vma->vm_mm;
3060 
3061 	arch_unmap(mm, start, end);
3062 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3063 }
3064 
3065 /*
3066  * do_brk_flags() - Increase the brk vma if the flags match.
3067  * @vmi: The vma iterator
3068  * @addr: The start address
3069  * @len: The length of the increase
3070  * @vma: The vma,
3071  * @flags: The VMA Flags
3072  *
3073  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3074  * do not match then create a new anonymous VMA.  Eventually we may be able to
3075  * do some brk-specific accounting here.
3076  */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)3077 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3078 		unsigned long addr, unsigned long len, unsigned long flags)
3079 {
3080 	struct mm_struct *mm = current->mm;
3081 	struct vma_prepare vp;
3082 
3083 	/*
3084 	 * Check against address space limits by the changed size
3085 	 * Note: This happens *after* clearing old mappings in some code paths.
3086 	 */
3087 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3088 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3089 		return -ENOMEM;
3090 
3091 	if (mm->map_count > sysctl_max_map_count)
3092 		return -ENOMEM;
3093 
3094 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3095 		return -ENOMEM;
3096 
3097 	/*
3098 	 * Expand the existing vma if possible; Note that singular lists do not
3099 	 * occur after forking, so the expand will only happen on new VMAs.
3100 	 */
3101 	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3102 	    can_vma_merge_after(vma, flags, NULL, NULL,
3103 				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3104 		vma_iter_config(vmi, vma->vm_start, addr + len);
3105 		if (vma_iter_prealloc(vmi, vma))
3106 			goto unacct_fail;
3107 
3108 		vma_start_write(vma);
3109 
3110 		init_vma_prep(&vp, vma);
3111 		vma_prepare(&vp);
3112 		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3113 		vma->vm_end = addr + len;
3114 		vm_flags_set(vma, VM_SOFTDIRTY);
3115 		vma_iter_store(vmi, vma);
3116 
3117 		vma_complete(&vp, vmi, mm);
3118 		khugepaged_enter_vma(vma, flags);
3119 		goto out;
3120 	}
3121 
3122 	if (vma)
3123 		vma_iter_next_range(vmi);
3124 	/* create a vma struct for an anonymous mapping */
3125 	vma = vm_area_alloc(mm);
3126 	if (!vma)
3127 		goto unacct_fail;
3128 
3129 	vma_set_anonymous(vma);
3130 	vma->vm_start = addr;
3131 	vma->vm_end = addr + len;
3132 	vma->vm_pgoff = addr >> PAGE_SHIFT;
3133 	vm_flags_init(vma, flags);
3134 	vma->vm_page_prot = vm_get_page_prot(flags);
3135 	vma_start_write(vma);
3136 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3137 		goto mas_store_fail;
3138 
3139 	mm->map_count++;
3140 	validate_mm(mm);
3141 	ksm_add_vma(vma);
3142 out:
3143 	perf_event_mmap(vma);
3144 	mm->total_vm += len >> PAGE_SHIFT;
3145 	mm->data_vm += len >> PAGE_SHIFT;
3146 	if (flags & VM_LOCKED)
3147 		mm->locked_vm += (len >> PAGE_SHIFT);
3148 	vm_flags_set(vma, VM_SOFTDIRTY);
3149 	return 0;
3150 
3151 mas_store_fail:
3152 	vm_area_free(vma);
3153 unacct_fail:
3154 	vm_unacct_memory(len >> PAGE_SHIFT);
3155 	return -ENOMEM;
3156 }
3157 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3158 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3159 {
3160 	struct mm_struct *mm = current->mm;
3161 	struct vm_area_struct *vma = NULL;
3162 	unsigned long len;
3163 	int ret;
3164 	bool populate;
3165 	LIST_HEAD(uf);
3166 	VMA_ITERATOR(vmi, mm, addr);
3167 
3168 	len = PAGE_ALIGN(request);
3169 	if (len < request)
3170 		return -ENOMEM;
3171 	if (!len)
3172 		return 0;
3173 
3174 	/* Until we need other flags, refuse anything except VM_EXEC. */
3175 	if ((flags & (~VM_EXEC)) != 0)
3176 		return -EINVAL;
3177 
3178 	if (mmap_write_lock_killable(mm))
