xref: /openbmc/linux/mm/memory.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109 
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 		return false;
118 
119 	return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121 
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131 
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 					1;
141 #else
142 					2;
143 #endif
144 
145 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 	/*
149 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 	 * some architectures, even if it's performed in hardware. By
151 	 * default, "false" means prefaulted entries will be 'young'.
152 	 */
153 	return false;
154 }
155 #endif
156 
disable_randmaps(char * s)157 static int __init disable_randmaps(char *s)
158 {
159 	randomize_va_space = 0;
160 	return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163 
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166 
167 unsigned long highest_memmap_pfn __read_mostly;
168 
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
init_zero_pfn(void)172 static int __init init_zero_pfn(void)
173 {
174 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 	return 0;
176 }
177 early_initcall(init_zero_pfn);
178 
mm_trace_rss_stat(struct mm_struct * mm,int member)179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 	trace_rss_stat(mm, member);
182 }
183 
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 			   unsigned long addr)
190 {
191 	pgtable_t token = pmd_pgtable(*pmd);
192 	pmd_clear(pmd);
193 	pte_free_tlb(tlb, token, addr);
194 	mm_dec_nr_ptes(tlb->mm);
195 }
196 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 				unsigned long addr, unsigned long end,
199 				unsigned long floor, unsigned long ceiling)
200 {
201 	pmd_t *pmd;
202 	unsigned long next;
203 	unsigned long start;
204 
205 	start = addr;
206 	pmd = pmd_offset(pud, addr);
207 	do {
208 		next = pmd_addr_end(addr, end);
209 		if (pmd_none_or_clear_bad(pmd))
210 			continue;
211 		free_pte_range(tlb, pmd, addr);
212 	} while (pmd++, addr = next, addr != end);
213 
214 	start &= PUD_MASK;
215 	if (start < floor)
216 		return;
217 	if (ceiling) {
218 		ceiling &= PUD_MASK;
219 		if (!ceiling)
220 			return;
221 	}
222 	if (end - 1 > ceiling - 1)
223 		return;
224 
225 	pmd = pmd_offset(pud, start);
226 	pud_clear(pud);
227 	pmd_free_tlb(tlb, pmd, start);
228 	mm_dec_nr_pmds(tlb->mm);
229 }
230 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 				unsigned long addr, unsigned long end,
233 				unsigned long floor, unsigned long ceiling)
234 {
235 	pud_t *pud;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pud = pud_offset(p4d, addr);
241 	do {
242 		next = pud_addr_end(addr, end);
243 		if (pud_none_or_clear_bad(pud))
244 			continue;
245 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 	} while (pud++, addr = next, addr != end);
247 
248 	start &= P4D_MASK;
249 	if (start < floor)
250 		return;
251 	if (ceiling) {
252 		ceiling &= P4D_MASK;
253 		if (!ceiling)
254 			return;
255 	}
256 	if (end - 1 > ceiling - 1)
257 		return;
258 
259 	pud = pud_offset(p4d, start);
260 	p4d_clear(p4d);
261 	pud_free_tlb(tlb, pud, start);
262 	mm_dec_nr_puds(tlb->mm);
263 }
264 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				unsigned long addr, unsigned long end,
267 				unsigned long floor, unsigned long ceiling)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	p4d = p4d_offset(pgd, addr);
275 	do {
276 		next = p4d_addr_end(addr, end);
277 		if (p4d_none_or_clear_bad(p4d))
278 			continue;
279 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 	} while (p4d++, addr = next, addr != end);
281 
282 	start &= PGDIR_MASK;
283 	if (start < floor)
284 		return;
285 	if (ceiling) {
286 		ceiling &= PGDIR_MASK;
287 		if (!ceiling)
288 			return;
289 	}
290 	if (end - 1 > ceiling - 1)
291 		return;
292 
293 	p4d = p4d_offset(pgd, start);
294 	pgd_clear(pgd);
295 	p4d_free_tlb(tlb, p4d, start);
296 }
297 
298 /*
299  * This function frees user-level page tables of a process.
300  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)301 void free_pgd_range(struct mmu_gather *tlb,
302 			unsigned long addr, unsigned long end,
303 			unsigned long floor, unsigned long ceiling)
304 {
305 	pgd_t *pgd;
306 	unsigned long next;
307 
308 	/*
309 	 * The next few lines have given us lots of grief...
310 	 *
311 	 * Why are we testing PMD* at this top level?  Because often
312 	 * there will be no work to do at all, and we'd prefer not to
313 	 * go all the way down to the bottom just to discover that.
314 	 *
315 	 * Why all these "- 1"s?  Because 0 represents both the bottom
316 	 * of the address space and the top of it (using -1 for the
317 	 * top wouldn't help much: the masks would do the wrong thing).
318 	 * The rule is that addr 0 and floor 0 refer to the bottom of
319 	 * the address space, but end 0 and ceiling 0 refer to the top
320 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 	 * that end 0 case should be mythical).
322 	 *
323 	 * Wherever addr is brought up or ceiling brought down, we must
324 	 * be careful to reject "the opposite 0" before it confuses the
325 	 * subsequent tests.  But what about where end is brought down
326 	 * by PMD_SIZE below? no, end can't go down to 0 there.
327 	 *
328 	 * Whereas we round start (addr) and ceiling down, by different
329 	 * masks at different levels, in order to test whether a table
330 	 * now has no other vmas using it, so can be freed, we don't
331 	 * bother to round floor or end up - the tests don't need that.
332 	 */
333 
334 	addr &= PMD_MASK;
335 	if (addr < floor) {
336 		addr += PMD_SIZE;
337 		if (!addr)
338 			return;
339 	}
340 	if (ceiling) {
341 		ceiling &= PMD_MASK;
342 		if (!ceiling)
343 			return;
344 	}
345 	if (end - 1 > ceiling - 1)
346 		end -= PMD_SIZE;
347 	if (addr > end - 1)
348 		return;
349 	/*
350 	 * We add page table cache pages with PAGE_SIZE,
351 	 * (see pte_free_tlb()), flush the tlb if we need
352 	 */
353 	tlb_change_page_size(tlb, PAGE_SIZE);
354 	pgd = pgd_offset(tlb->mm, addr);
355 	do {
356 		next = pgd_addr_end(addr, end);
357 		if (pgd_none_or_clear_bad(pgd))
358 			continue;
359 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 	} while (pgd++, addr = next, addr != end);
361 }
362 
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 		   struct vm_area_struct *vma, unsigned long floor,
365 		   unsigned long ceiling, bool mm_wr_locked)
366 {
367 	do {
368 		unsigned long addr = vma->vm_start;
369 		struct vm_area_struct *next;
370 
371 		/*
372 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 		 * be 0.  This will underflow and is okay.
374 		 */
375 		next = mas_find(mas, ceiling - 1);
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		if (mm_wr_locked)
382 			vma_start_write(vma);
383 		unlink_anon_vmas(vma);
384 		unlink_file_vma(vma);
385 
386 		if (is_vm_hugetlb_page(vma)) {
387 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388 				floor, next ? next->vm_start : ceiling);
389 		} else {
390 			/*
391 			 * Optimization: gather nearby vmas into one call down
392 			 */
393 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394 			       && !is_vm_hugetlb_page(next)) {
395 				vma = next;
396 				next = mas_find(mas, ceiling - 1);
397 				if (mm_wr_locked)
398 					vma_start_write(vma);
399 				unlink_anon_vmas(vma);
400 				unlink_file_vma(vma);
401 			}
402 			free_pgd_range(tlb, addr, vma->vm_end,
403 				floor, next ? next->vm_start : ceiling);
404 		}
405 		vma = next;
406 	} while (vma);
407 }
408 
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411 	spinlock_t *ptl = pmd_lock(mm, pmd);
412 
413 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
414 		mm_inc_nr_ptes(mm);
415 		/*
416 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 		 * visible before the pte is made visible to other CPUs by being
418 		 * put into page tables.
419 		 *
420 		 * The other side of the story is the pointer chasing in the page
421 		 * table walking code (when walking the page table without locking;
422 		 * ie. most of the time). Fortunately, these data accesses consist
423 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 		 * being the notable exception) will already guarantee loads are
425 		 * seen in-order. See the alpha page table accessors for the
426 		 * smp_rmb() barriers in page table walking code.
427 		 */
428 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429 		pmd_populate(mm, pmd, *pte);
430 		*pte = NULL;
431 	}
432 	spin_unlock(ptl);
433 }
434 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437 	pgtable_t new = pte_alloc_one(mm);
438 	if (!new)
439 		return -ENOMEM;
440 
441 	pmd_install(mm, pmd, &new);
442 	if (new)
443 		pte_free(mm, new);
444 	return 0;
445 }
446 
__pte_alloc_kernel(pmd_t * pmd)447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449 	pte_t *new = pte_alloc_one_kernel(&init_mm);
450 	if (!new)
451 		return -ENOMEM;
452 
453 	spin_lock(&init_mm.page_table_lock);
454 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
455 		smp_wmb(); /* See comment in pmd_install() */
456 		pmd_populate_kernel(&init_mm, pmd, new);
457 		new = NULL;
458 	}
459 	spin_unlock(&init_mm.page_table_lock);
460 	if (new)
461 		pte_free_kernel(&init_mm, new);
462 	return 0;
463 }
464 
init_rss_vec(int * rss)465 static inline void init_rss_vec(int *rss)
466 {
467 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469 
add_mm_rss_vec(struct mm_struct * mm,int * rss)470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472 	int i;
473 
474 	if (current->mm == mm)
475 		sync_mm_rss(mm);
476 	for (i = 0; i < NR_MM_COUNTERS; i++)
477 		if (rss[i])
478 			add_mm_counter(mm, i, rss[i]);
479 }
480 
481 /*
482  * This function is called to print an error when a bad pte
483  * is found. For example, we might have a PFN-mapped pte in
484  * a region that doesn't allow it.
485  *
486  * The calling function must still handle the error.
487  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 			  pte_t pte, struct page *page)
490 {
491 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492 	p4d_t *p4d = p4d_offset(pgd, addr);
493 	pud_t *pud = pud_offset(p4d, addr);
494 	pmd_t *pmd = pmd_offset(pud, addr);
495 	struct address_space *mapping;
496 	pgoff_t index;
497 	static unsigned long resume;
498 	static unsigned long nr_shown;
499 	static unsigned long nr_unshown;
500 
501 	/*
502 	 * Allow a burst of 60 reports, then keep quiet for that minute;
503 	 * or allow a steady drip of one report per second.
504 	 */
505 	if (nr_shown == 60) {
506 		if (time_before(jiffies, resume)) {
507 			nr_unshown++;
508 			return;
509 		}
510 		if (nr_unshown) {
511 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 				 nr_unshown);
513 			nr_unshown = 0;
514 		}
515 		nr_shown = 0;
516 	}
517 	if (nr_shown++ == 0)
518 		resume = jiffies + 60 * HZ;
519 
520 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 	index = linear_page_index(vma, addr);
522 
523 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
524 		 current->comm,
525 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
526 	if (page)
527 		dump_page(page, "bad pte");
528 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531 		 vma->vm_file,
532 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534 		 mapping ? mapping->a_ops->read_folio : NULL);
535 	dump_stack();
536 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538 
539 /*
540  * vm_normal_page -- This function gets the "struct page" associated with a pte.
541  *
542  * "Special" mappings do not wish to be associated with a "struct page" (either
543  * it doesn't exist, or it exists but they don't want to touch it). In this
544  * case, NULL is returned here. "Normal" mappings do have a struct page.
545  *
546  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547  * pte bit, in which case this function is trivial. Secondly, an architecture
548  * may not have a spare pte bit, which requires a more complicated scheme,
549  * described below.
550  *
551  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552  * special mapping (even if there are underlying and valid "struct pages").
553  * COWed pages of a VM_PFNMAP are always normal.
554  *
555  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558  * mapping will always honor the rule
559  *
560  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561  *
562  * And for normal mappings this is false.
563  *
564  * This restricts such mappings to be a linear translation from virtual address
565  * to pfn. To get around this restriction, we allow arbitrary mappings so long
566  * as the vma is not a COW mapping; in that case, we know that all ptes are
567  * special (because none can have been COWed).
568  *
569  *
570  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571  *
572  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573  * page" backing, however the difference is that _all_ pages with a struct
574  * page (that is, those where pfn_valid is true) are refcounted and considered
575  * normal pages by the VM. The disadvantage is that pages are refcounted
576  * (which can be slower and simply not an option for some PFNMAP users). The
577  * advantage is that we don't have to follow the strict linearity rule of
578  * PFNMAP mappings in order to support COWable mappings.
579  *
580  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 			    pte_t pte)
583 {
584 	unsigned long pfn = pte_pfn(pte);
585 
586 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587 		if (likely(!pte_special(pte)))
588 			goto check_pfn;
589 		if (vma->vm_ops && vma->vm_ops->find_special_page)
590 			return vma->vm_ops->find_special_page(vma, addr);
591 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 			return NULL;
593 		if (is_zero_pfn(pfn))
594 			return NULL;
595 		if (pte_devmap(pte))
596 		/*
597 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 		 * and will have refcounts incremented on their struct pages
599 		 * when they are inserted into PTEs, thus they are safe to
600 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 		 */
604 			return NULL;
605 
606 		print_bad_pte(vma, addr, pte, NULL);
607 		return NULL;
608 	}
609 
610 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611 
612 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 		if (vma->vm_flags & VM_MIXEDMAP) {
614 			if (!pfn_valid(pfn))
615 				return NULL;
616 			goto out;
617 		} else {
618 			unsigned long off;
619 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 			if (pfn == vma->vm_pgoff + off)
621 				return NULL;
622 			if (!is_cow_mapping(vma->vm_flags))
623 				return NULL;
624 		}
625 	}
626 
627 	if (is_zero_pfn(pfn))
628 		return NULL;
629 
630 check_pfn:
631 	if (unlikely(pfn > highest_memmap_pfn)) {
632 		print_bad_pte(vma, addr, pte, NULL);
633 		return NULL;
634 	}
635 
636 	/*
637 	 * NOTE! We still have PageReserved() pages in the page tables.
638 	 * eg. VDSO mappings can cause them to exist.
639 	 */
640 out:
641 	return pfn_to_page(pfn);
642 }
643 
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 			    pte_t pte)
646 {
647 	struct page *page = vm_normal_page(vma, addr, pte);
648 
649 	if (page)
650 		return page_folio(page);
651 	return NULL;
652 }
653 
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 				pmd_t pmd)
657 {
658 	unsigned long pfn = pmd_pfn(pmd);
659 
660 	/*
661 	 * There is no pmd_special() but there may be special pmds, e.g.
662 	 * in a direct-access (dax) mapping, so let's just replicate the
663 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664 	 */
665 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 		if (vma->vm_flags & VM_MIXEDMAP) {
667 			if (!pfn_valid(pfn))
668 				return NULL;
669 			goto out;
670 		} else {
671 			unsigned long off;
672 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 			if (pfn == vma->vm_pgoff + off)
674 				return NULL;
675 			if (!is_cow_mapping(vma->vm_flags))
676 				return NULL;
677 		}
678 	}
679 
680 	if (pmd_devmap(pmd))
681 		return NULL;
682 	if (is_huge_zero_pmd(pmd))
683 		return NULL;
684 	if (unlikely(pfn > highest_memmap_pfn))
685 		return NULL;
686 
687 	/*
688 	 * NOTE! We still have PageReserved() pages in the page tables.
689 	 * eg. VDSO mappings can cause them to exist.
690 	 */
691 out:
692 	return pfn_to_page(pfn);
693 }
694 #endif
695 
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697 				  struct page *page, unsigned long address,
698 				  pte_t *ptep)
699 {
700 	pte_t orig_pte;
701 	pte_t pte;
702 	swp_entry_t entry;
703 
704 	orig_pte = ptep_get(ptep);
705 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 	if (pte_swp_soft_dirty(orig_pte))
707 		pte = pte_mksoft_dirty(pte);
708 
709 	entry = pte_to_swp_entry(orig_pte);
710 	if (pte_swp_uffd_wp(orig_pte))
711 		pte = pte_mkuffd_wp(pte);
712 	else if (is_writable_device_exclusive_entry(entry))
713 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714 
715 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716 
717 	/*
718 	 * No need to take a page reference as one was already
719 	 * created when the swap entry was made.
720 	 */
721 	if (PageAnon(page))
722 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
723 	else
724 		/*
725 		 * Currently device exclusive access only supports anonymous
726 		 * memory so the entry shouldn't point to a filebacked page.
727 		 */
728 		WARN_ON_ONCE(1);
729 
730 	set_pte_at(vma->vm_mm, address, ptep, pte);
731 
732 	/*
733 	 * No need to invalidate - it was non-present before. However
734 	 * secondary CPUs may have mappings that need invalidating.
735 	 */
736 	update_mmu_cache(vma, address, ptep);
737 }
738 
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 			unsigned long addr)
746 {
747 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748 	struct page *page = pfn_swap_entry_to_page(entry);
749 
750 	if (trylock_page(page)) {
751 		restore_exclusive_pte(vma, page, addr, src_pte);
752 		unlock_page(page);
753 		return 0;
754 	}
755 
756 	return -EBUSY;
757 }
758 
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764 
765 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770 	unsigned long vm_flags = dst_vma->vm_flags;
771 	pte_t orig_pte = ptep_get(src_pte);
772 	pte_t pte = orig_pte;
773 	struct page *page;
774 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
775 
776 	if (likely(!non_swap_entry(entry))) {
777 		if (swap_duplicate(entry) < 0)
778 			return -EIO;
779 
780 		/* make sure dst_mm is on swapoff's mmlist. */
781 		if (unlikely(list_empty(&dst_mm->mmlist))) {
782 			spin_lock(&mmlist_lock);
783 			if (list_empty(&dst_mm->mmlist))
784 				list_add(&dst_mm->mmlist,
785 						&src_mm->mmlist);
786 			spin_unlock(&mmlist_lock);
787 		}
788 		/* Mark the swap entry as shared. */
789 		if (pte_swp_exclusive(orig_pte)) {
790 			pte = pte_swp_clear_exclusive(orig_pte);
791 			set_pte_at(src_mm, addr, src_pte, pte);
792 		}
793 		rss[MM_SWAPENTS]++;
794 	} else if (is_migration_entry(entry)) {
795 		page = pfn_swap_entry_to_page(entry);
796 
797 		rss[mm_counter(page)]++;
798 
799 		if (!is_readable_migration_entry(entry) &&
800 				is_cow_mapping(vm_flags)) {
801 			/*
802 			 * COW mappings require pages in both parent and child
803 			 * to be set to read. A previously exclusive entry is
804 			 * now shared.
805 			 */
806 			entry = make_readable_migration_entry(
807 							swp_offset(entry));
808 			pte = swp_entry_to_pte(entry);
809 			if (pte_swp_soft_dirty(orig_pte))
810 				pte = pte_swp_mksoft_dirty(pte);
811 			if (pte_swp_uffd_wp(orig_pte))
812 				pte = pte_swp_mkuffd_wp(pte);
813 			set_pte_at(src_mm, addr, src_pte, pte);
814 		}
815 	} else if (is_device_private_entry(entry)) {
816 		page = pfn_swap_entry_to_page(entry);
817 
818 		/*
819 		 * Update rss count even for unaddressable pages, as
820 		 * they should treated just like normal pages in this
821 		 * respect.
822 		 *
823 		 * We will likely want to have some new rss counters
824 		 * for unaddressable pages, at some point. But for now
825 		 * keep things as they are.
826 		 */
827 		get_page(page);
828 		rss[mm_counter(page)]++;
829 		/* Cannot fail as these pages cannot get pinned. */
830 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831 
832 		/*
833 		 * We do not preserve soft-dirty information, because so
834 		 * far, checkpoint/restore is the only feature that
835 		 * requires that. And checkpoint/restore does not work
836 		 * when a device driver is involved (you cannot easily
837 		 * save and restore device driver state).
838 		 */
839 		if (is_writable_device_private_entry(entry) &&
840 		    is_cow_mapping(vm_flags)) {
841 			entry = make_readable_device_private_entry(
842 							swp_offset(entry));
843 			pte = swp_entry_to_pte(entry);
844 			if (pte_swp_uffd_wp(orig_pte))
845 				pte = pte_swp_mkuffd_wp(pte);
846 			set_pte_at(src_mm, addr, src_pte, pte);
847 		}
848 	} else if (is_device_exclusive_entry(entry)) {
849 		/*
850 		 * Make device exclusive entries present by restoring the
851 		 * original entry then copying as for a present pte. Device
852 		 * exclusive entries currently only support private writable
853 		 * (ie. COW) mappings.
854 		 */
855 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 			return -EBUSY;
858 		return -ENOENT;
859 	} else if (is_pte_marker_entry(entry)) {
860 		pte_marker marker = copy_pte_marker(entry, dst_vma);
861 
862 		if (marker)
863 			set_pte_at(dst_mm, addr, dst_pte,
864 				   make_pte_marker(marker));
865 		return 0;
866 	}
867 	if (!userfaultfd_wp(dst_vma))
868 		pte = pte_swp_clear_uffd_wp(pte);
869 	set_pte_at(dst_mm, addr, dst_pte, pte);
870 	return 0;
871 }
872 
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 		  struct folio **prealloc, struct page *page)
889 {
890 	struct folio *new_folio;
891 	pte_t pte;
892 
893 	new_folio = *prealloc;
894 	if (!new_folio)
895 		return -EAGAIN;
896 
897 	/*
898 	 * We have a prealloc page, all good!  Take it
899 	 * over and copy the page & arm it.
900 	 */
901 	*prealloc = NULL;
902 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 	__folio_mark_uptodate(new_folio);
904 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 	folio_add_lru_vma(new_folio, dst_vma);
906 	rss[MM_ANONPAGES]++;
907 
908 	/* All done, just insert the new page copy in the child */
909 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 		/* Uffd-wp needs to be delivered to dest pte as well */
913 		pte = pte_mkuffd_wp(pte);
914 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 	return 0;
916 }
917 
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc)923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 		 struct folio **prealloc)
926 {
927 	struct mm_struct *src_mm = src_vma->vm_mm;
928 	unsigned long vm_flags = src_vma->vm_flags;
929 	pte_t pte = ptep_get(src_pte);
930 	struct page *page;
931 	struct folio *folio;
932 
933 	page = vm_normal_page(src_vma, addr, pte);
934 	if (page)
935 		folio = page_folio(page);
936 	if (page && folio_test_anon(folio)) {
937 		/*
938 		 * If this page may have been pinned by the parent process,
939 		 * copy the page immediately for the child so that we'll always
940 		 * guarantee the pinned page won't be randomly replaced in the
941 		 * future.
