1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109
110 /*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121
122 /*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131
132 /*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 1;
141 #else
142 2;
143 #endif
144
145 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154 }
155 #endif
156
disable_randmaps(char * s)157 static int __init disable_randmaps(char *s)
158 {
159 randomize_va_space = 0;
160 return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166
167 unsigned long highest_memmap_pfn __read_mostly;
168
169 /*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
init_zero_pfn(void)172 static int __init init_zero_pfn(void)
173 {
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176 }
177 early_initcall(init_zero_pfn);
178
mm_trace_rss_stat(struct mm_struct * mm,int member)179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 trace_rss_stat(mm, member);
182 }
183
184 /*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
190 {
191 pgtable_t token = pmd_pgtable(*pmd);
192 pmd_clear(pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
195 }
196
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
200 {
201 pmd_t *pmd;
202 unsigned long next;
203 unsigned long start;
204
205 start = addr;
206 pmd = pmd_offset(pud, addr);
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
213
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
221 }
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
229 }
230
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
234 {
235 pud_t *pud;
236 unsigned long next;
237 unsigned long start;
238
239 start = addr;
240 pud = pud_offset(p4d, addr);
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
247
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
263 }
264
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268 {
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
289 }
290 if (end - 1 > ceiling - 1)
291 return;
292
293 p4d = p4d_offset(pgd, start);
294 pgd_clear(pgd);
295 p4d_free_tlb(tlb, p4d, start);
296 }
297
298 /*
299 * This function frees user-level page tables of a process.
300 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)301 void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
304 {
305 pgd_t *pgd;
306 unsigned long next;
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
333
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
361 }
362
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
366 {
367 do {
368 unsigned long addr = vma->vm_start;
369 struct vm_area_struct *next;
370
371 /*
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
374 */
375 next = mas_find(mas, ceiling - 1);
376
377 /*
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
380 */
381 if (mm_wr_locked)
382 vma_start_write(vma);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
385
386 if (is_vm_hugetlb_page(vma)) {
387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388 floor, next ? next->vm_start : ceiling);
389 } else {
390 /*
391 * Optimization: gather nearby vmas into one call down
392 */
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394 && !is_vm_hugetlb_page(next)) {
395 vma = next;
396 next = mas_find(mas, ceiling - 1);
397 if (mm_wr_locked)
398 vma_start_write(vma);
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
401 }
402 free_pgd_range(tlb, addr, vma->vm_end,
403 floor, next ? next->vm_start : ceiling);
404 }
405 vma = next;
406 } while (vma);
407 }
408
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411 spinlock_t *ptl = pmd_lock(mm, pmd);
412
413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
414 mm_inc_nr_ptes(mm);
415 /*
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
419 *
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
427 */
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429 pmd_populate(mm, pmd, *pte);
430 *pte = NULL;
431 }
432 spin_unlock(ptl);
433 }
434
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437 pgtable_t new = pte_alloc_one(mm);
438 if (!new)
439 return -ENOMEM;
440
441 pmd_install(mm, pmd, &new);
442 if (new)
443 pte_free(mm, new);
444 return 0;
445 }
446
__pte_alloc_kernel(pmd_t * pmd)447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449 pte_t *new = pte_alloc_one_kernel(&init_mm);
450 if (!new)
451 return -ENOMEM;
452
453 spin_lock(&init_mm.page_table_lock);
454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
455 smp_wmb(); /* See comment in pmd_install() */
456 pmd_populate_kernel(&init_mm, pmd, new);
457 new = NULL;
458 }
459 spin_unlock(&init_mm.page_table_lock);
460 if (new)
461 pte_free_kernel(&init_mm, new);
462 return 0;
463 }
464
init_rss_vec(int * rss)465 static inline void init_rss_vec(int *rss)
466 {
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469
add_mm_rss_vec(struct mm_struct * mm,int * rss)470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472 int i;
473
474 if (current->mm == mm)
475 sync_mm_rss(mm);
476 for (i = 0; i < NR_MM_COUNTERS; i++)
477 if (rss[i])
478 add_mm_counter(mm, i, rss[i]);
479 }
480
481 /*
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
485 *
486 * The calling function must still handle the error.
487 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
490 {
491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
496 pgoff_t index;
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return;
509 }
510 if (nr_unshown) {
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
519
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
522
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
524 current->comm,
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
526 if (page)
527 dump_page(page, "bad pte");
528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531 vma->vm_file,
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534 mapping ? mapping->a_ops->read_folio : NULL);
535 dump_stack();
536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538
539 /*
540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
541 *
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
545 *
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
549 * described below.
550 *
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
554 *
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
559 *
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561 *
562 * And for normal mappings this is false.
563 *
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
568 *
569 *
570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571 *
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
579 *
580 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 pte_t pte)
583 {
584 unsigned long pfn = pte_pfn(pte);
585
586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587 if (likely(!pte_special(pte)))
588 goto check_pfn;
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 return NULL;
593 if (is_zero_pfn(pfn))
594 return NULL;
595 if (pte_devmap(pte))
596 /*
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 */
604 return NULL;
605
606 print_bad_pte(vma, addr, pte, NULL);
607 return NULL;
608 }
609
610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
625 }
626
627 if (is_zero_pfn(pfn))
628 return NULL;
629
630 check_pfn:
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
633 return NULL;
634 }
635
636 /*
637 * NOTE! We still have PageReserved() pages in the page tables.
638 * eg. VDSO mappings can cause them to exist.
639 */
640 out:
641 return pfn_to_page(pfn);
642 }
643
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte)
646 {
647 struct page *page = vm_normal_page(vma, addr, pte);
648
649 if (page)
650 return page_folio(page);
651 return NULL;
652 }
653
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t pmd)
657 {
658 unsigned long pfn = pmd_pfn(pmd);
659
660 /*
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664 */
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
667 if (!pfn_valid(pfn))
668 return NULL;
669 goto out;
670 } else {
671 unsigned long off;
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
674 return NULL;
675 if (!is_cow_mapping(vma->vm_flags))
676 return NULL;
677 }
678 }
679
680 if (pmd_devmap(pmd))
681 return NULL;
682 if (is_huge_zero_pmd(pmd))
683 return NULL;
684 if (unlikely(pfn > highest_memmap_pfn))
685 return NULL;
686
687 /*
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
690 */
691 out:
692 return pfn_to_page(pfn);
693 }
694 #endif
695
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
698 pte_t *ptep)
699 {
700 pte_t orig_pte;
701 pte_t pte;
702 swp_entry_t entry;
703
704 orig_pte = ptep_get(ptep);
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(orig_pte))
707 pte = pte_mksoft_dirty(pte);
708
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
728 WARN_ON_ONCE(1);
729
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737 }
738
739 /*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746 {
747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757 }
758
759 /*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
763 */
764
765 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770 unsigned long vm_flags = dst_vma->vm_flags;
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
773 struct page *page;
774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
775
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
778 return -EIO;
779
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
785 &src_mm->mmlist);
786 spin_unlock(&mmlist_lock);
787 }
788 /* Mark the swap entry as shared. */
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
791 set_pte_at(src_mm, addr, src_pte, pte);
792 }
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
795 page = pfn_swap_entry_to_page(entry);
796
797 rss[mm_counter(page)]++;
798
799 if (!is_readable_migration_entry(entry) &&
800 is_cow_mapping(vm_flags)) {
801 /*
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
804 * now shared.
805 */
806 entry = make_readable_migration_entry(
807 swp_offset(entry));
808 pte = swp_entry_to_pte(entry);
809 if (pte_swp_soft_dirty(orig_pte))
810 pte = pte_swp_mksoft_dirty(pte);
811 if (pte_swp_uffd_wp(orig_pte))
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
814 }
815 } else if (is_device_private_entry(entry)) {
816 page = pfn_swap_entry_to_page(entry);
817
818 /*
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
821 * respect.
822 *
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
826 */
827 get_page(page);
828 rss[mm_counter(page)]++;
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831
832 /*
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
838 */
839 if (is_writable_device_private_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 entry = make_readable_device_private_entry(
842 swp_offset(entry));
843 pte = swp_entry_to_pte(entry);
844 if (pte_swp_uffd_wp(orig_pte))
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
847 }
848 } else if (is_device_exclusive_entry(entry)) {
849 /*
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
854 */
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 return -EBUSY;
858 return -ENOENT;
859 } else if (is_pte_marker_entry(entry)) {
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862 if (marker)
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
865 return 0;
866 }
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
869 set_pte_at(dst_mm, addr, dst_pte, pte);
870 return 0;
871 }
872
873 /*
874 * Copy a present and normal page.
875 *
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
879 *
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
883 * lock.
884 */
885 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 struct folio **prealloc, struct page *page)
889 {
890 struct folio *new_folio;
891 pte_t pte;
892
893 new_folio = *prealloc;
894 if (!new_folio)
895 return -EAGAIN;
896
897 /*
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
900 */
901 *prealloc = NULL;
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
906 rss[MM_ANONPAGES]++;
907
908 /* All done, just insert the new page copy in the child */
909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 /* Uffd-wp needs to be delivered to dest pte as well */
913 pte = pte_mkuffd_wp(pte);
914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 return 0;
916 }
917
918 /*
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
921 */
922 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc)923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 struct folio **prealloc)
926 {
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
929 pte_t pte = ptep_get(src_pte);
930 struct page *page;
931 struct folio *folio;
932
933 page = vm_normal_page(src_vma, addr, pte);
934 if (page)
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
937 /*
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
941 * future.
942 */
943 folio_get(folio);
944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 /* Page may be pinned, we have to copy. */
946 folio_put(folio);
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
949 }
950 rss[MM_ANONPAGES]++;
951 } else if (page) {
952 folio_get(folio);
953 page_dup_file_rmap(page, false);
954 rss[mm_counter_file(page)]++;
955 }
956
957 /*
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
960 */
961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 ptep_set_wrprotect(src_mm, addr, src_pte);
963 pte = pte_wrprotect(pte);
964 }
965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967 /*
968 * If it's a shared mapping, mark it clean in
969 * the child
970 */
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
974
975 if (!userfaultfd_wp(dst_vma))
976 pte = pte_clear_uffd_wp(pte);
977
978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 return 0;
980 }
981
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
984 {
985 struct folio *new_folio;
986
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 if (!new_folio)
989 return NULL;
990
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
993 return NULL;
994 }
995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997 return new_folio;
998 }
999
1000 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 unsigned long end)
1004 {
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
1007 pte_t *orig_src_pte, *orig_dst_pte;
1008 pte_t *src_pte, *dst_pte;
1009 pte_t ptent;
1010 spinlock_t *src_ptl, *dst_ptl;
1011 int progress, ret = 0;
1012 int rss[NR_MM_COUNTERS];
1013 swp_entry_t entry = (swp_entry_t){0};
1014 struct folio *prealloc = NULL;
1015
1016 again:
1017 progress = 0;
1018 init_rss_vec(rss);
1019
1020 /*
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1027 */
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 if (!src_pte) {
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1036 /* ret == 0 */
1037 goto out;
1038 }
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1043
1044 do {
1045 /*
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1048 */
1049 if (progress >= 32) {
1050 progress = 0;
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 break;
1054 }
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1057 progress++;
1058 continue;
1059 }
1060 if (unlikely(!pte_present(ptent))) {
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 dst_pte, src_pte,
1063 dst_vma, src_vma,
1064 addr, rss);
1065 if (ret == -EIO) {
1066 entry = pte_to_swp_entry(ptep_get(src_pte));
1067 break;
1068 } else if (ret == -EBUSY) {
1069 break;
1070 } else if (!ret) {
1071 progress += 8;
1072 continue;
1073 }
1074
1075 /*
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1078 */
1079 WARN_ON_ONCE(ret != -ENOENT);
1080 }
1081 /* copy_present_pte() will clear `*prealloc' if consumed */
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
1084 /*
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1087 */
1088 if (unlikely(ret == -EAGAIN))
1089 break;
1090 if (unlikely(prealloc)) {
1091 /*
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1096 */
1097 folio_put(prealloc);
1098 prealloc = NULL;
1099 }
1100 progress += 8;
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103 arch_leave_lazy_mmu_mode();
1104 pte_unmap_unlock(orig_src_pte, src_ptl);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 cond_resched();
1108
1109 if (ret == -EIO) {
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 entry.val = 0;
1116 } else if (ret == -EBUSY) {
1117 goto out;
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 if (!prealloc)
1121 return -ENOMEM;
1122 } else if (ret) {
1123 VM_WARN_ON_ONCE(1);
1124 }
1125
1126 /* We've captured and resolved the error. Reset, try again. */
1127 ret = 0;
1128
1129 if (addr != end)
1130 goto again;
1131 out:
1132 if (unlikely(prealloc))
1133 folio_put(prealloc);
1134 return ret;
1135 }
1136
1137 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 unsigned long end)
1141 {
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1145 unsigned long next;
1146
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 if (!dst_pmd)
1149 return -ENOMEM;
1150 src_pmd = pmd_offset(src_pud, addr);
1151 do {
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1155 int err;
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1165 if (pmd_none_or_clear_bad(src_pmd))
1166 continue;
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 addr, next))
1169 return -ENOMEM;
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 return 0;
1172 }
1173
1174 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 unsigned long end)
1178 {
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1182 unsigned long next;
1183
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 if (!dst_pud)
1186 return -ENOMEM;
1187 src_pud = pud_offset(src_p4d, addr);
1188 do {
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 int err;
1192
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1196 if (err == -ENOMEM)
1197 return -ENOMEM;
1198 if (!err)
1199 continue;
1200 /* fall through */
1201 }
1202 if (pud_none_or_clear_bad(src_pud))
1203 continue;
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 addr, next))
1206 return -ENOMEM;
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 return 0;
1209 }
1210
1211 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 unsigned long end)
1215 {
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1218 unsigned long next;
1219
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 if (!dst_p4d)
1222 return -ENOMEM;
1223 src_p4d = p4d_offset(src_pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1227 continue;
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 addr, next))
1230 return -ENOMEM;
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 return 0;
1233 }
1234
1235 /*
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1239 */
1240 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243 /*
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1248 */
1249 if (userfaultfd_wp(dst_vma))
1250 return true;
1251
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 return true;
1254
1255 if (src_vma->anon_vma)
1256 return true;
1257
1258 /*
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1262 * than faulting.
1263 */
1264 return false;
1265 }
1266
1267 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270 pgd_t *src_pgd, *dst_pgd;
1271 unsigned long addr = src_vma->vm_start;
1272 unsigned long end = src_vma->vm_end;
1273 struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 struct mm_struct *src_mm = src_vma->vm_mm;
1275 struct mmu_notifier_range range;
1276 unsigned long next, pfn;
1277 bool is_cow;
1278 int ret;
1279
1280 if (!vma_needs_copy(dst_vma, src_vma))
1281 return 0;
1282
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 ret = track_pfn_copy(dst_vma, src_vma, &pfn);
1288 if (ret)
1289 return ret;
1290 }
1291
1292 /*
1293 * We need to invalidate the secondary MMU mappings only when
1294 * there could be a permission downgrade on the ptes of the
1295 * parent mm. And a permission downgrade will only happen if
1296 * is_cow_mapping() returns true.
1297 */
1298 is_cow = is_cow_mapping(src_vma->vm_flags);
1299
1300 if (is_cow) {
1301 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1302 0, src_mm, addr, end);
1303 mmu_notifier_invalidate_range_start(&range);
1304 /*
1305 * Disabling preemption is not needed for the write side, as
1306 * the read side doesn't spin, but goes to the mmap_lock.
1307 *
1308 * Use the raw variant of the seqcount_t write API to avoid
1309 * lockdep complaining about preemptibility.
1310 */
1311 vma_assert_write_locked(src_vma);
1312 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1313 }
1314
1315 ret = 0;
1316 dst_pgd = pgd_offset(dst_mm, addr);
1317 src_pgd = pgd_offset(src_mm, addr);
1318 do {
1319 next = pgd_addr_end(addr, end);
1320 if (pgd_none_or_clear_bad(src_pgd))
1321 continue;
1322 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1323 addr, next))) {
1324 ret = -ENOMEM;
1325 break;
1326 }
1327 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1328
1329 if (is_cow) {
1330 raw_write_seqcount_end(&src_mm->write_protect_seq);
1331 mmu_notifier_invalidate_range_end(&range);
1332 }
1333 if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP))
1334 untrack_pfn_copy(dst_vma, pfn);
1335 return ret;
1336 }
1337
1338 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1339 static inline bool should_zap_cows(struct zap_details *details)
1340 {
1341 /* By default, zap all pages */
1342 if (!details)
1343 return true;
1344
1345 /* Or, we zap COWed pages only if the caller wants to */
1346 return details->even_cows;
1347 }
1348
1349 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1350 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1351 {
1352 /* If we can make a decision without *page.. */
1353 if (should_zap_cows(details))
1354 return true;
1355
1356 /* E.g. the caller passes NULL for the case of a zero page */
1357 if (!page)
1358 return true;
1359
1360 /* Otherwise we should only zap non-anon pages */
1361 return !PageAnon(page);
1362 }
1363
zap_drop_file_uffd_wp(struct zap_details * details)1364 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1365 {
1366 if (!details)
1367 return false;
1368
1369 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1370 }
1371
1372 /*
1373 * This function makes sure that we'll replace the none pte with an uffd-wp
1374 * swap special pte marker when necessary. Must be with the pgtable lock held.
1375 */
1376 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1377 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1378 unsigned long addr, pte_t *pte,
1379 struct zap_details *details, pte_t pteval)
1380 {
1381 /* Zap on anonymous always means dropping everything */
1382 if (vma_is_anonymous(vma))
1383 return;
1384
1385 if (zap_drop_file_uffd_wp(details))
1386 return;
1387
1388 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1389 }
1390
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1391 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1392 struct vm_area_struct *vma, pmd_t *pmd,
1393 unsigned long addr, unsigned long end,
1394 struct zap_details *details)
1395 {
1396 struct mm_struct *mm = tlb->mm;
1397 int force_flush = 0;
1398 int rss[NR_MM_COUNTERS];
1399 spinlock_t *ptl;
1400 pte_t *start_pte;
1401 pte_t *pte;
1402 swp_entry_t entry;
1403
1404 tlb_change_page_size(tlb, PAGE_SIZE);
1405 init_rss_vec(rss);
1406 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1407 if (!pte)
1408 return addr;
1409
1410 flush_tlb_batched_pending(mm);
1411 arch_enter_lazy_mmu_mode();
1412 do {
1413 pte_t ptent = ptep_get(pte);
1414 struct page *page;
1415
1416 if (pte_none(ptent))
1417 continue;
1418
1419 if (need_resched())
1420 break;
1421
1422 if (pte_present(ptent)) {
1423 unsigned int delay_rmap;
1424
1425 page = vm_normal_page(vma, addr, ptent);
1426 if (unlikely(!should_zap_page(details, page)))
1427 continue;
1428 ptent = ptep_get_and_clear_full(mm, addr, pte,
1429 tlb->fullmm);
1430 arch_check_zapped_pte(vma, ptent);
1431 tlb_remove_tlb_entry(tlb, pte, addr);
1432 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1433 ptent);
1434 if (unlikely(!page)) {
1435 ksm_might_unmap_zero_page(mm, ptent);
1436 continue;
1437 }
1438
1439 delay_rmap = 0;
1440 if (!PageAnon(page)) {
1441 if (pte_dirty(ptent)) {
1442 set_page_dirty(page);
1443 if (tlb_delay_rmap(tlb)) {
1444 delay_rmap = 1;
1445 force_flush = 1;
1446 }
1447 }
1448 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449 mark_page_accessed(page);
1450 }
1451 rss[mm_counter(page)]--;
1452 if (!delay_rmap) {
1453 page_remove_rmap(page, vma, false);
1454 if (unlikely(page_mapcount(page) < 0))
1455 print_bad_pte(vma, addr, ptent, page);
1456 }
1457 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1458 force_flush = 1;
1459 addr += PAGE_SIZE;
1460 break;
1461 }
1462 continue;
1463 }
1464
1465 entry = pte_to_swp_entry(ptent);
1466 if (is_device_private_entry(entry) ||
1467 is_device_exclusive_entry(entry)) {
1468 page = pfn_swap_entry_to_page(entry);
1469 if (unlikely(!should_zap_page(details, page)))
1470 continue;
1471 /*
1472 * Both device private/exclusive mappings should only
1473 * work with anonymous page so far, so we don't need to
1474 * consider uffd-wp bit when zap. For more information,
1475 * see zap_install_uffd_wp_if_needed().