3179 		return -EINTR;
3180 
3181 	ret = check_brk_limits(addr, len);
3182 	if (ret)
3183 		goto limits_failed;
3184 
3185 	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3186 	if (ret)
3187 		goto munmap_failed;
3188 
3189 	vma = vma_prev(&vmi);
3190 	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3191 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3192 	mmap_write_unlock(mm);
3193 	userfaultfd_unmap_complete(mm, &uf);
3194 	if (populate && !ret)
3195 		mm_populate(addr, len);
3196 	return ret;
3197 
3198 munmap_failed:
3199 limits_failed:
3200 	mmap_write_unlock(mm);
3201 	return ret;
3202 }
3203 EXPORT_SYMBOL(vm_brk_flags);
3204 
vm_brk(unsigned long addr,unsigned long len)3205 int vm_brk(unsigned long addr, unsigned long len)
3206 {
3207 	return vm_brk_flags(addr, len, 0);
3208 }
3209 EXPORT_SYMBOL(vm_brk);
3210 
3211 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3212 void exit_mmap(struct mm_struct *mm)
3213 {
3214 	struct mmu_gather tlb;
3215 	struct vm_area_struct *vma;
3216 	unsigned long nr_accounted = 0;
3217 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3218 	int count = 0;
3219 
3220 	/* mm's last user has gone, and its about to be pulled down */
3221 	mmu_notifier_release(mm);
3222 
3223 	mmap_read_lock(mm);
3224 	arch_exit_mmap(mm);
3225 
3226 	vma = mas_find(&mas, ULONG_MAX);
3227 	if (!vma) {
3228 		/* Can happen if dup_mmap() received an OOM */
3229 		mmap_read_unlock(mm);
3230 		return;
3231 	}
3232 
3233 	lru_add_drain();
3234 	flush_cache_mm(mm);
3235 	tlb_gather_mmu_fullmm(&tlb, mm);
3236 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3237 	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3238 	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3239 	mmap_read_unlock(mm);
3240 
3241 	/*
3242 	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3243 	 * because the memory has been already freed.
3244 	 */
3245 	set_bit(MMF_OOM_SKIP, &mm->flags);
3246 	mmap_write_lock(mm);
3247 	mt_clear_in_rcu(&mm->mm_mt);
3248 	mas_set(&mas, vma->vm_end);
3249 	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3250 		      USER_PGTABLES_CEILING, true);
3251 	tlb_finish_mmu(&tlb);
3252 
3253 	/*
3254 	 * Walk the list again, actually closing and freeing it, with preemption
3255 	 * enabled, without holding any MM locks besides the unreachable
3256 	 * mmap_write_lock.
3257 	 */
3258 	mas_set(&mas, vma->vm_end);
3259 	do {
3260 		if (vma->vm_flags & VM_ACCOUNT)
3261 			nr_accounted += vma_pages(vma);
3262 		remove_vma(vma, true);
3263 		count++;
3264 		cond_resched();
3265 	} while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3266 
3267 	BUG_ON(count != mm->map_count);
3268 
3269 	trace_exit_mmap(mm);
3270 	__mt_destroy(&mm->mm_mt);
3271 	mmap_write_unlock(mm);
3272 	vm_unacct_memory(nr_accounted);
3273 }
3274 
3275 /* Insert vm structure into process list sorted by address
3276  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3277  * then i_mmap_rwsem is taken here.
3278  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3279 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3280 {
3281 	unsigned long charged = vma_pages(vma);
3282 
3283 
3284 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3285 		return -ENOMEM;
3286 
3287 	if ((vma->vm_flags & VM_ACCOUNT) &&
3288 	     security_vm_enough_memory_mm(mm, charged))
3289 		return -ENOMEM;
3290 
3291 	/*
3292 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3293 	 * until its first write fault, when page's anon_vma and index
3294 	 * are set.  But now set the vm_pgoff it will almost certainly
3295 	 * end up with (unless mremap moves it elsewhere before that
3296 	 * first wfault), so /proc/pid/maps tells a consistent story.