942 		 */
943 		folio_get(folio);
944 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 			/* Page may be pinned, we have to copy. */
946 			folio_put(folio);
947 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 						 addr, rss, prealloc, page);
949 		}
950 		rss[MM_ANONPAGES]++;
951 	} else if (page) {
952 		folio_get(folio);
953 		page_dup_file_rmap(page, false);
954 		rss[mm_counter_file(page)]++;
955 	}
956 
957 	/*
958 	 * If it's a COW mapping, write protect it both
959 	 * in the parent and the child
960 	 */
961 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 		ptep_set_wrprotect(src_mm, addr, src_pte);
963 		pte = pte_wrprotect(pte);
964 	}
965 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966 
967 	/*
968 	 * If it's a shared mapping, mark it clean in
969 	 * the child
970 	 */
971 	if (vm_flags & VM_SHARED)
972 		pte = pte_mkclean(pte);
973 	pte = pte_mkold(pte);
974 
975 	if (!userfaultfd_wp(dst_vma))
976 		pte = pte_clear_uffd_wp(pte);
977 
978 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 	return 0;
980 }
981 
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 		struct vm_area_struct *vma, unsigned long addr)
984 {
985 	struct folio *new_folio;
986 
987 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 	if (!new_folio)
989 		return NULL;
990 
991 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 		folio_put(new_folio);
993 		return NULL;
994 	}
995 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
996 
997 	return new_folio;
998 }
999 
1000 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 	       unsigned long end)
1004 {
1005 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 	struct mm_struct *src_mm = src_vma->vm_mm;
1007 	pte_t *orig_src_pte, *orig_dst_pte;
1008 	pte_t *src_pte, *dst_pte;
1009 	pte_t ptent;
1010 	spinlock_t *src_ptl, *dst_ptl;
1011 	int progress, ret = 0;
1012 	int rss[NR_MM_COUNTERS];
1013 	swp_entry_t entry = (swp_entry_t){0};
1014 	struct folio *prealloc = NULL;
1015 
1016 again:
1017 	progress = 0;
1018 	init_rss_vec(rss);
1019 
1020 	/*
1021 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 	 * error handling here, assume that exclusive mmap_lock on dst and src
1023 	 * protects anon from unexpected THP transitions; with shmem and file
1024 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026 	 * can remove such assumptions later, but this is good enough for now.
1027 	 */
1028 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 	if (!dst_pte) {
1030 		ret = -ENOMEM;
1031 		goto out;
1032 	}
1033 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 	if (!src_pte) {
1035 		pte_unmap_unlock(dst_pte, dst_ptl);
1036 		/* ret == 0 */
1037 		goto out;
1038 	}
1039 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 	orig_src_pte = src_pte;
1041 	orig_dst_pte = dst_pte;
1042 	arch_enter_lazy_mmu_mode();
1043 
1044 	do {
1045 		/*
1046 		 * We are holding two locks at this point - either of them
1047 		 * could generate latencies in another task on another CPU.
1048 		 */
1049 		if (progress >= 32) {
1050 			progress = 0;
1051 			if (need_resched() ||
1052 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 				break;
1054 		}
1055 		ptent = ptep_get(src_pte);
1056 		if (pte_none(ptent)) {
1057 			progress++;
1058 			continue;
1059 		}
1060 		if (unlikely(!pte_present(ptent))) {
1061 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 						  dst_pte, src_pte,
1063 						  dst_vma, src_vma,
1064 						  addr, rss);
1065 			if (ret == -EIO) {
1066 				entry = pte_to_swp_entry(ptep_get(src_pte));
1067 				break;
1068 			} else if (ret == -EBUSY) {
1069 				break;
1070 			} else if (!ret) {
1071 				progress += 8;
1072 				continue;
1073 			}
1074 
1075 			/*
1076 			 * Device exclusive entry restored, continue by copying
1077 			 * the now present pte.
1078 			 */
1079 			WARN_ON_ONCE(ret != -ENOENT);
1080 		}
1081 		/* copy_present_pte() will clear `*prealloc' if consumed */
1082 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 				       addr, rss, &prealloc);
1084 		/*
1085 		 * If we need a pre-allocated page for this pte, drop the
1086 		 * locks, allocate, and try again.
1087 		 */
1088 		if (unlikely(ret == -EAGAIN))
1089 			break;
1090 		if (unlikely(prealloc)) {
1091 			/*
1092 			 * pre-alloc page cannot be reused by next time so as
1093 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 			 * will allocate page according to address).  This
1095 			 * could only happen if one pinned pte changed.
1096 			 */
1097 			folio_put(prealloc);
1098 			prealloc = NULL;
1099 		}
1100 		progress += 8;
1101 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102 
1103 	arch_leave_lazy_mmu_mode();
1104 	pte_unmap_unlock(orig_src_pte, src_ptl);
1105 	add_mm_rss_vec(dst_mm, rss);
1106 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 	cond_resched();
1108 
1109 	if (ret == -EIO) {
1110 		VM_WARN_ON_ONCE(!entry.val);
1111 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 			ret = -ENOMEM;
1113 			goto out;
1114 		}
1115 		entry.val = 0;
1116 	} else if (ret == -EBUSY) {
1117 		goto out;
1118 	} else if (ret ==  -EAGAIN) {
1119 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 		if (!prealloc)
1121 			return -ENOMEM;
1122 	} else if (ret) {
1123 		VM_WARN_ON_ONCE(1);
1124 	}
1125 
1126 	/* We've captured and resolved the error. Reset, try again. */
1127 	ret = 0;
1128 
1129 	if (addr != end)
1130 		goto again;
1131 out:
1132 	if (unlikely(prealloc))
1133 		folio_put(prealloc);
1134 	return ret;
1135 }
1136 
1137 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 	       unsigned long end)
1141 {
1142 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 	struct mm_struct *src_mm = src_vma->vm_mm;
1144 	pmd_t *src_pmd, *dst_pmd;
1145 	unsigned long next;
1146 
1147 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 	if (!dst_pmd)
1149 		return -ENOMEM;
1150 	src_pmd = pmd_offset(src_pud, addr);
1151 	do {
1152 		next = pmd_addr_end(addr, end);
1153 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 			|| pmd_devmap(*src_pmd)) {
1155 			int err;
1156 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 					    addr, dst_vma, src_vma);
1159 			if (err == -ENOMEM)
1160 				return -ENOMEM;
1161 			if (!err)
1162 				continue;
1163 			/* fall through */
1164 		}
1165 		if (pmd_none_or_clear_bad(src_pmd))
1166 			continue;
1167 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 				   addr, next))
1169 			return -ENOMEM;
1170 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 	return 0;
1172 }
1173 
1174 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 	       unsigned long end)
1178 {
1179 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 	struct mm_struct *src_mm = src_vma->vm_mm;
1181 	pud_t *src_pud, *dst_pud;
1182 	unsigned long next;
1183 
1184 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 	if (!dst_pud)
1186 		return -ENOMEM;
1187 	src_pud = pud_offset(src_p4d, addr);
1188 	do {
1189 		next = pud_addr_end(addr, end);
1190 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 			int err;
1192 
1193 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 			err = copy_huge_pud(dst_mm, src_mm,
1195 					    dst_pud, src_pud, addr, src_vma);
1196 			if (err == -ENOMEM)
1197 				return -ENOMEM;
1198 			if (!err)
1199 				continue;
1200 			/* fall through */
1201 		}
1202 		if (pud_none_or_clear_bad(src_pud))
1203 			continue;
1204 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 				   addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 	       unsigned long end)
1215 {
1216 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 	p4d_t *src_p4d, *dst_p4d;
1218 	unsigned long next;
1219 
1220 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 	if (!dst_p4d)
1222 		return -ENOMEM;
1223 	src_p4d = p4d_offset(src_pgd, addr);
1224 	do {
1225 		next = p4d_addr_end(addr, end);
1226 		if (p4d_none_or_clear_bad(src_p4d))
1227 			continue;
1228 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 				   addr, next))
1230 			return -ENOMEM;
1231 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243 	/*
1244 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 	 * contains uffd-wp protection information, that's something we can't
1247 	 * retrieve from page cache, and skip copying will lose those info.
1248 	 */
1249 	if (userfaultfd_wp(dst_vma))
1250 		return true;
1251 
1252 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 		return true;
1254 
1255 	if (src_vma->anon_vma)
1256 		return true;
1257 
1258 	/*
1259 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1260 	 * becomes much lighter when there are big shared or private readonly
1261 	 * mappings. The tradeoff is that copy_page_range is more efficient
1262 	 * than faulting.
1263 	 */
1264 	return false;
1265 }
1266 
1267 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270 	pgd_t *src_pgd, *dst_pgd;
1271 	unsigned long addr = src_vma->vm_start;
1272 	unsigned long end = src_vma->vm_end;
1273 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 	struct mm_struct *src_mm = src_vma->vm_mm;
1275 	struct mmu_notifier_range range;
1276 	unsigned long next, pfn;
1277 	bool is_cow;
1278 	int ret;
1279 
1280 	if (!vma_needs_copy(dst_vma, src_vma))
1281 		return 0;
1282 
1283 	if (is_vm_hugetlb_page(src_vma))
1284 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285 
1286 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 		ret = track_pfn_copy(dst_vma, src_vma, &pfn);
1288 		if (ret)
1289 			return ret;
1290 	}
1291 
1292 	/*
1293 	 * We need to invalidate the secondary MMU mappings only when
1294 	 * there could be a permission downgrade on the ptes of the
1295 	 * parent mm. And a permission downgrade will only happen if
1296 	 * is_cow_mapping() returns true.
1297 	 */
1298 	is_cow = is_cow_mapping(src_vma->vm_flags);
1299 
1300 	if (is_cow) {
1301 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1302 					0, src_mm, addr, end);
1303 		mmu_notifier_invalidate_range_start(&range);
1304 		/*
1305 		 * Disabling preemption is not needed for the write side, as
1306 		 * the read side doesn't spin, but goes to the mmap_lock.
1307 		 *
1308 		 * Use the raw variant of the seqcount_t write API to avoid
1309 		 * lockdep complaining about preemptibility.
1310 		 */
1311 		vma_assert_write_locked(src_vma);
1312 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1313 	}
1314 
1315 	ret = 0;
1316 	dst_pgd = pgd_offset(dst_mm, addr);
1317 	src_pgd = pgd_offset(src_mm, addr);
1318 	do {
1319 		next = pgd_addr_end(addr, end);
1320 		if (pgd_none_or_clear_bad(src_pgd))
1321 			continue;
1322 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1323 					    addr, next))) {
1324 			ret = -ENOMEM;
1325 			break;
1326 		}
1327 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1328 
1329 	if (is_cow) {
1330 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1331 		mmu_notifier_invalidate_range_end(&range);
1332 	}
1333 	if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP))
1334 		untrack_pfn_copy(dst_vma, pfn);
1335 	return ret;
1336 }
1337 
1338 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1339 static inline bool should_zap_cows(struct zap_details *details)
1340 {
1341 	/* By default, zap all pages */
1342 	if (!details)
1343 		return true;
1344 
1345 	/* Or, we zap COWed pages only if the caller wants to */
1346 	return details->even_cows;
1347 }
1348 
1349 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1350 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1351 {
1352 	/* If we can make a decision without *page.. */
1353 	if (should_zap_cows(details))
1354 		return true;
1355 
1356 	/* E.g. the caller passes NULL for the case of a zero page */
1357 	if (!page)
1358 		return true;
1359 
1360 	/* Otherwise we should only zap non-anon pages */
1361 	return !PageAnon(page);
1362 }
1363 
zap_drop_file_uffd_wp(struct zap_details * details)1364 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1365 {
1366 	if (!details)
1367 		return false;
1368 
1369 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1370 }
1371 
1372 /*
1373  * This function makes sure that we'll replace the none pte with an uffd-wp
1374  * swap special pte marker when necessary. Must be with the pgtable lock held.
1375  */
1376 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1377 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1378 			      unsigned long addr, pte_t *pte,
1379 			      struct zap_details *details, pte_t pteval)
1380 {
1381 	/* Zap on anonymous always means dropping everything */
1382 	if (vma_is_anonymous(vma))
1383 		return;
1384 
1385 	if (zap_drop_file_uffd_wp(details))
1386 		return;
1387 
1388 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1389 }
1390 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1391 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1392 				struct vm_area_struct *vma, pmd_t *pmd,
1393 				unsigned long addr, unsigned long end,
1394 				struct zap_details *details)
1395 {
1396 	struct mm_struct *mm = tlb->mm;
1397 	int force_flush = 0;
1398 	int rss[NR_MM_COUNTERS];
1399 	spinlock_t *ptl;
1400 	pte_t *start_pte;
1401 	pte_t *pte;
1402 	swp_entry_t entry;
1403 
1404 	tlb_change_page_size(tlb, PAGE_SIZE);
1405 	init_rss_vec(rss);
1406 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1407 	if (!pte)
1408 		return addr;
1409 
1410 	flush_tlb_batched_pending(mm);
1411 	arch_enter_lazy_mmu_mode();
1412 	do {
1413 		pte_t ptent = ptep_get(pte);
1414 		struct page *page;
1415 
1416 		if (pte_none(ptent))
1417 			continue;
1418 
1419 		if (need_resched())
1420 			break;
1421 
1422 		if (pte_present(ptent)) {
1423 			unsigned int delay_rmap;
1424 
1425 			page = vm_normal_page(vma, addr, ptent);
1426 			if (unlikely(!should_zap_page(details, page)))
1427 				continue;
1428 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1429 							tlb->fullmm);
1430 			arch_check_zapped_pte(vma, ptent);
1431 			tlb_remove_tlb_entry(tlb, pte, addr);
1432 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1433 						      ptent);
1434 			if (unlikely(!page)) {
1435 				ksm_might_unmap_zero_page(mm, ptent);
1436 				continue;
1437 			}
1438 
1439 			delay_rmap = 0;
1440 			if (!PageAnon(page)) {
1441 				if (pte_dirty(ptent)) {
1442 					set_page_dirty(page);
1443 					if (tlb_delay_rmap(tlb)) {
1444 						delay_rmap = 1;
1445 						force_flush = 1;
1446 					}
1447 				}
1448 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449 					mark_page_accessed(page);
1450 			}
1451 			rss[mm_counter(page)]--;
1452 			if (!delay_rmap) {
1453 				page_remove_rmap(page, vma, false);
1454 				if (unlikely(page_mapcount(page) < 0))
1455 					print_bad_pte(vma, addr, ptent, page);
1456 			}
1457 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1458 				force_flush = 1;
1459 				addr += PAGE_SIZE;
1460 				break;
1461 			}
1462 			continue;
1463 		}
1464 
1465 		entry = pte_to_swp_entry(ptent);
1466 		if (is_device_private_entry(entry) ||
1467 		    is_device_exclusive_entry(entry)) {
1468 			page = pfn_swap_entry_to_page(entry);
1469 			if (unlikely(!should_zap_page(details, page)))
1470 				continue;
1471 			/*
1472 			 * Both device private/exclusive mappings should only
1473 			 * work with anonymous page so far, so we don't need to
1474 			 * consider uffd-wp bit when zap. For more information,
1475 			 * see zap_install_uffd_wp_if_needed().
1476 			 */
1477 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 			rss[mm_counter(page)]--;
1479 			if (is_device_private_entry(entry))
1480 				page_remove_rmap(page, vma, false);
1481 			put_page(page);
1482 		} else if (!non_swap_entry(entry)) {
1483 			/* Genuine swap entry, hence a private anon page */
1484 			if (!should_zap_cows(details))
1485 				continue;
1486 			rss[MM_SWAPENTS]--;
1487 			if (unlikely(!free_swap_and_cache(entry)))
1488 				print_bad_pte(vma, addr, ptent, NULL);
1489 		} else if (is_migration_entry(entry)) {
1490 			page = pfn_swap_entry_to_page(entry);
1491 			if (!should_zap_page(details, page))
1492 				continue;
1493 			rss[mm_counter(page)]--;
1494 		} else if (pte_marker_entry_uffd_wp(entry)) {
1495 			/*
1496 			 * For anon: always drop the marker; for file: only
1497 			 * drop the marker if explicitly requested.
1498 			 */
1499 			if (!vma_is_anonymous(vma) &&
1500 			    !zap_drop_file_uffd_wp(details))
1501 				continue;
1502 		} else if (is_hwpoison_entry(entry) ||
1503 			   is_poisoned_swp_entry(entry)) {
1504 			if (!should_zap_cows(details))
1505 				continue;
1506 		} else {
1507 			/* We should have covered all the swap entry types */
1508 			WARN_ON_ONCE(1);
1509 		}
1510 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512 	} while (pte++, addr += PAGE_SIZE, addr != end);
1513 
1514 	add_mm_rss_vec(mm, rss);
1515 	arch_leave_lazy_mmu_mode();
1516 
1517 	/* Do the actual TLB flush before dropping ptl */
1518 	if (force_flush) {
1519 		tlb_flush_mmu_tlbonly(tlb);
1520 		tlb_flush_rmaps(tlb, vma);
1521 	}
1522 	pte_unmap_unlock(start_pte, ptl);
1523 
1524 	/*
1525 	 * If we forced a TLB flush (either due to running out of
1526 	 * batch buffers or because we needed to flush dirty TLB
1527 	 * entries before releasing the ptl), free the batched
1528 	 * memory too. Come back again if we didn't do everything.
1529 	 */
1530 	if (force_flush)
1531 		tlb_flush_mmu(tlb);
1532 
1533 	return addr;
1534 }
1535 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 				struct vm_area_struct *vma, pud_t *pud,
1538 				unsigned long addr, unsigned long end,
1539 				struct zap_details *details)
1540 {
1541 	pmd_t *pmd;
1542 	unsigned long next;
1543 
1544 	pmd = pmd_offset(pud, addr);
1545 	do {
1546 		next = pmd_addr_end(addr, end);
1547 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 			if (next - addr != HPAGE_PMD_SIZE)
1549 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1550 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1551 				addr = next;
1552 				continue;
1553 			}
1554 			/* fall through */
1555 		} else if (details && details->single_folio &&
1556 			   folio_test_pmd_mappable(details->single_folio) &&
1557 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1559 			/*
1560 			 * Take and drop THP pmd lock so that we cannot return
1561 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1562 			 * but not yet decremented compound_mapcount().
1563 			 */
1564 			spin_unlock(ptl);
1565 		}
1566 		if (pmd_none(*pmd)) {
1567 			addr = next;
1568 			continue;
1569 		}
1570 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1571 		if (addr != next)
1572 			pmd--;
1573 	} while (pmd++, cond_resched(), addr != end);
1574 
1575 	return addr;
1576 }
1577 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1578 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579 				struct vm_area_struct *vma, p4d_t *p4d,
1580 				unsigned long addr, unsigned long end,
1581 				struct zap_details *details)
1582 {
1583 	pud_t *pud;
1584 	unsigned long next;
1585 
1586 	pud = pud_offset(p4d, addr);
1587 	do {
1588 		next = pud_addr_end(addr, end);
1589 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590 			if (next - addr != HPAGE_PUD_SIZE) {
1591 				mmap_assert_locked(tlb->mm);
1592 				split_huge_pud(vma, pud, addr);
1593 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1594 				goto next;
1595 			/* fall through */
1596 		}
1597 		if (pud_none_or_clear_bad(pud))
1598 			continue;
1599 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1600 next:
1601 		cond_resched();
1602 	} while (pud++, addr = next, addr != end);
1603 
1604 	return addr;
1605 }
1606 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1607 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608 				struct vm_area_struct *vma, pgd_t *pgd,
1609 				unsigned long addr, unsigned long end,
1610 				struct zap_details *details)
1611 {
1612 	p4d_t *p4d;
1613 	unsigned long next;
1614 
1615 	p4d = p4d_offset(pgd, addr);
1616 	do {
1617 		next = p4d_addr_end(addr, end);
1618 		if (p4d_none_or_clear_bad(p4d))
1619 			continue;
1620 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621 	} while (p4d++, addr = next, addr != end);
1622 
1623 	return addr;
1624 }
1625 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1626 void unmap_page_range(struct mmu_gather *tlb,
1627 			     struct vm_area_struct *vma,
1628 			     unsigned long addr, unsigned long end,
1629 			     struct zap_details *details)
1630 {
1631 	pgd_t *pgd;
1632 	unsigned long next;
1633 
1634 	BUG_ON(addr >= end);
1635 	tlb_start_vma(tlb, vma);
1636 	pgd = pgd_offset(vma->vm_mm, addr);
1637 	do {
1638 		next = pgd_addr_end(addr, end);
1639 		if (pgd_none_or_clear_bad(pgd))
1640 			continue;
1641 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642 	} while (pgd++, addr = next, addr != end);
1643 	tlb_end_vma(tlb, vma);
1644 }
1645 
1646 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1647 static void unmap_single_vma(struct mmu_gather *tlb,
1648 		struct vm_area_struct *vma, unsigned long start_addr,
1649 		unsigned long end_addr,
1650 		struct zap_details *details, bool mm_wr_locked)
1651 {
1652 	unsigned long start = max(vma->vm_start, start_addr);
1653 	unsigned long end;
1654 
1655 	if (start >= vma->vm_end)
1656 		return;
1657 	end = min(vma->vm_end, end_addr);
1658 	if (end <= vma->vm_start)
1659 		return;
1660 
1661 	if (vma->vm_file)
1662 		uprobe_munmap(vma, start, end);
1663 
1664 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1665 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1666 
1667 	if (start != end) {
1668 		if (unlikely(is_vm_hugetlb_page(vma))) {
1669 			/*
1670 			 * It is undesirable to test vma->vm_file as it
1671 			 * should be non-null for valid hugetlb area.
1672 			 * However, vm_file will be NULL in the error
1673 			 * cleanup path of mmap_region. When
1674 			 * hugetlbfs ->mmap method fails,
1675 			 * mmap_region() nullifies vma->vm_file
1676 			 * before calling this function to clean up.
1677 			 * Since no pte has actually been setup, it is
1678 			 * safe to do nothing in this case.
1679 			 */
1680 			if (vma->vm_file) {
1681 				zap_flags_t zap_flags = details ?
1682 				    details->zap_flags : 0;
1683 				__unmap_hugepage_range(tlb, vma, start, end,
1684 							     NULL, zap_flags);
1685 			}
1686 		} else
1687 			unmap_page_range(tlb, vma, start, end, details);
1688 	}
1689 }
1690 
1691 /**
1692  * unmap_vmas - unmap a range of memory covered by a list of vma's
1693  * @tlb: address of the caller's struct mmu_gather
1694  * @mas: the maple state
1695  * @vma: the starting vma
1696  * @start_addr: virtual address at which to start unmapping
1697  * @end_addr: virtual address at which to end unmapping
1698  * @tree_end: The maximum index to check
1699  * @mm_wr_locked: lock flag
1700  *
1701  * Unmap all pages in the vma list.
1702  *
1703  * Only addresses between `start' and `end' will be unmapped.
1704  *
1705  * The VMA list must be sorted in ascending virtual address order.
1706  *
1707  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1708  * range after unmap_vmas() returns.  So the only responsibility here is to
1709  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1710  * drops the lock and schedules.