1476 */
1477 WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 rss[mm_counter(page)]--;
1479 if (is_device_private_entry(entry))
1480 page_remove_rmap(page, vma, false);
1481 put_page(page);
1482 } else if (!non_swap_entry(entry)) {
1483 /* Genuine swap entry, hence a private anon page */
1484 if (!should_zap_cows(details))
1485 continue;
1486 rss[MM_SWAPENTS]--;
1487 if (unlikely(!free_swap_and_cache(entry)))
1488 print_bad_pte(vma, addr, ptent, NULL);
1489 } else if (is_migration_entry(entry)) {
1490 page = pfn_swap_entry_to_page(entry);
1491 if (!should_zap_page(details, page))
1492 continue;
1493 rss[mm_counter(page)]--;
1494 } else if (pte_marker_entry_uffd_wp(entry)) {
1495 /*
1496 * For anon: always drop the marker; for file: only
1497 * drop the marker if explicitly requested.
1498 */
1499 if (!vma_is_anonymous(vma) &&
1500 !zap_drop_file_uffd_wp(details))
1501 continue;
1502 } else if (is_hwpoison_entry(entry) ||
1503 is_poisoned_swp_entry(entry)) {
1504 if (!should_zap_cows(details))
1505 continue;
1506 } else {
1507 /* We should have covered all the swap entry types */
1508 WARN_ON_ONCE(1);
1509 }
1510 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512 } while (pte++, addr += PAGE_SIZE, addr != end);
1513
1514 add_mm_rss_vec(mm, rss);
1515 arch_leave_lazy_mmu_mode();
1516
1517 /* Do the actual TLB flush before dropping ptl */
1518 if (force_flush) {
1519 tlb_flush_mmu_tlbonly(tlb);
1520 tlb_flush_rmaps(tlb, vma);
1521 }
1522 pte_unmap_unlock(start_pte, ptl);
1523
1524 /*
1525 * If we forced a TLB flush (either due to running out of
1526 * batch buffers or because we needed to flush dirty TLB
1527 * entries before releasing the ptl), free the batched
1528 * memory too. Come back again if we didn't do everything.
1529 */
1530 if (force_flush)
1531 tlb_flush_mmu(tlb);
1532
1533 return addr;
1534 }
1535
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 struct vm_area_struct *vma, pud_t *pud,
1538 unsigned long addr, unsigned long end,
1539 struct zap_details *details)
1540 {
1541 pmd_t *pmd;
1542 unsigned long next;
1543
1544 pmd = pmd_offset(pud, addr);
1545 do {
1546 next = pmd_addr_end(addr, end);
1547 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 if (next - addr != HPAGE_PMD_SIZE)
1549 __split_huge_pmd(vma, pmd, addr, false, NULL);
1550 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1551 addr = next;
1552 continue;
1553 }
1554 /* fall through */
1555 } else if (details && details->single_folio &&
1556 folio_test_pmd_mappable(details->single_folio) &&
1557 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1559 /*
1560 * Take and drop THP pmd lock so that we cannot return
1561 * prematurely, while zap_huge_pmd() has cleared *pmd,
1562 * but not yet decremented compound_mapcount().
1563 */
1564 spin_unlock(ptl);
1565 }
1566 if (pmd_none(*pmd)) {
1567 addr = next;
1568 continue;
1569 }
1570 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1571 if (addr != next)
1572 pmd--;
1573 } while (pmd++, cond_resched(), addr != end);
1574
1575 return addr;
1576 }
1577
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1578 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579 struct vm_area_struct *vma, p4d_t *p4d,
1580 unsigned long addr, unsigned long end,
1581 struct zap_details *details)
1582 {
1583 pud_t *pud;
1584 unsigned long next;
1585
1586 pud = pud_offset(p4d, addr);
1587 do {
1588 next = pud_addr_end(addr, end);
1589 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590 if (next - addr != HPAGE_PUD_SIZE) {
1591 mmap_assert_locked(tlb->mm);
1592 split_huge_pud(vma, pud, addr);
1593 } else if (zap_huge_pud(tlb, vma, pud, addr))
1594 goto next;
1595 /* fall through */
1596 }
1597 if (pud_none_or_clear_bad(pud))
1598 continue;
1599 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1600 next:
1601 cond_resched();
1602 } while (pud++, addr = next, addr != end);
1603
1604 return addr;
1605 }
1606
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1607 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608 struct vm_area_struct *vma, pgd_t *pgd,
1609 unsigned long addr, unsigned long end,
1610 struct zap_details *details)
1611 {
1612 p4d_t *p4d;
1613 unsigned long next;
1614
1615 p4d = p4d_offset(pgd, addr);
1616 do {
1617 next = p4d_addr_end(addr, end);
1618 if (p4d_none_or_clear_bad(p4d))
1619 continue;
1620 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621 } while (p4d++, addr = next, addr != end);
1622
1623 return addr;
1624 }
1625
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1626 void unmap_page_range(struct mmu_gather *tlb,
1627 struct vm_area_struct *vma,
1628 unsigned long addr, unsigned long end,
1629 struct zap_details *details)
1630 {
1631 pgd_t *pgd;
1632 unsigned long next;
1633
1634 BUG_ON(addr >= end);
1635 tlb_start_vma(tlb, vma);
1636 pgd = pgd_offset(vma->vm_mm, addr);
1637 do {
1638 next = pgd_addr_end(addr, end);
1639 if (pgd_none_or_clear_bad(pgd))
1640 continue;
1641 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642 } while (pgd++, addr = next, addr != end);
1643 tlb_end_vma(tlb, vma);
1644 }
1645
1646
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1647 static void unmap_single_vma(struct mmu_gather *tlb,
1648 struct vm_area_struct *vma, unsigned long start_addr,
1649 unsigned long end_addr,
1650 struct zap_details *details, bool mm_wr_locked)
1651 {
1652 unsigned long start = max(vma->vm_start, start_addr);
1653 unsigned long end;
1654
1655 if (start >= vma->vm_end)
1656 return;
1657 end = min(vma->vm_end, end_addr);
1658 if (end <= vma->vm_start)
1659 return;
1660
1661 if (vma->vm_file)
1662 uprobe_munmap(vma, start, end);
1663
1664 if (unlikely(vma->vm_flags & VM_PFNMAP))
1665 untrack_pfn(vma, 0, 0, mm_wr_locked);
1666
1667 if (start != end) {
1668 if (unlikely(is_vm_hugetlb_page(vma))) {
1669 /*
1670 * It is undesirable to test vma->vm_file as it
1671 * should be non-null for valid hugetlb area.
1672 * However, vm_file will be NULL in the error
1673 * cleanup path of mmap_region. When
1674 * hugetlbfs ->mmap method fails,
1675 * mmap_region() nullifies vma->vm_file
1676 * before calling this function to clean up.
1677 * Since no pte has actually been setup, it is
1678 * safe to do nothing in this case.
1679 */
1680 if (vma->vm_file) {
1681 zap_flags_t zap_flags = details ?
1682 details->zap_flags : 0;
1683 __unmap_hugepage_range(tlb, vma, start, end,
1684 NULL, zap_flags);
1685 }
1686 } else
1687 unmap_page_range(tlb, vma, start, end, details);
1688 }
1689 }
1690
1691 /**
1692 * unmap_vmas - unmap a range of memory covered by a list of vma's
1693 * @tlb: address of the caller's struct mmu_gather
1694 * @mas: the maple state
1695 * @vma: the starting vma
1696 * @start_addr: virtual address at which to start unmapping
1697 * @end_addr: virtual address at which to end unmapping
1698 * @tree_end: The maximum index to check
1699 * @mm_wr_locked: lock flag
1700 *
1701 * Unmap all pages in the vma list.
1702 *
1703 * Only addresses between `start' and `end' will be unmapped.
1704 *
1705 * The VMA list must be sorted in ascending virtual address order.
1706 *
1707 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1708 * range after unmap_vmas() returns. So the only responsibility here is to
1709 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1710 * drops the lock and schedules.
1711 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1712 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1713 struct vm_area_struct *vma, unsigned long start_addr,
1714 unsigned long end_addr, unsigned long tree_end,
1715 bool mm_wr_locked)
1716 {
1717 struct mmu_notifier_range range;
1718 struct zap_details details = {
1719 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1720 /* Careful - we need to zap private pages too! */
1721 .even_cows = true,
1722 };
1723
1724 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1725 start_addr, end_addr);
1726 mmu_notifier_invalidate_range_start(&range);
1727 do {
1728 unsigned long start = start_addr;
1729 unsigned long end = end_addr;
1730 hugetlb_zap_begin(vma, &start, &end);
1731 unmap_single_vma(tlb, vma, start, end, &details,
1732 mm_wr_locked);
1733 hugetlb_zap_end(vma, &details);
1734 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1735 mmu_notifier_invalidate_range_end(&range);
1736 }
1737
1738 /**
1739 * zap_page_range_single - remove user pages in a given range
1740 * @vma: vm_area_struct holding the applicable pages
1741 * @address: starting address of pages to zap
1742 * @size: number of bytes to zap
1743 * @details: details of shared cache invalidation
1744 *
1745 * The range must fit into one VMA.
1746 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1747 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1748 unsigned long size, struct zap_details *details)
1749 {
1750 const unsigned long end = address + size;
1751 struct mmu_notifier_range range;
1752 struct mmu_gather tlb;
1753
1754 lru_add_drain();
1755 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1756 address, end);
1757 hugetlb_zap_begin(vma, &range.start, &range.end);
1758 tlb_gather_mmu(&tlb, vma->vm_mm);
1759 update_hiwater_rss(vma->vm_mm);
1760 mmu_notifier_invalidate_range_start(&range);
1761 /*
1762 * unmap 'address-end' not 'range.start-range.end' as range
1763 * could have been expanded for hugetlb pmd sharing.
1764 */
1765 unmap_single_vma(&tlb, vma, address, end, details, false);
1766 mmu_notifier_invalidate_range_end(&range);
1767 tlb_finish_mmu(&tlb);
1768 hugetlb_zap_end(vma, details);
1769 }
1770
1771 /**
1772 * zap_vma_ptes - remove ptes mapping the vma
1773 * @vma: vm_area_struct holding ptes to be zapped
1774 * @address: starting address of pages to zap
1775 * @size: number of bytes to zap
1776 *
1777 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1778 *
1779 * The entire address range must be fully contained within the vma.
1780 *
1781 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1782 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1783 unsigned long size)
1784 {
1785 if (!range_in_vma(vma, address, address + size) ||
1786 !(vma->vm_flags & VM_PFNMAP))
1787 return;
1788
1789 zap_page_range_single(vma, address, size, NULL);
1790 }
1791 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1792
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1793 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1794 {
1795 pgd_t *pgd;
1796 p4d_t *p4d;
1797 pud_t *pud;
1798 pmd_t *pmd;
1799
1800 pgd = pgd_offset(mm, addr);
1801 p4d = p4d_alloc(mm, pgd, addr);
1802 if (!p4d)
1803 return NULL;
1804 pud = pud_alloc(mm, p4d, addr);
1805 if (!pud)
1806 return NULL;
1807 pmd = pmd_alloc(mm, pud, addr);
1808 if (!pmd)
1809 return NULL;
1810
1811 VM_BUG_ON(pmd_trans_huge(*pmd));
1812 return pmd;
1813 }
1814
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1815 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1816 spinlock_t **ptl)
1817 {
1818 pmd_t *pmd = walk_to_pmd(mm, addr);
1819
1820 if (!pmd)
1821 return NULL;
1822 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1823 }
1824
validate_page_before_insert(struct page * page)1825 static int validate_page_before_insert(struct page *page)
1826 {
1827 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1828 return -EINVAL;
1829 flush_dcache_page(page);
1830 return 0;
1831 }
1832
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1833 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1834 unsigned long addr, struct page *page, pgprot_t prot)
1835 {
1836 if (!pte_none(ptep_get(pte)))
1837 return -EBUSY;
1838 /* Ok, finally just insert the thing.. */
1839 get_page(page);
1840 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1841 page_add_file_rmap(page, vma, false);
1842 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1843 return 0;
1844 }
1845
1846 /*
1847 * This is the old fallback for page remapping.
1848 *
1849 * For historical reasons, it only allows reserved pages. Only
1850 * old drivers should use this, and they needed to mark their
1851 * pages reserved for the old functions anyway.
1852 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1853 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1854 struct page *page, pgprot_t prot)
1855 {
1856 int retval;
1857 pte_t *pte;
1858 spinlock_t *ptl;
1859
1860 retval = validate_page_before_insert(page);
1861 if (retval)
1862 goto out;
1863 retval = -ENOMEM;
1864 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1865 if (!pte)
1866 goto out;
1867 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1868 pte_unmap_unlock(pte, ptl);
1869 out:
1870 return retval;
1871 }
1872
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1874 unsigned long addr, struct page *page, pgprot_t prot)
1875 {
1876 int err;
1877
1878 if (!page_count(page))
1879 return -EINVAL;
1880 err = validate_page_before_insert(page);
1881 if (err)
1882 return err;
1883 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 }
1885
1886 /* insert_pages() amortizes the cost of spinlock operations
1887 * when inserting pages in a loop.
1888 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 struct page **pages, unsigned long *num, pgprot_t prot)
1891 {
1892 pmd_t *pmd = NULL;
1893 pte_t *start_pte, *pte;
1894 spinlock_t *pte_lock;
1895 struct mm_struct *const mm = vma->vm_mm;
1896 unsigned long curr_page_idx = 0;
1897 unsigned long remaining_pages_total = *num;
1898 unsigned long pages_to_write_in_pmd;
1899 int ret;
1900 more:
1901 ret = -EFAULT;
1902 pmd = walk_to_pmd(mm, addr);
1903 if (!pmd)
1904 goto out;
1905
1906 pages_to_write_in_pmd = min_t(unsigned long,
1907 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908
1909 /* Allocate the PTE if necessary; takes PMD lock once only. */
1910 ret = -ENOMEM;
1911 if (pte_alloc(mm, pmd))
1912 goto out;
1913
1914 while (pages_to_write_in_pmd) {
1915 int pte_idx = 0;
1916 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917
1918 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1919 if (!start_pte) {
1920 ret = -EFAULT;
1921 goto out;
1922 }
1923 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1924 int err = insert_page_in_batch_locked(vma, pte,
1925 addr, pages[curr_page_idx], prot);
1926 if (unlikely(err)) {
1927 pte_unmap_unlock(start_pte, pte_lock);
1928 ret = err;
1929 remaining_pages_total -= pte_idx;
1930 goto out;
1931 }
1932 addr += PAGE_SIZE;
1933 ++curr_page_idx;
1934 }
1935 pte_unmap_unlock(start_pte, pte_lock);
1936 pages_to_write_in_pmd -= batch_size;
1937 remaining_pages_total -= batch_size;
1938 }
1939 if (remaining_pages_total)
1940 goto more;
1941 ret = 0;
1942 out:
1943 *num = remaining_pages_total;
1944 return ret;
1945 }
1946
1947 /**
1948 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1949 * @vma: user vma to map to
1950 * @addr: target start user address of these pages
1951 * @pages: source kernel pages
1952 * @num: in: number of pages to map. out: number of pages that were *not*
1953 * mapped. (0 means all pages were successfully mapped).
1954 *
1955 * Preferred over vm_insert_page() when inserting multiple pages.
1956 *
1957 * In case of error, we may have mapped a subset of the provided
1958 * pages. It is the caller's responsibility to account for this case.
1959 *
1960 * The same restrictions apply as in vm_insert_page().
1961 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1962 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1963 struct page **pages, unsigned long *num)
1964 {
1965 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1966
1967 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1968 return -EFAULT;
1969 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1970 BUG_ON(mmap_read_trylock(vma->vm_mm));
1971 BUG_ON(vma->vm_flags & VM_PFNMAP);
1972 vm_flags_set(vma, VM_MIXEDMAP);
1973 }
1974 /* Defer page refcount checking till we're about to map that page. */
1975 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1976 }
1977 EXPORT_SYMBOL(vm_insert_pages);
1978
1979 /**
1980 * vm_insert_page - insert single page into user vma
1981 * @vma: user vma to map to
1982 * @addr: target user address of this page
1983 * @page: source kernel page
1984 *
1985 * This allows drivers to insert individual pages they've allocated
1986 * into a user vma.
1987 *
1988 * The page has to be a nice clean _individual_ kernel allocation.
1989 * If you allocate a compound page, you need to have marked it as
1990 * such (__GFP_COMP), or manually just split the page up yourself
1991 * (see split_page()).
1992 *
1993 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1994 * took an arbitrary page protection parameter. This doesn't allow
1995 * that. Your vma protection will have to be set up correctly, which
1996 * means that if you want a shared writable mapping, you'd better
1997 * ask for a shared writable mapping!
1998 *
1999 * The page does not need to be reserved.
2000 *
2001 * Usually this function is called from f_op->mmap() handler
2002 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2003 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2004 * function from other places, for example from page-fault handler.
2005 *
2006 * Return: %0 on success, negative error code otherwise.
2007 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2008 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2009 struct page *page)
2010 {
2011 if (addr < vma->vm_start || addr >= vma->vm_end)
2012 return -EFAULT;
2013 if (!page_count(page))
2014 return -EINVAL;
2015 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2016 BUG_ON(mmap_read_trylock(vma->vm_mm));
2017 BUG_ON(vma->vm_flags & VM_PFNMAP);
2018 vm_flags_set(vma, VM_MIXEDMAP);
2019 }
2020 return insert_page(vma, addr, page, vma->vm_page_prot);
2021 }
2022 EXPORT_SYMBOL(vm_insert_page);
2023
2024 /*
2025 * __vm_map_pages - maps range of kernel pages into user vma
2026 * @vma: user vma to map to
2027 * @pages: pointer to array of source kernel pages
2028 * @num: number of pages in page array
2029 * @offset: user's requested vm_pgoff
2030 *
2031 * This allows drivers to map range of kernel pages into a user vma.
2032 *
2033 * Return: 0 on success and error code otherwise.
2034 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2035 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2036 unsigned long num, unsigned long offset)
2037 {
2038 unsigned long count = vma_pages(vma);
2039 unsigned long uaddr = vma->vm_start;
2040 int ret, i;
2041
2042 /* Fail if the user requested offset is beyond the end of the object */
2043 if (offset >= num)
2044 return -ENXIO;
2045
2046 /* Fail if the user requested size exceeds available object size */
2047 if (count > num - offset)
2048 return -ENXIO;
2049
2050 for (i = 0; i < count; i++) {
2051 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2052 if (ret < 0)
2053 return ret;
2054 uaddr += PAGE_SIZE;
2055 }
2056
2057 return 0;
2058 }
2059
2060 /**
2061 * vm_map_pages - maps range of kernel pages starts with non zero offset
2062 * @vma: user vma to map to
2063 * @pages: pointer to array of source kernel pages
2064 * @num: number of pages in page array
2065 *
2066 * Maps an object consisting of @num pages, catering for the user's
2067 * requested vm_pgoff
2068 *
2069 * If we fail to insert any page into the vma, the function will return
2070 * immediately leaving any previously inserted pages present. Callers
2071 * from the mmap handler may immediately return the error as their caller
2072 * will destroy the vma, removing any successfully inserted pages. Other
2073 * callers should make their own arrangements for calling unmap_region().
2074 *
2075 * Context: Process context. Called by mmap handlers.
2076 * Return: 0 on success and error code otherwise.
2077 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2078 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2079 unsigned long num)
2080 {
2081 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2082 }
2083 EXPORT_SYMBOL(vm_map_pages);
2084
2085 /**
2086 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2087 * @vma: user vma to map to
2088 * @pages: pointer to array of source kernel pages
2089 * @num: number of pages in page array
2090 *
2091 * Similar to vm_map_pages(), except that it explicitly sets the offset
2092 * to 0. This function is intended for the drivers that did not consider
2093 * vm_pgoff.
2094 *
2095 * Context: Process context. Called by mmap handlers.
2096 * Return: 0 on success and error code otherwise.
2097 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2098 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2099 unsigned long num)
2100 {
2101 return __vm_map_pages(vma, pages, num, 0);
2102 }
2103 EXPORT_SYMBOL(vm_map_pages_zero);
2104
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2105 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2106 pfn_t pfn, pgprot_t prot, bool mkwrite)
2107 {
2108 struct mm_struct *mm = vma->vm_mm;
2109 pte_t *pte, entry;
2110 spinlock_t *ptl;
2111
2112 pte = get_locked_pte(mm, addr, &ptl);
2113 if (!pte)
2114 return VM_FAULT_OOM;
2115 entry = ptep_get(pte);
2116 if (!pte_none(entry)) {
2117 if (mkwrite) {
2118 /*
2119 * For read faults on private mappings the PFN passed
2120 * in may not match the PFN we have mapped if the
2121 * mapped PFN is a writeable COW page. In the mkwrite
2122 * case we are creating a writable PTE for a shared
2123 * mapping and we expect the PFNs to match. If they
2124 * don't match, we are likely racing with block
2125 * allocation and mapping invalidation so just skip the
2126 * update.