3297 	 *
3298 	 * By setting it to reflect the virtual start address of the
3299 	 * vma, merges and splits can happen in a seamless way, just
3300 	 * using the existing file pgoff checks and manipulations.
3301 	 * Similarly in do_mmap and in do_brk_flags.
3302 	 */
3303 	if (vma_is_anonymous(vma)) {
3304 		BUG_ON(vma->anon_vma);
3305 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3306 	}
3307 
3308 	if (vma_link(mm, vma)) {
3309 		vm_unacct_memory(charged);
3310 		return -ENOMEM;
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 /*
3317  * Copy the vma structure to a new location in the same mm,
3318  * prior to moving page table entries, to effect an mremap move.
3319  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3320 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3321 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3322 	bool *need_rmap_locks)
3323 {
3324 	struct vm_area_struct *vma = *vmap;
3325 	unsigned long vma_start = vma->vm_start;
3326 	struct mm_struct *mm = vma->vm_mm;
3327 	struct vm_area_struct *new_vma, *prev;
3328 	bool faulted_in_anon_vma = true;
3329 	VMA_ITERATOR(vmi, mm, addr);
3330 
3331 	/*
3332 	 * If anonymous vma has not yet been faulted, update new pgoff
3333 	 * to match new location, to increase its chance of merging.
3334 	 */
3335 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3336 		pgoff = addr >> PAGE_SHIFT;
3337 		faulted_in_anon_vma = false;
3338 	}
3339 
3340 	new_vma = find_vma_prev(mm, addr, &prev);
3341 	if (new_vma && new_vma->vm_start < addr + len)
3342 		return NULL;	/* should never get here */
3343 
3344 	new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3345 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3346 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3347 	if (new_vma) {
3348 		/*
3349 		 * Source vma may have been merged into new_vma
3350 		 */
3351 		if (unlikely(vma_start >= new_vma->vm_start &&
3352 			     vma_start < new_vma->vm_end)) {
3353 			/*
3354 			 * The only way we can get a vma_merge with
3355 			 * self during an mremap is if the vma hasn't
3356 			 * been faulted in yet and we were allowed to
3357 			 * reset the dst vma->vm_pgoff to the
3358 			 * destination address of the mremap to allow
3359 			 * the merge to happen. mremap must change the
3360 			 * vm_pgoff linearity between src and dst vmas
3361 			 * (in turn preventing a vma_merge) to be
3362 			 * safe. It is only safe to keep the vm_pgoff
3363 			 * linear if there are no pages mapped yet.
3364 			 */
3365 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3366 			*vmap = vma = new_vma;
3367 		}
3368 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3369 	} else {
3370 		new_vma = vm_area_dup(vma);
3371 		if (!new_vma)
3372 			goto out;
3373 		new_vma->vm_start = addr;
3374 		new_vma->vm_end = addr + len;
3375 		new_vma->vm_pgoff = pgoff;
3376 		if (vma_dup_policy(vma, new_vma))
3377 			goto out_free_vma;
3378 		if (anon_vma_clone(new_vma, vma))
3379 			goto out_free_mempol;
3380 		if (new_vma->vm_file)
3381 			get_file(new_vma->vm_file);
3382 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3383 			new_vma->vm_ops->open(new_vma);
3384 		if (vma_link(mm, new_vma))
3385 			goto out_vma_link;
3386 		*need_rmap_locks = false;
3387 	}
3388 	return new_vma;
3389 
3390 out_vma_link:
3391 	if (new_vma->vm_ops && new_vma->vm_ops->close)
3392 		new_vma->vm_ops->close(new_vma);
3393 
3394 	if (new_vma->vm_file)
3395 		fput(new_vma->vm_file);
3396 
3397 	unlink_anon_vmas(new_vma);
3398 out_free_mempol:
3399 	mpol_put(vma_policy(new_vma));
3400 out_free_vma:
3401 	vm_area_free(new_vma);
3402 out:
3403 	return NULL;
3404 }
3405 
3406 /*
3407  * Return true if the calling process may expand its vm space by the passed
3408  * number of pages
3409  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3410 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3411 {
3412 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3413 		return false;
3414 
3415 	if (is_data_mapping(flags) &&
3416 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3417 		/* Workaround for Valgrind */
3418 		if (rlimit(RLIMIT_DATA) == 0 &&
3419 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3420 			return true;
3421 
3422 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3423 			     current->comm, current->pid,
3424 			     (mm->data_vm + npages) << PAGE_SHIFT,
3425 			     rlimit(RLIMIT_DATA),
3426 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3427 
3428 		if (!ignore_rlimit_data)
3429 			return false;
3430 	}
3431 
3432 	return true;
3433 }
3434 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3435 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3436 {
3437 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3438 
3439 	if (is_exec_mapping(flags))
3440 		mm->exec_vm += npages;
3441 	else if (is_stack_mapping(flags))
3442 		mm->stack_vm += npages;
3443 	else if (is_data_mapping(flags))
3444 		mm->data_vm += npages;
3445 }
3446 
3447 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3448 
3449 /*
3450  * Having a close hook prevents vma merging regardless of flags.