1711  */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1712 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1713 		struct vm_area_struct *vma, unsigned long start_addr,
1714 		unsigned long end_addr, unsigned long tree_end,
1715 		bool mm_wr_locked)
1716 {
1717 	struct mmu_notifier_range range;
1718 	struct zap_details details = {
1719 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1720 		/* Careful - we need to zap private pages too! */
1721 		.even_cows = true,
1722 	};
1723 
1724 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1725 				start_addr, end_addr);
1726 	mmu_notifier_invalidate_range_start(&range);
1727 	do {
1728 		unsigned long start = start_addr;
1729 		unsigned long end = end_addr;
1730 		hugetlb_zap_begin(vma, &start, &end);
1731 		unmap_single_vma(tlb, vma, start, end, &details,
1732 				 mm_wr_locked);
1733 		hugetlb_zap_end(vma, &details);
1734 	} while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1735 	mmu_notifier_invalidate_range_end(&range);
1736 }
1737 
1738 /**
1739  * zap_page_range_single - remove user pages in a given range
1740  * @vma: vm_area_struct holding the applicable pages
1741  * @address: starting address of pages to zap
1742  * @size: number of bytes to zap
1743  * @details: details of shared cache invalidation
1744  *
1745  * The range must fit into one VMA.
1746  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1747 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1748 		unsigned long size, struct zap_details *details)
1749 {
1750 	const unsigned long end = address + size;
1751 	struct mmu_notifier_range range;
1752 	struct mmu_gather tlb;
1753 
1754 	lru_add_drain();
1755 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1756 				address, end);
1757 	hugetlb_zap_begin(vma, &range.start, &range.end);
1758 	tlb_gather_mmu(&tlb, vma->vm_mm);
1759 	update_hiwater_rss(vma->vm_mm);
1760 	mmu_notifier_invalidate_range_start(&range);
1761 	/*
1762 	 * unmap 'address-end' not 'range.start-range.end' as range
1763 	 * could have been expanded for hugetlb pmd sharing.
1764 	 */
1765 	unmap_single_vma(&tlb, vma, address, end, details, false);
1766 	mmu_notifier_invalidate_range_end(&range);
1767 	tlb_finish_mmu(&tlb);
1768 	hugetlb_zap_end(vma, details);
1769 }
1770 
1771 /**
1772  * zap_vma_ptes - remove ptes mapping the vma
1773  * @vma: vm_area_struct holding ptes to be zapped
1774  * @address: starting address of pages to zap
1775  * @size: number of bytes to zap
1776  *
1777  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1778  *
1779  * The entire address range must be fully contained within the vma.
1780  *
1781  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1782 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1783 		unsigned long size)
1784 {
1785 	if (!range_in_vma(vma, address, address + size) ||
1786 	    		!(vma->vm_flags & VM_PFNMAP))
1787 		return;
1788 
1789 	zap_page_range_single(vma, address, size, NULL);
1790 }
1791 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1792 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1793 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1794 {
1795 	pgd_t *pgd;
1796 	p4d_t *p4d;
1797 	pud_t *pud;
1798 	pmd_t *pmd;
1799 
1800 	pgd = pgd_offset(mm, addr);
1801 	p4d = p4d_alloc(mm, pgd, addr);
1802 	if (!p4d)
1803 		return NULL;
1804 	pud = pud_alloc(mm, p4d, addr);
1805 	if (!pud)
1806 		return NULL;
1807 	pmd = pmd_alloc(mm, pud, addr);
1808 	if (!pmd)
1809 		return NULL;
1810 
1811 	VM_BUG_ON(pmd_trans_huge(*pmd));
1812 	return pmd;
1813 }
1814 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1815 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1816 			spinlock_t **ptl)
1817 {
1818 	pmd_t *pmd = walk_to_pmd(mm, addr);
1819 
1820 	if (!pmd)
1821 		return NULL;
1822 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1823 }
1824 
validate_page_before_insert(struct page * page)1825 static int validate_page_before_insert(struct page *page)
1826 {
1827 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1828 		return -EINVAL;
1829 	flush_dcache_page(page);
1830 	return 0;
1831 }
1832 
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1833 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1834 			unsigned long addr, struct page *page, pgprot_t prot)
1835 {
1836 	if (!pte_none(ptep_get(pte)))
1837 		return -EBUSY;
1838 	/* Ok, finally just insert the thing.. */
1839 	get_page(page);
1840 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1841 	page_add_file_rmap(page, vma, false);
1842 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1843 	return 0;
1844 }
1845 
1846 /*
1847  * This is the old fallback for page remapping.
1848  *
1849  * For historical reasons, it only allows reserved pages. Only
1850  * old drivers should use this, and they needed to mark their
1851  * pages reserved for the old functions anyway.
1852  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1853 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1854 			struct page *page, pgprot_t prot)
1855 {
1856 	int retval;
1857 	pte_t *pte;
1858 	spinlock_t *ptl;
1859 
1860 	retval = validate_page_before_insert(page);
1861 	if (retval)
1862 		goto out;
1863 	retval = -ENOMEM;
1864 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1865 	if (!pte)
1866 		goto out;
1867 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868 	pte_unmap_unlock(pte, ptl);
1869 out:
1870 	return retval;
1871 }
1872 
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1874 			unsigned long addr, struct page *page, pgprot_t prot)
1875 {
1876 	int err;
1877 
1878 	if (!page_count(page))
1879 		return -EINVAL;
1880 	err = validate_page_before_insert(page);
1881 	if (err)
1882 		return err;
1883 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 }
1885 
1886 /* insert_pages() amortizes the cost of spinlock operations
1887  * when inserting pages in a loop.
1888  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 			struct page **pages, unsigned long *num, pgprot_t prot)
1891 {
1892 	pmd_t *pmd = NULL;
1893 	pte_t *start_pte, *pte;
1894 	spinlock_t *pte_lock;
1895 	struct mm_struct *const mm = vma->vm_mm;
1896 	unsigned long curr_page_idx = 0;
1897 	unsigned long remaining_pages_total = *num;
1898 	unsigned long pages_to_write_in_pmd;
1899 	int ret;
1900 more:
1901 	ret = -EFAULT;
1902 	pmd = walk_to_pmd(mm, addr);
1903 	if (!pmd)
1904 		goto out;
1905 
1906 	pages_to_write_in_pmd = min_t(unsigned long,
1907 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908 
1909 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1910 	ret = -ENOMEM;
1911 	if (pte_alloc(mm, pmd))
1912 		goto out;
1913 
1914 	while (pages_to_write_in_pmd) {
1915 		int pte_idx = 0;
1916 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917 
1918 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1919 		if (!start_pte) {
1920 			ret = -EFAULT;
1921 			goto out;
1922 		}
1923 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1924 			int err = insert_page_in_batch_locked(vma, pte,
1925 				addr, pages[curr_page_idx], prot);
1926 			if (unlikely(err)) {
1927 				pte_unmap_unlock(start_pte, pte_lock);
1928 				ret = err;
1929 				remaining_pages_total -= pte_idx;
1930 				goto out;
1931 			}
1932 			addr += PAGE_SIZE;
1933 			++curr_page_idx;
1934 		}
1935 		pte_unmap_unlock(start_pte, pte_lock);
1936 		pages_to_write_in_pmd -= batch_size;
1937 		remaining_pages_total -= batch_size;
1938 	}
1939 	if (remaining_pages_total)
1940 		goto more;
1941 	ret = 0;
1942 out:
1943 	*num = remaining_pages_total;
1944 	return ret;
1945 }
1946 
1947 /**
1948  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1949  * @vma: user vma to map to
1950  * @addr: target start user address of these pages
1951  * @pages: source kernel pages
1952  * @num: in: number of pages to map. out: number of pages that were *not*
1953  * mapped. (0 means all pages were successfully mapped).
1954  *
1955  * Preferred over vm_insert_page() when inserting multiple pages.
1956  *
1957  * In case of error, we may have mapped a subset of the provided
1958  * pages. It is the caller's responsibility to account for this case.
1959  *
1960  * The same restrictions apply as in vm_insert_page().
1961  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1962 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1963 			struct page **pages, unsigned long *num)
1964 {
1965 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1966 
1967 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1968 		return -EFAULT;
1969 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1970 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1971 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1972 		vm_flags_set(vma, VM_MIXEDMAP);
1973 	}
1974 	/* Defer page refcount checking till we're about to map that page. */
1975 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1976 }
1977 EXPORT_SYMBOL(vm_insert_pages);
1978 
1979 /**
1980  * vm_insert_page - insert single page into user vma
1981  * @vma: user vma to map to
1982  * @addr: target user address of this page
1983  * @page: source kernel page
1984  *
1985  * This allows drivers to insert individual pages they've allocated
1986  * into a user vma.
1987  *
1988  * The page has to be a nice clean _individual_ kernel allocation.
1989  * If you allocate a compound page, you need to have marked it as
1990  * such (__GFP_COMP), or manually just split the page up yourself
1991  * (see split_page()).
1992  *
1993  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1994  * took an arbitrary page protection parameter. This doesn't allow
1995  * that. Your vma protection will have to be set up correctly, which
1996  * means that if you want a shared writable mapping, you'd better
1997  * ask for a shared writable mapping!
1998  *
1999  * The page does not need to be reserved.
2000  *
2001  * Usually this function is called from f_op->mmap() handler
2002  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2003  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2004  * function from other places, for example from page-fault handler.
2005  *
2006  * Return: %0 on success, negative error code otherwise.
2007  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2009 			struct page *page)
2010 {
2011 	if (addr < vma->vm_start || addr >= vma->vm_end)
2012 		return -EFAULT;
2013 	if (!page_count(page))
2014 		return -EINVAL;
2015 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2016 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2017 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2018 		vm_flags_set(vma, VM_MIXEDMAP);
2019 	}
2020 	return insert_page(vma, addr, page, vma->vm_page_prot);
2021 }
2022 EXPORT_SYMBOL(vm_insert_page);
2023 
2024 /*
2025  * __vm_map_pages - maps range of kernel pages into user vma
2026  * @vma: user vma to map to
2027  * @pages: pointer to array of source kernel pages
2028  * @num: number of pages in page array
2029  * @offset: user's requested vm_pgoff
2030  *
2031  * This allows drivers to map range of kernel pages into a user vma.
2032  *
2033  * Return: 0 on success and error code otherwise.
2034  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2036 				unsigned long num, unsigned long offset)
2037 {
2038 	unsigned long count = vma_pages(vma);
2039 	unsigned long uaddr = vma->vm_start;
2040 	int ret, i;
2041 
2042 	/* Fail if the user requested offset is beyond the end of the object */
2043 	if (offset >= num)
2044 		return -ENXIO;
2045 
2046 	/* Fail if the user requested size exceeds available object size */
2047 	if (count > num - offset)
2048 		return -ENXIO;
2049 
2050 	for (i = 0; i < count; i++) {
2051 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2052 		if (ret < 0)
2053 			return ret;
2054 		uaddr += PAGE_SIZE;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 /**
2061  * vm_map_pages - maps range of kernel pages starts with non zero offset
2062  * @vma: user vma to map to
2063  * @pages: pointer to array of source kernel pages
2064  * @num: number of pages in page array
2065  *
2066  * Maps an object consisting of @num pages, catering for the user's
2067  * requested vm_pgoff
2068  *
2069  * If we fail to insert any page into the vma, the function will return
2070  * immediately leaving any previously inserted pages present.  Callers
2071  * from the mmap handler may immediately return the error as their caller
2072  * will destroy the vma, removing any successfully inserted pages. Other
2073  * callers should make their own arrangements for calling unmap_region().
2074  *
2075  * Context: Process context. Called by mmap handlers.
2076  * Return: 0 on success and error code otherwise.
2077  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2079 				unsigned long num)
2080 {
2081 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082 }
2083 EXPORT_SYMBOL(vm_map_pages);
2084 
2085 /**
2086  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2087  * @vma: user vma to map to
2088  * @pages: pointer to array of source kernel pages
2089  * @num: number of pages in page array
2090  *
2091  * Similar to vm_map_pages(), except that it explicitly sets the offset
2092  * to 0. This function is intended for the drivers that did not consider
2093  * vm_pgoff.
2094  *
2095  * Context: Process context. Called by mmap handlers.
2096  * Return: 0 on success and error code otherwise.
2097  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2099 				unsigned long num)
2100 {
2101 	return __vm_map_pages(vma, pages, num, 0);
2102 }
2103 EXPORT_SYMBOL(vm_map_pages_zero);
2104 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2106 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2107 {
2108 	struct mm_struct *mm = vma->vm_mm;
2109 	pte_t *pte, entry;
2110 	spinlock_t *ptl;
2111 
2112 	pte = get_locked_pte(mm, addr, &ptl);
2113 	if (!pte)
2114 		return VM_FAULT_OOM;
2115 	entry = ptep_get(pte);
2116 	if (!pte_none(entry)) {
2117 		if (mkwrite) {
2118 			/*
2119 			 * For read faults on private mappings the PFN passed
2120 			 * in may not match the PFN we have mapped if the
2121 			 * mapped PFN is a writeable COW page.  In the mkwrite
2122 			 * case we are creating a writable PTE for a shared
2123 			 * mapping and we expect the PFNs to match. If they
2124 			 * don't match, we are likely racing with block
2125 			 * allocation and mapping invalidation so just skip the
2126 			 * update.
2127 			 */
2128 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2129 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2130 				goto out_unlock;
2131 			}
2132 			entry = pte_mkyoung(entry);
2133 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2135 				update_mmu_cache(vma, addr, pte);
2136 		}
2137 		goto out_unlock;
2138 	}
2139 
2140 	/* Ok, finally just insert the thing.. */
2141 	if (pfn_t_devmap(pfn))
2142 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2143 	else
2144 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2145 
2146 	if (mkwrite) {
2147 		entry = pte_mkyoung(entry);
2148 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149 	}
2150 
2151 	set_pte_at(mm, addr, pte, entry);
2152 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2153 
2154 out_unlock:
2155 	pte_unmap_unlock(pte, ptl);
2156 	return VM_FAULT_NOPAGE;
2157 }
2158 
2159 /**
2160  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2161  * @vma: user vma to map to
2162  * @addr: target user address of this page
2163  * @pfn: source kernel pfn
2164  * @pgprot: pgprot flags for the inserted page
2165  *
2166  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2167  * to override pgprot on a per-page basis.
2168  *
2169  * This only makes sense for IO mappings, and it makes no sense for
2170  * COW mappings.  In general, using multiple vmas is preferable;
2171  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2172  * impractical.
2173  *
2174  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2175  * caching- and encryption bits different than those of @vma->vm_page_prot,
2176  * because the caching- or encryption mode may not be known at mmap() time.
2177  *
2178  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2179  * to set caching and encryption bits for those vmas (except for COW pages).
2180  * This is ensured by core vm only modifying these page table entries using
2181  * functions that don't touch caching- or encryption bits, using pte_modify()
2182  * if needed. (See for example mprotect()).
2183  *
2184  * Also when new page-table entries are created, this is only done using the
2185  * fault() callback, and never using the value of vma->vm_page_prot,
2186  * except for page-table entries that point to anonymous pages as the result
2187  * of COW.
2188  *
2189  * Context: Process context.  May allocate using %GFP_KERNEL.
2190  * Return: vm_fault_t value.
2191  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2192 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2193 			unsigned long pfn, pgprot_t pgprot)
2194 {
2195 	/*
2196 	 * Technically, architectures with pte_special can avoid all these
2197 	 * restrictions (same for remap_pfn_range).  However we would like
2198 	 * consistency in testing and feature parity among all, so we should
2199 	 * try to keep these invariants in place for everybody.
2200 	 */
2201 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2202 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2203 						(VM_PFNMAP|VM_MIXEDMAP));
2204 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2205 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2206 
2207 	if (addr < vma->vm_start || addr >= vma->vm_end)
2208 		return VM_FAULT_SIGBUS;
2209 
2210 	if (!pfn_modify_allowed(pfn, pgprot))
2211 		return VM_FAULT_SIGBUS;
2212 
2213 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2214 
2215 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2216 			false);
2217 }
2218 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2219 
2220 /**
2221  * vmf_insert_pfn - insert single pfn into user vma
2222  * @vma: user vma to map to
2223  * @addr: target user address of this page
2224  * @pfn: source kernel pfn
2225  *
2226  * Similar to vm_insert_page, this allows drivers to insert individual pages
2227  * they've allocated into a user vma. Same comments apply.
2228  *
2229  * This function should only be called from a vm_ops->fault handler, and
2230  * in that case the handler should return the result of this function.
2231  *
2232  * vma cannot be a COW mapping.
2233  *
2234  * As this is called only for pages that do not currently exist, we
2235  * do not need to flush old virtual caches or the TLB.
2236  *
2237  * Context: Process context.  May allocate using %GFP_KERNEL.
2238  * Return: vm_fault_t value.
2239  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2240 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2241 			unsigned long pfn)
2242 {
2243 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2244 }
2245 EXPORT_SYMBOL(vmf_insert_pfn);
2246 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2247 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2248 {
2249 	/* these checks mirror the abort conditions in vm_normal_page */
2250 	if (vma->vm_flags & VM_MIXEDMAP)
2251 		return true;
2252 	if (pfn_t_devmap(pfn))
2253 		return true;
2254 	if (pfn_t_special(pfn))
2255 		return true;
2256 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2257 		return true;
2258 	return false;
2259 }
2260 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2261 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2262 		unsigned long addr, pfn_t pfn, bool mkwrite)
2263 {
2264 	pgprot_t pgprot = vma->vm_page_prot;
2265 	int err;
2266 
2267 	BUG_ON(!vm_mixed_ok(vma, pfn));
2268 
2269 	if (addr < vma->vm_start || addr >= vma->vm_end)
2270 		return VM_FAULT_SIGBUS;
2271 
2272 	track_pfn_insert(vma, &pgprot, pfn);
2273 
2274 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2275 		return VM_FAULT_SIGBUS;
2276 
2277 	/*
2278 	 * If we don't have pte special, then we have to use the pfn_valid()
2279 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2280 	 * refcount the page if pfn_valid is true (hence insert_page rather
2281 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2282 	 * without pte special, it would there be refcounted as a normal page.
2283 	 */
2284 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2285 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2286 		struct page *page;
2287 
2288 		/*
2289 		 * At this point we are committed to insert_page()
2290 		 * regardless of whether the caller specified flags that
2291 		 * result in pfn_t_has_page() == false.
2292 		 */
2293 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2294 		err = insert_page(vma, addr, page, pgprot);
2295 	} else {
2296 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2297 	}
2298 
2299 	if (err == -ENOMEM)
2300 		return VM_FAULT_OOM;
2301 	if (err < 0 && err != -EBUSY)
2302 		return VM_FAULT_SIGBUS;
2303 
2304 	return VM_FAULT_NOPAGE;
2305 }
2306 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2307 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2308 		pfn_t pfn)
2309 {
2310 	return __vm_insert_mixed(vma, addr, pfn, false);
2311 }
2312 EXPORT_SYMBOL(vmf_insert_mixed);
2313 
2314 /*
2315  *  If the insertion of PTE failed because someone else already added a
2316  *  different entry in the mean time, we treat that as success as we assume
2317  *  the same entry was actually inserted.
2318  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2319 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2320 		unsigned long addr, pfn_t pfn)
2321 {
2322 	return __vm_insert_mixed(vma, addr, pfn, true);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2325 
2326 /*
2327  * maps a range of physical memory into the requested pages. the old
2328  * mappings are removed. any references to nonexistent pages results
2329  * in null mappings (currently treated as "copy-on-access")
2330  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2331 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2332 			unsigned long addr, unsigned long end,
2333 			unsigned long pfn, pgprot_t prot)
2334 {
2335 	pte_t *pte, *mapped_pte;
2336 	spinlock_t *ptl;
2337 	int err = 0;
2338 
2339 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2340 	if (!pte)
2341 		return -ENOMEM;
2342 	arch_enter_lazy_mmu_mode();
2343 	do {
2344 		BUG_ON(!pte_none(ptep_get(pte)));
2345 		if (!pfn_modify_allowed(pfn, prot)) {
2346 			err = -EACCES;
2347 			break;
2348 		}
2349 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2350 		pfn++;
2351 	} while (pte++, addr += PAGE_SIZE, addr != end);
2352 	arch_leave_lazy_mmu_mode();
2353 	pte_unmap_unlock(mapped_pte, ptl);
2354 	return err;
2355 }
2356 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2358 			unsigned long addr, unsigned long end,
2359 			unsigned long pfn, pgprot_t prot)
2360 {
2361 	pmd_t *pmd;
2362 	unsigned long next;
2363 	int err;
2364 
2365 	pfn -= addr >> PAGE_SHIFT;
2366 	pmd = pmd_alloc(mm, pud, addr);
2367 	if (!pmd)
2368 		return -ENOMEM;
2369 	VM_BUG_ON(pmd_trans_huge(*pmd));
2370 	do {
2371 		next = pmd_addr_end(addr, end);
2372 		err = remap_pte_range(mm, pmd, addr, next,
2373 				pfn + (addr >> PAGE_SHIFT), prot);
2374 		if (err)
2375 			return err;
2376 	} while (pmd++, addr = next, addr != end);
2377 	return 0;
2378 }
2379 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2380 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2381 			unsigned long addr, unsigned long end,
2382 			unsigned long pfn, pgprot_t prot)
2383 {
2384 	pud_t *pud;
2385 	unsigned long next;
2386 	int err;
2387 
2388 	pfn -= addr >> PAGE_SHIFT;
2389 	pud = pud_alloc(mm, p4d, addr);
2390 	if (!pud)
2391 		return -ENOMEM;
2392 	do {
2393 		next = pud_addr_end(addr, end);
2394 		err = remap_pmd_range(mm, pud, addr, next,
2395 				pfn + (addr >> PAGE_SHIFT), prot);
2396 		if (err)
2397 			return err;
2398 	} while (pud++, addr = next, addr != end);
2399 	return 0;
2400 }
2401 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2402 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2403 			unsigned long addr, unsigned long end,
2404 			unsigned long pfn, pgprot_t prot)
2405 {
2406 	p4d_t *p4d;
2407 	unsigned long next;
2408 	int err;
2409 
2410 	pfn -= addr >> PAGE_SHIFT;
2411 	p4d = p4d_alloc(mm, pgd, addr);
2412 	if (!p4d)
2413 		return -ENOMEM;
2414 	do {
2415 		next = p4d_addr_end(addr, end);
2416 		err = remap_pud_range(mm, p4d, addr, next,
2417 				pfn + (addr >> PAGE_SHIFT), prot);
2418 		if (err)
2419 			return err;
2420 	} while (p4d++, addr = next, addr != end);
2421 	return 0;
2422 }
2423 
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2424 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2425 		unsigned long pfn, unsigned long size, pgprot_t prot)
2426 {
2427 	pgd_t *pgd;
2428 	unsigned long next;
2429 	unsigned long end = addr + PAGE_ALIGN(size);
2430 	struct mm_struct *mm = vma->vm_mm;
2431 	int err;
2432 
2433 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2434 		return -EINVAL;
2435 
2436 	/*
2437 	 * Physically remapped pages are special. Tell the
2438 	 * rest of the world about it:
2439 	 *   VM_IO tells people not to look at these pages
2440 	 *	(accesses can have side effects).
2441 	 *   VM_PFNMAP tells the core MM that the base pages are just
2442 	 *	raw PFN mappings, and do not have a "struct page" associated
2443 	 *	with them.
2444 	 *   VM_DONTEXPAND
2445 	 *      Disable vma merging and expanding with mremap().
2446 	 *   VM_DONTDUMP
2447 	 *      Omit vma from core dump, even when VM_IO turned off.