2127 */
2128 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2129 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2130 goto out_unlock;
2131 }
2132 entry = pte_mkyoung(entry);
2133 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2135 update_mmu_cache(vma, addr, pte);
2136 }
2137 goto out_unlock;
2138 }
2139
2140 /* Ok, finally just insert the thing.. */
2141 if (pfn_t_devmap(pfn))
2142 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2143 else
2144 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2145
2146 if (mkwrite) {
2147 entry = pte_mkyoung(entry);
2148 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2149 }
2150
2151 set_pte_at(mm, addr, pte, entry);
2152 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2153
2154 out_unlock:
2155 pte_unmap_unlock(pte, ptl);
2156 return VM_FAULT_NOPAGE;
2157 }
2158
2159 /**
2160 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2161 * @vma: user vma to map to
2162 * @addr: target user address of this page
2163 * @pfn: source kernel pfn
2164 * @pgprot: pgprot flags for the inserted page
2165 *
2166 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2167 * to override pgprot on a per-page basis.
2168 *
2169 * This only makes sense for IO mappings, and it makes no sense for
2170 * COW mappings. In general, using multiple vmas is preferable;
2171 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2172 * impractical.
2173 *
2174 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2175 * caching- and encryption bits different than those of @vma->vm_page_prot,
2176 * because the caching- or encryption mode may not be known at mmap() time.
2177 *
2178 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2179 * to set caching and encryption bits for those vmas (except for COW pages).
2180 * This is ensured by core vm only modifying these page table entries using
2181 * functions that don't touch caching- or encryption bits, using pte_modify()
2182 * if needed. (See for example mprotect()).
2183 *
2184 * Also when new page-table entries are created, this is only done using the
2185 * fault() callback, and never using the value of vma->vm_page_prot,
2186 * except for page-table entries that point to anonymous pages as the result
2187 * of COW.
2188 *
2189 * Context: Process context. May allocate using %GFP_KERNEL.
2190 * Return: vm_fault_t value.
2191 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2192 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2193 unsigned long pfn, pgprot_t pgprot)
2194 {
2195 /*
2196 * Technically, architectures with pte_special can avoid all these
2197 * restrictions (same for remap_pfn_range). However we would like
2198 * consistency in testing and feature parity among all, so we should
2199 * try to keep these invariants in place for everybody.
2200 */
2201 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2202 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2203 (VM_PFNMAP|VM_MIXEDMAP));
2204 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2205 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2206
2207 if (addr < vma->vm_start || addr >= vma->vm_end)
2208 return VM_FAULT_SIGBUS;
2209
2210 if (!pfn_modify_allowed(pfn, pgprot))
2211 return VM_FAULT_SIGBUS;
2212
2213 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2214
2215 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2216 false);
2217 }
2218 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2219
2220 /**
2221 * vmf_insert_pfn - insert single pfn into user vma
2222 * @vma: user vma to map to
2223 * @addr: target user address of this page
2224 * @pfn: source kernel pfn
2225 *
2226 * Similar to vm_insert_page, this allows drivers to insert individual pages
2227 * they've allocated into a user vma. Same comments apply.
2228 *
2229 * This function should only be called from a vm_ops->fault handler, and
2230 * in that case the handler should return the result of this function.
2231 *
2232 * vma cannot be a COW mapping.
2233 *
2234 * As this is called only for pages that do not currently exist, we
2235 * do not need to flush old virtual caches or the TLB.
2236 *
2237 * Context: Process context. May allocate using %GFP_KERNEL.
2238 * Return: vm_fault_t value.
2239 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2240 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2241 unsigned long pfn)
2242 {
2243 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2244 }
2245 EXPORT_SYMBOL(vmf_insert_pfn);
2246
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2247 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2248 {
2249 /* these checks mirror the abort conditions in vm_normal_page */
2250 if (vma->vm_flags & VM_MIXEDMAP)
2251 return true;
2252 if (pfn_t_devmap(pfn))
2253 return true;
2254 if (pfn_t_special(pfn))
2255 return true;
2256 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2257 return true;
2258 return false;
2259 }
2260
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2261 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2262 unsigned long addr, pfn_t pfn, bool mkwrite)
2263 {
2264 pgprot_t pgprot = vma->vm_page_prot;
2265 int err;
2266
2267 BUG_ON(!vm_mixed_ok(vma, pfn));
2268
2269 if (addr < vma->vm_start || addr >= vma->vm_end)
2270 return VM_FAULT_SIGBUS;
2271
2272 track_pfn_insert(vma, &pgprot, pfn);
2273
2274 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2275 return VM_FAULT_SIGBUS;
2276
2277 /*
2278 * If we don't have pte special, then we have to use the pfn_valid()
2279 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2280 * refcount the page if pfn_valid is true (hence insert_page rather
2281 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2282 * without pte special, it would there be refcounted as a normal page.
2283 */
2284 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2285 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2286 struct page *page;
2287
2288 /*
2289 * At this point we are committed to insert_page()
2290 * regardless of whether the caller specified flags that
2291 * result in pfn_t_has_page() == false.
2292 */
2293 page = pfn_to_page(pfn_t_to_pfn(pfn));
2294 err = insert_page(vma, addr, page, pgprot);
2295 } else {
2296 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2297 }
2298
2299 if (err == -ENOMEM)
2300 return VM_FAULT_OOM;
2301 if (err < 0 && err != -EBUSY)
2302 return VM_FAULT_SIGBUS;
2303
2304 return VM_FAULT_NOPAGE;
2305 }
2306
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2307 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2308 pfn_t pfn)
2309 {
2310 return __vm_insert_mixed(vma, addr, pfn, false);
2311 }
2312 EXPORT_SYMBOL(vmf_insert_mixed);
2313
2314 /*
2315 * If the insertion of PTE failed because someone else already added a
2316 * different entry in the mean time, we treat that as success as we assume
2317 * the same entry was actually inserted.
2318 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2319 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2320 unsigned long addr, pfn_t pfn)
2321 {
2322 return __vm_insert_mixed(vma, addr, pfn, true);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2325
2326 /*
2327 * maps a range of physical memory into the requested pages. the old
2328 * mappings are removed. any references to nonexistent pages results
2329 * in null mappings (currently treated as "copy-on-access")
2330 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2331 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2332 unsigned long addr, unsigned long end,
2333 unsigned long pfn, pgprot_t prot)
2334 {
2335 pte_t *pte, *mapped_pte;
2336 spinlock_t *ptl;
2337 int err = 0;
2338
2339 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2340 if (!pte)
2341 return -ENOMEM;
2342 arch_enter_lazy_mmu_mode();
2343 do {
2344 BUG_ON(!pte_none(ptep_get(pte)));
2345 if (!pfn_modify_allowed(pfn, prot)) {
2346 err = -EACCES;
2347 break;
2348 }
2349 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2350 pfn++;
2351 } while (pte++, addr += PAGE_SIZE, addr != end);
2352 arch_leave_lazy_mmu_mode();
2353 pte_unmap_unlock(mapped_pte, ptl);
2354 return err;
2355 }
2356
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2358 unsigned long addr, unsigned long end,
2359 unsigned long pfn, pgprot_t prot)
2360 {
2361 pmd_t *pmd;
2362 unsigned long next;
2363 int err;
2364
2365 pfn -= addr >> PAGE_SHIFT;
2366 pmd = pmd_alloc(mm, pud, addr);
2367 if (!pmd)
2368 return -ENOMEM;
2369 VM_BUG_ON(pmd_trans_huge(*pmd));
2370 do {
2371 next = pmd_addr_end(addr, end);
2372 err = remap_pte_range(mm, pmd, addr, next,
2373 pfn + (addr >> PAGE_SHIFT), prot);
2374 if (err)
2375 return err;
2376 } while (pmd++, addr = next, addr != end);
2377 return 0;
2378 }
2379
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2380 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2381 unsigned long addr, unsigned long end,
2382 unsigned long pfn, pgprot_t prot)
2383 {
2384 pud_t *pud;
2385 unsigned long next;
2386 int err;
2387
2388 pfn -= addr >> PAGE_SHIFT;
2389 pud = pud_alloc(mm, p4d, addr);
2390 if (!pud)
2391 return -ENOMEM;
2392 do {
2393 next = pud_addr_end(addr, end);
2394 err = remap_pmd_range(mm, pud, addr, next,
2395 pfn + (addr >> PAGE_SHIFT), prot);
2396 if (err)
2397 return err;
2398 } while (pud++, addr = next, addr != end);
2399 return 0;
2400 }
2401
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2402 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2403 unsigned long addr, unsigned long end,
2404 unsigned long pfn, pgprot_t prot)
2405 {
2406 p4d_t *p4d;
2407 unsigned long next;
2408 int err;
2409
2410 pfn -= addr >> PAGE_SHIFT;
2411 p4d = p4d_alloc(mm, pgd, addr);
2412 if (!p4d)
2413 return -ENOMEM;
2414 do {
2415 next = p4d_addr_end(addr, end);
2416 err = remap_pud_range(mm, p4d, addr, next,
2417 pfn + (addr >> PAGE_SHIFT), prot);
2418 if (err)
2419 return err;
2420 } while (p4d++, addr = next, addr != end);
2421 return 0;
2422 }
2423
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2424 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2425 unsigned long pfn, unsigned long size, pgprot_t prot)
2426 {
2427 pgd_t *pgd;
2428 unsigned long next;
2429 unsigned long end = addr + PAGE_ALIGN(size);
2430 struct mm_struct *mm = vma->vm_mm;
2431 int err;
2432
2433 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2434 return -EINVAL;
2435
2436 /*
2437 * Physically remapped pages are special. Tell the
2438 * rest of the world about it:
2439 * VM_IO tells people not to look at these pages
2440 * (accesses can have side effects).
2441 * VM_PFNMAP tells the core MM that the base pages are just
2442 * raw PFN mappings, and do not have a "struct page" associated
2443 * with them.
2444 * VM_DONTEXPAND
2445 * Disable vma merging and expanding with mremap().
2446 * VM_DONTDUMP
2447 * Omit vma from core dump, even when VM_IO turned off.
2448 *
2449 * There's a horrible special case to handle copy-on-write
2450 * behaviour that some programs depend on. We mark the "original"
2451 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2452 * See vm_normal_page() for details.
2453 */
2454 if (is_cow_mapping(vma->vm_flags)) {
2455 if (addr != vma->vm_start || end != vma->vm_end)
2456 return -EINVAL;
2457 vma->vm_pgoff = pfn;
2458 }
2459
2460 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2461
2462 BUG_ON(addr >= end);
2463 pfn -= addr >> PAGE_SHIFT;
2464 pgd = pgd_offset(mm, addr);
2465 flush_cache_range(vma, addr, end);
2466 do {
2467 next = pgd_addr_end(addr, end);
2468 err = remap_p4d_range(mm, pgd, addr, next,
2469 pfn + (addr >> PAGE_SHIFT), prot);
2470 if (err)
2471 return err;
2472 } while (pgd++, addr = next, addr != end);
2473
2474 return 0;
2475 }
2476
2477 /*
2478 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2479 * must have pre-validated the caching bits of the pgprot_t.
2480 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2481 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2482 unsigned long pfn, unsigned long size, pgprot_t prot)
2483 {
2484 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2485
2486 if (!error)
2487 return 0;
2488
2489 /*
2490 * A partial pfn range mapping is dangerous: it does not
2491 * maintain page reference counts, and callers may free
2492 * pages due to the error. So zap it early.
2493 */
2494 zap_page_range_single(vma, addr, size, NULL);
2495 return error;
2496 }
2497
2498 /**
2499 * remap_pfn_range - remap kernel memory to userspace
2500 * @vma: user vma to map to
2501 * @addr: target page aligned user address to start at
2502 * @pfn: page frame number of kernel physical memory address
2503 * @size: size of mapping area
2504 * @prot: page protection flags for this mapping
2505 *
2506 * Note: this is only safe if the mm semaphore is held when called.
2507 *
2508 * Return: %0 on success, negative error code otherwise.
2509 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2510 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2511 unsigned long pfn, unsigned long size, pgprot_t prot)
2512 {
2513 int err;
2514
2515 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2516 if (err)
2517 return -EINVAL;
2518
2519 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2520 if (err)
2521 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2522 return err;
2523 }
2524 EXPORT_SYMBOL(remap_pfn_range);
2525
2526 /**
2527 * vm_iomap_memory - remap memory to userspace
2528 * @vma: user vma to map to
2529 * @start: start of the physical memory to be mapped
2530 * @len: size of area
2531 *
2532 * This is a simplified io_remap_pfn_range() for common driver use. The
2533 * driver just needs to give us the physical memory range to be mapped,
2534 * we'll figure out the rest from the vma information.
2535 *
2536 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2537 * whatever write-combining details or similar.
2538 *
2539 * Return: %0 on success, negative error code otherwise.
2540 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2541 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2542 {
2543 unsigned long vm_len, pfn, pages;
2544
2545 /* Check that the physical memory area passed in looks valid */
2546 if (start + len < start)
2547 return -EINVAL;
2548 /*
2549 * You *really* shouldn't map things that aren't page-aligned,
2550 * but we've historically allowed it because IO memory might
2551 * just have smaller alignment.
2552 */
2553 len += start & ~PAGE_MASK;
2554 pfn = start >> PAGE_SHIFT;
2555 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2556 if (pfn + pages < pfn)
2557 return -EINVAL;
2558
2559 /* We start the mapping 'vm_pgoff' pages into the area */
2560 if (vma->vm_pgoff > pages)
2561 return -EINVAL;
2562 pfn += vma->vm_pgoff;
2563 pages -= vma->vm_pgoff;
2564
2565 /* Can we fit all of the mapping? */
2566 vm_len = vma->vm_end - vma->vm_start;
2567 if (vm_len >> PAGE_SHIFT > pages)
2568 return -EINVAL;
2569
2570 /* Ok, let it rip */
2571 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2572 }
2573 EXPORT_SYMBOL(vm_iomap_memory);
2574
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2575 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2576 unsigned long addr, unsigned long end,
2577 pte_fn_t fn, void *data, bool create,
2578 pgtbl_mod_mask *mask)
2579 {
2580 pte_t *pte, *mapped_pte;
2581 int err = 0;
2582 spinlock_t *ptl;
2583
2584 if (create) {
2585 mapped_pte = pte = (mm == &init_mm) ?
2586 pte_alloc_kernel_track(pmd, addr, mask) :
2587 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2588 if (!pte)
2589 return -ENOMEM;
2590 } else {
2591 mapped_pte = pte = (mm == &init_mm) ?
2592 pte_offset_kernel(pmd, addr) :
2593 pte_offset_map_lock(mm, pmd, addr, &ptl);
2594 if (!pte)
2595 return -EINVAL;
2596 }
2597
2598 arch_enter_lazy_mmu_mode();
2599
2600 if (fn) {
2601 do {
2602 if (create || !pte_none(ptep_get(pte))) {
2603 err = fn(pte, addr, data);
2604 if (err)
2605 break;
2606 }
2607 } while (pte++, addr += PAGE_SIZE, addr != end);
2608 }
2609 *mask |= PGTBL_PTE_MODIFIED;
2610
2611 arch_leave_lazy_mmu_mode();
2612
2613 if (mm != &init_mm)
2614 pte_unmap_unlock(mapped_pte, ptl);
2615 return err;
2616 }
2617
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2618 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2619 unsigned long addr, unsigned long end,
2620 pte_fn_t fn, void *data, bool create,
2621 pgtbl_mod_mask *mask)
2622 {
2623 pmd_t *pmd;
2624 unsigned long next;
2625 int err = 0;
2626
2627 BUG_ON(pud_huge(*pud));
2628
2629 if (create) {
2630 pmd = pmd_alloc_track(mm, pud, addr, mask);
2631 if (!pmd)
2632 return -ENOMEM;
2633 } else {
2634 pmd = pmd_offset(pud, addr);
2635 }
2636 do {
2637 next = pmd_addr_end(addr, end);
2638 if (pmd_none(*pmd) && !create)
2639 continue;
2640 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2641 return -EINVAL;
2642 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2643 if (!create)
2644 continue;
2645 pmd_clear_bad(pmd);
2646 }
2647 err = apply_to_pte_range(mm, pmd, addr, next,
2648 fn, data, create, mask);
2649 if (err)
2650 break;
2651 } while (pmd++, addr = next, addr != end);
2652
2653 return err;
2654 }
2655
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2656 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2657 unsigned long addr, unsigned long end,
2658 pte_fn_t fn, void *data, bool create,
2659 pgtbl_mod_mask *mask)
2660 {
2661 pud_t *pud;
2662 unsigned long next;
2663 int err = 0;
2664
2665 if (create) {
2666 pud = pud_alloc_track(mm, p4d, addr, mask);
2667 if (!pud)
2668 return -ENOMEM;
2669 } else {
2670 pud = pud_offset(p4d, addr);
2671 }
2672 do {
2673 next = pud_addr_end(addr, end);
2674 if (pud_none(*pud) && !create)
2675 continue;
2676 if (WARN_ON_ONCE(pud_leaf(*pud)))
2677 return -EINVAL;
2678 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2679 if (!create)
2680 continue;
2681 pud_clear_bad(pud);
2682 }
2683 err = apply_to_pmd_range(mm, pud, addr, next,
2684 fn, data, create, mask);
2685 if (err)
2686 break;
2687 } while (pud++, addr = next, addr != end);
2688
2689 return err;
2690 }
2691
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2692 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2693 unsigned long addr, unsigned long end,
2694 pte_fn_t fn, void *data, bool create,
2695 pgtbl_mod_mask *mask)
2696 {
2697 p4d_t *p4d;
2698 unsigned long next;
2699 int err = 0;
2700
2701 if (create) {
2702 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2703 if (!p4d)
2704 return -ENOMEM;
2705 } else {
2706 p4d = p4d_offset(pgd, addr);
2707 }
2708 do {
2709 next = p4d_addr_end(addr, end);
2710 if (p4d_none(*p4d) && !create)
2711 continue;
2712 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2713 return -EINVAL;
2714 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2715 if (!create)
2716 continue;
2717 p4d_clear_bad(p4d);
2718 }
2719 err = apply_to_pud_range(mm, p4d, addr, next,
2720 fn, data, create, mask);
2721 if (err)
2722 break;
2723 } while (p4d++, addr = next, addr != end);
2724
2725 return err;
2726 }
2727
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2728 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2729 unsigned long size, pte_fn_t fn,
2730 void *data, bool create)
2731 {
2732 pgd_t *pgd;
2733 unsigned long start = addr, next;
2734 unsigned long end = addr + size;
2735 pgtbl_mod_mask mask = 0;
2736 int err = 0;
2737
2738 if (WARN_ON(addr >= end))
2739 return -EINVAL;
2740
2741 pgd = pgd_offset(mm, addr);
2742 do {
2743 next = pgd_addr_end(addr, end);
2744 if (pgd_none(*pgd) && !create)
2745 continue;
2746 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2747 err = -EINVAL;
2748 break;
2749 }
2750 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2751 if (!create)
2752 continue;
2753 pgd_clear_bad(pgd);
2754 }
2755 err = apply_to_p4d_range(mm, pgd, addr, next,
2756 fn, data, create, &mask);
2757 if (err)
2758 break;
2759 } while (pgd++, addr = next, addr != end);
2760
2761 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2762 arch_sync_kernel_mappings(start, start + size);
2763
2764 return err;
2765 }
2766
2767 /*
2768 * Scan a region of virtual memory, filling in page tables as necessary
2769 * and calling a provided function on each leaf page table.
2770 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2771 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2772 unsigned long size, pte_fn_t fn, void *data)
2773 {
2774 return __apply_to_page_range(mm, addr, size, fn, data, true);
2775 }
2776 EXPORT_SYMBOL_GPL(apply_to_page_range);
2777
2778 /*
2779 * Scan a region of virtual memory, calling a provided function on
2780 * each leaf page table where it exists.
2781 *
2782 * Unlike apply_to_page_range, this does _not_ fill in page tables
2783 * where they are absent.