3451  */
special_mapping_close(struct vm_area_struct * vma)3452 static void special_mapping_close(struct vm_area_struct *vma)
3453 {
3454 }
3455 
special_mapping_name(struct vm_area_struct * vma)3456 static const char *special_mapping_name(struct vm_area_struct *vma)
3457 {
3458 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3459 }
3460 
special_mapping_mremap(struct vm_area_struct * new_vma)3461 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3462 {
3463 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3464 
3465 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3466 		return -EFAULT;
3467 
3468 	if (sm->mremap)
3469 		return sm->mremap(sm, new_vma);
3470 
3471 	return 0;
3472 }
3473 
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3474 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3475 {
3476 	/*
3477 	 * Forbid splitting special mappings - kernel has expectations over
3478 	 * the number of pages in mapping. Together with VM_DONTEXPAND
3479 	 * the size of vma should stay the same over the special mapping's
3480 	 * lifetime.
3481 	 */
3482 	return -EINVAL;
3483 }
3484 
3485 static const struct vm_operations_struct special_mapping_vmops = {
3486 	.close = special_mapping_close,
3487 	.fault = special_mapping_fault,
3488 	.mremap = special_mapping_mremap,
3489 	.name = special_mapping_name,
3490 	/* vDSO code relies that VVAR can't be accessed remotely */
3491 	.access = NULL,
3492 	.may_split = special_mapping_split,
3493 };
3494 
3495 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3496 	.close = special_mapping_close,
3497 	.fault = special_mapping_fault,
3498 };
3499 
special_mapping_fault(struct vm_fault * vmf)3500 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3501 {
3502 	struct vm_area_struct *vma = vmf->vma;
3503 	pgoff_t pgoff;
3504 	struct page **pages;
3505 
3506 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3507 		pages = vma->vm_private_data;
3508 	} else {
3509 		struct vm_special_mapping *sm = vma->vm_private_data;
3510 
3511 		if (sm->fault)
3512 			return sm->fault(sm, vmf->vma, vmf);
3513 
3514 		pages = sm->pages;
3515 	}
3516 
3517 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3518 		pgoff--;
3519 
3520 	if (*pages) {
3521 		struct page *page = *pages;
3522 		get_page(page);
3523 		vmf->page = page;
3524 		return 0;
3525 	}
3526 
3527 	return VM_FAULT_SIGBUS;
3528 }
3529 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3530 static struct vm_area_struct *__install_special_mapping(
3531 	struct mm_struct *mm,
3532 	unsigned long addr, unsigned long len,
3533 	unsigned long vm_flags, void *priv,
3534 	const struct vm_operations_struct *ops)
3535 {
3536 	int ret;
3537 	struct vm_area_struct *vma;
3538 
3539 	vma = vm_area_alloc(mm);
3540 	if (unlikely(vma == NULL))
3541 		return ERR_PTR(-ENOMEM);
3542 
3543 	vma->vm_start = addr;
3544 	vma->vm_end = addr + len;
3545 
3546 	vm_flags_init(vma, (vm_flags | mm->def_flags |
3547 		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3548 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3549 
3550 	vma->vm_ops = ops;
3551 	vma->vm_private_data = priv;
3552 
3553 	ret = insert_vm_struct(mm, vma);
3554 	if (ret)
3555 		goto out;
3556 
3557 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3558 
3559 	perf_event_mmap(vma);
3560 
3561 	return vma;
3562 
3563 out:
3564 	vm_area_free(vma);
3565 	return ERR_PTR(ret);
3566 }
3567 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3568 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3569 	const struct vm_special_mapping *sm)
3570 {
3571 	return vma->vm_private_data == sm &&
3572 		(vma->vm_ops == &special_mapping_vmops ||
3573 		 vma->vm_ops == &legacy_special_mapping_vmops);
3574 }
3575 
3576 /*
3577  * Called with mm->mmap_lock held for writing.