2448 	 *
2449 	 * There's a horrible special case to handle copy-on-write
2450 	 * behaviour that some programs depend on. We mark the "original"
2451 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2452 	 * See vm_normal_page() for details.
2453 	 */
2454 	if (is_cow_mapping(vma->vm_flags)) {
2455 		if (addr != vma->vm_start || end != vma->vm_end)
2456 			return -EINVAL;
2457 		vma->vm_pgoff = pfn;
2458 	}
2459 
2460 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2461 
2462 	BUG_ON(addr >= end);
2463 	pfn -= addr >> PAGE_SHIFT;
2464 	pgd = pgd_offset(mm, addr);
2465 	flush_cache_range(vma, addr, end);
2466 	do {
2467 		next = pgd_addr_end(addr, end);
2468 		err = remap_p4d_range(mm, pgd, addr, next,
2469 				pfn + (addr >> PAGE_SHIFT), prot);
2470 		if (err)
2471 			return err;
2472 	} while (pgd++, addr = next, addr != end);
2473 
2474 	return 0;
2475 }
2476 
2477 /*
2478  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2479  * must have pre-validated the caching bits of the pgprot_t.
2480  */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2481 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2482 		unsigned long pfn, unsigned long size, pgprot_t prot)
2483 {
2484 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2485 
2486 	if (!error)
2487 		return 0;
2488 
2489 	/*
2490 	 * A partial pfn range mapping is dangerous: it does not
2491 	 * maintain page reference counts, and callers may free
2492 	 * pages due to the error. So zap it early.
2493 	 */
2494 	zap_page_range_single(vma, addr, size, NULL);
2495 	return error;
2496 }
2497 
2498 /**
2499  * remap_pfn_range - remap kernel memory to userspace
2500  * @vma: user vma to map to
2501  * @addr: target page aligned user address to start at
2502  * @pfn: page frame number of kernel physical memory address
2503  * @size: size of mapping area
2504  * @prot: page protection flags for this mapping
2505  *
2506  * Note: this is only safe if the mm semaphore is held when called.
2507  *
2508  * Return: %0 on success, negative error code otherwise.
2509  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2510 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2511 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2512 {
2513 	int err;
2514 
2515 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2516 	if (err)
2517 		return -EINVAL;
2518 
2519 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2520 	if (err)
2521 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2522 	return err;
2523 }
2524 EXPORT_SYMBOL(remap_pfn_range);
2525 
2526 /**
2527  * vm_iomap_memory - remap memory to userspace
2528  * @vma: user vma to map to
2529  * @start: start of the physical memory to be mapped
2530  * @len: size of area
2531  *
2532  * This is a simplified io_remap_pfn_range() for common driver use. The
2533  * driver just needs to give us the physical memory range to be mapped,
2534  * we'll figure out the rest from the vma information.
2535  *
2536  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2537  * whatever write-combining details or similar.
2538  *
2539  * Return: %0 on success, negative error code otherwise.
2540  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2541 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2542 {
2543 	unsigned long vm_len, pfn, pages;
2544 
2545 	/* Check that the physical memory area passed in looks valid */
2546 	if (start + len < start)
2547 		return -EINVAL;
2548 	/*
2549 	 * You *really* shouldn't map things that aren't page-aligned,
2550 	 * but we've historically allowed it because IO memory might
2551 	 * just have smaller alignment.
2552 	 */
2553 	len += start & ~PAGE_MASK;
2554 	pfn = start >> PAGE_SHIFT;
2555 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2556 	if (pfn + pages < pfn)
2557 		return -EINVAL;
2558 
2559 	/* We start the mapping 'vm_pgoff' pages into the area */
2560 	if (vma->vm_pgoff > pages)
2561 		return -EINVAL;
2562 	pfn += vma->vm_pgoff;
2563 	pages -= vma->vm_pgoff;
2564 
2565 	/* Can we fit all of the mapping? */
2566 	vm_len = vma->vm_end - vma->vm_start;
2567 	if (vm_len >> PAGE_SHIFT > pages)
2568 		return -EINVAL;
2569 
2570 	/* Ok, let it rip */
2571 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2572 }
2573 EXPORT_SYMBOL(vm_iomap_memory);
2574 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2575 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2576 				     unsigned long addr, unsigned long end,
2577 				     pte_fn_t fn, void *data, bool create,
2578 				     pgtbl_mod_mask *mask)
2579 {
2580 	pte_t *pte, *mapped_pte;
2581 	int err = 0;
2582 	spinlock_t *ptl;
2583 
2584 	if (create) {
2585 		mapped_pte = pte = (mm == &init_mm) ?
2586 			pte_alloc_kernel_track(pmd, addr, mask) :
2587 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2588 		if (!pte)
2589 			return -ENOMEM;
2590 	} else {
2591 		mapped_pte = pte = (mm == &init_mm) ?
2592 			pte_offset_kernel(pmd, addr) :
2593 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2594 		if (!pte)
2595 			return -EINVAL;
2596 	}
2597 
2598 	arch_enter_lazy_mmu_mode();
2599 
2600 	if (fn) {
2601 		do {
2602 			if (create || !pte_none(ptep_get(pte))) {
2603 				err = fn(pte, addr, data);
2604 				if (err)
2605 					break;
2606 			}
2607 		} while (pte++, addr += PAGE_SIZE, addr != end);
2608 	}
2609 	*mask |= PGTBL_PTE_MODIFIED;
2610 
2611 	arch_leave_lazy_mmu_mode();
2612 
2613 	if (mm != &init_mm)
2614 		pte_unmap_unlock(mapped_pte, ptl);
2615 	return err;
2616 }
2617 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2618 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2619 				     unsigned long addr, unsigned long end,
2620 				     pte_fn_t fn, void *data, bool create,
2621 				     pgtbl_mod_mask *mask)
2622 {
2623 	pmd_t *pmd;
2624 	unsigned long next;
2625 	int err = 0;
2626 
2627 	BUG_ON(pud_huge(*pud));
2628 
2629 	if (create) {
2630 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2631 		if (!pmd)
2632 			return -ENOMEM;
2633 	} else {
2634 		pmd = pmd_offset(pud, addr);
2635 	}
2636 	do {
2637 		next = pmd_addr_end(addr, end);
2638 		if (pmd_none(*pmd) && !create)
2639 			continue;
2640 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2641 			return -EINVAL;
2642 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2643 			if (!create)
2644 				continue;
2645 			pmd_clear_bad(pmd);
2646 		}
2647 		err = apply_to_pte_range(mm, pmd, addr, next,
2648 					 fn, data, create, mask);
2649 		if (err)
2650 			break;
2651 	} while (pmd++, addr = next, addr != end);
2652 
2653 	return err;
2654 }
2655 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2656 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2657 				     unsigned long addr, unsigned long end,
2658 				     pte_fn_t fn, void *data, bool create,
2659 				     pgtbl_mod_mask *mask)
2660 {
2661 	pud_t *pud;
2662 	unsigned long next;
2663 	int err = 0;
2664 
2665 	if (create) {
2666 		pud = pud_alloc_track(mm, p4d, addr, mask);
2667 		if (!pud)
2668 			return -ENOMEM;
2669 	} else {
2670 		pud = pud_offset(p4d, addr);
2671 	}
2672 	do {
2673 		next = pud_addr_end(addr, end);
2674 		if (pud_none(*pud) && !create)
2675 			continue;
2676 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2677 			return -EINVAL;
2678 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2679 			if (!create)
2680 				continue;
2681 			pud_clear_bad(pud);
2682 		}
2683 		err = apply_to_pmd_range(mm, pud, addr, next,
2684 					 fn, data, create, mask);
2685 		if (err)
2686 			break;
2687 	} while (pud++, addr = next, addr != end);
2688 
2689 	return err;
2690 }
2691 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2692 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2693 				     unsigned long addr, unsigned long end,
2694 				     pte_fn_t fn, void *data, bool create,
2695 				     pgtbl_mod_mask *mask)
2696 {
2697 	p4d_t *p4d;
2698 	unsigned long next;
2699 	int err = 0;
2700 
2701 	if (create) {
2702 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2703 		if (!p4d)
2704 			return -ENOMEM;
2705 	} else {
2706 		p4d = p4d_offset(pgd, addr);
2707 	}
2708 	do {
2709 		next = p4d_addr_end(addr, end);
2710 		if (p4d_none(*p4d) && !create)
2711 			continue;
2712 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2713 			return -EINVAL;
2714 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2715 			if (!create)
2716 				continue;
2717 			p4d_clear_bad(p4d);
2718 		}
2719 		err = apply_to_pud_range(mm, p4d, addr, next,
2720 					 fn, data, create, mask);
2721 		if (err)
2722 			break;
2723 	} while (p4d++, addr = next, addr != end);
2724 
2725 	return err;
2726 }
2727 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2728 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2729 				 unsigned long size, pte_fn_t fn,
2730 				 void *data, bool create)
2731 {
2732 	pgd_t *pgd;
2733 	unsigned long start = addr, next;
2734 	unsigned long end = addr + size;
2735 	pgtbl_mod_mask mask = 0;
2736 	int err = 0;
2737 
2738 	if (WARN_ON(addr >= end))
2739 		return -EINVAL;
2740 
2741 	pgd = pgd_offset(mm, addr);
2742 	do {
2743 		next = pgd_addr_end(addr, end);
2744 		if (pgd_none(*pgd) && !create)
2745 			continue;
2746 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2747 			err = -EINVAL;
2748 			break;
2749 		}
2750 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2751 			if (!create)
2752 				continue;
2753 			pgd_clear_bad(pgd);
2754 		}
2755 		err = apply_to_p4d_range(mm, pgd, addr, next,
2756 					 fn, data, create, &mask);
2757 		if (err)
2758 			break;
2759 	} while (pgd++, addr = next, addr != end);
2760 
2761 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2762 		arch_sync_kernel_mappings(start, start + size);
2763 
2764 	return err;
2765 }
2766 
2767 /*
2768  * Scan a region of virtual memory, filling in page tables as necessary
2769  * and calling a provided function on each leaf page table.
2770  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2771 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2772 			unsigned long size, pte_fn_t fn, void *data)
2773 {
2774 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2775 }
2776 EXPORT_SYMBOL_GPL(apply_to_page_range);
2777 
2778 /*
2779  * Scan a region of virtual memory, calling a provided function on
2780  * each leaf page table where it exists.
2781  *
2782  * Unlike apply_to_page_range, this does _not_ fill in page tables
2783  * where they are absent.
2784  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2785 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2786 				 unsigned long size, pte_fn_t fn, void *data)
2787 {
2788 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2789 }
2790 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2791 
2792 /*
2793  * handle_pte_fault chooses page fault handler according to an entry which was
2794  * read non-atomically.  Before making any commitment, on those architectures
2795  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2796  * parts, do_swap_page must check under lock before unmapping the pte and
2797  * proceeding (but do_wp_page is only called after already making such a check;
2798  * and do_anonymous_page can safely check later on).
2799  */
pte_unmap_same(struct vm_fault * vmf)2800 static inline int pte_unmap_same(struct vm_fault *vmf)
2801 {
2802 	int same = 1;
2803 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2804 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2805 		spin_lock(vmf->ptl);
2806 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2807 		spin_unlock(vmf->ptl);
2808 	}
2809 #endif
2810 	pte_unmap(vmf->pte);
2811 	vmf->pte = NULL;
2812 	return same;
2813 }
2814 
2815 /*
2816  * Return:
2817  *	0:		copied succeeded
2818  *	-EHWPOISON:	copy failed due to hwpoison in source page
2819  *	-EAGAIN:	copied failed (some other reason)
2820  */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2821 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2822 				      struct vm_fault *vmf)
2823 {
2824 	int ret;
2825 	void *kaddr;
2826 	void __user *uaddr;
2827 	struct vm_area_struct *vma = vmf->vma;
2828 	struct mm_struct *mm = vma->vm_mm;
2829 	unsigned long addr = vmf->address;
2830 
2831 	if (likely(src)) {
2832 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2833 			memory_failure_queue(page_to_pfn(src), 0);
2834 			return -EHWPOISON;
2835 		}
2836 		return 0;
2837 	}
2838 
2839 	/*
2840 	 * If the source page was a PFN mapping, we don't have
2841 	 * a "struct page" for it. We do a best-effort copy by
2842 	 * just copying from the original user address. If that
2843 	 * fails, we just zero-fill it. Live with it.
2844 	 */
2845 	kaddr = kmap_atomic(dst);
2846 	uaddr = (void __user *)(addr & PAGE_MASK);
2847 
2848 	/*
2849 	 * On architectures with software "accessed" bits, we would
2850 	 * take a double page fault, so mark it accessed here.
2851 	 */
2852 	vmf->pte = NULL;
2853 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2854 		pte_t entry;
2855 
2856 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2857 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2858 			/*
2859 			 * Other thread has already handled the fault
2860 			 * and update local tlb only
2861 			 */
2862 			if (vmf->pte)
2863 				update_mmu_tlb(vma, addr, vmf->pte);
2864 			ret = -EAGAIN;
2865 			goto pte_unlock;
2866 		}
2867 
2868 		entry = pte_mkyoung(vmf->orig_pte);
2869 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2870 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2871 	}
2872 
2873 	/*
2874 	 * This really shouldn't fail, because the page is there
2875 	 * in the page tables. But it might just be unreadable,
2876 	 * in which case we just give up and fill the result with
2877 	 * zeroes.
2878 	 */
2879 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2880 		if (vmf->pte)
2881 			goto warn;
2882 
2883 		/* Re-validate under PTL if the page is still mapped */
2884 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2885 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2886 			/* The PTE changed under us, update local tlb */
2887 			if (vmf->pte)
2888 				update_mmu_tlb(vma, addr, vmf->pte);
2889 			ret = -EAGAIN;
2890 			goto pte_unlock;
2891 		}
2892 
2893 		/*
2894 		 * The same page can be mapped back since last copy attempt.
2895 		 * Try to copy again under PTL.
2896 		 */
2897 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2898 			/*
2899 			 * Give a warn in case there can be some obscure
2900 			 * use-case
2901 			 */
2902 warn:
2903 			WARN_ON_ONCE(1);
2904 			clear_page(kaddr);
2905 		}
2906 	}
2907 
2908 	ret = 0;
2909 
2910 pte_unlock:
2911 	if (vmf->pte)
2912 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2913 	kunmap_atomic(kaddr);
2914 	flush_dcache_page(dst);
2915 
2916 	return ret;
2917 }
2918 
__get_fault_gfp_mask(struct vm_area_struct * vma)2919 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2920 {
2921 	struct file *vm_file = vma->vm_file;
2922 
2923 	if (vm_file)
2924 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2925 
2926 	/*
2927 	 * Special mappings (e.g. VDSO) do not have any file so fake
2928 	 * a default GFP_KERNEL for them.
2929 	 */
2930 	return GFP_KERNEL;
2931 }
2932 
2933 /*
2934  * Notify the address space that the page is about to become writable so that
2935  * it can prohibit this or wait for the page to get into an appropriate state.
2936  *
2937  * We do this without the lock held, so that it can sleep if it needs to.
2938  */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)2939 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2940 {
2941 	vm_fault_t ret;
2942 	unsigned int old_flags = vmf->flags;
2943 
2944 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2945 
2946 	if (vmf->vma->vm_file &&
2947 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2948 		return VM_FAULT_SIGBUS;
2949 
2950 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2951 	/* Restore original flags so that caller is not surprised */
2952 	vmf->flags = old_flags;
2953 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2954 		return ret;
2955 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2956 		folio_lock(folio);
2957 		if (!folio->mapping) {
2958 			folio_unlock(folio);
2959 			return 0; /* retry */
2960 		}
2961 		ret |= VM_FAULT_LOCKED;
2962 	} else
2963 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2964 	return ret;
2965 }
2966 
2967 /*
2968  * Handle dirtying of a page in shared file mapping on a write fault.
2969  *
2970  * The function expects the page to be locked and unlocks it.
2971  */
fault_dirty_shared_page(struct vm_fault * vmf)2972 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2973 {
2974 	struct vm_area_struct *vma = vmf->vma;
2975 	struct address_space *mapping;
2976 	struct folio *folio = page_folio(vmf->page);
2977 	bool dirtied;
2978 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2979 
2980 	dirtied = folio_mark_dirty(folio);
2981 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2982 	/*
2983 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2984 	 * by truncate after folio_unlock().   The address_space itself remains
2985 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2986 	 * release semantics to prevent the compiler from undoing this copying.
2987 	 */
2988 	mapping = folio_raw_mapping(folio);
2989 	folio_unlock(folio);
2990 
2991 	if (!page_mkwrite)
2992 		file_update_time(vma->vm_file);
2993 
2994 	/*
2995 	 * Throttle page dirtying rate down to writeback speed.
2996 	 *
2997 	 * mapping may be NULL here because some device drivers do not
2998 	 * set page.mapping but still dirty their pages
2999 	 *
3000 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3001 	 * is pinning the mapping, as per above.
3002 	 */
3003 	if ((dirtied || page_mkwrite) && mapping) {
3004 		struct file *fpin;
3005 
3006 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3007 		balance_dirty_pages_ratelimited(mapping);
3008 		if (fpin) {
3009 			fput(fpin);
3010 			return VM_FAULT_COMPLETED;
3011 		}
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 /*
3018  * Handle write page faults for pages that can be reused in the current vma
3019  *
3020  * This can happen either due to the mapping being with the VM_SHARED flag,
3021  * or due to us being the last reference standing to the page. In either
3022  * case, all we need to do here is to mark the page as writable and update
3023  * any related book-keeping.
3024  */
wp_page_reuse(struct vm_fault * vmf)3025 static inline void wp_page_reuse(struct vm_fault *vmf)
3026 	__releases(vmf->ptl)
3027 {
3028 	struct vm_area_struct *vma = vmf->vma;
3029 	struct page *page = vmf->page;
3030 	pte_t entry;
3031 
3032 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3033 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3034 
3035 	/*
3036 	 * Clear the pages cpupid information as the existing
3037 	 * information potentially belongs to a now completely
3038 	 * unrelated process.
3039 	 */
3040 	if (page)
3041 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3042 
3043 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3044 	entry = pte_mkyoung(vmf->orig_pte);
3045 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3046 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3047 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3048 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3049 	count_vm_event(PGREUSE);
3050 }
3051 
3052 /*
3053  * Handle the case of a page which we actually need to copy to a new page,
3054  * either due to COW or unsharing.
3055  *
3056  * Called with mmap_lock locked and the old page referenced, but
3057  * without the ptl held.
3058  *
3059  * High level logic flow:
3060  *
3061  * - Allocate a page, copy the content of the old page to the new one.
3062  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3063  * - Take the PTL. If the pte changed, bail out and release the allocated page
3064  * - If the pte is still the way we remember it, update the page table and all
3065  *   relevant references. This includes dropping the reference the page-table
3066  *   held to the old page, as well as updating the rmap.
3067  * - In any case, unlock the PTL and drop the reference we took to the old page.
3068  */
wp_page_copy(struct vm_fault * vmf)3069 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3070 {
3071 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3072 	struct vm_area_struct *vma = vmf->vma;
3073 	struct mm_struct *mm = vma->vm_mm;
3074 	struct folio *old_folio = NULL;
3075 	struct folio *new_folio = NULL;
3076 	pte_t entry;
3077 	int page_copied = 0;
3078 	struct mmu_notifier_range range;
3079 	int ret;
3080 
3081 	delayacct_wpcopy_start();
3082 
3083 	if (vmf->page)
3084 		old_folio = page_folio(vmf->page);
3085 	if (unlikely(anon_vma_prepare(vma)))
3086 		goto oom;
3087 
3088 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3089 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3090 		if (!new_folio)
3091 			goto oom;
3092 	} else {
3093 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3094 				vmf->address, false);
3095 		if (!new_folio)
3096 			goto oom;
3097 
3098 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3099 		if (ret) {
3100 			/*
3101 			 * COW failed, if the fault was solved by other,
3102 			 * it's fine. If not, userspace would re-fault on
3103 			 * the same address and we will handle the fault
3104 			 * from the second attempt.
3105 			 * The -EHWPOISON case will not be retried.
3106 			 */
3107 			folio_put(new_folio);
3108 			if (old_folio)
3109 				folio_put(old_folio);
3110 
3111 			delayacct_wpcopy_end();
3112 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3113 		}
3114 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3115 	}
3116 
3117 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3118 		goto oom_free_new;
3119 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3120 
3121 	__folio_mark_uptodate(new_folio);
3122 
3123 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3124 				vmf->address & PAGE_MASK,
3125 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3126 	mmu_notifier_invalidate_range_start(&range);
3127 
3128 	/*
3129 	 * Re-check the pte - we dropped the lock
3130 	 */
3131 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3132 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3133 		if (old_folio) {
3134 			if (!folio_test_anon(old_folio)) {
3135 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3136 				inc_mm_counter(mm, MM_ANONPAGES);
3137 			}
3138 		} else {
3139 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3140 			inc_mm_counter(mm, MM_ANONPAGES);
3141 		}
3142 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3143 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3144 		entry = pte_sw_mkyoung(entry);
3145 		if (unlikely(unshare)) {
3146 			if (pte_soft_dirty(vmf->orig_pte))
3147 				entry = pte_mksoft_dirty(entry);
3148 			if (pte_uffd_wp(vmf->orig_pte))
3149 				entry = pte_mkuffd_wp(entry);
3150 		} else {
3151 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3152 		}
3153 
3154 		/*
3155 		 * Clear the pte entry and flush it first, before updating the
3156 		 * pte with the new entry, to keep TLBs on different CPUs in
3157 		 * sync. This code used to set the new PTE then flush TLBs, but
3158 		 * that left a window where the new PTE could be loaded into
3159 		 * some TLBs while the old PTE remains in others.
3160 		 */
3161 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3162 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3163 		folio_add_lru_vma(new_folio, vma);
3164 		/*
3165 		 * We call the notify macro here because, when using secondary
3166 		 * mmu page tables (such as kvm shadow page tables), we want the
3167 		 * new page to be mapped directly into the secondary page table.
3168 		 */
3169 		BUG_ON(unshare && pte_write(entry));
3170 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3171 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3172 		if (old_folio) {
3173 			/*
3174 			 * Only after switching the pte to the new page may
3175 			 * we remove the mapcount here. Otherwise another
3176 			 * process may come and find the rmap count decremented
3177 			 * before the pte is switched to the new page, and
3178 			 * "reuse" the old page writing into it while our pte
3179 			 * here still points into it and can be read by other
3180 			 * threads.
3181 			 *
3182 			 * The critical issue is to order this
3183 			 * page_remove_rmap with the ptp_clear_flush above.
3184 			 * Those stores are ordered by (if nothing else,)
3185 			 * the barrier present in the atomic_add_negative
3186 			 * in page_remove_rmap.
3187 			 *
3188 			 * Then the TLB flush in ptep_clear_flush ensures that
3189 			 * no process can access the old page before the
3190 			 * decremented mapcount is visible. And the old page
3191 			 * cannot be reused until after the decremented
3192 			 * mapcount is visible. So transitively, TLBs to
3193 			 * old page will be flushed before it can be reused.