2784 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2785 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2786 unsigned long size, pte_fn_t fn, void *data)
2787 {
2788 return __apply_to_page_range(mm, addr, size, fn, data, false);
2789 }
2790 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2791
2792 /*
2793 * handle_pte_fault chooses page fault handler according to an entry which was
2794 * read non-atomically. Before making any commitment, on those architectures
2795 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2796 * parts, do_swap_page must check under lock before unmapping the pte and
2797 * proceeding (but do_wp_page is only called after already making such a check;
2798 * and do_anonymous_page can safely check later on).
2799 */
pte_unmap_same(struct vm_fault * vmf)2800 static inline int pte_unmap_same(struct vm_fault *vmf)
2801 {
2802 int same = 1;
2803 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2804 if (sizeof(pte_t) > sizeof(unsigned long)) {
2805 spin_lock(vmf->ptl);
2806 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2807 spin_unlock(vmf->ptl);
2808 }
2809 #endif
2810 pte_unmap(vmf->pte);
2811 vmf->pte = NULL;
2812 return same;
2813 }
2814
2815 /*
2816 * Return:
2817 * 0: copied succeeded
2818 * -EHWPOISON: copy failed due to hwpoison in source page
2819 * -EAGAIN: copied failed (some other reason)
2820 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2821 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2822 struct vm_fault *vmf)
2823 {
2824 int ret;
2825 void *kaddr;
2826 void __user *uaddr;
2827 struct vm_area_struct *vma = vmf->vma;
2828 struct mm_struct *mm = vma->vm_mm;
2829 unsigned long addr = vmf->address;
2830
2831 if (likely(src)) {
2832 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2833 memory_failure_queue(page_to_pfn(src), 0);
2834 return -EHWPOISON;
2835 }
2836 return 0;
2837 }
2838
2839 /*
2840 * If the source page was a PFN mapping, we don't have
2841 * a "struct page" for it. We do a best-effort copy by
2842 * just copying from the original user address. If that
2843 * fails, we just zero-fill it. Live with it.
2844 */
2845 kaddr = kmap_atomic(dst);
2846 uaddr = (void __user *)(addr & PAGE_MASK);
2847
2848 /*
2849 * On architectures with software "accessed" bits, we would
2850 * take a double page fault, so mark it accessed here.
2851 */
2852 vmf->pte = NULL;
2853 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2854 pte_t entry;
2855
2856 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2857 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2858 /*
2859 * Other thread has already handled the fault
2860 * and update local tlb only
2861 */
2862 if (vmf->pte)
2863 update_mmu_tlb(vma, addr, vmf->pte);
2864 ret = -EAGAIN;
2865 goto pte_unlock;
2866 }
2867
2868 entry = pte_mkyoung(vmf->orig_pte);
2869 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2870 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2871 }
2872
2873 /*
2874 * This really shouldn't fail, because the page is there
2875 * in the page tables. But it might just be unreadable,
2876 * in which case we just give up and fill the result with
2877 * zeroes.
2878 */
2879 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2880 if (vmf->pte)
2881 goto warn;
2882
2883 /* Re-validate under PTL if the page is still mapped */
2884 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2885 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2886 /* The PTE changed under us, update local tlb */
2887 if (vmf->pte)
2888 update_mmu_tlb(vma, addr, vmf->pte);
2889 ret = -EAGAIN;
2890 goto pte_unlock;
2891 }
2892
2893 /*
2894 * The same page can be mapped back since last copy attempt.
2895 * Try to copy again under PTL.
2896 */
2897 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2898 /*
2899 * Give a warn in case there can be some obscure
2900 * use-case
2901 */
2902 warn:
2903 WARN_ON_ONCE(1);
2904 clear_page(kaddr);
2905 }
2906 }
2907
2908 ret = 0;
2909
2910 pte_unlock:
2911 if (vmf->pte)
2912 pte_unmap_unlock(vmf->pte, vmf->ptl);
2913 kunmap_atomic(kaddr);
2914 flush_dcache_page(dst);
2915
2916 return ret;
2917 }
2918
__get_fault_gfp_mask(struct vm_area_struct * vma)2919 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2920 {
2921 struct file *vm_file = vma->vm_file;
2922
2923 if (vm_file)
2924 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2925
2926 /*
2927 * Special mappings (e.g. VDSO) do not have any file so fake
2928 * a default GFP_KERNEL for them.
2929 */
2930 return GFP_KERNEL;
2931 }
2932
2933 /*
2934 * Notify the address space that the page is about to become writable so that
2935 * it can prohibit this or wait for the page to get into an appropriate state.
2936 *
2937 * We do this without the lock held, so that it can sleep if it needs to.
2938 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)2939 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2940 {
2941 vm_fault_t ret;
2942 unsigned int old_flags = vmf->flags;
2943
2944 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2945
2946 if (vmf->vma->vm_file &&
2947 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2948 return VM_FAULT_SIGBUS;
2949
2950 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2951 /* Restore original flags so that caller is not surprised */
2952 vmf->flags = old_flags;
2953 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2954 return ret;
2955 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2956 folio_lock(folio);
2957 if (!folio->mapping) {
2958 folio_unlock(folio);
2959 return 0; /* retry */
2960 }
2961 ret |= VM_FAULT_LOCKED;
2962 } else
2963 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2964 return ret;
2965 }
2966
2967 /*
2968 * Handle dirtying of a page in shared file mapping on a write fault.
2969 *
2970 * The function expects the page to be locked and unlocks it.
2971 */
fault_dirty_shared_page(struct vm_fault * vmf)2972 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2973 {
2974 struct vm_area_struct *vma = vmf->vma;
2975 struct address_space *mapping;
2976 struct folio *folio = page_folio(vmf->page);
2977 bool dirtied;
2978 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2979
2980 dirtied = folio_mark_dirty(folio);
2981 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2982 /*
2983 * Take a local copy of the address_space - folio.mapping may be zeroed
2984 * by truncate after folio_unlock(). The address_space itself remains
2985 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2986 * release semantics to prevent the compiler from undoing this copying.
2987 */
2988 mapping = folio_raw_mapping(folio);
2989 folio_unlock(folio);
2990
2991 if (!page_mkwrite)
2992 file_update_time(vma->vm_file);
2993
2994 /*
2995 * Throttle page dirtying rate down to writeback speed.
2996 *
2997 * mapping may be NULL here because some device drivers do not
2998 * set page.mapping but still dirty their pages
2999 *
3000 * Drop the mmap_lock before waiting on IO, if we can. The file
3001 * is pinning the mapping, as per above.
3002 */
3003 if ((dirtied || page_mkwrite) && mapping) {
3004 struct file *fpin;
3005
3006 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3007 balance_dirty_pages_ratelimited(mapping);
3008 if (fpin) {
3009 fput(fpin);
3010 return VM_FAULT_COMPLETED;
3011 }
3012 }
3013
3014 return 0;
3015 }
3016
3017 /*
3018 * Handle write page faults for pages that can be reused in the current vma
3019 *
3020 * This can happen either due to the mapping being with the VM_SHARED flag,
3021 * or due to us being the last reference standing to the page. In either
3022 * case, all we need to do here is to mark the page as writable and update
3023 * any related book-keeping.
3024 */
wp_page_reuse(struct vm_fault * vmf)3025 static inline void wp_page_reuse(struct vm_fault *vmf)
3026 __releases(vmf->ptl)
3027 {
3028 struct vm_area_struct *vma = vmf->vma;
3029 struct page *page = vmf->page;
3030 pte_t entry;
3031
3032 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3033 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3034
3035 /*
3036 * Clear the pages cpupid information as the existing
3037 * information potentially belongs to a now completely
3038 * unrelated process.
3039 */
3040 if (page)
3041 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3042
3043 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3044 entry = pte_mkyoung(vmf->orig_pte);
3045 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3046 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3047 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3048 pte_unmap_unlock(vmf->pte, vmf->ptl);
3049 count_vm_event(PGREUSE);
3050 }
3051
3052 /*
3053 * Handle the case of a page which we actually need to copy to a new page,
3054 * either due to COW or unsharing.
3055 *
3056 * Called with mmap_lock locked and the old page referenced, but
3057 * without the ptl held.
3058 *
3059 * High level logic flow:
3060 *
3061 * - Allocate a page, copy the content of the old page to the new one.
3062 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3063 * - Take the PTL. If the pte changed, bail out and release the allocated page
3064 * - If the pte is still the way we remember it, update the page table and all
3065 * relevant references. This includes dropping the reference the page-table
3066 * held to the old page, as well as updating the rmap.
3067 * - In any case, unlock the PTL and drop the reference we took to the old page.
3068 */
wp_page_copy(struct vm_fault * vmf)3069 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3070 {
3071 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3072 struct vm_area_struct *vma = vmf->vma;
3073 struct mm_struct *mm = vma->vm_mm;
3074 struct folio *old_folio = NULL;
3075 struct folio *new_folio = NULL;
3076 pte_t entry;
3077 int page_copied = 0;
3078 struct mmu_notifier_range range;
3079 int ret;
3080
3081 delayacct_wpcopy_start();
3082
3083 if (vmf->page)
3084 old_folio = page_folio(vmf->page);
3085 if (unlikely(anon_vma_prepare(vma)))
3086 goto oom;
3087
3088 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3089 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3090 if (!new_folio)
3091 goto oom;
3092 } else {
3093 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3094 vmf->address, false);
3095 if (!new_folio)
3096 goto oom;
3097
3098 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3099 if (ret) {
3100 /*
3101 * COW failed, if the fault was solved by other,
3102 * it's fine. If not, userspace would re-fault on
3103 * the same address and we will handle the fault
3104 * from the second attempt.
3105 * The -EHWPOISON case will not be retried.
3106 */
3107 folio_put(new_folio);
3108 if (old_folio)
3109 folio_put(old_folio);
3110
3111 delayacct_wpcopy_end();
3112 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3113 }
3114 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3115 }
3116
3117 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3118 goto oom_free_new;
3119 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3120
3121 __folio_mark_uptodate(new_folio);
3122
3123 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3124 vmf->address & PAGE_MASK,
3125 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3126 mmu_notifier_invalidate_range_start(&range);
3127
3128 /*
3129 * Re-check the pte - we dropped the lock
3130 */
3131 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3132 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3133 if (old_folio) {
3134 if (!folio_test_anon(old_folio)) {
3135 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3136 inc_mm_counter(mm, MM_ANONPAGES);
3137 }
3138 } else {
3139 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3140 inc_mm_counter(mm, MM_ANONPAGES);
3141 }
3142 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3143 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3144 entry = pte_sw_mkyoung(entry);
3145 if (unlikely(unshare)) {
3146 if (pte_soft_dirty(vmf->orig_pte))
3147 entry = pte_mksoft_dirty(entry);
3148 if (pte_uffd_wp(vmf->orig_pte))
3149 entry = pte_mkuffd_wp(entry);
3150 } else {
3151 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3152 }
3153
3154 /*
3155 * Clear the pte entry and flush it first, before updating the
3156 * pte with the new entry, to keep TLBs on different CPUs in
3157 * sync. This code used to set the new PTE then flush TLBs, but
3158 * that left a window where the new PTE could be loaded into
3159 * some TLBs while the old PTE remains in others.
3160 */
3161 ptep_clear_flush(vma, vmf->address, vmf->pte);
3162 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3163 folio_add_lru_vma(new_folio, vma);
3164 /*
3165 * We call the notify macro here because, when using secondary
3166 * mmu page tables (such as kvm shadow page tables), we want the
3167 * new page to be mapped directly into the secondary page table.
3168 */
3169 BUG_ON(unshare && pte_write(entry));
3170 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3171 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3172 if (old_folio) {
3173 /*
3174 * Only after switching the pte to the new page may
3175 * we remove the mapcount here. Otherwise another
3176 * process may come and find the rmap count decremented
3177 * before the pte is switched to the new page, and
3178 * "reuse" the old page writing into it while our pte
3179 * here still points into it and can be read by other
3180 * threads.
3181 *
3182 * The critical issue is to order this
3183 * page_remove_rmap with the ptp_clear_flush above.
3184 * Those stores are ordered by (if nothing else,)
3185 * the barrier present in the atomic_add_negative
3186 * in page_remove_rmap.
3187 *
3188 * Then the TLB flush in ptep_clear_flush ensures that
3189 * no process can access the old page before the
3190 * decremented mapcount is visible. And the old page
3191 * cannot be reused until after the decremented
3192 * mapcount is visible. So transitively, TLBs to
3193 * old page will be flushed before it can be reused.
3194 */
3195 page_remove_rmap(vmf->page, vma, false);
3196 }
3197
3198 /* Free the old page.. */
3199 new_folio = old_folio;
3200 page_copied = 1;
3201 pte_unmap_unlock(vmf->pte, vmf->ptl);
3202 } else if (vmf->pte) {
3203 update_mmu_tlb(vma, vmf->address, vmf->pte);
3204 pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 }
3206
3207 mmu_notifier_invalidate_range_end(&range);
3208
3209 if (new_folio)
3210 folio_put(new_folio);
3211 if (old_folio) {
3212 if (page_copied)
3213 free_swap_cache(&old_folio->page);
3214 folio_put(old_folio);
3215 }
3216
3217 delayacct_wpcopy_end();
3218 return 0;
3219 oom_free_new:
3220 folio_put(new_folio);
3221 oom:
3222 if (old_folio)
3223 folio_put(old_folio);
3224
3225 delayacct_wpcopy_end();
3226 return VM_FAULT_OOM;
3227 }
3228
3229 /**
3230 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3231 * writeable once the page is prepared
3232 *
3233 * @vmf: structure describing the fault
3234 *
3235 * This function handles all that is needed to finish a write page fault in a
3236 * shared mapping due to PTE being read-only once the mapped page is prepared.
3237 * It handles locking of PTE and modifying it.
3238 *
3239 * The function expects the page to be locked or other protection against
3240 * concurrent faults / writeback (such as DAX radix tree locks).
3241 *
3242 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3243 * we acquired PTE lock.
3244 */
finish_mkwrite_fault(struct vm_fault * vmf)3245 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3246 {
3247 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3248 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3249 &vmf->ptl);
3250 if (!vmf->pte)
3251 return VM_FAULT_NOPAGE;
3252 /*
3253 * We might have raced with another page fault while we released the
3254 * pte_offset_map_lock.
3255 */
3256 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3257 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3258 pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 return VM_FAULT_NOPAGE;
3260 }
3261 wp_page_reuse(vmf);
3262 return 0;
3263 }
3264
3265 /*
3266 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3267 * mapping
3268 */
wp_pfn_shared(struct vm_fault * vmf)3269 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3270 {
3271 struct vm_area_struct *vma = vmf->vma;
3272
3273 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3274 vm_fault_t ret;
3275
3276 pte_unmap_unlock(vmf->pte, vmf->ptl);
3277 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3278 vma_end_read(vmf->vma);
3279 return VM_FAULT_RETRY;
3280 }
3281
3282 vmf->flags |= FAULT_FLAG_MKWRITE;
3283 ret = vma->vm_ops->pfn_mkwrite(vmf);
3284 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3285 return ret;
3286 return finish_mkwrite_fault(vmf);
3287 }
3288 wp_page_reuse(vmf);
3289 return 0;
3290 }
3291
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3292 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3293 __releases(vmf->ptl)
3294 {
3295 struct vm_area_struct *vma = vmf->vma;
3296 vm_fault_t ret = 0;
3297
3298 folio_get(folio);
3299
3300 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3301 vm_fault_t tmp;
3302
3303 pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3305 folio_put(folio);
3306 vma_end_read(vmf->vma);
3307 return VM_FAULT_RETRY;
3308 }
3309
3310 tmp = do_page_mkwrite(vmf, folio);
3311 if (unlikely(!tmp || (tmp &
3312 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3313 folio_put(folio);
3314 return tmp;
3315 }
3316 tmp = finish_mkwrite_fault(vmf);
3317 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3318 folio_unlock(folio);
3319 folio_put(folio);
3320 return tmp;
3321 }
3322 } else {
3323 wp_page_reuse(vmf);
3324 folio_lock(folio);
3325 }
3326 ret |= fault_dirty_shared_page(vmf);
3327 folio_put(folio);
3328
3329 return ret;
3330 }
3331
3332 /*
3333 * This routine handles present pages, when
3334 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3335 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3336 * (FAULT_FLAG_UNSHARE)
3337 *
3338 * It is done by copying the page to a new address and decrementing the
3339 * shared-page counter for the old page.
3340 *
3341 * Note that this routine assumes that the protection checks have been
3342 * done by the caller (the low-level page fault routine in most cases).
3343 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3344 * done any necessary COW.
3345 *
3346 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3347 * though the page will change only once the write actually happens. This
3348 * avoids a few races, and potentially makes it more efficient.
3349 *
3350 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3351 * but allow concurrent faults), with pte both mapped and locked.
3352 * We return with mmap_lock still held, but pte unmapped and unlocked.
3353 */
do_wp_page(struct vm_fault * vmf)3354 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3355 __releases(vmf->ptl)
3356 {
3357 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3358 struct vm_area_struct *vma = vmf->vma;
3359 struct folio *folio = NULL;
3360
3361 if (likely(!unshare)) {
3362 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3363 pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 return handle_userfault(vmf, VM_UFFD_WP);
3365 }
3366
3367 /*
3368 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369 * is flushed in this case before copying.
3370 */
3371 if (unlikely(userfaultfd_wp(vmf->vma) &&
3372 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373 flush_tlb_page(vmf->vma, vmf->address);
3374 }
3375
3376 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377
3378 if (vmf->page)
3379 folio = page_folio(vmf->page);
3380
3381 /*
3382 * Shared mapping: we are guaranteed to have VM_WRITE and
3383 * FAULT_FLAG_WRITE set at this point.
3384 */
3385 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3386 /*
3387 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3388 * VM_PFNMAP VMA.
3389 *
3390 * We should not cow pages in a shared writeable mapping.
3391 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3392 */
3393 if (!vmf->page)
3394 return wp_pfn_shared(vmf);
3395 return wp_page_shared(vmf, folio);
3396 }
3397
3398 /*
3399 * Private mapping: create an exclusive anonymous page copy if reuse
3400 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3401 */
3402 if (folio && folio_test_anon(folio)) {
3403 /*
3404 * If the page is exclusive to this process we must reuse the
3405 * page without further checks.
3406 */
3407 if (PageAnonExclusive(vmf->page))
3408 goto reuse;
3409
3410 /*
3411 * We have to verify under folio lock: these early checks are
3412 * just an optimization to avoid locking the folio and freeing
3413 * the swapcache if there is little hope that we can reuse.
3414 *
3415 * KSM doesn't necessarily raise the folio refcount.
3416 */
3417 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3418 goto copy;
3419 if (!folio_test_lru(folio))
3420 /*
3421 * We cannot easily detect+handle references from
3422 * remote LRU caches or references to LRU folios.
3423 */
3424 lru_add_drain();
3425 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3426 goto copy;
3427 if (!folio_trylock(folio))
3428 goto copy;
3429 if (folio_test_swapcache(folio))
3430 folio_free_swap(folio);
3431 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3432 folio_unlock(folio);
3433 goto copy;
3434 }
3435 /*
3436 * Ok, we've got the only folio reference from our mapping
3437 * and the folio is locked, it's dark out, and we're wearing
3438 * sunglasses. Hit it.
3439 */
3440 page_move_anon_rmap(vmf->page, vma);
3441 folio_unlock(folio);
3442 reuse:
3443 if (unlikely(unshare)) {
3444 pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 return 0;
3446 }
3447 wp_page_reuse(vmf);
3448 return 0;
3449 }
3450 copy:
3451 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3452 pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 vma_end_read(vmf->vma);
3454 return VM_FAULT_RETRY;
3455 }
3456
3457 /*
3458 * Ok, we need to copy. Oh, well..
3459 */
3460 if (folio)
3461 folio_get(folio);
3462
3463 pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 #ifdef CONFIG_KSM
3465 if (folio && folio_test_ksm(folio))
3466 count_vm_event(COW_KSM);
3467 #endif
3468 return wp_page_copy(vmf);
3469 }
3470
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3471 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3472 unsigned long start_addr, unsigned long end_addr,
3473 struct zap_details *details)
3474 {
3475 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3476 }
3477
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3478 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3479 pgoff_t first_index,
3480 pgoff_t last_index,
3481 struct zap_details *details)
3482 {
3483 struct vm_area_struct *vma;
3484 pgoff_t vba, vea, zba, zea;
3485
3486 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3487 vba = vma->vm_pgoff;
3488 vea = vba + vma_pages(vma) - 1;
3489 zba = max(first_index, vba);
3490 zea = min(last_index, vea);
3491
3492 unmap_mapping_range_vma(vma,
3493 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3494 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3495 details);
3496 }
3497 }
3498
3499 /**
3500 * unmap_mapping_folio() - Unmap single folio from processes.