3578  * Insert a new vma covering the given region, with the given flags.
3579  * Its pages are supplied by the given array of struct page *.
3580  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3581  * The region past the last page supplied will always produce SIGBUS.
3582  * The array pointer and the pages it points to are assumed to stay alive
3583  * for as long as this mapping might exist.
3584  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3585 struct vm_area_struct *_install_special_mapping(
3586 	struct mm_struct *mm,
3587 	unsigned long addr, unsigned long len,
3588 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3589 {
3590 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3591 					&special_mapping_vmops);
3592 }
3593 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3594 int install_special_mapping(struct mm_struct *mm,
3595 			    unsigned long addr, unsigned long len,
3596 			    unsigned long vm_flags, struct page **pages)
3597 {
3598 	struct vm_area_struct *vma = __install_special_mapping(
3599 		mm, addr, len, vm_flags, (void *)pages,
3600 		&legacy_special_mapping_vmops);
3601 
3602 	return PTR_ERR_OR_ZERO(vma);
3603 }
3604 
3605 static DEFINE_MUTEX(mm_all_locks_mutex);
3606 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3607 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3608 {
3609 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3610 		/*
3611 		 * The LSB of head.next can't change from under us
3612 		 * because we hold the mm_all_locks_mutex.
3613 		 */
3614 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3615 		/*
3616 		 * We can safely modify head.next after taking the
3617 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3618 		 * the same anon_vma we won't take it again.
3619 		 *
3620 		 * No need of atomic instructions here, head.next
3621 		 * can't change from under us thanks to the
3622 		 * anon_vma->root->rwsem.
3623 		 */
3624 		if (__test_and_set_bit(0, (unsigned long *)
3625 				       &anon_vma->root->rb_root.rb_root.rb_node))
3626 			BUG();
3627 	}
3628 }
3629 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3630 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3631 {
3632 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3633 		/*
3634 		 * AS_MM_ALL_LOCKS can't change from under us because
3635 		 * we hold the mm_all_locks_mutex.
3636 		 *
3637 		 * Operations on ->flags have to be atomic because
3638 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3639 		 * mm_all_locks_mutex, there may be other cpus
3640 		 * changing other bitflags in parallel to us.
3641 		 */
3642 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3643 			BUG();
3644 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3645 	}
3646 }
3647 
3648 /*
3649  * This operation locks against the VM for all pte/vma/mm related
3650  * operations that could ever happen on a certain mm. This includes
3651  * vmtruncate, try_to_unmap, and all page faults.
3652  *
3653  * The caller must take the mmap_lock in write mode before calling
3654  * mm_take_all_locks(). The caller isn't allowed to release the
3655  * mmap_lock until mm_drop_all_locks() returns.
3656  *
3657  * mmap_lock in write mode is required in order to block all operations
3658  * that could modify pagetables and free pages without need of
3659  * altering the vma layout. It's also needed in write mode to avoid new
3660  * anon_vmas to be associated with existing vmas.
3661  *
3662  * A single task can't take more than one mm_take_all_locks() in a row
3663  * or it would deadlock.
3664  *
3665  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3666  * mapping->flags avoid to take the same lock twice, if more than one
3667  * vma in this mm is backed by the same anon_vma or address_space.