3194 			 */
3195 			page_remove_rmap(vmf->page, vma, false);
3196 		}
3197 
3198 		/* Free the old page.. */
3199 		new_folio = old_folio;
3200 		page_copied = 1;
3201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3202 	} else if (vmf->pte) {
3203 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3204 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 	}
3206 
3207 	mmu_notifier_invalidate_range_end(&range);
3208 
3209 	if (new_folio)
3210 		folio_put(new_folio);
3211 	if (old_folio) {
3212 		if (page_copied)
3213 			free_swap_cache(&old_folio->page);
3214 		folio_put(old_folio);
3215 	}
3216 
3217 	delayacct_wpcopy_end();
3218 	return 0;
3219 oom_free_new:
3220 	folio_put(new_folio);
3221 oom:
3222 	if (old_folio)
3223 		folio_put(old_folio);
3224 
3225 	delayacct_wpcopy_end();
3226 	return VM_FAULT_OOM;
3227 }
3228 
3229 /**
3230  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3231  *			  writeable once the page is prepared
3232  *
3233  * @vmf: structure describing the fault
3234  *
3235  * This function handles all that is needed to finish a write page fault in a
3236  * shared mapping due to PTE being read-only once the mapped page is prepared.
3237  * It handles locking of PTE and modifying it.
3238  *
3239  * The function expects the page to be locked or other protection against
3240  * concurrent faults / writeback (such as DAX radix tree locks).
3241  *
3242  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3243  * we acquired PTE lock.
3244  */
finish_mkwrite_fault(struct vm_fault * vmf)3245 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3246 {
3247 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3248 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3249 				       &vmf->ptl);
3250 	if (!vmf->pte)
3251 		return VM_FAULT_NOPAGE;
3252 	/*
3253 	 * We might have raced with another page fault while we released the
3254 	 * pte_offset_map_lock.
3255 	 */
3256 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3257 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3258 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 		return VM_FAULT_NOPAGE;
3260 	}
3261 	wp_page_reuse(vmf);
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3267  * mapping
3268  */
wp_pfn_shared(struct vm_fault * vmf)3269 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3270 {
3271 	struct vm_area_struct *vma = vmf->vma;
3272 
3273 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3274 		vm_fault_t ret;
3275 
3276 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3277 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3278 			vma_end_read(vmf->vma);
3279 			return VM_FAULT_RETRY;
3280 		}
3281 
3282 		vmf->flags |= FAULT_FLAG_MKWRITE;
3283 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3284 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3285 			return ret;
3286 		return finish_mkwrite_fault(vmf);
3287 	}
3288 	wp_page_reuse(vmf);
3289 	return 0;
3290 }
3291 
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3292 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3293 	__releases(vmf->ptl)
3294 {
3295 	struct vm_area_struct *vma = vmf->vma;
3296 	vm_fault_t ret = 0;
3297 
3298 	folio_get(folio);
3299 
3300 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3301 		vm_fault_t tmp;
3302 
3303 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3305 			folio_put(folio);
3306 			vma_end_read(vmf->vma);
3307 			return VM_FAULT_RETRY;
3308 		}
3309 
3310 		tmp = do_page_mkwrite(vmf, folio);
3311 		if (unlikely(!tmp || (tmp &
3312 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3313 			folio_put(folio);
3314 			return tmp;
3315 		}
3316 		tmp = finish_mkwrite_fault(vmf);
3317 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3318 			folio_unlock(folio);
3319 			folio_put(folio);
3320 			return tmp;
3321 		}
3322 	} else {
3323 		wp_page_reuse(vmf);
3324 		folio_lock(folio);
3325 	}
3326 	ret |= fault_dirty_shared_page(vmf);
3327 	folio_put(folio);
3328 
3329 	return ret;
3330 }
3331 
3332 /*
3333  * This routine handles present pages, when
3334  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3335  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3336  *   (FAULT_FLAG_UNSHARE)
3337  *
3338  * It is done by copying the page to a new address and decrementing the
3339  * shared-page counter for the old page.
3340  *
3341  * Note that this routine assumes that the protection checks have been
3342  * done by the caller (the low-level page fault routine in most cases).
3343  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3344  * done any necessary COW.
3345  *
3346  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3347  * though the page will change only once the write actually happens. This
3348  * avoids a few races, and potentially makes it more efficient.
3349  *
3350  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3351  * but allow concurrent faults), with pte both mapped and locked.
3352  * We return with mmap_lock still held, but pte unmapped and unlocked.
3353  */
do_wp_page(struct vm_fault * vmf)3354 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3355 	__releases(vmf->ptl)
3356 {
3357 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3358 	struct vm_area_struct *vma = vmf->vma;
3359 	struct folio *folio = NULL;
3360 
3361 	if (likely(!unshare)) {
3362 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3363 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 			return handle_userfault(vmf, VM_UFFD_WP);
3365 		}
3366 
3367 		/*
3368 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369 		 * is flushed in this case before copying.
3370 		 */
3371 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3372 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373 			flush_tlb_page(vmf->vma, vmf->address);
3374 	}
3375 
3376 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377 
3378 	if (vmf->page)
3379 		folio = page_folio(vmf->page);
3380 
3381 	/*
3382 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3383 	 * FAULT_FLAG_WRITE set at this point.
3384 	 */
3385 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3386 		/*
3387 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3388 		 * VM_PFNMAP VMA.
3389 		 *
3390 		 * We should not cow pages in a shared writeable mapping.
3391 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3392 		 */
3393 		if (!vmf->page)
3394 			return wp_pfn_shared(vmf);
3395 		return wp_page_shared(vmf, folio);
3396 	}
3397 
3398 	/*
3399 	 * Private mapping: create an exclusive anonymous page copy if reuse
3400 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3401 	 */
3402 	if (folio && folio_test_anon(folio)) {
3403 		/*
3404 		 * If the page is exclusive to this process we must reuse the
3405 		 * page without further checks.
3406 		 */
3407 		if (PageAnonExclusive(vmf->page))
3408 			goto reuse;
3409 
3410 		/*
3411 		 * We have to verify under folio lock: these early checks are
3412 		 * just an optimization to avoid locking the folio and freeing
3413 		 * the swapcache if there is little hope that we can reuse.
3414 		 *
3415 		 * KSM doesn't necessarily raise the folio refcount.
3416 		 */
3417 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3418 			goto copy;
3419 		if (!folio_test_lru(folio))
3420 			/*
3421 			 * We cannot easily detect+handle references from
3422 			 * remote LRU caches or references to LRU folios.
3423 			 */
3424 			lru_add_drain();
3425 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3426 			goto copy;
3427 		if (!folio_trylock(folio))
3428 			goto copy;
3429 		if (folio_test_swapcache(folio))
3430 			folio_free_swap(folio);
3431 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3432 			folio_unlock(folio);
3433 			goto copy;
3434 		}
3435 		/*
3436 		 * Ok, we've got the only folio reference from our mapping
3437 		 * and the folio is locked, it's dark out, and we're wearing
3438 		 * sunglasses. Hit it.
3439 		 */
3440 		page_move_anon_rmap(vmf->page, vma);
3441 		folio_unlock(folio);
3442 reuse:
3443 		if (unlikely(unshare)) {
3444 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 			return 0;
3446 		}
3447 		wp_page_reuse(vmf);
3448 		return 0;
3449 	}
3450 copy:
3451 	if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3452 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 		vma_end_read(vmf->vma);
3454 		return VM_FAULT_RETRY;
3455 	}
3456 
3457 	/*
3458 	 * Ok, we need to copy. Oh, well..
3459 	 */
3460 	if (folio)
3461 		folio_get(folio);
3462 
3463 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 #ifdef CONFIG_KSM
3465 	if (folio && folio_test_ksm(folio))
3466 		count_vm_event(COW_KSM);
3467 #endif
3468 	return wp_page_copy(vmf);
3469 }
3470 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3471 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3472 		unsigned long start_addr, unsigned long end_addr,
3473 		struct zap_details *details)
3474 {
3475 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3476 }
3477 
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3478 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3479 					    pgoff_t first_index,
3480 					    pgoff_t last_index,
3481 					    struct zap_details *details)
3482 {
3483 	struct vm_area_struct *vma;
3484 	pgoff_t vba, vea, zba, zea;
3485 
3486 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3487 		vba = vma->vm_pgoff;
3488 		vea = vba + vma_pages(vma) - 1;
3489 		zba = max(first_index, vba);
3490 		zea = min(last_index, vea);
3491 
3492 		unmap_mapping_range_vma(vma,
3493 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3494 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3495 				details);
3496 	}
3497 }
3498 
3499 /**
3500  * unmap_mapping_folio() - Unmap single folio from processes.
3501  * @folio: The locked folio to be unmapped.
3502  *
3503  * Unmap this folio from any userspace process which still has it mmaped.
3504  * Typically, for efficiency, the range of nearby pages has already been
3505  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3506  * truncation or invalidation holds the lock on a folio, it may find that
3507  * the page has been remapped again: and then uses unmap_mapping_folio()
3508  * to unmap it finally.
3509  */
unmap_mapping_folio(struct folio * folio)3510 void unmap_mapping_folio(struct folio *folio)
3511 {
3512 	struct address_space *mapping = folio->mapping;
3513 	struct zap_details details = { };
3514 	pgoff_t	first_index;
3515 	pgoff_t	last_index;
3516 
3517 	VM_BUG_ON(!folio_test_locked(folio));
3518 
3519 	first_index = folio->index;
3520 	last_index = folio_next_index(folio) - 1;
3521 
3522 	details.even_cows = false;
3523 	details.single_folio = folio;
3524 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3525 
3526 	i_mmap_lock_read(mapping);
3527 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3528 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3529 					 last_index, &details);
3530 	i_mmap_unlock_read(mapping);
3531 }
3532 
3533 /**
3534  * unmap_mapping_pages() - Unmap pages from processes.
3535  * @mapping: The address space containing pages to be unmapped.
3536  * @start: Index of first page to be unmapped.
3537  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3538  * @even_cows: Whether to unmap even private COWed pages.
3539  *
3540  * Unmap the pages in this address space from any userspace process which
3541  * has them mmaped.  Generally, you want to remove COWed pages as well when
3542  * a file is being truncated, but not when invalidating pages from the page
3543  * cache.
3544  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3545 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3546 		pgoff_t nr, bool even_cows)
3547 {
3548 	struct zap_details details = { };
3549 	pgoff_t	first_index = start;
3550 	pgoff_t	last_index = start + nr - 1;
3551 
3552 	details.even_cows = even_cows;
3553 	if (last_index < first_index)
3554 		last_index = ULONG_MAX;
3555 
3556 	i_mmap_lock_read(mapping);
3557 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3558 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3559 					 last_index, &details);
3560 	i_mmap_unlock_read(mapping);
3561 }
3562 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3563 
3564 /**
3565  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3566  * address_space corresponding to the specified byte range in the underlying
3567  * file.
3568  *
3569  * @mapping: the address space containing mmaps to be unmapped.
3570  * @holebegin: byte in first page to unmap, relative to the start of
3571  * the underlying file.  This will be rounded down to a PAGE_SIZE
3572  * boundary.  Note that this is different from truncate_pagecache(), which
3573  * must keep the partial page.  In contrast, we must get rid of
3574  * partial pages.
3575  * @holelen: size of prospective hole in bytes.  This will be rounded
3576  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3577  * end of the file.
3578  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3579  * but 0 when invalidating pagecache, don't throw away private data.
3580  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3581 void unmap_mapping_range(struct address_space *mapping,
3582 		loff_t const holebegin, loff_t const holelen, int even_cows)
3583 {
3584 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3585 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 
3587 	/* Check for overflow. */
3588 	if (sizeof(holelen) > sizeof(hlen)) {
3589 		long long holeend =
3590 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3591 		if (holeend & ~(long long)ULONG_MAX)
3592 			hlen = ULONG_MAX - hba + 1;
3593 	}
3594 
3595 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3596 }
3597 EXPORT_SYMBOL(unmap_mapping_range);
3598 
3599 /*
3600  * Restore a potential device exclusive pte to a working pte entry
3601  */
remove_device_exclusive_entry(struct vm_fault * vmf)3602 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3603 {
3604 	struct folio *folio = page_folio(vmf->page);
3605 	struct vm_area_struct *vma = vmf->vma;
3606 	struct mmu_notifier_range range;
3607 	vm_fault_t ret;
3608 
3609 	/*
3610 	 * We need a reference to lock the folio because we don't hold
3611 	 * the PTL so a racing thread can remove the device-exclusive
3612 	 * entry and unmap it. If the folio is free the entry must
3613 	 * have been removed already. If it happens to have already
3614 	 * been re-allocated after being freed all we do is lock and
3615 	 * unlock it.
3616 	 */
3617 	if (!folio_try_get(folio))
3618 		return 0;
3619 
3620 	ret = folio_lock_or_retry(folio, vmf);
3621 	if (ret) {
3622 		folio_put(folio);
3623 		return ret;
3624 	}
3625 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3626 				vma->vm_mm, vmf->address & PAGE_MASK,
3627 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3628 	mmu_notifier_invalidate_range_start(&range);
3629 
3630 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3631 				&vmf->ptl);
3632 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3633 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3634 
3635 	if (vmf->pte)
3636 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3637 	folio_unlock(folio);
3638 	folio_put(folio);
3639 
3640 	mmu_notifier_invalidate_range_end(&range);
3641 	return 0;
3642 }
3643 
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3644 static inline bool should_try_to_free_swap(struct folio *folio,
3645 					   struct vm_area_struct *vma,
3646 					   unsigned int fault_flags)
3647 {
3648 	if (!folio_test_swapcache(folio))
3649 		return false;
3650 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3651 	    folio_test_mlocked(folio))
3652 		return true;
3653 	/*
3654 	 * If we want to map a page that's in the swapcache writable, we
3655 	 * have to detect via the refcount if we're really the exclusive
3656 	 * user. Try freeing the swapcache to get rid of the swapcache
3657 	 * reference only in case it's likely that we'll be the exlusive user.
3658 	 */
3659 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3660 		folio_ref_count(folio) == 2;
3661 }
3662 
pte_marker_clear(struct vm_fault * vmf)3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3664 {
3665 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3666 				       vmf->address, &vmf->ptl);
3667 	if (!vmf->pte)
3668 		return 0;
3669 	/*
3670 	 * Be careful so that we will only recover a special uffd-wp pte into a
3671 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3672 	 *
3673 	 * This should also cover the case where e.g. the pte changed
3674 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3675 	 * So is_pte_marker() check is not enough to safely drop the pte.
3676 	 */
3677 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3678 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3679 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3680 	return 0;
3681 }
3682 
do_pte_missing(struct vm_fault * vmf)3683 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3684 {
3685 	if (vma_is_anonymous(vmf->vma))
3686 		return do_anonymous_page(vmf);
3687 	else
3688 		return do_fault(vmf);
3689 }
3690 
3691 /*
3692  * This is actually a page-missing access, but with uffd-wp special pte
3693  * installed.  It means this pte was wr-protected before being unmapped.
3694  */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3695 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3696 {
3697 	/*
3698 	 * Just in case there're leftover special ptes even after the region
3699 	 * got unregistered - we can simply clear them.
3700 	 */
3701 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3702 		return pte_marker_clear(vmf);
3703 
3704 	return do_pte_missing(vmf);
3705 }
3706 
handle_pte_marker(struct vm_fault * vmf)3707 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3708 {
3709 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3710 	unsigned long marker = pte_marker_get(entry);
3711 
3712 	/*
3713 	 * PTE markers should never be empty.  If anything weird happened,
3714 	 * the best thing to do is to kill the process along with its mm.
3715 	 */
3716 	if (WARN_ON_ONCE(!marker))
3717 		return VM_FAULT_SIGBUS;
3718 
3719 	/* Higher priority than uffd-wp when data corrupted */
3720 	if (marker & PTE_MARKER_POISONED)
3721 		return VM_FAULT_HWPOISON;
3722 
3723 	if (pte_marker_entry_uffd_wp(entry))
3724 		return pte_marker_handle_uffd_wp(vmf);
3725 
3726 	/* This is an unknown pte marker */
3727 	return VM_FAULT_SIGBUS;
3728 }
3729 
3730 /*
3731  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3732  * but allow concurrent faults), and pte mapped but not yet locked.
3733  * We return with pte unmapped and unlocked.
3734  *
3735  * We return with the mmap_lock locked or unlocked in the same cases
3736  * as does filemap_fault().
3737  */
do_swap_page(struct vm_fault * vmf)3738 vm_fault_t do_swap_page(struct vm_fault *vmf)
3739 {
3740 	struct vm_area_struct *vma = vmf->vma;
3741 	struct folio *swapcache, *folio = NULL;
3742 	struct page *page;
3743 	struct swap_info_struct *si = NULL;
3744 	rmap_t rmap_flags = RMAP_NONE;
3745 	bool need_clear_cache = false;
3746 	bool exclusive = false;
3747 	swp_entry_t entry;
3748 	pte_t pte;
3749 	vm_fault_t ret = 0;
3750 	void *shadow = NULL;
3751 
3752 	if (!pte_unmap_same(vmf))
3753 		goto out;
3754 
3755 	entry = pte_to_swp_entry(vmf->orig_pte);
3756 	if (unlikely(non_swap_entry(entry))) {
3757 		if (is_migration_entry(entry)) {
3758 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3759 					     vmf->address);
3760 		} else if (is_device_exclusive_entry(entry)) {
3761 			vmf->page = pfn_swap_entry_to_page(entry);
3762 			ret = remove_device_exclusive_entry(vmf);
3763 		} else if (is_device_private_entry(entry)) {
3764 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3765 				/*
3766 				 * migrate_to_ram is not yet ready to operate
3767 				 * under VMA lock.
3768 				 */
3769 				vma_end_read(vma);
3770 				ret = VM_FAULT_RETRY;
3771 				goto out;
3772 			}
3773 
3774 			vmf->page = pfn_swap_entry_to_page(entry);
3775 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3776 					vmf->address, &vmf->ptl);
3777 			if (unlikely(!vmf->pte ||
3778 				     !pte_same(ptep_get(vmf->pte),
3779 							vmf->orig_pte)))
3780 				goto unlock;
3781 
3782 			/*
3783 			 * Get a page reference while we know the page can't be
3784 			 * freed.
3785 			 */
3786 			get_page(vmf->page);
3787 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3788 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3789 			put_page(vmf->page);
3790 		} else if (is_hwpoison_entry(entry)) {
3791 			ret = VM_FAULT_HWPOISON;
3792 		} else if (is_pte_marker_entry(entry)) {
3793 			ret = handle_pte_marker(vmf);
3794 		} else {
3795 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3796 			ret = VM_FAULT_SIGBUS;
3797 		}
3798 		goto out;
3799 	}
3800 
3801 	/* Prevent swapoff from happening to us. */
3802 	si = get_swap_device(entry);
3803 	if (unlikely(!si))
3804 		goto out;
3805 
3806 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3807 	if (folio)
3808 		page = folio_file_page(folio, swp_offset(entry));
3809 	swapcache = folio;
3810 
3811 	if (!folio) {
3812 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3813 		    __swap_count(entry) == 1) {
3814 			/*
3815 			 * Prevent parallel swapin from proceeding with
3816 			 * the cache flag. Otherwise, another thread may
3817 			 * finish swapin first, free the entry, and swapout
3818 			 * reusing the same entry. It's undetectable as
3819 			 * pte_same() returns true due to entry reuse.
3820 			 */
3821 			if (swapcache_prepare(entry)) {
3822 				/* Relax a bit to prevent rapid repeated page faults */
3823 				schedule_timeout_uninterruptible(1);
3824 				goto out;
3825 			}
3826 			need_clear_cache = true;
3827 
3828 			/* skip swapcache */
3829 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3830 						vma, vmf->address, false);
3831 			page = &folio->page;
3832 			if (folio) {
3833 				__folio_set_locked(folio);
3834 				__folio_set_swapbacked(folio);
3835 
3836 				if (mem_cgroup_swapin_charge_folio(folio,
3837 							vma->vm_mm, GFP_KERNEL,
3838 							entry)) {
3839 					ret = VM_FAULT_OOM;
3840 					goto out_page;
3841 				}
3842 				mem_cgroup_swapin_uncharge_swap(entry);
3843 
3844 				shadow = get_shadow_from_swap_cache(entry);
3845 				if (shadow)
3846 					workingset_refault(folio, shadow);
3847 
3848 				folio_add_lru(folio);
3849 
3850 				/* To provide entry to swap_readpage() */
3851 				folio->swap = entry;
3852 				swap_readpage(page, true, NULL);
3853 				folio->private = NULL;
3854 			}
3855 		} else {
3856 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3857 						vmf);
3858 			if (page)
3859 				folio = page_folio(page);
3860 			swapcache = folio;
3861 		}
3862 
3863 		if (!folio) {
3864 			/*
3865 			 * Back out if somebody else faulted in this pte
3866 			 * while we released the pte lock.
3867 			 */
3868 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3869 					vmf->address, &vmf->ptl);
3870 			if (likely(vmf->pte &&
3871 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3872 				ret = VM_FAULT_OOM;
3873 			goto unlock;
3874 		}
3875 
3876 		/* Had to read the page from swap area: Major fault */
3877 		ret = VM_FAULT_MAJOR;
3878 		count_vm_event(PGMAJFAULT);
3879 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3880 	} else if (PageHWPoison(page)) {
3881 		/*
3882 		 * hwpoisoned dirty swapcache pages are kept for killing
3883 		 * owner processes (which may be unknown at hwpoison time)
3884 		 */
3885 		ret = VM_FAULT_HWPOISON;
3886 		goto out_release;
3887 	}
3888 
3889 	ret |= folio_lock_or_retry(folio, vmf);
3890 	if (ret & VM_FAULT_RETRY)
3891 		goto out_release;
3892 
3893 	if (swapcache) {
3894 		/*
3895 		 * Make sure folio_free_swap() or swapoff did not release the
3896 		 * swapcache from under us.  The page pin, and pte_same test
3897 		 * below, are not enough to exclude that.  Even if it is still
3898 		 * swapcache, we need to check that the page's swap has not
3899 		 * changed.
3900 		 */
3901 		if (unlikely(!folio_test_swapcache(folio) ||
3902 			     page_swap_entry(page).val != entry.val))
3903 			goto out_page;
3904 
3905 		/*
3906 		 * KSM sometimes has to copy on read faults, for example, if
3907 		 * page->index of !PageKSM() pages would be nonlinear inside the
3908 		 * anon VMA -- PageKSM() is lost on actual swapout.
3909 		 */
3910 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3911 		if (unlikely(!page)) {
3912 			ret = VM_FAULT_OOM;
3913 			goto out_page;
3914 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3915 			ret = VM_FAULT_HWPOISON;
3916 			goto out_page;
3917 		}
3918 		folio = page_folio(page);
3919 
3920 		/*
3921 		 * If we want to map a page that's in the swapcache writable, we
3922 		 * have to detect via the refcount if we're really the exclusive
3923 		 * owner. Try removing the extra reference from the local LRU
3924 		 * caches if required.
3925 		 */
3926 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3927 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3928 			lru_add_drain();
3929 	}
3930 
3931 	folio_throttle_swaprate(folio, GFP_KERNEL);
3932 
3933 	/*
3934 	 * Back out if somebody else already faulted in this pte.