3501 * @folio: The locked folio to be unmapped.
3502 *
3503 * Unmap this folio from any userspace process which still has it mmaped.
3504 * Typically, for efficiency, the range of nearby pages has already been
3505 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506 * truncation or invalidation holds the lock on a folio, it may find that
3507 * the page has been remapped again: and then uses unmap_mapping_folio()
3508 * to unmap it finally.
3509 */
unmap_mapping_folio(struct folio * folio)3510 void unmap_mapping_folio(struct folio *folio)
3511 {
3512 struct address_space *mapping = folio->mapping;
3513 struct zap_details details = { };
3514 pgoff_t first_index;
3515 pgoff_t last_index;
3516
3517 VM_BUG_ON(!folio_test_locked(folio));
3518
3519 first_index = folio->index;
3520 last_index = folio_next_index(folio) - 1;
3521
3522 details.even_cows = false;
3523 details.single_folio = folio;
3524 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3525
3526 i_mmap_lock_read(mapping);
3527 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3528 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3529 last_index, &details);
3530 i_mmap_unlock_read(mapping);
3531 }
3532
3533 /**
3534 * unmap_mapping_pages() - Unmap pages from processes.
3535 * @mapping: The address space containing pages to be unmapped.
3536 * @start: Index of first page to be unmapped.
3537 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3538 * @even_cows: Whether to unmap even private COWed pages.
3539 *
3540 * Unmap the pages in this address space from any userspace process which
3541 * has them mmaped. Generally, you want to remove COWed pages as well when
3542 * a file is being truncated, but not when invalidating pages from the page
3543 * cache.
3544 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3545 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3546 pgoff_t nr, bool even_cows)
3547 {
3548 struct zap_details details = { };
3549 pgoff_t first_index = start;
3550 pgoff_t last_index = start + nr - 1;
3551
3552 details.even_cows = even_cows;
3553 if (last_index < first_index)
3554 last_index = ULONG_MAX;
3555
3556 i_mmap_lock_read(mapping);
3557 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3558 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3559 last_index, &details);
3560 i_mmap_unlock_read(mapping);
3561 }
3562 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3563
3564 /**
3565 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3566 * address_space corresponding to the specified byte range in the underlying
3567 * file.
3568 *
3569 * @mapping: the address space containing mmaps to be unmapped.
3570 * @holebegin: byte in first page to unmap, relative to the start of
3571 * the underlying file. This will be rounded down to a PAGE_SIZE
3572 * boundary. Note that this is different from truncate_pagecache(), which
3573 * must keep the partial page. In contrast, we must get rid of
3574 * partial pages.
3575 * @holelen: size of prospective hole in bytes. This will be rounded
3576 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3577 * end of the file.
3578 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3579 * but 0 when invalidating pagecache, don't throw away private data.
3580 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3581 void unmap_mapping_range(struct address_space *mapping,
3582 loff_t const holebegin, loff_t const holelen, int even_cows)
3583 {
3584 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3585 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586
3587 /* Check for overflow. */
3588 if (sizeof(holelen) > sizeof(hlen)) {
3589 long long holeend =
3590 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3591 if (holeend & ~(long long)ULONG_MAX)
3592 hlen = ULONG_MAX - hba + 1;
3593 }
3594
3595 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3596 }
3597 EXPORT_SYMBOL(unmap_mapping_range);
3598
3599 /*
3600 * Restore a potential device exclusive pte to a working pte entry
3601 */
remove_device_exclusive_entry(struct vm_fault * vmf)3602 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3603 {
3604 struct folio *folio = page_folio(vmf->page);
3605 struct vm_area_struct *vma = vmf->vma;
3606 struct mmu_notifier_range range;
3607 vm_fault_t ret;
3608
3609 /*
3610 * We need a reference to lock the folio because we don't hold
3611 * the PTL so a racing thread can remove the device-exclusive
3612 * entry and unmap it. If the folio is free the entry must
3613 * have been removed already. If it happens to have already
3614 * been re-allocated after being freed all we do is lock and
3615 * unlock it.
3616 */
3617 if (!folio_try_get(folio))
3618 return 0;
3619
3620 ret = folio_lock_or_retry(folio, vmf);
3621 if (ret) {
3622 folio_put(folio);
3623 return ret;
3624 }
3625 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3626 vma->vm_mm, vmf->address & PAGE_MASK,
3627 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3628 mmu_notifier_invalidate_range_start(&range);
3629
3630 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3631 &vmf->ptl);
3632 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3633 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3634
3635 if (vmf->pte)
3636 pte_unmap_unlock(vmf->pte, vmf->ptl);
3637 folio_unlock(folio);
3638 folio_put(folio);
3639
3640 mmu_notifier_invalidate_range_end(&range);
3641 return 0;
3642 }
3643
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3644 static inline bool should_try_to_free_swap(struct folio *folio,
3645 struct vm_area_struct *vma,
3646 unsigned int fault_flags)
3647 {
3648 if (!folio_test_swapcache(folio))
3649 return false;
3650 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3651 folio_test_mlocked(folio))
3652 return true;
3653 /*
3654 * If we want to map a page that's in the swapcache writable, we
3655 * have to detect via the refcount if we're really the exclusive
3656 * user. Try freeing the swapcache to get rid of the swapcache
3657 * reference only in case it's likely that we'll be the exlusive user.
3658 */
3659 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3660 folio_ref_count(folio) == 2;
3661 }
3662
pte_marker_clear(struct vm_fault * vmf)3663 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3664 {
3665 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3666 vmf->address, &vmf->ptl);
3667 if (!vmf->pte)
3668 return 0;
3669 /*
3670 * Be careful so that we will only recover a special uffd-wp pte into a
3671 * none pte. Otherwise it means the pte could have changed, so retry.
3672 *
3673 * This should also cover the case where e.g. the pte changed
3674 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3675 * So is_pte_marker() check is not enough to safely drop the pte.
3676 */
3677 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3678 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3679 pte_unmap_unlock(vmf->pte, vmf->ptl);
3680 return 0;
3681 }
3682
do_pte_missing(struct vm_fault * vmf)3683 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3684 {
3685 if (vma_is_anonymous(vmf->vma))
3686 return do_anonymous_page(vmf);
3687 else
3688 return do_fault(vmf);
3689 }
3690
3691 /*
3692 * This is actually a page-missing access, but with uffd-wp special pte
3693 * installed. It means this pte was wr-protected before being unmapped.
3694 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3695 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3696 {
3697 /*
3698 * Just in case there're leftover special ptes even after the region
3699 * got unregistered - we can simply clear them.
3700 */
3701 if (unlikely(!userfaultfd_wp(vmf->vma)))
3702 return pte_marker_clear(vmf);
3703
3704 return do_pte_missing(vmf);
3705 }
3706
handle_pte_marker(struct vm_fault * vmf)3707 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3708 {
3709 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3710 unsigned long marker = pte_marker_get(entry);
3711
3712 /*
3713 * PTE markers should never be empty. If anything weird happened,
3714 * the best thing to do is to kill the process along with its mm.
3715 */
3716 if (WARN_ON_ONCE(!marker))
3717 return VM_FAULT_SIGBUS;
3718
3719 /* Higher priority than uffd-wp when data corrupted */
3720 if (marker & PTE_MARKER_POISONED)
3721 return VM_FAULT_HWPOISON;
3722
3723 if (pte_marker_entry_uffd_wp(entry))
3724 return pte_marker_handle_uffd_wp(vmf);
3725
3726 /* This is an unknown pte marker */
3727 return VM_FAULT_SIGBUS;
3728 }
3729
3730 /*
3731 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3732 * but allow concurrent faults), and pte mapped but not yet locked.
3733 * We return with pte unmapped and unlocked.
3734 *
3735 * We return with the mmap_lock locked or unlocked in the same cases
3736 * as does filemap_fault().
3737 */
do_swap_page(struct vm_fault * vmf)3738 vm_fault_t do_swap_page(struct vm_fault *vmf)
3739 {
3740 struct vm_area_struct *vma = vmf->vma;
3741 struct folio *swapcache, *folio = NULL;
3742 struct page *page;
3743 struct swap_info_struct *si = NULL;
3744 rmap_t rmap_flags = RMAP_NONE;
3745 bool need_clear_cache = false;
3746 bool exclusive = false;
3747 swp_entry_t entry;
3748 pte_t pte;
3749 vm_fault_t ret = 0;
3750 void *shadow = NULL;
3751
3752 if (!pte_unmap_same(vmf))
3753 goto out;
3754
3755 entry = pte_to_swp_entry(vmf->orig_pte);
3756 if (unlikely(non_swap_entry(entry))) {
3757 if (is_migration_entry(entry)) {
3758 migration_entry_wait(vma->vm_mm, vmf->pmd,
3759 vmf->address);
3760 } else if (is_device_exclusive_entry(entry)) {
3761 vmf->page = pfn_swap_entry_to_page(entry);
3762 ret = remove_device_exclusive_entry(vmf);
3763 } else if (is_device_private_entry(entry)) {
3764 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3765 /*
3766 * migrate_to_ram is not yet ready to operate
3767 * under VMA lock.
3768 */
3769 vma_end_read(vma);
3770 ret = VM_FAULT_RETRY;
3771 goto out;
3772 }
3773
3774 vmf->page = pfn_swap_entry_to_page(entry);
3775 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3776 vmf->address, &vmf->ptl);
3777 if (unlikely(!vmf->pte ||
3778 !pte_same(ptep_get(vmf->pte),
3779 vmf->orig_pte)))
3780 goto unlock;
3781
3782 /*
3783 * Get a page reference while we know the page can't be
3784 * freed.
3785 */
3786 get_page(vmf->page);
3787 pte_unmap_unlock(vmf->pte, vmf->ptl);
3788 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3789 put_page(vmf->page);
3790 } else if (is_hwpoison_entry(entry)) {
3791 ret = VM_FAULT_HWPOISON;
3792 } else if (is_pte_marker_entry(entry)) {
3793 ret = handle_pte_marker(vmf);
3794 } else {
3795 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3796 ret = VM_FAULT_SIGBUS;
3797 }
3798 goto out;
3799 }
3800
3801 /* Prevent swapoff from happening to us. */
3802 si = get_swap_device(entry);
3803 if (unlikely(!si))
3804 goto out;
3805
3806 folio = swap_cache_get_folio(entry, vma, vmf->address);
3807 if (folio)
3808 page = folio_file_page(folio, swp_offset(entry));
3809 swapcache = folio;
3810
3811 if (!folio) {
3812 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3813 __swap_count(entry) == 1) {
3814 /*
3815 * Prevent parallel swapin from proceeding with
3816 * the cache flag. Otherwise, another thread may
3817 * finish swapin first, free the entry, and swapout
3818 * reusing the same entry. It's undetectable as
3819 * pte_same() returns true due to entry reuse.
3820 */
3821 if (swapcache_prepare(entry)) {
3822 /* Relax a bit to prevent rapid repeated page faults */
3823 schedule_timeout_uninterruptible(1);
3824 goto out;
3825 }
3826 need_clear_cache = true;
3827
3828 /* skip swapcache */
3829 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3830 vma, vmf->address, false);
3831 page = &folio->page;
3832 if (folio) {
3833 __folio_set_locked(folio);
3834 __folio_set_swapbacked(folio);
3835
3836 if (mem_cgroup_swapin_charge_folio(folio,
3837 vma->vm_mm, GFP_KERNEL,
3838 entry)) {
3839 ret = VM_FAULT_OOM;
3840 goto out_page;
3841 }
3842 mem_cgroup_swapin_uncharge_swap(entry);
3843
3844 shadow = get_shadow_from_swap_cache(entry);
3845 if (shadow)
3846 workingset_refault(folio, shadow);
3847
3848 folio_add_lru(folio);
3849
3850 /* To provide entry to swap_readpage() */
3851 folio->swap = entry;
3852 swap_readpage(page, true, NULL);
3853 folio->private = NULL;
3854 }
3855 } else {
3856 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3857 vmf);
3858 if (page)
3859 folio = page_folio(page);
3860 swapcache = folio;
3861 }
3862
3863 if (!folio) {
3864 /*
3865 * Back out if somebody else faulted in this pte
3866 * while we released the pte lock.
3867 */
3868 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3869 vmf->address, &vmf->ptl);
3870 if (likely(vmf->pte &&
3871 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3872 ret = VM_FAULT_OOM;
3873 goto unlock;
3874 }
3875
3876 /* Had to read the page from swap area: Major fault */
3877 ret = VM_FAULT_MAJOR;
3878 count_vm_event(PGMAJFAULT);
3879 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3880 } else if (PageHWPoison(page)) {
3881 /*
3882 * hwpoisoned dirty swapcache pages are kept for killing
3883 * owner processes (which may be unknown at hwpoison time)
3884 */
3885 ret = VM_FAULT_HWPOISON;
3886 goto out_release;
3887 }
3888
3889 ret |= folio_lock_or_retry(folio, vmf);
3890 if (ret & VM_FAULT_RETRY)
3891 goto out_release;
3892
3893 if (swapcache) {
3894 /*
3895 * Make sure folio_free_swap() or swapoff did not release the
3896 * swapcache from under us. The page pin, and pte_same test
3897 * below, are not enough to exclude that. Even if it is still
3898 * swapcache, we need to check that the page's swap has not
3899 * changed.
3900 */
3901 if (unlikely(!folio_test_swapcache(folio) ||
3902 page_swap_entry(page).val != entry.val))
3903 goto out_page;
3904
3905 /*
3906 * KSM sometimes has to copy on read faults, for example, if
3907 * page->index of !PageKSM() pages would be nonlinear inside the
3908 * anon VMA -- PageKSM() is lost on actual swapout.
3909 */
3910 page = ksm_might_need_to_copy(page, vma, vmf->address);
3911 if (unlikely(!page)) {
3912 ret = VM_FAULT_OOM;
3913 goto out_page;
3914 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3915 ret = VM_FAULT_HWPOISON;
3916 goto out_page;
3917 }
3918 folio = page_folio(page);
3919
3920 /*
3921 * If we want to map a page that's in the swapcache writable, we
3922 * have to detect via the refcount if we're really the exclusive
3923 * owner. Try removing the extra reference from the local LRU
3924 * caches if required.
3925 */
3926 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3927 !folio_test_ksm(folio) && !folio_test_lru(folio))
3928 lru_add_drain();
3929 }
3930
3931 folio_throttle_swaprate(folio, GFP_KERNEL);
3932
3933 /*
3934 * Back out if somebody else already faulted in this pte.
3935 */
3936 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3937 &vmf->ptl);
3938 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3939 goto out_nomap;
3940
3941 if (unlikely(!folio_test_uptodate(folio))) {
3942 ret = VM_FAULT_SIGBUS;
3943 goto out_nomap;
3944 }
3945
3946 /*
3947 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3948 * must never point at an anonymous page in the swapcache that is
3949 * PG_anon_exclusive. Sanity check that this holds and especially, that
3950 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3951 * check after taking the PT lock and making sure that nobody
3952 * concurrently faulted in this page and set PG_anon_exclusive.
3953 */
3954 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3955 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3956
3957 /*
3958 * Check under PT lock (to protect against concurrent fork() sharing
3959 * the swap entry concurrently) for certainly exclusive pages.
3960 */
3961 if (!folio_test_ksm(folio)) {
3962 exclusive = pte_swp_exclusive(vmf->orig_pte);
3963 if (folio != swapcache) {
3964 /*
3965 * We have a fresh page that is not exposed to the
3966 * swapcache -> certainly exclusive.
3967 */
3968 exclusive = true;
3969 } else if (exclusive && folio_test_writeback(folio) &&
3970 data_race(si->flags & SWP_STABLE_WRITES)) {
3971 /*
3972 * This is tricky: not all swap backends support
3973 * concurrent page modifications while under writeback.
3974 *
3975 * So if we stumble over such a page in the swapcache
3976 * we must not set the page exclusive, otherwise we can
3977 * map it writable without further checks and modify it
3978 * while still under writeback.
3979 *
3980 * For these problematic swap backends, simply drop the
3981 * exclusive marker: this is perfectly fine as we start
3982 * writeback only if we fully unmapped the page and
3983 * there are no unexpected references on the page after
3984 * unmapping succeeded. After fully unmapped, no
3985 * further GUP references (FOLL_GET and FOLL_PIN) can
3986 * appear, so dropping the exclusive marker and mapping
3987 * it only R/O is fine.
3988 */
3989 exclusive = false;
3990 }
3991 }
3992
3993 /*
3994 * Some architectures may have to restore extra metadata to the page
3995 * when reading from swap. This metadata may be indexed by swap entry
3996 * so this must be called before swap_free().
3997 */
3998 arch_swap_restore(entry, folio);
3999
4000 /*
4001 * Remove the swap entry and conditionally try to free up the swapcache.
4002 * We're already holding a reference on the page but haven't mapped it
4003 * yet.
4004 */
4005 swap_free(entry);
4006 if (should_try_to_free_swap(folio, vma, vmf->flags))
4007 folio_free_swap(folio);
4008
4009 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4010 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4011 pte = mk_pte(page, vma->vm_page_prot);
4012
4013 /*
4014 * Same logic as in do_wp_page(); however, optimize for pages that are
4015 * certainly not shared either because we just allocated them without
4016 * exposing them to the swapcache or because the swap entry indicates
4017 * exclusivity.
4018 */
4019 if (!folio_test_ksm(folio) &&
4020 (exclusive || folio_ref_count(folio) == 1)) {
4021 if (vmf->flags & FAULT_FLAG_WRITE) {
4022 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4023 vmf->flags &= ~FAULT_FLAG_WRITE;
4024 }
4025 rmap_flags |= RMAP_EXCLUSIVE;
4026 }
4027 flush_icache_page(vma, page);
4028 if (pte_swp_soft_dirty(vmf->orig_pte))
4029 pte = pte_mksoft_dirty(pte);
4030 if (pte_swp_uffd_wp(vmf->orig_pte))
4031 pte = pte_mkuffd_wp(pte);
4032 vmf->orig_pte = pte;
4033
4034 /* ksm created a completely new copy */
4035 if (unlikely(folio != swapcache && swapcache)) {
4036 page_add_new_anon_rmap(page, vma, vmf->address);
4037 folio_add_lru_vma(folio, vma);
4038 } else {
4039 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4040 }
4041
4042 VM_BUG_ON(!folio_test_anon(folio) ||
4043 (pte_write(pte) && !PageAnonExclusive(page)));
4044 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4045 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4046
4047 folio_unlock(folio);
4048 if (folio != swapcache && swapcache) {
4049 /*
4050 * Hold the lock to avoid the swap entry to be reused
4051 * until we take the PT lock for the pte_same() check
4052 * (to avoid false positives from pte_same). For
4053 * further safety release the lock after the swap_free
4054 * so that the swap count won't change under a
4055 * parallel locked swapcache.
4056 */
4057 folio_unlock(swapcache);
4058 folio_put(swapcache);
4059 }
4060
4061 if (vmf->flags & FAULT_FLAG_WRITE) {
4062 ret |= do_wp_page(vmf);
4063 if (ret & VM_FAULT_ERROR)
4064 ret &= VM_FAULT_ERROR;
4065 goto out;
4066 }
4067
4068 /* No need to invalidate - it was non-present before */
4069 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4070 unlock:
4071 if (vmf->pte)
4072 pte_unmap_unlock(vmf->pte, vmf->ptl);
4073 out:
4074 /* Clear the swap cache pin for direct swapin after PTL unlock */
4075 if (need_clear_cache)
4076 swapcache_clear(si, entry);
4077 if (si)
4078 put_swap_device(si);
4079 return ret;
4080 out_nomap:
4081 if (vmf->pte)
4082 pte_unmap_unlock(vmf->pte, vmf->ptl);
4083 out_page:
4084 folio_unlock(folio);
4085 out_release:
4086 folio_put(folio);
4087 if (folio != swapcache && swapcache) {
4088 folio_unlock(swapcache);
4089 folio_put(swapcache);
4090 }
4091 if (need_clear_cache)
4092 swapcache_clear(si, entry);
4093 if (si)
4094 put_swap_device(si);
4095 return ret;
4096 }
4097
4098 /*
4099 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4100 * but allow concurrent faults), and pte mapped but not yet locked.
4101 * We return with mmap_lock still held, but pte unmapped and unlocked.