3668  *
3669  * We take locks in following order, accordingly to comment at beginning
3670  * of mm/rmap.c:
3671  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3672  *     hugetlb mapping);
3673  *   - all vmas marked locked
3674  *   - all i_mmap_rwsem locks;
3675  *   - all anon_vma->rwseml
3676  *
3677  * We can take all locks within these types randomly because the VM code
3678  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3679  * mm_all_locks_mutex.
3680  *
3681  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3682  * that may have to take thousand of locks.
3683  *
3684  * mm_take_all_locks() can fail if it's interrupted by signals.
3685  */
mm_take_all_locks(struct mm_struct * mm)3686 int mm_take_all_locks(struct mm_struct *mm)
3687 {
3688 	struct vm_area_struct *vma;
3689 	struct anon_vma_chain *avc;
3690 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3691 
3692 	mmap_assert_write_locked(mm);
3693 
3694 	mutex_lock(&mm_all_locks_mutex);
3695 
3696 	/*
3697 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3698 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3699 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3700 	 * is reached.
3701 	 */
3702 	mas_for_each(&mas, vma, ULONG_MAX) {
3703 		if (signal_pending(current))
3704 			goto out_unlock;
3705 		vma_start_write(vma);
3706 	}
3707 
3708 	mas_set(&mas, 0);
3709 	mas_for_each(&mas, vma, ULONG_MAX) {
3710 		if (signal_pending(current))
3711 			goto out_unlock;
3712 		if (vma->vm_file && vma->vm_file->f_mapping &&
3713 				is_vm_hugetlb_page(vma))
3714 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3715 	}
3716 
3717 	mas_set(&mas, 0);
3718 	mas_for_each(&mas, vma, ULONG_MAX) {
3719 		if (signal_pending(current))
3720 			goto out_unlock;
3721 		if (vma->vm_file && vma->vm_file->f_mapping &&
3722 				!is_vm_hugetlb_page(vma))
3723 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3724 	}
3725 
3726 	mas_set(&mas, 0);
3727 	mas_for_each(&mas, vma, ULONG_MAX) {
3728 		if (signal_pending(current))
3729 			goto out_unlock;
3730 		if (vma->anon_vma)
3731 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3732 				vm_lock_anon_vma(mm, avc->anon_vma);
3733 	}
3734 
3735 	return 0;
3736 
3737 out_unlock:
3738 	mm_drop_all_locks(mm);
3739 	return -EINTR;
3740 }
3741 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3742 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3743 {
3744 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3745 		/*
3746 		 * The LSB of head.next can't change to 0 from under
3747 		 * us because we hold the mm_all_locks_mutex.
3748 		 *
3749 		 * We must however clear the bitflag before unlocking
3750 		 * the vma so the users using the anon_vma->rb_root will
3751 		 * never see our bitflag.
3752 		 *
3753 		 * No need of atomic instructions here, head.next
3754 		 * can't change from under us until we release the
3755 		 * anon_vma->root->rwsem.
3756 		 */
3757 		if (!__test_and_clear_bit(0, (unsigned long *)
3758 					  &anon_vma->root->rb_root.rb_root.rb_node))
3759 			BUG();
3760 		anon_vma_unlock_write(anon_vma);
3761 	}
3762 }
3763 
vm_unlock_mapping(struct address_space * mapping)3764 static void vm_unlock_mapping(struct address_space *mapping)
3765 {
3766 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3767 		/*
3768 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3769 		 * because we hold the mm_all_locks_mutex.
3770 		 */
3771 		i_mmap_unlock_write(mapping);
3772 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3773 					&mapping->flags))
3774 			BUG();
3775 	}
3776 }
3777 
3778 /*
3779  * The mmap_lock cannot be released by the caller until
3780  * mm_drop_all_locks() returns.