3935 	 */
3936 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3937 			&vmf->ptl);
3938 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3939 		goto out_nomap;
3940 
3941 	if (unlikely(!folio_test_uptodate(folio))) {
3942 		ret = VM_FAULT_SIGBUS;
3943 		goto out_nomap;
3944 	}
3945 
3946 	/*
3947 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3948 	 * must never point at an anonymous page in the swapcache that is
3949 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3950 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3951 	 * check after taking the PT lock and making sure that nobody
3952 	 * concurrently faulted in this page and set PG_anon_exclusive.
3953 	 */
3954 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3955 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3956 
3957 	/*
3958 	 * Check under PT lock (to protect against concurrent fork() sharing
3959 	 * the swap entry concurrently) for certainly exclusive pages.
3960 	 */
3961 	if (!folio_test_ksm(folio)) {
3962 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3963 		if (folio != swapcache) {
3964 			/*
3965 			 * We have a fresh page that is not exposed to the
3966 			 * swapcache -> certainly exclusive.
3967 			 */
3968 			exclusive = true;
3969 		} else if (exclusive && folio_test_writeback(folio) &&
3970 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3971 			/*
3972 			 * This is tricky: not all swap backends support
3973 			 * concurrent page modifications while under writeback.
3974 			 *
3975 			 * So if we stumble over such a page in the swapcache
3976 			 * we must not set the page exclusive, otherwise we can
3977 			 * map it writable without further checks and modify it
3978 			 * while still under writeback.
3979 			 *
3980 			 * For these problematic swap backends, simply drop the
3981 			 * exclusive marker: this is perfectly fine as we start
3982 			 * writeback only if we fully unmapped the page and
3983 			 * there are no unexpected references on the page after
3984 			 * unmapping succeeded. After fully unmapped, no
3985 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3986 			 * appear, so dropping the exclusive marker and mapping
3987 			 * it only R/O is fine.
3988 			 */
3989 			exclusive = false;
3990 		}
3991 	}
3992 
3993 	/*
3994 	 * Some architectures may have to restore extra metadata to the page
3995 	 * when reading from swap. This metadata may be indexed by swap entry
3996 	 * so this must be called before swap_free().
3997 	 */
3998 	arch_swap_restore(entry, folio);
3999 
4000 	/*
4001 	 * Remove the swap entry and conditionally try to free up the swapcache.
4002 	 * We're already holding a reference on the page but haven't mapped it
4003 	 * yet.
4004 	 */
4005 	swap_free(entry);
4006 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4007 		folio_free_swap(folio);
4008 
4009 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4010 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4011 	pte = mk_pte(page, vma->vm_page_prot);
4012 
4013 	/*
4014 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4015 	 * certainly not shared either because we just allocated them without
4016 	 * exposing them to the swapcache or because the swap entry indicates
4017 	 * exclusivity.
4018 	 */
4019 	if (!folio_test_ksm(folio) &&
4020 	    (exclusive || folio_ref_count(folio) == 1)) {
4021 		if (vmf->flags & FAULT_FLAG_WRITE) {
4022 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4023 			vmf->flags &= ~FAULT_FLAG_WRITE;
4024 		}
4025 		rmap_flags |= RMAP_EXCLUSIVE;
4026 	}
4027 	flush_icache_page(vma, page);
4028 	if (pte_swp_soft_dirty(vmf->orig_pte))
4029 		pte = pte_mksoft_dirty(pte);
4030 	if (pte_swp_uffd_wp(vmf->orig_pte))
4031 		pte = pte_mkuffd_wp(pte);
4032 	vmf->orig_pte = pte;
4033 
4034 	/* ksm created a completely new copy */
4035 	if (unlikely(folio != swapcache && swapcache)) {
4036 		page_add_new_anon_rmap(page, vma, vmf->address);
4037 		folio_add_lru_vma(folio, vma);
4038 	} else {
4039 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4040 	}
4041 
4042 	VM_BUG_ON(!folio_test_anon(folio) ||
4043 			(pte_write(pte) && !PageAnonExclusive(page)));
4044 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4045 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4046 
4047 	folio_unlock(folio);
4048 	if (folio != swapcache && swapcache) {
4049 		/*
4050 		 * Hold the lock to avoid the swap entry to be reused
4051 		 * until we take the PT lock for the pte_same() check
4052 		 * (to avoid false positives from pte_same). For
4053 		 * further safety release the lock after the swap_free
4054 		 * so that the swap count won't change under a
4055 		 * parallel locked swapcache.
4056 		 */
4057 		folio_unlock(swapcache);
4058 		folio_put(swapcache);
4059 	}
4060 
4061 	if (vmf->flags & FAULT_FLAG_WRITE) {
4062 		ret |= do_wp_page(vmf);
4063 		if (ret & VM_FAULT_ERROR)
4064 			ret &= VM_FAULT_ERROR;
4065 		goto out;
4066 	}
4067 
4068 	/* No need to invalidate - it was non-present before */
4069 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4070 unlock:
4071 	if (vmf->pte)
4072 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4073 out:
4074 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4075 	if (need_clear_cache)
4076 		swapcache_clear(si, entry);
4077 	if (si)
4078 		put_swap_device(si);
4079 	return ret;
4080 out_nomap:
4081 	if (vmf->pte)
4082 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4083 out_page:
4084 	folio_unlock(folio);
4085 out_release:
4086 	folio_put(folio);
4087 	if (folio != swapcache && swapcache) {
4088 		folio_unlock(swapcache);
4089 		folio_put(swapcache);
4090 	}
4091 	if (need_clear_cache)
4092 		swapcache_clear(si, entry);
4093 	if (si)
4094 		put_swap_device(si);
4095 	return ret;
4096 }
4097 
4098 /*
4099  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4100  * but allow concurrent faults), and pte mapped but not yet locked.
4101  * We return with mmap_lock still held, but pte unmapped and unlocked.
4102  */
do_anonymous_page(struct vm_fault * vmf)4103 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4104 {
4105 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4106 	struct vm_area_struct *vma = vmf->vma;
4107 	struct folio *folio;
4108 	vm_fault_t ret = 0;
4109 	pte_t entry;
4110 
4111 	/* File mapping without ->vm_ops ? */
4112 	if (vma->vm_flags & VM_SHARED)
4113 		return VM_FAULT_SIGBUS;
4114 
4115 	/*
4116 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4117 	 * be distinguished from a transient failure of pte_offset_map().
4118 	 */
4119 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4120 		return VM_FAULT_OOM;
4121 
4122 	/* Use the zero-page for reads */
4123 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4124 			!mm_forbids_zeropage(vma->vm_mm)) {
4125 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4126 						vma->vm_page_prot));
4127 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4128 				vmf->address, &vmf->ptl);
4129 		if (!vmf->pte)
4130 			goto unlock;
4131 		if (vmf_pte_changed(vmf)) {
4132 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4133 			goto unlock;
4134 		}
4135 		ret = check_stable_address_space(vma->vm_mm);
4136 		if (ret)
4137 			goto unlock;
4138 		/* Deliver the page fault to userland, check inside PT lock */
4139 		if (userfaultfd_missing(vma)) {
4140 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4141 			return handle_userfault(vmf, VM_UFFD_MISSING);
4142 		}
4143 		goto setpte;
4144 	}
4145 
4146 	/* Allocate our own private page. */
4147 	if (unlikely(anon_vma_prepare(vma)))
4148 		goto oom;
4149 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4150 	if (!folio)
4151 		goto oom;
4152 
4153 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4154 		goto oom_free_page;
4155 	folio_throttle_swaprate(folio, GFP_KERNEL);
4156 
4157 	/*
4158 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4159 	 * preceding stores to the page contents become visible before
4160 	 * the set_pte_at() write.
4161 	 */
4162 	__folio_mark_uptodate(folio);
4163 
4164 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4165 	entry = pte_sw_mkyoung(entry);
4166 	if (vma->vm_flags & VM_WRITE)
4167 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4168 
4169 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4170 			&vmf->ptl);
4171 	if (!vmf->pte)
4172 		goto release;
4173 	if (vmf_pte_changed(vmf)) {
4174 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4175 		goto release;
4176 	}
4177 
4178 	ret = check_stable_address_space(vma->vm_mm);
4179 	if (ret)
4180 		goto release;
4181 
4182 	/* Deliver the page fault to userland, check inside PT lock */
4183 	if (userfaultfd_missing(vma)) {
4184 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4185 		folio_put(folio);
4186 		return handle_userfault(vmf, VM_UFFD_MISSING);
4187 	}
4188 
4189 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4190 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4191 	folio_add_lru_vma(folio, vma);
4192 setpte:
4193 	if (uffd_wp)
4194 		entry = pte_mkuffd_wp(entry);
4195 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4196 
4197 	/* No need to invalidate - it was non-present before */
4198 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4199 unlock:
4200 	if (vmf->pte)
4201 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4202 	return ret;
4203 release:
4204 	folio_put(folio);
4205 	goto unlock;
4206 oom_free_page:
4207 	folio_put(folio);
4208 oom:
4209 	return VM_FAULT_OOM;
4210 }
4211 
4212 /*
4213  * The mmap_lock must have been held on entry, and may have been
4214  * released depending on flags and vma->vm_ops->fault() return value.
4215  * See filemap_fault() and __lock_page_retry().
4216  */
__do_fault(struct vm_fault * vmf)4217 static vm_fault_t __do_fault(struct vm_fault *vmf)
4218 {
4219 	struct vm_area_struct *vma = vmf->vma;
4220 	vm_fault_t ret;
4221 
4222 	/*
4223 	 * Preallocate pte before we take page_lock because this might lead to
4224 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4225 	 *				lock_page(A)
4226 	 *				SetPageWriteback(A)
4227 	 *				unlock_page(A)
4228 	 * lock_page(B)
4229 	 *				lock_page(B)
4230 	 * pte_alloc_one
4231 	 *   shrink_page_list
4232 	 *     wait_on_page_writeback(A)
4233 	 *				SetPageWriteback(B)
4234 	 *				unlock_page(B)
4235 	 *				# flush A, B to clear the writeback
4236 	 */
4237 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4238 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4239 		if (!vmf->prealloc_pte)
4240 			return VM_FAULT_OOM;
4241 	}
4242 
4243 	ret = vma->vm_ops->fault(vmf);
4244 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4245 			    VM_FAULT_DONE_COW)))
4246 		return ret;
4247 
4248 	if (unlikely(PageHWPoison(vmf->page))) {
4249 		struct page *page = vmf->page;
4250 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4251 		if (ret & VM_FAULT_LOCKED) {
4252 			if (page_mapped(page))
4253 				unmap_mapping_pages(page_mapping(page),
4254 						    page->index, 1, false);
4255 			/* Retry if a clean page was removed from the cache. */
4256 			if (invalidate_inode_page(page))
4257 				poisonret = VM_FAULT_NOPAGE;
4258 			unlock_page(page);
4259 		}
4260 		put_page(page);
4261 		vmf->page = NULL;
4262 		return poisonret;
4263 	}
4264 
4265 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4266 		lock_page(vmf->page);
4267 	else
4268 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4269 
4270 	return ret;
4271 }
4272 
4273 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4274 static void deposit_prealloc_pte(struct vm_fault *vmf)
4275 {
4276 	struct vm_area_struct *vma = vmf->vma;
4277 
4278 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4279 	/*
4280 	 * We are going to consume the prealloc table,
4281 	 * count that as nr_ptes.
4282 	 */
4283 	mm_inc_nr_ptes(vma->vm_mm);
4284 	vmf->prealloc_pte = NULL;
4285 }
4286 
do_set_pmd(struct vm_fault * vmf,struct page * page)4287 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4288 {
4289 	struct vm_area_struct *vma = vmf->vma;
4290 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4291 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4292 	pmd_t entry;
4293 	vm_fault_t ret = VM_FAULT_FALLBACK;
4294 
4295 	/*
4296 	 * It is too late to allocate a small folio, we already have a large
4297 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
4298 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4299 	 * PMD mappings if THPs are disabled.
4300 	 */
4301 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4302 		return ret;
4303 
4304 	if (!transhuge_vma_suitable(vma, haddr))
4305 		return ret;
4306 
4307 	page = compound_head(page);
4308 	if (compound_order(page) != HPAGE_PMD_ORDER)
4309 		return ret;
4310 
4311 	/*
4312 	 * Just backoff if any subpage of a THP is corrupted otherwise
4313 	 * the corrupted page may mapped by PMD silently to escape the
4314 	 * check.  This kind of THP just can be PTE mapped.  Access to
4315 	 * the corrupted subpage should trigger SIGBUS as expected.
4316 	 */
4317 	if (unlikely(PageHasHWPoisoned(page)))
4318 		return ret;
4319 
4320 	/*
4321 	 * Archs like ppc64 need additional space to store information
4322 	 * related to pte entry. Use the preallocated table for that.
4323 	 */
4324 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4325 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4326 		if (!vmf->prealloc_pte)
4327 			return VM_FAULT_OOM;
4328 	}
4329 
4330 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4331 	if (unlikely(!pmd_none(*vmf->pmd)))
4332 		goto out;
4333 
4334 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4335 
4336 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4337 	if (write)
4338 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4339 
4340 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4341 	page_add_file_rmap(page, vma, true);
4342 
4343 	/*
4344 	 * deposit and withdraw with pmd lock held
4345 	 */
4346 	if (arch_needs_pgtable_deposit())
4347 		deposit_prealloc_pte(vmf);
4348 
4349 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4350 
4351 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4352 
4353 	/* fault is handled */
4354 	ret = 0;
4355 	count_vm_event(THP_FILE_MAPPED);
4356 out:
4357 	spin_unlock(vmf->ptl);
4358 	return ret;
4359 }
4360 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4361 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4362 {
4363 	return VM_FAULT_FALLBACK;
4364 }
4365 #endif
4366 
4367 /**
4368  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4369  * @vmf: Fault decription.
4370  * @folio: The folio that contains @page.
4371  * @page: The first page to create a PTE for.
4372  * @nr: The number of PTEs to create.
4373  * @addr: The first address to create a PTE for.
4374  */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)4375 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4376 		struct page *page, unsigned int nr, unsigned long addr)
4377 {
4378 	struct vm_area_struct *vma = vmf->vma;
4379 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4380 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4381 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4382 	pte_t entry;
4383 
4384 	flush_icache_pages(vma, page, nr);
4385 	entry = mk_pte(page, vma->vm_page_prot);
4386 
4387 	if (prefault && arch_wants_old_prefaulted_pte())
4388 		entry = pte_mkold(entry);
4389 	else
4390 		entry = pte_sw_mkyoung(entry);
4391 
4392 	if (write)
4393 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4394 	if (unlikely(uffd_wp))
4395 		entry = pte_mkuffd_wp(entry);
4396 	/* copy-on-write page */
4397 	if (write && !(vma->vm_flags & VM_SHARED)) {
4398 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4399 		VM_BUG_ON_FOLIO(nr != 1, folio);
4400 		folio_add_new_anon_rmap(folio, vma, addr);
4401 		folio_add_lru_vma(folio, vma);
4402 	} else {
4403 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4404 		folio_add_file_rmap_range(folio, page, nr, vma, false);
4405 	}
4406 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4407 
4408 	/* no need to invalidate: a not-present page won't be cached */
4409 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4410 }
4411 
vmf_pte_changed(struct vm_fault * vmf)4412 static bool vmf_pte_changed(struct vm_fault *vmf)
4413 {
4414 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4415 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4416 
4417 	return !pte_none(ptep_get(vmf->pte));
4418 }
4419 
4420 /**
4421  * finish_fault - finish page fault once we have prepared the page to fault
4422  *
4423  * @vmf: structure describing the fault
4424  *
4425  * This function handles all that is needed to finish a page fault once the
4426  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4427  * given page, adds reverse page mapping, handles memcg charges and LRU
4428  * addition.
4429  *
4430  * The function expects the page to be locked and on success it consumes a
4431  * reference of a page being mapped (for the PTE which maps it).
4432  *
4433  * Return: %0 on success, %VM_FAULT_ code in case of error.
4434  */
finish_fault(struct vm_fault * vmf)4435 vm_fault_t finish_fault(struct vm_fault *vmf)
4436 {
4437 	struct vm_area_struct *vma = vmf->vma;
4438 	struct page *page;
4439 	vm_fault_t ret;
4440 
4441 	/* Did we COW the page? */
4442 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4443 		page = vmf->cow_page;
4444 	else
4445 		page = vmf->page;
4446 
4447 	/*
4448 	 * check even for read faults because we might have lost our CoWed
4449 	 * page
4450 	 */
4451 	if (!(vma->vm_flags & VM_SHARED)) {
4452 		ret = check_stable_address_space(vma->vm_mm);
4453 		if (ret)
4454 			return ret;
4455 	}
4456 
4457 	if (pmd_none(*vmf->pmd)) {
4458 		if (PageTransCompound(page)) {
4459 			ret = do_set_pmd(vmf, page);
4460 			if (ret != VM_FAULT_FALLBACK)
4461 				return ret;
4462 		}
4463 
4464 		if (vmf->prealloc_pte)
4465 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4466 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4467 			return VM_FAULT_OOM;
4468 	}
4469 
4470 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4471 				      vmf->address, &vmf->ptl);
4472 	if (!vmf->pte)
4473 		return VM_FAULT_NOPAGE;
4474 
4475 	/* Re-check under ptl */
4476 	if (likely(!vmf_pte_changed(vmf))) {
4477 		struct folio *folio = page_folio(page);
4478 
4479 		set_pte_range(vmf, folio, page, 1, vmf->address);
4480 		ret = 0;
4481 	} else {
4482 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4483 		ret = VM_FAULT_NOPAGE;
4484 	}
4485 
4486 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4487 	return ret;
4488 }
4489 
4490 static unsigned long fault_around_pages __read_mostly =
4491 	65536 >> PAGE_SHIFT;
4492 
4493 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4494 static int fault_around_bytes_get(void *data, u64 *val)
4495 {
4496 	*val = fault_around_pages << PAGE_SHIFT;
4497 	return 0;
4498 }
4499 
4500 /*
4501  * fault_around_bytes must be rounded down to the nearest page order as it's
4502  * what do_fault_around() expects to see.
4503  */
fault_around_bytes_set(void * data,u64 val)4504 static int fault_around_bytes_set(void *data, u64 val)
4505 {
4506 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4507 		return -EINVAL;
4508 
4509 	/*
4510 	 * The minimum value is 1 page, however this results in no fault-around
4511 	 * at all. See should_fault_around().
4512 	 */
4513 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4514 
4515 	return 0;
4516 }
4517 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4518 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4519 
fault_around_debugfs(void)4520 static int __init fault_around_debugfs(void)
4521 {
4522 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4523 				   &fault_around_bytes_fops);
4524 	return 0;
4525 }
4526 late_initcall(fault_around_debugfs);
4527 #endif
4528 
4529 /*
4530  * do_fault_around() tries to map few pages around the fault address. The hope
4531  * is that the pages will be needed soon and this will lower the number of
4532  * faults to handle.
4533  *
4534  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4535  * not ready to be mapped: not up-to-date, locked, etc.
4536  *
4537  * This function doesn't cross VMA or page table boundaries, in order to call
4538  * map_pages() and acquire a PTE lock only once.
4539  *
4540  * fault_around_pages defines how many pages we'll try to map.
4541  * do_fault_around() expects it to be set to a power of two less than or equal
4542  * to PTRS_PER_PTE.
4543  *
4544  * The virtual address of the area that we map is naturally aligned to
4545  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4546  * (and therefore to page order).  This way it's easier to guarantee
4547  * that we don't cross page table boundaries.
4548  */
do_fault_around(struct vm_fault * vmf)4549 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4550 {
4551 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4552 	pgoff_t pte_off = pte_index(vmf->address);
4553 	/* The page offset of vmf->address within the VMA. */
4554 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4555 	pgoff_t from_pte, to_pte;
4556 	vm_fault_t ret;
4557 
4558 	/* The PTE offset of the start address, clamped to the VMA. */
4559 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4560 		       pte_off - min(pte_off, vma_off));
4561 
4562 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4563 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4564 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4565 
4566 	if (pmd_none(*vmf->pmd)) {
4567 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4568 		if (!vmf->prealloc_pte)
4569 			return VM_FAULT_OOM;
4570 	}
4571 
4572 	rcu_read_lock();
4573 	ret = vmf->vma->vm_ops->map_pages(vmf,
4574 			vmf->pgoff + from_pte - pte_off,
4575 			vmf->pgoff + to_pte - pte_off);
4576 	rcu_read_unlock();
4577 
4578 	return ret;
4579 }
4580 
4581 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4582 static inline bool should_fault_around(struct vm_fault *vmf)
4583 {
4584 	/* No ->map_pages?  No way to fault around... */
4585 	if (!vmf->vma->vm_ops->map_pages)
4586 		return false;
4587 
4588 	if (uffd_disable_fault_around(vmf->vma))
4589 		return false;
4590 
4591 	/* A single page implies no faulting 'around' at all. */
4592 	return fault_around_pages > 1;
4593 }
4594 
do_read_fault(struct vm_fault * vmf)4595 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4596 {
4597 	vm_fault_t ret = 0;
4598 	struct folio *folio;
4599 
4600 	/*
4601 	 * Let's call ->map_pages() first and use ->fault() as fallback
4602 	 * if page by the offset is not ready to be mapped (cold cache or
4603 	 * something).
4604 	 */
4605 	if (should_fault_around(vmf)) {
4606 		ret = do_fault_around(vmf);
4607 		if (ret)
4608 			return ret;
4609 	}
4610 
4611 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4612 		vma_end_read(vmf->vma);
4613 		return VM_FAULT_RETRY;
4614 	}
4615 
4616 	ret = __do_fault(vmf);
4617 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4618 		return ret;
4619 
4620 	ret |= finish_fault(vmf);
4621 	folio = page_folio(vmf->page);
4622 	folio_unlock(folio);
4623 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4624 		folio_put(folio);
4625 	return ret;
4626 }
4627 
do_cow_fault(struct vm_fault * vmf)4628 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4629 {
4630 	struct vm_area_struct *vma = vmf->vma;
4631 	vm_fault_t ret;
4632 
4633 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4634 		vma_end_read(vma);
4635 		return VM_FAULT_RETRY;
4636 	}
4637 
4638 	if (unlikely(anon_vma_prepare(vma)))
4639 		return VM_FAULT_OOM;
4640 
4641 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4642 	if (!vmf->cow_page)
4643 		return VM_FAULT_OOM;
4644 
4645 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4646 				GFP_KERNEL)) {
4647 		put_page(vmf->cow_page);
4648 		return VM_FAULT_OOM;
4649 	}
4650 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4651 
4652 	ret = __do_fault(vmf);
4653 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4654 		goto uncharge_out;
4655 	if (ret & VM_FAULT_DONE_COW)
4656 		return ret;
4657 
4658 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4659 	__SetPageUptodate(vmf->cow_page);
4660 
4661 	ret |= finish_fault(vmf);
4662 	unlock_page(vmf->page);
4663 	put_page(vmf->page);
4664 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4665 		goto uncharge_out;
4666 	return ret;
4667 uncharge_out:
4668 	put_page(vmf->cow_page);
4669 	return ret;
4670 }
4671 
do_shared_fault(struct vm_fault * vmf)4672 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4673 {
4674 	struct vm_area_struct *vma = vmf->vma;
4675 	vm_fault_t ret, tmp;
4676 	struct folio *folio;
4677 
4678 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4679 		vma_end_read(vma);
4680 		return VM_FAULT_RETRY;
4681 	}
4682 
4683 	ret = __do_fault(vmf);
4684 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4685 		return ret;
4686 
4687 	folio = page_folio(vmf->page);
4688 
4689 	/*
4690 	 * Check if the backing address space wants to know that the page is
4691 	 * about to become writable
4692 	 */
4693 	if (vma->vm_ops->page_mkwrite) {
4694 		folio_unlock(folio);
4695 		tmp = do_page_mkwrite(vmf, folio);
4696 		if (unlikely(!tmp ||
4697 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4698 			folio_put(folio);
4699 			return tmp;
4700 		}
4701 	}
4702 
4703 	ret |= finish_fault(vmf);
4704 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4705 					VM_FAULT_RETRY))) {
4706 		folio_unlock(folio);
4707 		folio_put(folio);
4708 		return ret;
4709 	}
4710 
4711 	ret |= fault_dirty_shared_page(vmf);
4712 	return ret;
4713 }
4714 
4715 /*
4716  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4717  * but allow concurrent faults).