4102 */
do_anonymous_page(struct vm_fault * vmf)4103 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4104 {
4105 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4106 struct vm_area_struct *vma = vmf->vma;
4107 struct folio *folio;
4108 vm_fault_t ret = 0;
4109 pte_t entry;
4110
4111 /* File mapping without ->vm_ops ? */
4112 if (vma->vm_flags & VM_SHARED)
4113 return VM_FAULT_SIGBUS;
4114
4115 /*
4116 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4117 * be distinguished from a transient failure of pte_offset_map().
4118 */
4119 if (pte_alloc(vma->vm_mm, vmf->pmd))
4120 return VM_FAULT_OOM;
4121
4122 /* Use the zero-page for reads */
4123 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4124 !mm_forbids_zeropage(vma->vm_mm)) {
4125 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4126 vma->vm_page_prot));
4127 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4128 vmf->address, &vmf->ptl);
4129 if (!vmf->pte)
4130 goto unlock;
4131 if (vmf_pte_changed(vmf)) {
4132 update_mmu_tlb(vma, vmf->address, vmf->pte);
4133 goto unlock;
4134 }
4135 ret = check_stable_address_space(vma->vm_mm);
4136 if (ret)
4137 goto unlock;
4138 /* Deliver the page fault to userland, check inside PT lock */
4139 if (userfaultfd_missing(vma)) {
4140 pte_unmap_unlock(vmf->pte, vmf->ptl);
4141 return handle_userfault(vmf, VM_UFFD_MISSING);
4142 }
4143 goto setpte;
4144 }
4145
4146 /* Allocate our own private page. */
4147 if (unlikely(anon_vma_prepare(vma)))
4148 goto oom;
4149 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4150 if (!folio)
4151 goto oom;
4152
4153 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4154 goto oom_free_page;
4155 folio_throttle_swaprate(folio, GFP_KERNEL);
4156
4157 /*
4158 * The memory barrier inside __folio_mark_uptodate makes sure that
4159 * preceding stores to the page contents become visible before
4160 * the set_pte_at() write.
4161 */
4162 __folio_mark_uptodate(folio);
4163
4164 entry = mk_pte(&folio->page, vma->vm_page_prot);
4165 entry = pte_sw_mkyoung(entry);
4166 if (vma->vm_flags & VM_WRITE)
4167 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4168
4169 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4170 &vmf->ptl);
4171 if (!vmf->pte)
4172 goto release;
4173 if (vmf_pte_changed(vmf)) {
4174 update_mmu_tlb(vma, vmf->address, vmf->pte);
4175 goto release;
4176 }
4177
4178 ret = check_stable_address_space(vma->vm_mm);
4179 if (ret)
4180 goto release;
4181
4182 /* Deliver the page fault to userland, check inside PT lock */
4183 if (userfaultfd_missing(vma)) {
4184 pte_unmap_unlock(vmf->pte, vmf->ptl);
4185 folio_put(folio);
4186 return handle_userfault(vmf, VM_UFFD_MISSING);
4187 }
4188
4189 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4190 folio_add_new_anon_rmap(folio, vma, vmf->address);
4191 folio_add_lru_vma(folio, vma);
4192 setpte:
4193 if (uffd_wp)
4194 entry = pte_mkuffd_wp(entry);
4195 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4196
4197 /* No need to invalidate - it was non-present before */
4198 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4199 unlock:
4200 if (vmf->pte)
4201 pte_unmap_unlock(vmf->pte, vmf->ptl);
4202 return ret;
4203 release:
4204 folio_put(folio);
4205 goto unlock;
4206 oom_free_page:
4207 folio_put(folio);
4208 oom:
4209 return VM_FAULT_OOM;
4210 }
4211
4212 /*
4213 * The mmap_lock must have been held on entry, and may have been
4214 * released depending on flags and vma->vm_ops->fault() return value.
4215 * See filemap_fault() and __lock_page_retry().
4216 */
__do_fault(struct vm_fault * vmf)4217 static vm_fault_t __do_fault(struct vm_fault *vmf)
4218 {
4219 struct vm_area_struct *vma = vmf->vma;
4220 vm_fault_t ret;
4221
4222 /*
4223 * Preallocate pte before we take page_lock because this might lead to
4224 * deadlocks for memcg reclaim which waits for pages under writeback:
4225 * lock_page(A)
4226 * SetPageWriteback(A)
4227 * unlock_page(A)
4228 * lock_page(B)
4229 * lock_page(B)
4230 * pte_alloc_one
4231 * shrink_page_list
4232 * wait_on_page_writeback(A)
4233 * SetPageWriteback(B)
4234 * unlock_page(B)
4235 * # flush A, B to clear the writeback
4236 */
4237 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4238 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4239 if (!vmf->prealloc_pte)
4240 return VM_FAULT_OOM;
4241 }
4242
4243 ret = vma->vm_ops->fault(vmf);
4244 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4245 VM_FAULT_DONE_COW)))
4246 return ret;
4247
4248 if (unlikely(PageHWPoison(vmf->page))) {
4249 struct page *page = vmf->page;
4250 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4251 if (ret & VM_FAULT_LOCKED) {
4252 if (page_mapped(page))
4253 unmap_mapping_pages(page_mapping(page),
4254 page->index, 1, false);
4255 /* Retry if a clean page was removed from the cache. */
4256 if (invalidate_inode_page(page))
4257 poisonret = VM_FAULT_NOPAGE;
4258 unlock_page(page);
4259 }
4260 put_page(page);
4261 vmf->page = NULL;
4262 return poisonret;
4263 }
4264
4265 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4266 lock_page(vmf->page);
4267 else
4268 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4269
4270 return ret;
4271 }
4272
4273 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4274 static void deposit_prealloc_pte(struct vm_fault *vmf)
4275 {
4276 struct vm_area_struct *vma = vmf->vma;
4277
4278 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4279 /*
4280 * We are going to consume the prealloc table,
4281 * count that as nr_ptes.
4282 */
4283 mm_inc_nr_ptes(vma->vm_mm);
4284 vmf->prealloc_pte = NULL;
4285 }
4286
do_set_pmd(struct vm_fault * vmf,struct page * page)4287 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4288 {
4289 struct vm_area_struct *vma = vmf->vma;
4290 bool write = vmf->flags & FAULT_FLAG_WRITE;
4291 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4292 pmd_t entry;
4293 vm_fault_t ret = VM_FAULT_FALLBACK;
4294
4295 /*
4296 * It is too late to allocate a small folio, we already have a large
4297 * folio in the pagecache: especially s390 KVM cannot tolerate any
4298 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4299 * PMD mappings if THPs are disabled.
4300 */
4301 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4302 return ret;
4303
4304 if (!transhuge_vma_suitable(vma, haddr))
4305 return ret;
4306
4307 page = compound_head(page);
4308 if (compound_order(page) != HPAGE_PMD_ORDER)
4309 return ret;
4310
4311 /*
4312 * Just backoff if any subpage of a THP is corrupted otherwise
4313 * the corrupted page may mapped by PMD silently to escape the
4314 * check. This kind of THP just can be PTE mapped. Access to
4315 * the corrupted subpage should trigger SIGBUS as expected.
4316 */
4317 if (unlikely(PageHasHWPoisoned(page)))
4318 return ret;
4319
4320 /*
4321 * Archs like ppc64 need additional space to store information
4322 * related to pte entry. Use the preallocated table for that.
4323 */
4324 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4325 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4326 if (!vmf->prealloc_pte)
4327 return VM_FAULT_OOM;
4328 }
4329
4330 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4331 if (unlikely(!pmd_none(*vmf->pmd)))
4332 goto out;
4333
4334 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4335
4336 entry = mk_huge_pmd(page, vma->vm_page_prot);
4337 if (write)
4338 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4339
4340 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4341 page_add_file_rmap(page, vma, true);
4342
4343 /*
4344 * deposit and withdraw with pmd lock held
4345 */
4346 if (arch_needs_pgtable_deposit())
4347 deposit_prealloc_pte(vmf);
4348
4349 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4350
4351 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4352
4353 /* fault is handled */
4354 ret = 0;
4355 count_vm_event(THP_FILE_MAPPED);
4356 out:
4357 spin_unlock(vmf->ptl);
4358 return ret;
4359 }
4360 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4361 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4362 {
4363 return VM_FAULT_FALLBACK;
4364 }
4365 #endif
4366
4367 /**
4368 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4369 * @vmf: Fault decription.
4370 * @folio: The folio that contains @page.
4371 * @page: The first page to create a PTE for.
4372 * @nr: The number of PTEs to create.
4373 * @addr: The first address to create a PTE for.
4374 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)4375 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4376 struct page *page, unsigned int nr, unsigned long addr)
4377 {
4378 struct vm_area_struct *vma = vmf->vma;
4379 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4380 bool write = vmf->flags & FAULT_FLAG_WRITE;
4381 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4382 pte_t entry;
4383
4384 flush_icache_pages(vma, page, nr);
4385 entry = mk_pte(page, vma->vm_page_prot);
4386
4387 if (prefault && arch_wants_old_prefaulted_pte())
4388 entry = pte_mkold(entry);
4389 else
4390 entry = pte_sw_mkyoung(entry);
4391
4392 if (write)
4393 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4394 if (unlikely(uffd_wp))
4395 entry = pte_mkuffd_wp(entry);
4396 /* copy-on-write page */
4397 if (write && !(vma->vm_flags & VM_SHARED)) {
4398 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4399 VM_BUG_ON_FOLIO(nr != 1, folio);
4400 folio_add_new_anon_rmap(folio, vma, addr);
4401 folio_add_lru_vma(folio, vma);
4402 } else {
4403 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4404 folio_add_file_rmap_range(folio, page, nr, vma, false);
4405 }
4406 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4407
4408 /* no need to invalidate: a not-present page won't be cached */
4409 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4410 }
4411
vmf_pte_changed(struct vm_fault * vmf)4412 static bool vmf_pte_changed(struct vm_fault *vmf)
4413 {
4414 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4415 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4416
4417 return !pte_none(ptep_get(vmf->pte));
4418 }
4419
4420 /**
4421 * finish_fault - finish page fault once we have prepared the page to fault
4422 *
4423 * @vmf: structure describing the fault
4424 *
4425 * This function handles all that is needed to finish a page fault once the
4426 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4427 * given page, adds reverse page mapping, handles memcg charges and LRU
4428 * addition.
4429 *
4430 * The function expects the page to be locked and on success it consumes a
4431 * reference of a page being mapped (for the PTE which maps it).
4432 *
4433 * Return: %0 on success, %VM_FAULT_ code in case of error.
4434 */
finish_fault(struct vm_fault * vmf)4435 vm_fault_t finish_fault(struct vm_fault *vmf)
4436 {
4437 struct vm_area_struct *vma = vmf->vma;
4438 struct page *page;
4439 vm_fault_t ret;
4440
4441 /* Did we COW the page? */
4442 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4443 page = vmf->cow_page;
4444 else
4445 page = vmf->page;
4446
4447 /*
4448 * check even for read faults because we might have lost our CoWed
4449 * page
4450 */
4451 if (!(vma->vm_flags & VM_SHARED)) {
4452 ret = check_stable_address_space(vma->vm_mm);
4453 if (ret)
4454 return ret;
4455 }
4456
4457 if (pmd_none(*vmf->pmd)) {
4458 if (PageTransCompound(page)) {
4459 ret = do_set_pmd(vmf, page);
4460 if (ret != VM_FAULT_FALLBACK)
4461 return ret;
4462 }
4463
4464 if (vmf->prealloc_pte)
4465 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4466 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4467 return VM_FAULT_OOM;
4468 }
4469
4470 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4471 vmf->address, &vmf->ptl);
4472 if (!vmf->pte)
4473 return VM_FAULT_NOPAGE;
4474
4475 /* Re-check under ptl */
4476 if (likely(!vmf_pte_changed(vmf))) {
4477 struct folio *folio = page_folio(page);
4478
4479 set_pte_range(vmf, folio, page, 1, vmf->address);
4480 ret = 0;
4481 } else {
4482 update_mmu_tlb(vma, vmf->address, vmf->pte);
4483 ret = VM_FAULT_NOPAGE;
4484 }
4485
4486 pte_unmap_unlock(vmf->pte, vmf->ptl);
4487 return ret;
4488 }
4489
4490 static unsigned long fault_around_pages __read_mostly =
4491 65536 >> PAGE_SHIFT;
4492
4493 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4494 static int fault_around_bytes_get(void *data, u64 *val)
4495 {
4496 *val = fault_around_pages << PAGE_SHIFT;
4497 return 0;
4498 }
4499
4500 /*
4501 * fault_around_bytes must be rounded down to the nearest page order as it's
4502 * what do_fault_around() expects to see.
4503 */
fault_around_bytes_set(void * data,u64 val)4504 static int fault_around_bytes_set(void *data, u64 val)
4505 {
4506 if (val / PAGE_SIZE > PTRS_PER_PTE)
4507 return -EINVAL;
4508
4509 /*
4510 * The minimum value is 1 page, however this results in no fault-around
4511 * at all. See should_fault_around().
4512 */
4513 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4514
4515 return 0;
4516 }
4517 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4518 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4519
fault_around_debugfs(void)4520 static int __init fault_around_debugfs(void)
4521 {
4522 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4523 &fault_around_bytes_fops);
4524 return 0;
4525 }
4526 late_initcall(fault_around_debugfs);
4527 #endif
4528
4529 /*
4530 * do_fault_around() tries to map few pages around the fault address. The hope
4531 * is that the pages will be needed soon and this will lower the number of
4532 * faults to handle.
4533 *
4534 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4535 * not ready to be mapped: not up-to-date, locked, etc.
4536 *
4537 * This function doesn't cross VMA or page table boundaries, in order to call
4538 * map_pages() and acquire a PTE lock only once.
4539 *
4540 * fault_around_pages defines how many pages we'll try to map.
4541 * do_fault_around() expects it to be set to a power of two less than or equal
4542 * to PTRS_PER_PTE.
4543 *
4544 * The virtual address of the area that we map is naturally aligned to
4545 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4546 * (and therefore to page order). This way it's easier to guarantee
4547 * that we don't cross page table boundaries.
4548 */
do_fault_around(struct vm_fault * vmf)4549 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4550 {
4551 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4552 pgoff_t pte_off = pte_index(vmf->address);
4553 /* The page offset of vmf->address within the VMA. */
4554 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4555 pgoff_t from_pte, to_pte;
4556 vm_fault_t ret;
4557
4558 /* The PTE offset of the start address, clamped to the VMA. */
4559 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4560 pte_off - min(pte_off, vma_off));
4561
4562 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4563 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4564 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4565
4566 if (pmd_none(*vmf->pmd)) {
4567 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4568 if (!vmf->prealloc_pte)
4569 return VM_FAULT_OOM;
4570 }
4571
4572 rcu_read_lock();
4573 ret = vmf->vma->vm_ops->map_pages(vmf,
4574 vmf->pgoff + from_pte - pte_off,
4575 vmf->pgoff + to_pte - pte_off);
4576 rcu_read_unlock();
4577
4578 return ret;
4579 }
4580
4581 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4582 static inline bool should_fault_around(struct vm_fault *vmf)
4583 {
4584 /* No ->map_pages? No way to fault around... */
4585 if (!vmf->vma->vm_ops->map_pages)
4586 return false;
4587
4588 if (uffd_disable_fault_around(vmf->vma))
4589 return false;
4590
4591 /* A single page implies no faulting 'around' at all. */
4592 return fault_around_pages > 1;
4593 }
4594
do_read_fault(struct vm_fault * vmf)4595 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4596 {
4597 vm_fault_t ret = 0;
4598 struct folio *folio;
4599
4600 /*
4601 * Let's call ->map_pages() first and use ->fault() as fallback
4602 * if page by the offset is not ready to be mapped (cold cache or
4603 * something).
4604 */
4605 if (should_fault_around(vmf)) {
4606 ret = do_fault_around(vmf);
4607 if (ret)
4608 return ret;
4609 }
4610
4611 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4612 vma_end_read(vmf->vma);
4613 return VM_FAULT_RETRY;
4614 }
4615
4616 ret = __do_fault(vmf);
4617 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4618 return ret;
4619
4620 ret |= finish_fault(vmf);
4621 folio = page_folio(vmf->page);
4622 folio_unlock(folio);
4623 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4624 folio_put(folio);
4625 return ret;
4626 }
4627
do_cow_fault(struct vm_fault * vmf)4628 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4629 {
4630 struct vm_area_struct *vma = vmf->vma;
4631 vm_fault_t ret;
4632
4633 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4634 vma_end_read(vma);
4635 return VM_FAULT_RETRY;
4636 }
4637
4638 if (unlikely(anon_vma_prepare(vma)))
4639 return VM_FAULT_OOM;
4640
4641 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4642 if (!vmf->cow_page)
4643 return VM_FAULT_OOM;
4644
4645 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4646 GFP_KERNEL)) {
4647 put_page(vmf->cow_page);
4648 return VM_FAULT_OOM;
4649 }
4650 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4651
4652 ret = __do_fault(vmf);
4653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4654 goto uncharge_out;
4655 if (ret & VM_FAULT_DONE_COW)
4656 return ret;
4657
4658 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4659 __SetPageUptodate(vmf->cow_page);
4660
4661 ret |= finish_fault(vmf);
4662 unlock_page(vmf->page);
4663 put_page(vmf->page);
4664 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4665 goto uncharge_out;
4666 return ret;
4667 uncharge_out:
4668 put_page(vmf->cow_page);
4669 return ret;
4670 }
4671
do_shared_fault(struct vm_fault * vmf)4672 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4673 {
4674 struct vm_area_struct *vma = vmf->vma;
4675 vm_fault_t ret, tmp;
4676 struct folio *folio;
4677
4678 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4679 vma_end_read(vma);
4680 return VM_FAULT_RETRY;
4681 }
4682
4683 ret = __do_fault(vmf);
4684 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4685 return ret;
4686
4687 folio = page_folio(vmf->page);
4688
4689 /*
4690 * Check if the backing address space wants to know that the page is
4691 * about to become writable
4692 */
4693 if (vma->vm_ops->page_mkwrite) {
4694 folio_unlock(folio);
4695 tmp = do_page_mkwrite(vmf, folio);
4696 if (unlikely(!tmp ||
4697 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4698 folio_put(folio);
4699 return tmp;
4700 }
4701 }
4702
4703 ret |= finish_fault(vmf);
4704 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4705 VM_FAULT_RETRY))) {
4706 folio_unlock(folio);
4707 folio_put(folio);
4708 return ret;
4709 }
4710
4711 ret |= fault_dirty_shared_page(vmf);
4712 return ret;
4713 }
4714
4715 /*
4716 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4717 * but allow concurrent faults).
4718 * The mmap_lock may have been released depending on flags and our
4719 * return value. See filemap_fault() and __folio_lock_or_retry().
4720 * If mmap_lock is released, vma may become invalid (for example
4721 * by other thread calling munmap()).
4722 */
do_fault(struct vm_fault * vmf)4723 static vm_fault_t do_fault(struct vm_fault *vmf)
4724 {
4725 struct vm_area_struct *vma = vmf->vma;
4726 struct mm_struct *vm_mm = vma->vm_mm;
4727 vm_fault_t ret;
4728
4729 /*
4730 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4731 */
4732 if (!vma->vm_ops->fault) {
4733 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4734 vmf->address, &vmf->ptl);
4735 if (unlikely(!vmf->pte))
4736 ret = VM_FAULT_SIGBUS;
4737 else {
4738 /*
4739 * Make sure this is not a temporary clearing of pte
4740 * by holding ptl and checking again. A R/M/W update
4741 * of pte involves: take ptl, clearing the pte so that
4742 * we don't have concurrent modification by hardware
4743 * followed by an update.
4744 */
4745 if (unlikely(pte_none(ptep_get(vmf->pte))))
4746 ret = VM_FAULT_SIGBUS;
4747 else
4748 ret = VM_FAULT_NOPAGE;
4749
4750 pte_unmap_unlock(vmf->pte, vmf->ptl);
4751 }
4752 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4753 ret = do_read_fault(vmf);
4754 else if (!(vma->vm_flags & VM_SHARED))
4755 ret = do_cow_fault(vmf);
4756 else
4757 ret = do_shared_fault(vmf);
4758
4759 /* preallocated pagetable is unused: free it */
4760 if (vmf->prealloc_pte) {
4761 pte_free(vm_mm, vmf->prealloc_pte);
4762 vmf->prealloc_pte = NULL;
4763 }
4764 return ret;
4765 }
4766
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4767 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4768 unsigned long addr, int page_nid, int *flags)
4769 {
4770 get_page(page);
4771
4772 /* Record the current PID acceesing VMA */
4773 vma_set_access_pid_bit(vma);
4774
4775 count_vm_numa_event(NUMA_HINT_FAULTS);
4776 if (page_nid == numa_node_id()) {
4777 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4778 *flags |= TNF_FAULT_LOCAL;
4779 }
4780
4781 return mpol_misplaced(page, vma, addr);
4782 }
4783
do_numa_page(struct vm_fault * vmf)4784 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4785 {
4786 struct vm_area_struct *vma = vmf->vma;
4787 struct page *page = NULL;
4788 int page_nid = NUMA_NO_NODE;
4789 bool writable = false;
4790 int last_cpupid;
4791 int target_nid;
4792 pte_t pte, old_pte;
4793 int flags = 0;
4794
4795 /*
4796 * The "pte" at this point cannot be used safely without
4797 * validation through pte_unmap_same(). It's of NUMA type but
4798 * the pfn may be screwed if the read is non atomic.