3781  */
mm_drop_all_locks(struct mm_struct * mm)3782 void mm_drop_all_locks(struct mm_struct *mm)
3783 {
3784 	struct vm_area_struct *vma;
3785 	struct anon_vma_chain *avc;
3786 	MA_STATE(mas, &mm->mm_mt, 0, 0);
3787 
3788 	mmap_assert_write_locked(mm);
3789 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3790 
3791 	mas_for_each(&mas, vma, ULONG_MAX) {
3792 		if (vma->anon_vma)
3793 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3794 				vm_unlock_anon_vma(avc->anon_vma);
3795 		if (vma->vm_file && vma->vm_file->f_mapping)
3796 			vm_unlock_mapping(vma->vm_file->f_mapping);
3797 	}
3798 
3799 	mutex_unlock(&mm_all_locks_mutex);
3800 }
3801 
3802 /*
3803  * initialise the percpu counter for VM
3804  */
mmap_init(void)3805 void __init mmap_init(void)
3806 {
3807 	int ret;
3808 
3809 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3810 	VM_BUG_ON(ret);
3811 }
3812 
3813 /*
3814  * Initialise sysctl_user_reserve_kbytes.
3815  *
3816  * This is intended to prevent a user from starting a single memory hogging
3817  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3818  * mode.
3819  *
3820  * The default value is min(3% of free memory, 128MB)
3821  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3822  */
init_user_reserve(void)3823 static int init_user_reserve(void)
3824 {
3825 	unsigned long free_kbytes;
3826 
3827 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3828 
3829 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3830 	return 0;
3831 }
3832 subsys_initcall(init_user_reserve);
3833 
3834 /*
3835  * Initialise sysctl_admin_reserve_kbytes.
3836  *
3837  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3838  * to log in and kill a memory hogging process.
3839  *
3840  * Systems with more than 256MB will reserve 8MB, enough to recover
3841  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3842  * only reserve 3% of free pages by default.
3843  */
init_admin_reserve(void)3844 static int init_admin_reserve(void)
3845 {
3846 	unsigned long free_kbytes;
3847 
3848 	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3849 
3850 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3851 	return 0;
3852 }
3853 subsys_initcall(init_admin_reserve);
3854 
3855 /*
3856  * Reinititalise user and admin reserves if memory is added or removed.
3857  *
3858  * The default user reserve max is 128MB, and the default max for the
3859  * admin reserve is 8MB. These are usually, but not always, enough to
3860  * enable recovery from a memory hogging process using login/sshd, a shell,
3861  * and tools like top. It may make sense to increase or even disable the
3862  * reserve depending on the existence of swap or variations in the recovery
3863  * tools. So, the admin may have changed them.
3864  *
3865  * If memory is added and the reserves have been eliminated or increased above
3866  * the default max, then we'll trust the admin.
3867  *
3868  * If memory is removed and there isn't enough free memory, then we
3869  * need to reset the reserves.
3870  *
3871  * Otherwise keep the reserve set by the admin.
3872  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3873 static int reserve_mem_notifier(struct notifier_block *nb,
3874 			     unsigned long action, void *data)
3875 {
3876 	unsigned long tmp, free_kbytes;
3877 
3878 	switch (action) {
3879 	case MEM_ONLINE:
3880 		/* Default max is 128MB. Leave alone if modified by operator. */
3881 		tmp = sysctl_user_reserve_kbytes;
3882 		if (0 < tmp && tmp < (1UL << 17))
3883 			init_user_reserve();
3884 
3885 		/* Default max is 8MB.  Leave alone if modified by operator. */
3886 		tmp = sysctl_admin_reserve_kbytes;
3887 		if (0 < tmp && tmp < (1UL << 13))
3888 			init_admin_reserve();
3889 
3890 		break;
3891 	case MEM_OFFLINE:
3892 		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3893 
3894 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3895 			init_user_reserve();
3896 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3897 				sysctl_user_reserve_kbytes);
3898 		}
3899 
3900 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3901 			init_admin_reserve();
3902 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3903 				sysctl_admin_reserve_kbytes);
3904 		}
3905 		break;
3906 	default:
3907 		break;
3908 	}
3909 	return NOTIFY_OK;
3910 }
3911 
init_reserve_notifier(void)3912 static int __meminit init_reserve_notifier(void)
3913 {
3914 	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3915 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3916 
3917 	return 0;
3918 }
3919 subsys_initcall(init_reserve_notifier);
3920