4718  * The mmap_lock may have been released depending on flags and our
4719  * return value.  See filemap_fault() and __folio_lock_or_retry().
4720  * If mmap_lock is released, vma may become invalid (for example
4721  * by other thread calling munmap()).
4722  */
do_fault(struct vm_fault * vmf)4723 static vm_fault_t do_fault(struct vm_fault *vmf)
4724 {
4725 	struct vm_area_struct *vma = vmf->vma;
4726 	struct mm_struct *vm_mm = vma->vm_mm;
4727 	vm_fault_t ret;
4728 
4729 	/*
4730 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4731 	 */
4732 	if (!vma->vm_ops->fault) {
4733 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4734 					       vmf->address, &vmf->ptl);
4735 		if (unlikely(!vmf->pte))
4736 			ret = VM_FAULT_SIGBUS;
4737 		else {
4738 			/*
4739 			 * Make sure this is not a temporary clearing of pte
4740 			 * by holding ptl and checking again. A R/M/W update
4741 			 * of pte involves: take ptl, clearing the pte so that
4742 			 * we don't have concurrent modification by hardware
4743 			 * followed by an update.
4744 			 */
4745 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4746 				ret = VM_FAULT_SIGBUS;
4747 			else
4748 				ret = VM_FAULT_NOPAGE;
4749 
4750 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4751 		}
4752 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4753 		ret = do_read_fault(vmf);
4754 	else if (!(vma->vm_flags & VM_SHARED))
4755 		ret = do_cow_fault(vmf);
4756 	else
4757 		ret = do_shared_fault(vmf);
4758 
4759 	/* preallocated pagetable is unused: free it */
4760 	if (vmf->prealloc_pte) {
4761 		pte_free(vm_mm, vmf->prealloc_pte);
4762 		vmf->prealloc_pte = NULL;
4763 	}
4764 	return ret;
4765 }
4766 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4767 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4768 		      unsigned long addr, int page_nid, int *flags)
4769 {
4770 	get_page(page);
4771 
4772 	/* Record the current PID acceesing VMA */
4773 	vma_set_access_pid_bit(vma);
4774 
4775 	count_vm_numa_event(NUMA_HINT_FAULTS);
4776 	if (page_nid == numa_node_id()) {
4777 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4778 		*flags |= TNF_FAULT_LOCAL;
4779 	}
4780 
4781 	return mpol_misplaced(page, vma, addr);
4782 }
4783 
do_numa_page(struct vm_fault * vmf)4784 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4785 {
4786 	struct vm_area_struct *vma = vmf->vma;
4787 	struct page *page = NULL;
4788 	int page_nid = NUMA_NO_NODE;
4789 	bool writable = false;
4790 	int last_cpupid;
4791 	int target_nid;
4792 	pte_t pte, old_pte;
4793 	int flags = 0;
4794 
4795 	/*
4796 	 * The "pte" at this point cannot be used safely without
4797 	 * validation through pte_unmap_same(). It's of NUMA type but
4798 	 * the pfn may be screwed if the read is non atomic.
4799 	 */
4800 	spin_lock(vmf->ptl);
4801 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4802 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4803 		return 0;
4804 	}
4805 
4806 	/* Get the normal PTE  */
4807 	old_pte = ptep_get(vmf->pte);
4808 	pte = pte_modify(old_pte, vma->vm_page_prot);
4809 
4810 	/*
4811 	 * Detect now whether the PTE could be writable; this information
4812 	 * is only valid while holding the PT lock.
4813 	 */
4814 	writable = pte_write(pte);
4815 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4816 	    can_change_pte_writable(vma, vmf->address, pte))
4817 		writable = true;
4818 
4819 	page = vm_normal_page(vma, vmf->address, pte);
4820 	if (!page || is_zone_device_page(page))
4821 		goto out_map;
4822 
4823 	/* TODO: handle PTE-mapped THP */
4824 	if (PageCompound(page))
4825 		goto out_map;
4826 
4827 	/*
4828 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4829 	 * much anyway since they can be in shared cache state. This misses
4830 	 * the case where a mapping is writable but the process never writes
4831 	 * to it but pte_write gets cleared during protection updates and
4832 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4833 	 * background writeback, dirty balancing and application behaviour.
4834 	 */
4835 	if (!writable)
4836 		flags |= TNF_NO_GROUP;
4837 
4838 	/*
4839 	 * Flag if the page is shared between multiple address spaces. This
4840 	 * is later used when determining whether to group tasks together
4841 	 */
4842 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4843 		flags |= TNF_SHARED;
4844 
4845 	page_nid = page_to_nid(page);
4846 	/*
4847 	 * For memory tiering mode, cpupid of slow memory page is used
4848 	 * to record page access time.  So use default value.
4849 	 */
4850 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4851 	    !node_is_toptier(page_nid))
4852 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4853 	else
4854 		last_cpupid = page_cpupid_last(page);
4855 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4856 			&flags);
4857 	if (target_nid == NUMA_NO_NODE) {
4858 		put_page(page);
4859 		goto out_map;
4860 	}
4861 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4862 	writable = false;
4863 
4864 	/* Migrate to the requested node */
4865 	if (migrate_misplaced_page(page, vma, target_nid)) {
4866 		page_nid = target_nid;
4867 		flags |= TNF_MIGRATED;
4868 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4869 		return 0;
4870 	}
4871 
4872 	flags |= TNF_MIGRATE_FAIL;
4873 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4874 				       vmf->address, &vmf->ptl);
4875 	if (unlikely(!vmf->pte))
4876 		return 0;
4877 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4878 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4879 		return 0;
4880 	}
4881 out_map:
4882 	/*
4883 	 * Make it present again, depending on how arch implements
4884 	 * non-accessible ptes, some can allow access by kernel mode.
4885 	 */
4886 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4887 	pte = pte_modify(old_pte, vma->vm_page_prot);
4888 	pte = pte_mkyoung(pte);
4889 	if (writable)
4890 		pte = pte_mkwrite(pte, vma);
4891 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4892 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4893 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4894 
4895 	if (page_nid != NUMA_NO_NODE)
4896 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4897 	return 0;
4898 }
4899 
create_huge_pmd(struct vm_fault * vmf)4900 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4901 {
4902 	struct vm_area_struct *vma = vmf->vma;
4903 	if (vma_is_anonymous(vma))
4904 		return do_huge_pmd_anonymous_page(vmf);
4905 	if (vma->vm_ops->huge_fault)
4906 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4907 	return VM_FAULT_FALLBACK;
4908 }
4909 
4910 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4911 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4912 {
4913 	struct vm_area_struct *vma = vmf->vma;
4914 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4915 	vm_fault_t ret;
4916 
4917 	if (vma_is_anonymous(vma)) {
4918 		if (likely(!unshare) &&
4919 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4920 			return handle_userfault(vmf, VM_UFFD_WP);
4921 		return do_huge_pmd_wp_page(vmf);
4922 	}
4923 
4924 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4925 		if (vma->vm_ops->huge_fault) {
4926 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4927 			if (!(ret & VM_FAULT_FALLBACK))
4928 				return ret;
4929 		}
4930 	}
4931 
4932 	/* COW or write-notify handled on pte level: split pmd. */
4933 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4934 
4935 	return VM_FAULT_FALLBACK;
4936 }
4937 
create_huge_pud(struct vm_fault * vmf)4938 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4939 {
4940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4941 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4942 	struct vm_area_struct *vma = vmf->vma;
4943 	/* No support for anonymous transparent PUD pages yet */
4944 	if (vma_is_anonymous(vma))
4945 		return VM_FAULT_FALLBACK;
4946 	if (vma->vm_ops->huge_fault)
4947 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4949 	return VM_FAULT_FALLBACK;
4950 }
4951 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4952 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4953 {
4954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4955 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4956 	struct vm_area_struct *vma = vmf->vma;
4957 	vm_fault_t ret;
4958 
4959 	/* No support for anonymous transparent PUD pages yet */
4960 	if (vma_is_anonymous(vma))
4961 		goto split;
4962 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4963 		if (vma->vm_ops->huge_fault) {
4964 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4965 			if (!(ret & VM_FAULT_FALLBACK))
4966 				return ret;
4967 		}
4968 	}
4969 split:
4970 	/* COW or write-notify not handled on PUD level: split pud.*/
4971 	__split_huge_pud(vma, vmf->pud, vmf->address);
4972 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4973 	return VM_FAULT_FALLBACK;
4974 }
4975 
4976 /*
4977  * These routines also need to handle stuff like marking pages dirty
4978  * and/or accessed for architectures that don't do it in hardware (most
4979  * RISC architectures).  The early dirtying is also good on the i386.
4980  *
4981  * There is also a hook called "update_mmu_cache()" that architectures
4982  * with external mmu caches can use to update those (ie the Sparc or
4983  * PowerPC hashed page tables that act as extended TLBs).
4984  *
4985  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4986  * concurrent faults).
4987  *
4988  * The mmap_lock may have been released depending on flags and our return value.
4989  * See filemap_fault() and __folio_lock_or_retry().
4990  */
handle_pte_fault(struct vm_fault * vmf)4991 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4992 {
4993 	pte_t entry;
4994 
4995 	if (unlikely(pmd_none(*vmf->pmd))) {
4996 		/*
4997 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4998 		 * want to allocate huge page, and if we expose page table
4999 		 * for an instant, it will be difficult to retract from
5000 		 * concurrent faults and from rmap lookups.
5001 		 */
5002 		vmf->pte = NULL;
5003 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5004 	} else {
5005 		/*
5006 		 * A regular pmd is established and it can't morph into a huge
5007 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5008 		 * mode; but shmem or file collapse to THP could still morph
5009 		 * it into a huge pmd: just retry later if so.
5010 		 */
5011 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5012 						 vmf->address, &vmf->ptl);
5013 		if (unlikely(!vmf->pte))
5014 			return 0;
5015 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5016 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5017 
5018 		if (pte_none(vmf->orig_pte)) {
5019 			pte_unmap(vmf->pte);
5020 			vmf->pte = NULL;
5021 		}
5022 	}
5023 
5024 	if (!vmf->pte)
5025 		return do_pte_missing(vmf);
5026 
5027 	if (!pte_present(vmf->orig_pte))
5028 		return do_swap_page(vmf);
5029 
5030 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5031 		return do_numa_page(vmf);
5032 
5033 	spin_lock(vmf->ptl);
5034 	entry = vmf->orig_pte;
5035 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5036 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5037 		goto unlock;
5038 	}
5039 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5040 		if (!pte_write(entry))
5041 			return do_wp_page(vmf);
5042 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5043 			entry = pte_mkdirty(entry);
5044 	}
5045 	entry = pte_mkyoung(entry);
5046 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5047 				vmf->flags & FAULT_FLAG_WRITE)) {
5048 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5049 				vmf->pte, 1);
5050 	} else {
5051 		/* Skip spurious TLB flush for retried page fault */
5052 		if (vmf->flags & FAULT_FLAG_TRIED)
5053 			goto unlock;
5054 		/*
5055 		 * This is needed only for protection faults but the arch code
5056 		 * is not yet telling us if this is a protection fault or not.
5057 		 * This still avoids useless tlb flushes for .text page faults
5058 		 * with threads.
5059 		 */
5060 		if (vmf->flags & FAULT_FLAG_WRITE)
5061 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5062 						     vmf->pte);
5063 	}
5064 unlock:
5065 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5066 	return 0;
5067 }
5068 
5069 /*
5070  * On entry, we hold either the VMA lock or the mmap_lock
5071  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5072  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5073  * and __folio_lock_or_retry().
5074  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5075 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5076 		unsigned long address, unsigned int flags)
5077 {
5078 	struct vm_fault vmf = {
5079 		.vma = vma,
5080 		.address = address & PAGE_MASK,
5081 		.real_address = address,
5082 		.flags = flags,
5083 		.pgoff = linear_page_index(vma, address),
5084 		.gfp_mask = __get_fault_gfp_mask(vma),
5085 	};
5086 	struct mm_struct *mm = vma->vm_mm;
5087 	unsigned long vm_flags = vma->vm_flags;
5088 	pgd_t *pgd;
5089 	p4d_t *p4d;
5090 	vm_fault_t ret;
5091 
5092 	pgd = pgd_offset(mm, address);
5093 	p4d = p4d_alloc(mm, pgd, address);
5094 	if (!p4d)
5095 		return VM_FAULT_OOM;
5096 
5097 	vmf.pud = pud_alloc(mm, p4d, address);
5098 	if (!vmf.pud)
5099 		return VM_FAULT_OOM;
5100 retry_pud:
5101 	if (pud_none(*vmf.pud) &&
5102 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5103 		ret = create_huge_pud(&vmf);
5104 		if (!(ret & VM_FAULT_FALLBACK))
5105 			return ret;
5106 	} else {
5107 		pud_t orig_pud = *vmf.pud;
5108 
5109 		barrier();
5110 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5111 
5112 			/*
5113 			 * TODO once we support anonymous PUDs: NUMA case and
5114 			 * FAULT_FLAG_UNSHARE handling.
5115 			 */
5116 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5117 				ret = wp_huge_pud(&vmf, orig_pud);
5118 				if (!(ret & VM_FAULT_FALLBACK))
5119 					return ret;
5120 			} else {
5121 				huge_pud_set_accessed(&vmf, orig_pud);
5122 				return 0;
5123 			}
5124 		}
5125 	}
5126 
5127 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5128 	if (!vmf.pmd)
5129 		return VM_FAULT_OOM;
5130 
5131 	/* Huge pud page fault raced with pmd_alloc? */
5132 	if (pud_trans_unstable(vmf.pud))
5133 		goto retry_pud;
5134 
5135 	if (pmd_none(*vmf.pmd) &&
5136 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5137 		ret = create_huge_pmd(&vmf);
5138 		if (!(ret & VM_FAULT_FALLBACK))
5139 			return ret;
5140 	} else {
5141 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5142 
5143 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5144 			VM_BUG_ON(thp_migration_supported() &&
5145 					  !is_pmd_migration_entry(vmf.orig_pmd));
5146 			if (is_pmd_migration_entry(vmf.orig_pmd))
5147 				pmd_migration_entry_wait(mm, vmf.pmd);
5148 			return 0;
5149 		}
5150 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5151 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5152 				return do_huge_pmd_numa_page(&vmf);
5153 
5154 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5155 			    !pmd_write(vmf.orig_pmd)) {
5156 				ret = wp_huge_pmd(&vmf);
5157 				if (!(ret & VM_FAULT_FALLBACK))
5158 					return ret;
5159 			} else {
5160 				huge_pmd_set_accessed(&vmf);
5161 				return 0;
5162 			}
5163 		}
5164 	}
5165 
5166 	return handle_pte_fault(&vmf);
5167 }
5168 
5169 /**
5170  * mm_account_fault - Do page fault accounting
5171  * @mm: mm from which memcg should be extracted. It can be NULL.
5172  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5173  *        of perf event counters, but we'll still do the per-task accounting to
5174  *        the task who triggered this page fault.
5175  * @address: the faulted address.
5176  * @flags: the fault flags.
5177  * @ret: the fault retcode.
5178  *
5179  * This will take care of most of the page fault accounting.  Meanwhile, it
5180  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5181  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5182  * still be in per-arch page fault handlers at the entry of page fault.
5183  */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5184 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5185 				    unsigned long address, unsigned int flags,
5186 				    vm_fault_t ret)
5187 {
5188 	bool major;
5189 
5190 	/* Incomplete faults will be accounted upon completion. */
5191 	if (ret & VM_FAULT_RETRY)
5192 		return;
5193 
5194 	/*
5195 	 * To preserve the behavior of older kernels, PGFAULT counters record
5196 	 * both successful and failed faults, as opposed to perf counters,
5197 	 * which ignore failed cases.
5198 	 */
5199 	count_vm_event(PGFAULT);
5200 	count_memcg_event_mm(mm, PGFAULT);
5201 
5202 	/*
5203 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5204 	 * valid).  That includes arch_vma_access_permitted() failing before
5205 	 * reaching here. So this is not a "this many hardware page faults"
5206 	 * counter.  We should use the hw profiling for that.
5207 	 */
5208 	if (ret & VM_FAULT_ERROR)
5209 		return;
5210 
5211 	/*
5212 	 * We define the fault as a major fault when the final successful fault
5213 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5214 	 * handle it immediately previously).
5215 	 */
5216 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5217 
5218 	if (major)
5219 		current->maj_flt++;
5220 	else
5221 		current->min_flt++;
5222 
5223 	/*
5224 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5225 	 * accounting for the per thread fault counters who triggered the
5226 	 * fault, and we skip the perf event updates.
5227 	 */
5228 	if (!regs)
5229 		return;
5230 
5231 	if (major)
5232 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5233 	else
5234 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5235 }
5236 
5237 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5238 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5239 {
5240 	/* the LRU algorithm only applies to accesses with recency */
5241 	current->in_lru_fault = vma_has_recency(vma);
5242 }
5243 
lru_gen_exit_fault(void)5244 static void lru_gen_exit_fault(void)
5245 {
5246 	current->in_lru_fault = false;
5247 }
5248 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5249 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5250 {
5251 }
5252 
lru_gen_exit_fault(void)5253 static void lru_gen_exit_fault(void)
5254 {
5255 }
5256 #endif /* CONFIG_LRU_GEN */
5257 
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)5258 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5259 				       unsigned int *flags)
5260 {
5261 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5262 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5263 			return VM_FAULT_SIGSEGV;
5264 		/*
5265 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5266 		 * just treat it like an ordinary read-fault otherwise.
5267 		 */
5268 		if (!is_cow_mapping(vma->vm_flags))
5269 			*flags &= ~FAULT_FLAG_UNSHARE;
5270 	} else if (*flags & FAULT_FLAG_WRITE) {
5271 		/* Write faults on read-only mappings are impossible ... */
5272 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5273 			return VM_FAULT_SIGSEGV;
5274 		/* ... and FOLL_FORCE only applies to COW mappings. */
5275 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5276 				 !is_cow_mapping(vma->vm_flags)))
5277 			return VM_FAULT_SIGSEGV;
5278 	}
5279 #ifdef CONFIG_PER_VMA_LOCK
5280 	/*
5281 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5282 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5283 	 */
5284 	if (WARN_ON_ONCE((*flags &
5285 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5286 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5287 		return VM_FAULT_SIGSEGV;
5288 #endif
5289 
5290 	return 0;
5291 }
5292 
5293 /*
5294  * By the time we get here, we already hold the mm semaphore
5295  *
5296  * The mmap_lock may have been released depending on flags and our
5297  * return value.  See filemap_fault() and __folio_lock_or_retry().
5298  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5299 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5300 			   unsigned int flags, struct pt_regs *regs)
5301 {
5302 	/* If the fault handler drops the mmap_lock, vma may be freed */
5303 	struct mm_struct *mm = vma->vm_mm;
5304 	vm_fault_t ret;
5305 
5306 	__set_current_state(TASK_RUNNING);
5307 
5308 	ret = sanitize_fault_flags(vma, &flags);
5309 	if (ret)
5310 		goto out;
5311 
5312 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5313 					    flags & FAULT_FLAG_INSTRUCTION,
5314 					    flags & FAULT_FLAG_REMOTE)) {
5315 		ret = VM_FAULT_SIGSEGV;
5316 		goto out;
5317 	}
5318 
5319 	/*
5320 	 * Enable the memcg OOM handling for faults triggered in user
5321 	 * space.  Kernel faults are handled more gracefully.
5322 	 */
5323 	if (flags & FAULT_FLAG_USER)
5324 		mem_cgroup_enter_user_fault();
5325 
5326 	lru_gen_enter_fault(vma);
5327 
5328 	if (unlikely(is_vm_hugetlb_page(vma)))
5329 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5330 	else
5331 		ret = __handle_mm_fault(vma, address, flags);
5332 
5333 	lru_gen_exit_fault();
5334 
5335 	if (flags & FAULT_FLAG_USER) {
5336 		mem_cgroup_exit_user_fault();
5337 		/*
5338 		 * The task may have entered a memcg OOM situation but
5339 		 * if the allocation error was handled gracefully (no
5340 		 * VM_FAULT_OOM), there is no need to kill anything.
5341 		 * Just clean up the OOM state peacefully.
5342 		 */
5343 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5344 			mem_cgroup_oom_synchronize(false);
5345 	}
5346 out:
5347 	mm_account_fault(mm, regs, address, flags, ret);
5348 
5349 	return ret;
5350 }
5351 EXPORT_SYMBOL_GPL(handle_mm_fault);
5352 
5353 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5354 #include <linux/extable.h>
5355 
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5356 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5357 {
5358 	if (likely(mmap_read_trylock(mm)))
5359 		return true;
5360 
5361 	if (regs && !user_mode(regs)) {
5362 		unsigned long ip = exception_ip(regs);
5363 		if (!search_exception_tables(ip))
5364 			return false;
5365 	}
5366 
5367 	return !mmap_read_lock_killable(mm);
5368 }
5369 
mmap_upgrade_trylock(struct mm_struct * mm)5370 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5371 {
5372 	/*
5373 	 * We don't have this operation yet.
5374 	 *
5375 	 * It should be easy enough to do: it's basically a
5376 	 *    atomic_long_try_cmpxchg_acquire()
5377 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5378 	 * it also needs the proper lockdep magic etc.
5379 	 */
5380 	return false;
5381 }
5382 
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5383 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5384 {
5385 	mmap_read_unlock(mm);
5386 	if (regs && !user_mode(regs)) {
5387 		unsigned long ip = exception_ip(regs);
5388 		if (!search_exception_tables(ip))
5389 			return false;
5390 	}
5391 	return !mmap_write_lock_killable(mm);
5392 }
5393 
5394 /*
5395  * Helper for page fault handling.
5396  *
5397  * This is kind of equivalend to "mmap_read_lock()" followed
5398  * by "find_extend_vma()", except it's a lot more careful about
5399  * the locking (and will drop the lock on failure).