4799 */
4800 spin_lock(vmf->ptl);
4801 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4802 pte_unmap_unlock(vmf->pte, vmf->ptl);
4803 return 0;
4804 }
4805
4806 /* Get the normal PTE */
4807 old_pte = ptep_get(vmf->pte);
4808 pte = pte_modify(old_pte, vma->vm_page_prot);
4809
4810 /*
4811 * Detect now whether the PTE could be writable; this information
4812 * is only valid while holding the PT lock.
4813 */
4814 writable = pte_write(pte);
4815 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4816 can_change_pte_writable(vma, vmf->address, pte))
4817 writable = true;
4818
4819 page = vm_normal_page(vma, vmf->address, pte);
4820 if (!page || is_zone_device_page(page))
4821 goto out_map;
4822
4823 /* TODO: handle PTE-mapped THP */
4824 if (PageCompound(page))
4825 goto out_map;
4826
4827 /*
4828 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4829 * much anyway since they can be in shared cache state. This misses
4830 * the case where a mapping is writable but the process never writes
4831 * to it but pte_write gets cleared during protection updates and
4832 * pte_dirty has unpredictable behaviour between PTE scan updates,
4833 * background writeback, dirty balancing and application behaviour.
4834 */
4835 if (!writable)
4836 flags |= TNF_NO_GROUP;
4837
4838 /*
4839 * Flag if the page is shared between multiple address spaces. This
4840 * is later used when determining whether to group tasks together
4841 */
4842 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4843 flags |= TNF_SHARED;
4844
4845 page_nid = page_to_nid(page);
4846 /*
4847 * For memory tiering mode, cpupid of slow memory page is used
4848 * to record page access time. So use default value.
4849 */
4850 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4851 !node_is_toptier(page_nid))
4852 last_cpupid = (-1 & LAST_CPUPID_MASK);
4853 else
4854 last_cpupid = page_cpupid_last(page);
4855 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4856 &flags);
4857 if (target_nid == NUMA_NO_NODE) {
4858 put_page(page);
4859 goto out_map;
4860 }
4861 pte_unmap_unlock(vmf->pte, vmf->ptl);
4862 writable = false;
4863
4864 /* Migrate to the requested node */
4865 if (migrate_misplaced_page(page, vma, target_nid)) {
4866 page_nid = target_nid;
4867 flags |= TNF_MIGRATED;
4868 task_numa_fault(last_cpupid, page_nid, 1, flags);
4869 return 0;
4870 }
4871
4872 flags |= TNF_MIGRATE_FAIL;
4873 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4874 vmf->address, &vmf->ptl);
4875 if (unlikely(!vmf->pte))
4876 return 0;
4877 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4878 pte_unmap_unlock(vmf->pte, vmf->ptl);
4879 return 0;
4880 }
4881 out_map:
4882 /*
4883 * Make it present again, depending on how arch implements
4884 * non-accessible ptes, some can allow access by kernel mode.
4885 */
4886 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4887 pte = pte_modify(old_pte, vma->vm_page_prot);
4888 pte = pte_mkyoung(pte);
4889 if (writable)
4890 pte = pte_mkwrite(pte, vma);
4891 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4892 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4893 pte_unmap_unlock(vmf->pte, vmf->ptl);
4894
4895 if (page_nid != NUMA_NO_NODE)
4896 task_numa_fault(last_cpupid, page_nid, 1, flags);
4897 return 0;
4898 }
4899
create_huge_pmd(struct vm_fault * vmf)4900 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4901 {
4902 struct vm_area_struct *vma = vmf->vma;
4903 if (vma_is_anonymous(vma))
4904 return do_huge_pmd_anonymous_page(vmf);
4905 if (vma->vm_ops->huge_fault)
4906 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4907 return VM_FAULT_FALLBACK;
4908 }
4909
4910 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4911 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4912 {
4913 struct vm_area_struct *vma = vmf->vma;
4914 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4915 vm_fault_t ret;
4916
4917 if (vma_is_anonymous(vma)) {
4918 if (likely(!unshare) &&
4919 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4920 return handle_userfault(vmf, VM_UFFD_WP);
4921 return do_huge_pmd_wp_page(vmf);
4922 }
4923
4924 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4925 if (vma->vm_ops->huge_fault) {
4926 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4927 if (!(ret & VM_FAULT_FALLBACK))
4928 return ret;
4929 }
4930 }
4931
4932 /* COW or write-notify handled on pte level: split pmd. */
4933 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4934
4935 return VM_FAULT_FALLBACK;
4936 }
4937
create_huge_pud(struct vm_fault * vmf)4938 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4939 {
4940 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4941 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4942 struct vm_area_struct *vma = vmf->vma;
4943 /* No support for anonymous transparent PUD pages yet */
4944 if (vma_is_anonymous(vma))
4945 return VM_FAULT_FALLBACK;
4946 if (vma->vm_ops->huge_fault)
4947 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4949 return VM_FAULT_FALLBACK;
4950 }
4951
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4952 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4953 {
4954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4955 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4956 struct vm_area_struct *vma = vmf->vma;
4957 vm_fault_t ret;
4958
4959 /* No support for anonymous transparent PUD pages yet */
4960 if (vma_is_anonymous(vma))
4961 goto split;
4962 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4963 if (vma->vm_ops->huge_fault) {
4964 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4965 if (!(ret & VM_FAULT_FALLBACK))
4966 return ret;
4967 }
4968 }
4969 split:
4970 /* COW or write-notify not handled on PUD level: split pud.*/
4971 __split_huge_pud(vma, vmf->pud, vmf->address);
4972 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4973 return VM_FAULT_FALLBACK;
4974 }
4975
4976 /*
4977 * These routines also need to handle stuff like marking pages dirty
4978 * and/or accessed for architectures that don't do it in hardware (most
4979 * RISC architectures). The early dirtying is also good on the i386.
4980 *
4981 * There is also a hook called "update_mmu_cache()" that architectures
4982 * with external mmu caches can use to update those (ie the Sparc or
4983 * PowerPC hashed page tables that act as extended TLBs).
4984 *
4985 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4986 * concurrent faults).
4987 *
4988 * The mmap_lock may have been released depending on flags and our return value.
4989 * See filemap_fault() and __folio_lock_or_retry().
4990 */
handle_pte_fault(struct vm_fault * vmf)4991 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4992 {
4993 pte_t entry;
4994
4995 if (unlikely(pmd_none(*vmf->pmd))) {
4996 /*
4997 * Leave __pte_alloc() until later: because vm_ops->fault may
4998 * want to allocate huge page, and if we expose page table
4999 * for an instant, it will be difficult to retract from
5000 * concurrent faults and from rmap lookups.
5001 */
5002 vmf->pte = NULL;
5003 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5004 } else {
5005 /*
5006 * A regular pmd is established and it can't morph into a huge
5007 * pmd by anon khugepaged, since that takes mmap_lock in write
5008 * mode; but shmem or file collapse to THP could still morph
5009 * it into a huge pmd: just retry later if so.
5010 */
5011 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5012 vmf->address, &vmf->ptl);
5013 if (unlikely(!vmf->pte))
5014 return 0;
5015 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5016 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5017
5018 if (pte_none(vmf->orig_pte)) {
5019 pte_unmap(vmf->pte);
5020 vmf->pte = NULL;
5021 }
5022 }
5023
5024 if (!vmf->pte)
5025 return do_pte_missing(vmf);
5026
5027 if (!pte_present(vmf->orig_pte))
5028 return do_swap_page(vmf);
5029
5030 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5031 return do_numa_page(vmf);
5032
5033 spin_lock(vmf->ptl);
5034 entry = vmf->orig_pte;
5035 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5036 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5037 goto unlock;
5038 }
5039 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5040 if (!pte_write(entry))
5041 return do_wp_page(vmf);
5042 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5043 entry = pte_mkdirty(entry);
5044 }
5045 entry = pte_mkyoung(entry);
5046 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5047 vmf->flags & FAULT_FLAG_WRITE)) {
5048 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5049 vmf->pte, 1);
5050 } else {
5051 /* Skip spurious TLB flush for retried page fault */
5052 if (vmf->flags & FAULT_FLAG_TRIED)
5053 goto unlock;
5054 /*
5055 * This is needed only for protection faults but the arch code
5056 * is not yet telling us if this is a protection fault or not.
5057 * This still avoids useless tlb flushes for .text page faults
5058 * with threads.
5059 */
5060 if (vmf->flags & FAULT_FLAG_WRITE)
5061 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5062 vmf->pte);
5063 }
5064 unlock:
5065 pte_unmap_unlock(vmf->pte, vmf->ptl);
5066 return 0;
5067 }
5068
5069 /*
5070 * On entry, we hold either the VMA lock or the mmap_lock
5071 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5072 * the result, the mmap_lock is not held on exit. See filemap_fault()
5073 * and __folio_lock_or_retry().
5074 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5075 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5076 unsigned long address, unsigned int flags)
5077 {
5078 struct vm_fault vmf = {
5079 .vma = vma,
5080 .address = address & PAGE_MASK,
5081 .real_address = address,
5082 .flags = flags,
5083 .pgoff = linear_page_index(vma, address),
5084 .gfp_mask = __get_fault_gfp_mask(vma),
5085 };
5086 struct mm_struct *mm = vma->vm_mm;
5087 unsigned long vm_flags = vma->vm_flags;
5088 pgd_t *pgd;
5089 p4d_t *p4d;
5090 vm_fault_t ret;
5091
5092 pgd = pgd_offset(mm, address);
5093 p4d = p4d_alloc(mm, pgd, address);
5094 if (!p4d)
5095 return VM_FAULT_OOM;
5096
5097 vmf.pud = pud_alloc(mm, p4d, address);
5098 if (!vmf.pud)
5099 return VM_FAULT_OOM;
5100 retry_pud:
5101 if (pud_none(*vmf.pud) &&
5102 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5103 ret = create_huge_pud(&vmf);
5104 if (!(ret & VM_FAULT_FALLBACK))
5105 return ret;
5106 } else {
5107 pud_t orig_pud = *vmf.pud;
5108
5109 barrier();
5110 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5111
5112 /*
5113 * TODO once we support anonymous PUDs: NUMA case and
5114 * FAULT_FLAG_UNSHARE handling.
5115 */
5116 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5117 ret = wp_huge_pud(&vmf, orig_pud);
5118 if (!(ret & VM_FAULT_FALLBACK))
5119 return ret;
5120 } else {
5121 huge_pud_set_accessed(&vmf, orig_pud);
5122 return 0;
5123 }
5124 }
5125 }
5126
5127 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5128 if (!vmf.pmd)
5129 return VM_FAULT_OOM;
5130
5131 /* Huge pud page fault raced with pmd_alloc? */
5132 if (pud_trans_unstable(vmf.pud))
5133 goto retry_pud;
5134
5135 if (pmd_none(*vmf.pmd) &&
5136 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5137 ret = create_huge_pmd(&vmf);
5138 if (!(ret & VM_FAULT_FALLBACK))
5139 return ret;
5140 } else {
5141 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5142
5143 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5144 VM_BUG_ON(thp_migration_supported() &&
5145 !is_pmd_migration_entry(vmf.orig_pmd));
5146 if (is_pmd_migration_entry(vmf.orig_pmd))
5147 pmd_migration_entry_wait(mm, vmf.pmd);
5148 return 0;
5149 }
5150 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5151 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5152 return do_huge_pmd_numa_page(&vmf);
5153
5154 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5155 !pmd_write(vmf.orig_pmd)) {
5156 ret = wp_huge_pmd(&vmf);
5157 if (!(ret & VM_FAULT_FALLBACK))
5158 return ret;
5159 } else {
5160 huge_pmd_set_accessed(&vmf);
5161 return 0;
5162 }
5163 }
5164 }
5165
5166 return handle_pte_fault(&vmf);
5167 }
5168
5169 /**
5170 * mm_account_fault - Do page fault accounting
5171 * @mm: mm from which memcg should be extracted. It can be NULL.
5172 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5173 * of perf event counters, but we'll still do the per-task accounting to
5174 * the task who triggered this page fault.
5175 * @address: the faulted address.
5176 * @flags: the fault flags.
5177 * @ret: the fault retcode.
5178 *
5179 * This will take care of most of the page fault accounting. Meanwhile, it
5180 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5181 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5182 * still be in per-arch page fault handlers at the entry of page fault.
5183 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5184 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5185 unsigned long address, unsigned int flags,
5186 vm_fault_t ret)
5187 {
5188 bool major;
5189
5190 /* Incomplete faults will be accounted upon completion. */
5191 if (ret & VM_FAULT_RETRY)
5192 return;
5193
5194 /*
5195 * To preserve the behavior of older kernels, PGFAULT counters record
5196 * both successful and failed faults, as opposed to perf counters,
5197 * which ignore failed cases.
5198 */
5199 count_vm_event(PGFAULT);
5200 count_memcg_event_mm(mm, PGFAULT);
5201
5202 /*
5203 * Do not account for unsuccessful faults (e.g. when the address wasn't
5204 * valid). That includes arch_vma_access_permitted() failing before
5205 * reaching here. So this is not a "this many hardware page faults"
5206 * counter. We should use the hw profiling for that.
5207 */
5208 if (ret & VM_FAULT_ERROR)
5209 return;
5210
5211 /*
5212 * We define the fault as a major fault when the final successful fault
5213 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5214 * handle it immediately previously).
5215 */
5216 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5217
5218 if (major)
5219 current->maj_flt++;
5220 else
5221 current->min_flt++;
5222
5223 /*
5224 * If the fault is done for GUP, regs will be NULL. We only do the
5225 * accounting for the per thread fault counters who triggered the
5226 * fault, and we skip the perf event updates.
5227 */
5228 if (!regs)
5229 return;
5230
5231 if (major)
5232 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5233 else
5234 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5235 }
5236
5237 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5238 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5239 {
5240 /* the LRU algorithm only applies to accesses with recency */
5241 current->in_lru_fault = vma_has_recency(vma);
5242 }
5243
lru_gen_exit_fault(void)5244 static void lru_gen_exit_fault(void)
5245 {
5246 current->in_lru_fault = false;
5247 }
5248 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5249 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5250 {
5251 }
5252
lru_gen_exit_fault(void)5253 static void lru_gen_exit_fault(void)
5254 {
5255 }
5256 #endif /* CONFIG_LRU_GEN */
5257
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)5258 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5259 unsigned int *flags)
5260 {
5261 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5262 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5263 return VM_FAULT_SIGSEGV;
5264 /*
5265 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5266 * just treat it like an ordinary read-fault otherwise.
5267 */
5268 if (!is_cow_mapping(vma->vm_flags))
5269 *flags &= ~FAULT_FLAG_UNSHARE;
5270 } else if (*flags & FAULT_FLAG_WRITE) {
5271 /* Write faults on read-only mappings are impossible ... */
5272 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5273 return VM_FAULT_SIGSEGV;
5274 /* ... and FOLL_FORCE only applies to COW mappings. */
5275 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5276 !is_cow_mapping(vma->vm_flags)))
5277 return VM_FAULT_SIGSEGV;
5278 }
5279 #ifdef CONFIG_PER_VMA_LOCK
5280 /*
5281 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5282 * the assumption that lock is dropped on VM_FAULT_RETRY.
5283 */
5284 if (WARN_ON_ONCE((*flags &
5285 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5286 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5287 return VM_FAULT_SIGSEGV;
5288 #endif
5289
5290 return 0;
5291 }
5292
5293 /*
5294 * By the time we get here, we already hold the mm semaphore
5295 *
5296 * The mmap_lock may have been released depending on flags and our
5297 * return value. See filemap_fault() and __folio_lock_or_retry().
5298 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5299 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5300 unsigned int flags, struct pt_regs *regs)
5301 {
5302 /* If the fault handler drops the mmap_lock, vma may be freed */
5303 struct mm_struct *mm = vma->vm_mm;
5304 vm_fault_t ret;
5305
5306 __set_current_state(TASK_RUNNING);
5307
5308 ret = sanitize_fault_flags(vma, &flags);
5309 if (ret)
5310 goto out;
5311
5312 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5313 flags & FAULT_FLAG_INSTRUCTION,
5314 flags & FAULT_FLAG_REMOTE)) {
5315 ret = VM_FAULT_SIGSEGV;
5316 goto out;
5317 }
5318
5319 /*
5320 * Enable the memcg OOM handling for faults triggered in user
5321 * space. Kernel faults are handled more gracefully.
5322 */
5323 if (flags & FAULT_FLAG_USER)
5324 mem_cgroup_enter_user_fault();
5325
5326 lru_gen_enter_fault(vma);
5327
5328 if (unlikely(is_vm_hugetlb_page(vma)))
5329 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5330 else
5331 ret = __handle_mm_fault(vma, address, flags);
5332
5333 lru_gen_exit_fault();
5334
5335 if (flags & FAULT_FLAG_USER) {
5336 mem_cgroup_exit_user_fault();
5337 /*
5338 * The task may have entered a memcg OOM situation but
5339 * if the allocation error was handled gracefully (no
5340 * VM_FAULT_OOM), there is no need to kill anything.
5341 * Just clean up the OOM state peacefully.
5342 */
5343 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5344 mem_cgroup_oom_synchronize(false);
5345 }
5346 out:
5347 mm_account_fault(mm, regs, address, flags, ret);
5348
5349 return ret;
5350 }
5351 EXPORT_SYMBOL_GPL(handle_mm_fault);
5352
5353 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5354 #include <linux/extable.h>
5355
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5356 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5357 {
5358 if (likely(mmap_read_trylock(mm)))
5359 return true;
5360
5361 if (regs && !user_mode(regs)) {
5362 unsigned long ip = exception_ip(regs);
5363 if (!search_exception_tables(ip))
5364 return false;
5365 }
5366
5367 return !mmap_read_lock_killable(mm);
5368 }
5369
mmap_upgrade_trylock(struct mm_struct * mm)5370 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5371 {
5372 /*
5373 * We don't have this operation yet.
5374 *
5375 * It should be easy enough to do: it's basically a
5376 * atomic_long_try_cmpxchg_acquire()
5377 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5378 * it also needs the proper lockdep magic etc.
5379 */
5380 return false;
5381 }
5382
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5383 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5384 {
5385 mmap_read_unlock(mm);
5386 if (regs && !user_mode(regs)) {
5387 unsigned long ip = exception_ip(regs);
5388 if (!search_exception_tables(ip))
5389 return false;
5390 }
5391 return !mmap_write_lock_killable(mm);
5392 }
5393
5394 /*
5395 * Helper for page fault handling.
5396 *
5397 * This is kind of equivalend to "mmap_read_lock()" followed
5398 * by "find_extend_vma()", except it's a lot more careful about
5399 * the locking (and will drop the lock on failure).
5400 *
5401 * For example, if we have a kernel bug that causes a page
5402 * fault, we don't want to just use mmap_read_lock() to get
5403 * the mm lock, because that would deadlock if the bug were
5404 * to happen while we're holding the mm lock for writing.
5405 *
5406 * So this checks the exception tables on kernel faults in
5407 * order to only do this all for instructions that are actually
5408 * expected to fault.
5409 *
5410 * We can also actually take the mm lock for writing if we
5411 * need to extend the vma, which helps the VM layer a lot.
5412 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)5413 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5414 unsigned long addr, struct pt_regs *regs)
5415 {
5416 struct vm_area_struct *vma;
5417
5418 if (!get_mmap_lock_carefully(mm, regs))
5419 return NULL;
5420
5421 vma = find_vma(mm, addr);
5422 if (likely(vma && (vma->vm_start <= addr)))
5423 return vma;
5424
5425 /*
5426 * Well, dang. We might still be successful, but only
5427 * if we can extend a vma to do so.
5428 */
5429 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5430 mmap_read_unlock(mm);
5431 return NULL;
5432 }
5433
5434 /*
5435 * We can try to upgrade the mmap lock atomically,
5436 * in which case we can continue to use the vma
5437 * we already looked up.