5400  *
5401  * For example, if we have a kernel bug that causes a page
5402  * fault, we don't want to just use mmap_read_lock() to get
5403  * the mm lock, because that would deadlock if the bug were
5404  * to happen while we're holding the mm lock for writing.
5405  *
5406  * So this checks the exception tables on kernel faults in
5407  * order to only do this all for instructions that are actually
5408  * expected to fault.
5409  *
5410  * We can also actually take the mm lock for writing if we
5411  * need to extend the vma, which helps the VM layer a lot.
5412  */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)5413 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5414 			unsigned long addr, struct pt_regs *regs)
5415 {
5416 	struct vm_area_struct *vma;
5417 
5418 	if (!get_mmap_lock_carefully(mm, regs))
5419 		return NULL;
5420 
5421 	vma = find_vma(mm, addr);
5422 	if (likely(vma && (vma->vm_start <= addr)))
5423 		return vma;
5424 
5425 	/*
5426 	 * Well, dang. We might still be successful, but only
5427 	 * if we can extend a vma to do so.
5428 	 */
5429 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5430 		mmap_read_unlock(mm);
5431 		return NULL;
5432 	}
5433 
5434 	/*
5435 	 * We can try to upgrade the mmap lock atomically,
5436 	 * in which case we can continue to use the vma
5437 	 * we already looked up.
5438 	 *
5439 	 * Otherwise we'll have to drop the mmap lock and
5440 	 * re-take it, and also look up the vma again,
5441 	 * re-checking it.
5442 	 */
5443 	if (!mmap_upgrade_trylock(mm)) {
5444 		if (!upgrade_mmap_lock_carefully(mm, regs))
5445 			return NULL;
5446 
5447 		vma = find_vma(mm, addr);
5448 		if (!vma)
5449 			goto fail;
5450 		if (vma->vm_start <= addr)
5451 			goto success;
5452 		if (!(vma->vm_flags & VM_GROWSDOWN))
5453 			goto fail;
5454 	}
5455 
5456 	if (expand_stack_locked(vma, addr))
5457 		goto fail;
5458 
5459 success:
5460 	mmap_write_downgrade(mm);
5461 	return vma;
5462 
5463 fail:
5464 	mmap_write_unlock(mm);
5465 	return NULL;
5466 }
5467 #endif
5468 
5469 #ifdef CONFIG_PER_VMA_LOCK
5470 /*
5471  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5472  * stable and not isolated. If the VMA is not found or is being modified the
5473  * function returns NULL.
5474  */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)5475 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5476 					  unsigned long address)
5477 {
5478 	MA_STATE(mas, &mm->mm_mt, address, address);
5479 	struct vm_area_struct *vma;
5480 
5481 	rcu_read_lock();
5482 retry:
5483 	vma = mas_walk(&mas);
5484 	if (!vma)
5485 		goto inval;
5486 
5487 	if (!vma_start_read(vma))
5488 		goto inval;
5489 
5490 	/*
5491 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5492 	 * This check must happen after vma_start_read(); otherwise, a
5493 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5494 	 * from its anon_vma.
5495 	 */
5496 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5497 		goto inval_end_read;
5498 
5499 	/* Check since vm_start/vm_end might change before we lock the VMA */
5500 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5501 		goto inval_end_read;
5502 
5503 	/* Check if the VMA got isolated after we found it */
5504 	if (vma->detached) {
5505 		vma_end_read(vma);
5506 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5507 		/* The area was replaced with another one */
5508 		goto retry;
5509 	}
5510 
5511 	rcu_read_unlock();
5512 	return vma;
5513 
5514 inval_end_read:
5515 	vma_end_read(vma);
5516 inval:
5517 	rcu_read_unlock();
5518 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5519 	return NULL;
5520 }
5521 #endif /* CONFIG_PER_VMA_LOCK */
5522 
5523 #ifndef __PAGETABLE_P4D_FOLDED
5524 /*
5525  * Allocate p4d page table.
5526  * We've already handled the fast-path in-line.
5527  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5528 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5529 {
5530 	p4d_t *new = p4d_alloc_one(mm, address);
5531 	if (!new)
5532 		return -ENOMEM;
5533 
5534 	spin_lock(&mm->page_table_lock);
5535 	if (pgd_present(*pgd)) {	/* Another has populated it */
5536 		p4d_free(mm, new);
5537 	} else {
5538 		smp_wmb(); /* See comment in pmd_install() */
5539 		pgd_populate(mm, pgd, new);
5540 	}
5541 	spin_unlock(&mm->page_table_lock);
5542 	return 0;
5543 }
5544 #endif /* __PAGETABLE_P4D_FOLDED */
5545 
5546 #ifndef __PAGETABLE_PUD_FOLDED
5547 /*
5548  * Allocate page upper directory.
5549  * We've already handled the fast-path in-line.
5550  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5551 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5552 {
5553 	pud_t *new = pud_alloc_one(mm, address);
5554 	if (!new)
5555 		return -ENOMEM;
5556 
5557 	spin_lock(&mm->page_table_lock);
5558 	if (!p4d_present(*p4d)) {
5559 		mm_inc_nr_puds(mm);
5560 		smp_wmb(); /* See comment in pmd_install() */
5561 		p4d_populate(mm, p4d, new);
5562 	} else	/* Another has populated it */
5563 		pud_free(mm, new);
5564 	spin_unlock(&mm->page_table_lock);
5565 	return 0;
5566 }
5567 #endif /* __PAGETABLE_PUD_FOLDED */
5568 
5569 #ifndef __PAGETABLE_PMD_FOLDED
5570 /*
5571  * Allocate page middle directory.
5572  * We've already handled the fast-path in-line.
5573  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5574 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5575 {
5576 	spinlock_t *ptl;
5577 	pmd_t *new = pmd_alloc_one(mm, address);
5578 	if (!new)
5579 		return -ENOMEM;
5580 
5581 	ptl = pud_lock(mm, pud);
5582 	if (!pud_present(*pud)) {
5583 		mm_inc_nr_pmds(mm);
5584 		smp_wmb(); /* See comment in pmd_install() */
5585 		pud_populate(mm, pud, new);
5586 	} else {	/* Another has populated it */
5587 		pmd_free(mm, new);
5588 	}
5589 	spin_unlock(ptl);
5590 	return 0;
5591 }
5592 #endif /* __PAGETABLE_PMD_FOLDED */
5593 
5594 /**
5595  * follow_pte - look up PTE at a user virtual address
5596  * @mm: the mm_struct of the target address space
5597  * @address: user virtual address
5598  * @ptepp: location to store found PTE
5599  * @ptlp: location to store the lock for the PTE
5600  *
5601  * On a successful return, the pointer to the PTE is stored in @ptepp;
5602  * the corresponding lock is taken and its location is stored in @ptlp.
5603  * The contents of the PTE are only stable until @ptlp is released;
5604  * any further use, if any, must be protected against invalidation
5605  * with MMU notifiers.
5606  *
5607  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5608  * should be taken for read.
5609  *
5610  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5611  * it is not a good general-purpose API.
5612  *
5613  * Return: zero on success, -ve otherwise.
5614  */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5615 int follow_pte(struct mm_struct *mm, unsigned long address,
5616 	       pte_t **ptepp, spinlock_t **ptlp)
5617 {
5618 	pgd_t *pgd;
5619 	p4d_t *p4d;
5620 	pud_t *pud;
5621 	pmd_t *pmd;
5622 	pte_t *ptep;
5623 
5624 	pgd = pgd_offset(mm, address);
5625 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5626 		goto out;
5627 
5628 	p4d = p4d_offset(pgd, address);
5629 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5630 		goto out;
5631 
5632 	pud = pud_offset(p4d, address);
5633 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5634 		goto out;
5635 
5636 	pmd = pmd_offset(pud, address);
5637 	VM_BUG_ON(pmd_trans_huge(*pmd));
5638 
5639 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5640 	if (!ptep)
5641 		goto out;
5642 	if (!pte_present(ptep_get(ptep)))
5643 		goto unlock;
5644 	*ptepp = ptep;
5645 	return 0;
5646 unlock:
5647 	pte_unmap_unlock(ptep, *ptlp);
5648 out:
5649 	return -EINVAL;
5650 }
5651 EXPORT_SYMBOL_GPL(follow_pte);
5652 
5653 /**
5654  * follow_pfn - look up PFN at a user virtual address
5655  * @vma: memory mapping
5656  * @address: user virtual address
5657  * @pfn: location to store found PFN
5658  *
5659  * Only IO mappings and raw PFN mappings are allowed.
5660  *
5661  * This function does not allow the caller to read the permissions
5662  * of the PTE.  Do not use it.
5663  *
5664  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5665  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5666 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5667 	unsigned long *pfn)
5668 {
5669 	int ret = -EINVAL;
5670 	spinlock_t *ptl;
5671 	pte_t *ptep;
5672 
5673 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5674 		return ret;
5675 
5676 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5677 	if (ret)
5678 		return ret;
5679 	*pfn = pte_pfn(ptep_get(ptep));
5680 	pte_unmap_unlock(ptep, ptl);
5681 	return 0;
5682 }
5683 EXPORT_SYMBOL(follow_pfn);
5684 
5685 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5686 int follow_phys(struct vm_area_struct *vma,
5687 		unsigned long address, unsigned int flags,
5688 		unsigned long *prot, resource_size_t *phys)
5689 {
5690 	int ret = -EINVAL;
5691 	pte_t *ptep, pte;
5692 	spinlock_t *ptl;
5693 
5694 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5695 		goto out;
5696 
5697 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5698 		goto out;
5699 	pte = ptep_get(ptep);
5700 
5701 	/* Never return PFNs of anon folios in COW mappings. */
5702 	if (vm_normal_folio(vma, address, pte))
5703 		goto unlock;
5704 
5705 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5706 		goto unlock;
5707 
5708 	*prot = pgprot_val(pte_pgprot(pte));
5709 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5710 
5711 	ret = 0;
5712 unlock:
5713 	pte_unmap_unlock(ptep, ptl);
5714 out:
5715 	return ret;
5716 }
5717 
5718 /**
5719  * generic_access_phys - generic implementation for iomem mmap access
5720  * @vma: the vma to access
5721  * @addr: userspace address, not relative offset within @vma
5722  * @buf: buffer to read/write
5723  * @len: length of transfer
5724  * @write: set to FOLL_WRITE when writing, otherwise reading
5725  *
5726  * This is a generic implementation for &vm_operations_struct.access for an
5727  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5728  * not page based.
5729  */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5730 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5731 			void *buf, int len, int write)
5732 {
5733 	resource_size_t phys_addr;
5734 	unsigned long prot = 0;
5735 	void __iomem *maddr;
5736 	pte_t *ptep, pte;
5737 	spinlock_t *ptl;
5738 	int offset = offset_in_page(addr);
5739 	int ret = -EINVAL;
5740 
5741 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5742 		return -EINVAL;
5743 
5744 retry:
5745 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5746 		return -EINVAL;
5747 	pte = ptep_get(ptep);
5748 	pte_unmap_unlock(ptep, ptl);
5749 
5750 	prot = pgprot_val(pte_pgprot(pte));
5751 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5752 
5753 	if ((write & FOLL_WRITE) && !pte_write(pte))
5754 		return -EINVAL;
5755 
5756 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5757 	if (!maddr)
5758 		return -ENOMEM;
5759 
5760 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5761 		goto out_unmap;
5762 
5763 	if (!pte_same(pte, ptep_get(ptep))) {
5764 		pte_unmap_unlock(ptep, ptl);
5765 		iounmap(maddr);
5766 
5767 		goto retry;
5768 	}
5769 
5770 	if (write)
5771 		memcpy_toio(maddr + offset, buf, len);
5772 	else
5773 		memcpy_fromio(buf, maddr + offset, len);
5774 	ret = len;
5775 	pte_unmap_unlock(ptep, ptl);
5776 out_unmap:
5777 	iounmap(maddr);
5778 
5779 	return ret;
5780 }
5781 EXPORT_SYMBOL_GPL(generic_access_phys);
5782 #endif
5783 
5784 /*
5785  * Access another process' address space as given in mm.
5786  */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5787 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5788 		       int len, unsigned int gup_flags)
5789 {
5790 	void *old_buf = buf;
5791 	int write = gup_flags & FOLL_WRITE;
5792 
5793 	if (mmap_read_lock_killable(mm))
5794 		return 0;
5795 
5796 	/* Untag the address before looking up the VMA */
5797 	addr = untagged_addr_remote(mm, addr);
5798 
5799 	/* Avoid triggering the temporary warning in __get_user_pages */
5800 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5801 		return 0;
5802 
5803 	/* ignore errors, just check how much was successfully transferred */
5804 	while (len) {
5805 		int bytes, offset;
5806 		void *maddr;
5807 		struct vm_area_struct *vma = NULL;
5808 		struct page *page = get_user_page_vma_remote(mm, addr,
5809 							     gup_flags, &vma);
5810 
5811 		if (IS_ERR_OR_NULL(page)) {
5812 			/* We might need to expand the stack to access it */
5813 			vma = vma_lookup(mm, addr);
5814 			if (!vma) {
5815 				vma = expand_stack(mm, addr);
5816 
5817 				/* mmap_lock was dropped on failure */
5818 				if (!vma)
5819 					return buf - old_buf;
5820 
5821 				/* Try again if stack expansion worked */
5822 				continue;
5823 			}
5824 
5825 
5826 			/*
5827 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5828 			 * we can access using slightly different code.
5829 			 */
5830 			bytes = 0;
5831 #ifdef CONFIG_HAVE_IOREMAP_PROT
5832 			if (vma->vm_ops && vma->vm_ops->access)
5833 				bytes = vma->vm_ops->access(vma, addr, buf,
5834 							    len, write);
5835 #endif
5836 			if (bytes <= 0)
5837 				break;
5838 		} else {
5839 			bytes = len;
5840 			offset = addr & (PAGE_SIZE-1);
5841 			if (bytes > PAGE_SIZE-offset)
5842 				bytes = PAGE_SIZE-offset;
5843 
5844 			maddr = kmap(page);
5845 			if (write) {
5846 				copy_to_user_page(vma, page, addr,
5847 						  maddr + offset, buf, bytes);
5848 				set_page_dirty_lock(page);
5849 			} else {
5850 				copy_from_user_page(vma, page, addr,
5851 						    buf, maddr + offset, bytes);
5852 			}
5853 			kunmap(page);
5854 			put_page(page);
5855 		}
5856 		len -= bytes;
5857 		buf += bytes;
5858 		addr += bytes;
5859 	}
5860 	mmap_read_unlock(mm);
5861 
5862 	return buf - old_buf;
5863 }
5864 
5865 /**
5866  * access_remote_vm - access another process' address space
5867  * @mm:		the mm_struct of the target address space
5868  * @addr:	start address to access
5869  * @buf:	source or destination buffer
5870  * @len:	number of bytes to transfer
5871  * @gup_flags:	flags modifying lookup behaviour
5872  *
5873  * The caller must hold a reference on @mm.
5874  *
5875  * Return: number of bytes copied from source to destination.
5876  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5877 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5878 		void *buf, int len, unsigned int gup_flags)
5879 {
5880 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5881 }
5882 
5883 /*
5884  * Access another process' address space.
5885  * Source/target buffer must be kernel space,
5886  * Do not walk the page table directly, use get_user_pages
5887  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5888 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5889 		void *buf, int len, unsigned int gup_flags)
5890 {
5891 	struct mm_struct *mm;
5892 	int ret;
5893 
5894 	mm = get_task_mm(tsk);
5895 	if (!mm)
5896 		return 0;
5897 
5898 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5899 
5900 	mmput(mm);
5901 
5902 	return ret;
5903 }
5904 EXPORT_SYMBOL_GPL(access_process_vm);
5905 
5906 /*
5907  * Print the name of a VMA.
5908  */
print_vma_addr(char * prefix,unsigned long ip)5909 void print_vma_addr(char *prefix, unsigned long ip)
5910 {
5911 	struct mm_struct *mm = current->mm;
5912 	struct vm_area_struct *vma;
5913 
5914 	/*
5915 	 * we might be running from an atomic context so we cannot sleep
5916 	 */
5917 	if (!mmap_read_trylock(mm))
5918 		return;
5919 
5920 	vma = find_vma(mm, ip);
5921 	if (vma && vma->vm_file) {
5922 		struct file *f = vma->vm_file;
5923 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5924 		if (buf) {
5925 			char *p;
5926 
5927 			p = file_path(f, buf, PAGE_SIZE);
5928 			if (IS_ERR(p))
5929 				p = "?";
5930 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5931 					vma->vm_start,
5932 					vma->vm_end - vma->vm_start);
5933 			free_page((unsigned long)buf);
5934 		}
5935 	}
5936 	mmap_read_unlock(mm);
5937 }
5938 
5939 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5940 void __might_fault(const char *file, int line)
5941 {
5942 	if (pagefault_disabled())
5943 		return;
5944 	__might_sleep(file, line);
5945 	if (current->mm)
5946 		might_lock_read(&current->mm->mmap_lock);
5947 }
5948 EXPORT_SYMBOL(__might_fault);
5949 #endif
5950 
5951 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5952 /*
5953  * Process all subpages of the specified huge page with the specified
5954  * operation.  The target subpage will be processed last to keep its
5955  * cache lines hot.
5956  */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5957 static inline int process_huge_page(
5958 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5959 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5960 	void *arg)
5961 {
5962 	int i, n, base, l, ret;
5963 	unsigned long addr = addr_hint &
5964 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5965 
5966 	/* Process target subpage last to keep its cache lines hot */
5967 	might_sleep();
5968 	n = (addr_hint - addr) / PAGE_SIZE;
5969 	if (2 * n <= pages_per_huge_page) {
5970 		/* If target subpage in first half of huge page */
5971 		base = 0;
5972 		l = n;
5973 		/* Process subpages at the end of huge page */
5974 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5975 			cond_resched();
5976 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5977 			if (ret)
5978 				return ret;
5979 		}
5980 	} else {
5981 		/* If target subpage in second half of huge page */
5982 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5983 		l = pages_per_huge_page - n;
5984 		/* Process subpages at the begin of huge page */
5985 		for (i = 0; i < base; i++) {
5986 			cond_resched();
5987 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5988 			if (ret)
5989 				return ret;
5990 		}
5991 	}
5992 	/*
5993 	 * Process remaining subpages in left-right-left-right pattern
5994 	 * towards the target subpage
5995 	 */
5996 	for (i = 0; i < l; i++) {
5997 		int left_idx = base + i;
5998 		int right_idx = base + 2 * l - 1 - i;
5999 
6000 		cond_resched();
6001 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6002 		if (ret)
6003 			return ret;
6004 		cond_resched();
6005 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6006 		if (ret)
6007 			return ret;
6008 	}
6009 	return 0;
6010 }
6011 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)6012 static void clear_gigantic_page(struct page *page,
6013 				unsigned long addr,
6014 				unsigned int pages_per_huge_page)
6015 {
6016 	int i;
6017 	struct page *p;
6018 
6019 	might_sleep();
6020 	for (i = 0; i < pages_per_huge_page; i++) {
6021 		p = nth_page(page, i);
6022 		cond_resched();
6023 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6024 	}
6025 }
6026 
clear_subpage(unsigned long addr,int idx,void * arg)6027 static int clear_subpage(unsigned long addr, int idx, void *arg)
6028 {
6029 	struct page *page = arg;
6030 
6031 	clear_user_highpage(page + idx, addr);
6032 	return 0;
6033 }
6034 
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)6035 void clear_huge_page(struct page *page,
6036 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6037 {
6038 	unsigned long addr = addr_hint &
6039 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6040 
6041 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6042 		clear_gigantic_page(page, addr, pages_per_huge_page);
6043 		return;
6044 	}
6045 
6046 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6047 }
6048 
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)6049 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6050 				     unsigned long addr,
6051 				     struct vm_area_struct *vma,
6052 				     unsigned int pages_per_huge_page)
6053 {
6054 	int i;
6055 	struct page *dst_page;
6056 	struct page *src_page;
6057 
6058 	for (i = 0; i < pages_per_huge_page; i++) {
6059 		dst_page = folio_page(dst, i);
6060 		src_page = folio_page(src, i);
6061 
6062 		cond_resched();
6063 		if (copy_mc_user_highpage(dst_page, src_page,
6064 					  addr + i*PAGE_SIZE, vma)) {
6065 			memory_failure_queue(page_to_pfn(src_page), 0);
6066 			return -EHWPOISON;
6067 		}
6068 	}
6069 	return 0;
6070 }
6071 
6072 struct copy_subpage_arg {
6073 	struct page *dst;
6074 	struct page *src;
6075 	struct vm_area_struct *vma;
6076 };
6077 
copy_subpage(unsigned long addr,int idx,void * arg)6078 static int copy_subpage(unsigned long addr, int idx, void *arg)
6079 {
6080 	struct copy_subpage_arg *copy_arg = arg;
6081 
6082 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6083 				  addr, copy_arg->vma)) {
6084 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6085 		return -EHWPOISON;
6086 	}
6087 	return 0;
6088 }
6089 
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6090 int copy_user_large_folio(struct folio *dst, struct folio *src,
6091 			  unsigned long addr_hint, struct vm_area_struct *vma)
6092 {
6093 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6094 	unsigned long addr = addr_hint &
6095 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6096 	struct copy_subpage_arg arg = {
6097 		.dst = &dst->page,
6098 		.src = &src->page,
6099 		.vma = vma,
6100 	};
6101 
6102 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6103 		return copy_user_gigantic_page(dst, src, addr, vma,
6104 					       pages_per_huge_page);
6105 
6106 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6107 }
6108 
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6109 long copy_folio_from_user(struct folio *dst_folio,
6110 			   const void __user *usr_src,
6111 			   bool allow_pagefault)
6112 {
6113 	void *kaddr;
6114 	unsigned long i, rc = 0;
6115 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6116 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6117 	struct page *subpage;
6118 
6119 	for (i = 0; i < nr_pages; i++) {
6120 		subpage = folio_page(dst_folio, i);
6121 		kaddr = kmap_local_page(subpage);
6122 		if (!allow_pagefault)
6123 			pagefault_disable();
6124 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6125 		if (!allow_pagefault)
6126 			pagefault_enable();
6127 		kunmap_local(kaddr);
6128 
6129 		ret_val -= (PAGE_SIZE - rc);
6130 		if (rc)
6131 			break;
6132 
6133 		flush_dcache_page(subpage);
6134 
6135 		cond_resched();
6136 	}
6137 	return ret_val;
6138 }
6139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6140 
6141 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6142 
6143 static struct kmem_cache *page_ptl_cachep;
6144 
ptlock_cache_init(void)6145 void __init ptlock_cache_init(void)
6146 {
6147 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6148 			SLAB_PANIC, NULL);
6149 }
6150 
ptlock_alloc(struct ptdesc * ptdesc)6151 bool ptlock_alloc(struct ptdesc *ptdesc)
6152 {
6153 	spinlock_t *ptl;
6154 
6155 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6156 	if (!ptl)
6157 		return false;
6158 	ptdesc->ptl = ptl;
6159 	return true;
6160 }
6161 
ptlock_free(struct ptdesc * ptdesc)6162 void ptlock_free(struct ptdesc *ptdesc)
6163 {
6164 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6165 }
6166 #endif
6167