5438 *
5439 * Otherwise we'll have to drop the mmap lock and
5440 * re-take it, and also look up the vma again,
5441 * re-checking it.
5442 */
5443 if (!mmap_upgrade_trylock(mm)) {
5444 if (!upgrade_mmap_lock_carefully(mm, regs))
5445 return NULL;
5446
5447 vma = find_vma(mm, addr);
5448 if (!vma)
5449 goto fail;
5450 if (vma->vm_start <= addr)
5451 goto success;
5452 if (!(vma->vm_flags & VM_GROWSDOWN))
5453 goto fail;
5454 }
5455
5456 if (expand_stack_locked(vma, addr))
5457 goto fail;
5458
5459 success:
5460 mmap_write_downgrade(mm);
5461 return vma;
5462
5463 fail:
5464 mmap_write_unlock(mm);
5465 return NULL;
5466 }
5467 #endif
5468
5469 #ifdef CONFIG_PER_VMA_LOCK
5470 /*
5471 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5472 * stable and not isolated. If the VMA is not found or is being modified the
5473 * function returns NULL.
5474 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)5475 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5476 unsigned long address)
5477 {
5478 MA_STATE(mas, &mm->mm_mt, address, address);
5479 struct vm_area_struct *vma;
5480
5481 rcu_read_lock();
5482 retry:
5483 vma = mas_walk(&mas);
5484 if (!vma)
5485 goto inval;
5486
5487 if (!vma_start_read(vma))
5488 goto inval;
5489
5490 /*
5491 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5492 * This check must happen after vma_start_read(); otherwise, a
5493 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5494 * from its anon_vma.
5495 */
5496 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5497 goto inval_end_read;
5498
5499 /* Check since vm_start/vm_end might change before we lock the VMA */
5500 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5501 goto inval_end_read;
5502
5503 /* Check if the VMA got isolated after we found it */
5504 if (vma->detached) {
5505 vma_end_read(vma);
5506 count_vm_vma_lock_event(VMA_LOCK_MISS);
5507 /* The area was replaced with another one */
5508 goto retry;
5509 }
5510
5511 rcu_read_unlock();
5512 return vma;
5513
5514 inval_end_read:
5515 vma_end_read(vma);
5516 inval:
5517 rcu_read_unlock();
5518 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5519 return NULL;
5520 }
5521 #endif /* CONFIG_PER_VMA_LOCK */
5522
5523 #ifndef __PAGETABLE_P4D_FOLDED
5524 /*
5525 * Allocate p4d page table.
5526 * We've already handled the fast-path in-line.
5527 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5528 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5529 {
5530 p4d_t *new = p4d_alloc_one(mm, address);
5531 if (!new)
5532 return -ENOMEM;
5533
5534 spin_lock(&mm->page_table_lock);
5535 if (pgd_present(*pgd)) { /* Another has populated it */
5536 p4d_free(mm, new);
5537 } else {
5538 smp_wmb(); /* See comment in pmd_install() */
5539 pgd_populate(mm, pgd, new);
5540 }
5541 spin_unlock(&mm->page_table_lock);
5542 return 0;
5543 }
5544 #endif /* __PAGETABLE_P4D_FOLDED */
5545
5546 #ifndef __PAGETABLE_PUD_FOLDED
5547 /*
5548 * Allocate page upper directory.
5549 * We've already handled the fast-path in-line.
5550 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5551 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5552 {
5553 pud_t *new = pud_alloc_one(mm, address);
5554 if (!new)
5555 return -ENOMEM;
5556
5557 spin_lock(&mm->page_table_lock);
5558 if (!p4d_present(*p4d)) {
5559 mm_inc_nr_puds(mm);
5560 smp_wmb(); /* See comment in pmd_install() */
5561 p4d_populate(mm, p4d, new);
5562 } else /* Another has populated it */
5563 pud_free(mm, new);
5564 spin_unlock(&mm->page_table_lock);
5565 return 0;
5566 }
5567 #endif /* __PAGETABLE_PUD_FOLDED */
5568
5569 #ifndef __PAGETABLE_PMD_FOLDED
5570 /*
5571 * Allocate page middle directory.
5572 * We've already handled the fast-path in-line.
5573 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5574 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5575 {
5576 spinlock_t *ptl;
5577 pmd_t *new = pmd_alloc_one(mm, address);
5578 if (!new)
5579 return -ENOMEM;
5580
5581 ptl = pud_lock(mm, pud);
5582 if (!pud_present(*pud)) {
5583 mm_inc_nr_pmds(mm);
5584 smp_wmb(); /* See comment in pmd_install() */
5585 pud_populate(mm, pud, new);
5586 } else { /* Another has populated it */
5587 pmd_free(mm, new);
5588 }
5589 spin_unlock(ptl);
5590 return 0;
5591 }
5592 #endif /* __PAGETABLE_PMD_FOLDED */
5593
5594 /**
5595 * follow_pte - look up PTE at a user virtual address
5596 * @mm: the mm_struct of the target address space
5597 * @address: user virtual address
5598 * @ptepp: location to store found PTE
5599 * @ptlp: location to store the lock for the PTE
5600 *
5601 * On a successful return, the pointer to the PTE is stored in @ptepp;
5602 * the corresponding lock is taken and its location is stored in @ptlp.
5603 * The contents of the PTE are only stable until @ptlp is released;
5604 * any further use, if any, must be protected against invalidation
5605 * with MMU notifiers.
5606 *
5607 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5608 * should be taken for read.
5609 *
5610 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5611 * it is not a good general-purpose API.
5612 *
5613 * Return: zero on success, -ve otherwise.
5614 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5615 int follow_pte(struct mm_struct *mm, unsigned long address,
5616 pte_t **ptepp, spinlock_t **ptlp)
5617 {
5618 pgd_t *pgd;
5619 p4d_t *p4d;
5620 pud_t *pud;
5621 pmd_t *pmd;
5622 pte_t *ptep;
5623
5624 pgd = pgd_offset(mm, address);
5625 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5626 goto out;
5627
5628 p4d = p4d_offset(pgd, address);
5629 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5630 goto out;
5631
5632 pud = pud_offset(p4d, address);
5633 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5634 goto out;
5635
5636 pmd = pmd_offset(pud, address);
5637 VM_BUG_ON(pmd_trans_huge(*pmd));
5638
5639 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5640 if (!ptep)
5641 goto out;
5642 if (!pte_present(ptep_get(ptep)))
5643 goto unlock;
5644 *ptepp = ptep;
5645 return 0;
5646 unlock:
5647 pte_unmap_unlock(ptep, *ptlp);
5648 out:
5649 return -EINVAL;
5650 }
5651 EXPORT_SYMBOL_GPL(follow_pte);
5652
5653 /**
5654 * follow_pfn - look up PFN at a user virtual address
5655 * @vma: memory mapping
5656 * @address: user virtual address
5657 * @pfn: location to store found PFN
5658 *
5659 * Only IO mappings and raw PFN mappings are allowed.
5660 *
5661 * This function does not allow the caller to read the permissions
5662 * of the PTE. Do not use it.
5663 *
5664 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5665 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5666 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5667 unsigned long *pfn)
5668 {
5669 int ret = -EINVAL;
5670 spinlock_t *ptl;
5671 pte_t *ptep;
5672
5673 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5674 return ret;
5675
5676 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5677 if (ret)
5678 return ret;
5679 *pfn = pte_pfn(ptep_get(ptep));
5680 pte_unmap_unlock(ptep, ptl);
5681 return 0;
5682 }
5683 EXPORT_SYMBOL(follow_pfn);
5684
5685 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5686 int follow_phys(struct vm_area_struct *vma,
5687 unsigned long address, unsigned int flags,
5688 unsigned long *prot, resource_size_t *phys)
5689 {
5690 int ret = -EINVAL;
5691 pte_t *ptep, pte;
5692 spinlock_t *ptl;
5693
5694 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5695 goto out;
5696
5697 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5698 goto out;
5699 pte = ptep_get(ptep);
5700
5701 /* Never return PFNs of anon folios in COW mappings. */
5702 if (vm_normal_folio(vma, address, pte))
5703 goto unlock;
5704
5705 if ((flags & FOLL_WRITE) && !pte_write(pte))
5706 goto unlock;
5707
5708 *prot = pgprot_val(pte_pgprot(pte));
5709 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5710
5711 ret = 0;
5712 unlock:
5713 pte_unmap_unlock(ptep, ptl);
5714 out:
5715 return ret;
5716 }
5717
5718 /**
5719 * generic_access_phys - generic implementation for iomem mmap access
5720 * @vma: the vma to access
5721 * @addr: userspace address, not relative offset within @vma
5722 * @buf: buffer to read/write
5723 * @len: length of transfer
5724 * @write: set to FOLL_WRITE when writing, otherwise reading
5725 *
5726 * This is a generic implementation for &vm_operations_struct.access for an
5727 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5728 * not page based.
5729 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5730 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5731 void *buf, int len, int write)
5732 {
5733 resource_size_t phys_addr;
5734 unsigned long prot = 0;
5735 void __iomem *maddr;
5736 pte_t *ptep, pte;
5737 spinlock_t *ptl;
5738 int offset = offset_in_page(addr);
5739 int ret = -EINVAL;
5740
5741 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5742 return -EINVAL;
5743
5744 retry:
5745 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5746 return -EINVAL;
5747 pte = ptep_get(ptep);
5748 pte_unmap_unlock(ptep, ptl);
5749
5750 prot = pgprot_val(pte_pgprot(pte));
5751 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5752
5753 if ((write & FOLL_WRITE) && !pte_write(pte))
5754 return -EINVAL;
5755
5756 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5757 if (!maddr)
5758 return -ENOMEM;
5759
5760 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5761 goto out_unmap;
5762
5763 if (!pte_same(pte, ptep_get(ptep))) {
5764 pte_unmap_unlock(ptep, ptl);
5765 iounmap(maddr);
5766
5767 goto retry;
5768 }
5769
5770 if (write)
5771 memcpy_toio(maddr + offset, buf, len);
5772 else
5773 memcpy_fromio(buf, maddr + offset, len);
5774 ret = len;
5775 pte_unmap_unlock(ptep, ptl);
5776 out_unmap:
5777 iounmap(maddr);
5778
5779 return ret;
5780 }
5781 EXPORT_SYMBOL_GPL(generic_access_phys);
5782 #endif
5783
5784 /*
5785 * Access another process' address space as given in mm.
5786 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5787 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5788 int len, unsigned int gup_flags)
5789 {
5790 void *old_buf = buf;
5791 int write = gup_flags & FOLL_WRITE;
5792
5793 if (mmap_read_lock_killable(mm))
5794 return 0;
5795
5796 /* Untag the address before looking up the VMA */
5797 addr = untagged_addr_remote(mm, addr);
5798
5799 /* Avoid triggering the temporary warning in __get_user_pages */
5800 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5801 return 0;
5802
5803 /* ignore errors, just check how much was successfully transferred */
5804 while (len) {
5805 int bytes, offset;
5806 void *maddr;
5807 struct vm_area_struct *vma = NULL;
5808 struct page *page = get_user_page_vma_remote(mm, addr,
5809 gup_flags, &vma);
5810
5811 if (IS_ERR_OR_NULL(page)) {
5812 /* We might need to expand the stack to access it */
5813 vma = vma_lookup(mm, addr);
5814 if (!vma) {
5815 vma = expand_stack(mm, addr);
5816
5817 /* mmap_lock was dropped on failure */
5818 if (!vma)
5819 return buf - old_buf;
5820
5821 /* Try again if stack expansion worked */
5822 continue;
5823 }
5824
5825
5826 /*
5827 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5828 * we can access using slightly different code.
5829 */
5830 bytes = 0;
5831 #ifdef CONFIG_HAVE_IOREMAP_PROT
5832 if (vma->vm_ops && vma->vm_ops->access)
5833 bytes = vma->vm_ops->access(vma, addr, buf,
5834 len, write);
5835 #endif
5836 if (bytes <= 0)
5837 break;
5838 } else {
5839 bytes = len;
5840 offset = addr & (PAGE_SIZE-1);
5841 if (bytes > PAGE_SIZE-offset)
5842 bytes = PAGE_SIZE-offset;
5843
5844 maddr = kmap(page);
5845 if (write) {
5846 copy_to_user_page(vma, page, addr,
5847 maddr + offset, buf, bytes);
5848 set_page_dirty_lock(page);
5849 } else {
5850 copy_from_user_page(vma, page, addr,
5851 buf, maddr + offset, bytes);
5852 }
5853 kunmap(page);
5854 put_page(page);
5855 }
5856 len -= bytes;
5857 buf += bytes;
5858 addr += bytes;
5859 }
5860 mmap_read_unlock(mm);
5861
5862 return buf - old_buf;
5863 }
5864
5865 /**
5866 * access_remote_vm - access another process' address space
5867 * @mm: the mm_struct of the target address space
5868 * @addr: start address to access
5869 * @buf: source or destination buffer
5870 * @len: number of bytes to transfer
5871 * @gup_flags: flags modifying lookup behaviour
5872 *
5873 * The caller must hold a reference on @mm.
5874 *
5875 * Return: number of bytes copied from source to destination.
5876 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5877 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5878 void *buf, int len, unsigned int gup_flags)
5879 {
5880 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5881 }
5882
5883 /*
5884 * Access another process' address space.
5885 * Source/target buffer must be kernel space,
5886 * Do not walk the page table directly, use get_user_pages
5887 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5888 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5889 void *buf, int len, unsigned int gup_flags)
5890 {
5891 struct mm_struct *mm;
5892 int ret;
5893
5894 mm = get_task_mm(tsk);
5895 if (!mm)
5896 return 0;
5897
5898 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5899
5900 mmput(mm);
5901
5902 return ret;
5903 }
5904 EXPORT_SYMBOL_GPL(access_process_vm);
5905
5906 /*
5907 * Print the name of a VMA.
5908 */
print_vma_addr(char * prefix,unsigned long ip)5909 void print_vma_addr(char *prefix, unsigned long ip)
5910 {
5911 struct mm_struct *mm = current->mm;
5912 struct vm_area_struct *vma;
5913
5914 /*
5915 * we might be running from an atomic context so we cannot sleep
5916 */
5917 if (!mmap_read_trylock(mm))
5918 return;
5919
5920 vma = find_vma(mm, ip);
5921 if (vma && vma->vm_file) {
5922 struct file *f = vma->vm_file;
5923 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5924 if (buf) {
5925 char *p;
5926
5927 p = file_path(f, buf, PAGE_SIZE);
5928 if (IS_ERR(p))
5929 p = "?";
5930 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5931 vma->vm_start,
5932 vma->vm_end - vma->vm_start);
5933 free_page((unsigned long)buf);
5934 }
5935 }
5936 mmap_read_unlock(mm);
5937 }
5938
5939 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5940 void __might_fault(const char *file, int line)
5941 {
5942 if (pagefault_disabled())
5943 return;
5944 __might_sleep(file, line);
5945 if (current->mm)
5946 might_lock_read(¤t->mm->mmap_lock);
5947 }
5948 EXPORT_SYMBOL(__might_fault);
5949 #endif
5950
5951 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5952 /*
5953 * Process all subpages of the specified huge page with the specified
5954 * operation. The target subpage will be processed last to keep its
5955 * cache lines hot.
5956 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5957 static inline int process_huge_page(
5958 unsigned long addr_hint, unsigned int pages_per_huge_page,
5959 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5960 void *arg)
5961 {
5962 int i, n, base, l, ret;
5963 unsigned long addr = addr_hint &
5964 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5965
5966 /* Process target subpage last to keep its cache lines hot */
5967 might_sleep();
5968 n = (addr_hint - addr) / PAGE_SIZE;
5969 if (2 * n <= pages_per_huge_page) {
5970 /* If target subpage in first half of huge page */
5971 base = 0;
5972 l = n;
5973 /* Process subpages at the end of huge page */
5974 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5975 cond_resched();
5976 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5977 if (ret)
5978 return ret;
5979 }
5980 } else {
5981 /* If target subpage in second half of huge page */
5982 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5983 l = pages_per_huge_page - n;
5984 /* Process subpages at the begin of huge page */
5985 for (i = 0; i < base; i++) {
5986 cond_resched();
5987 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5988 if (ret)
5989 return ret;
5990 }
5991 }
5992 /*
5993 * Process remaining subpages in left-right-left-right pattern
5994 * towards the target subpage
5995 */
5996 for (i = 0; i < l; i++) {
5997 int left_idx = base + i;
5998 int right_idx = base + 2 * l - 1 - i;
5999
6000 cond_resched();
6001 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6002 if (ret)
6003 return ret;
6004 cond_resched();
6005 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6006 if (ret)
6007 return ret;
6008 }
6009 return 0;
6010 }
6011
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)6012 static void clear_gigantic_page(struct page *page,
6013 unsigned long addr,
6014 unsigned int pages_per_huge_page)
6015 {
6016 int i;
6017 struct page *p;
6018
6019 might_sleep();
6020 for (i = 0; i < pages_per_huge_page; i++) {
6021 p = nth_page(page, i);
6022 cond_resched();
6023 clear_user_highpage(p, addr + i * PAGE_SIZE);
6024 }
6025 }
6026
clear_subpage(unsigned long addr,int idx,void * arg)6027 static int clear_subpage(unsigned long addr, int idx, void *arg)
6028 {
6029 struct page *page = arg;
6030
6031 clear_user_highpage(page + idx, addr);
6032 return 0;
6033 }
6034
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)6035 void clear_huge_page(struct page *page,
6036 unsigned long addr_hint, unsigned int pages_per_huge_page)
6037 {
6038 unsigned long addr = addr_hint &
6039 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6040
6041 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6042 clear_gigantic_page(page, addr, pages_per_huge_page);
6043 return;
6044 }
6045
6046 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6047 }
6048
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)6049 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6050 unsigned long addr,
6051 struct vm_area_struct *vma,
6052 unsigned int pages_per_huge_page)
6053 {
6054 int i;
6055 struct page *dst_page;
6056 struct page *src_page;
6057
6058 for (i = 0; i < pages_per_huge_page; i++) {
6059 dst_page = folio_page(dst, i);
6060 src_page = folio_page(src, i);
6061
6062 cond_resched();
6063 if (copy_mc_user_highpage(dst_page, src_page,
6064 addr + i*PAGE_SIZE, vma)) {
6065 memory_failure_queue(page_to_pfn(src_page), 0);
6066 return -EHWPOISON;
6067 }
6068 }
6069 return 0;
6070 }
6071
6072 struct copy_subpage_arg {
6073 struct page *dst;
6074 struct page *src;
6075 struct vm_area_struct *vma;
6076 };
6077
copy_subpage(unsigned long addr,int idx,void * arg)6078 static int copy_subpage(unsigned long addr, int idx, void *arg)
6079 {
6080 struct copy_subpage_arg *copy_arg = arg;
6081
6082 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6083 addr, copy_arg->vma)) {
6084 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6085 return -EHWPOISON;
6086 }
6087 return 0;
6088 }
6089
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6090 int copy_user_large_folio(struct folio *dst, struct folio *src,
6091 unsigned long addr_hint, struct vm_area_struct *vma)
6092 {
6093 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6094 unsigned long addr = addr_hint &
6095 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6096 struct copy_subpage_arg arg = {
6097 .dst = &dst->page,
6098 .src = &src->page,
6099 .vma = vma,
6100 };
6101
6102 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6103 return copy_user_gigantic_page(dst, src, addr, vma,
6104 pages_per_huge_page);
6105
6106 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6107 }
6108
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6109 long copy_folio_from_user(struct folio *dst_folio,
6110 const void __user *usr_src,
6111 bool allow_pagefault)
6112 {
6113 void *kaddr;
6114 unsigned long i, rc = 0;
6115 unsigned int nr_pages = folio_nr_pages(dst_folio);
6116 unsigned long ret_val = nr_pages * PAGE_SIZE;
6117 struct page *subpage;
6118
6119 for (i = 0; i < nr_pages; i++) {
6120 subpage = folio_page(dst_folio, i);
6121 kaddr = kmap_local_page(subpage);
6122 if (!allow_pagefault)
6123 pagefault_disable();
6124 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6125 if (!allow_pagefault)
6126 pagefault_enable();
6127 kunmap_local(kaddr);
6128
6129 ret_val -= (PAGE_SIZE - rc);
6130 if (rc)
6131 break;
6132
6133 flush_dcache_page(subpage);
6134
6135 cond_resched();
6136 }
6137 return ret_val;
6138 }
6139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6140
6141 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6142
6143 static struct kmem_cache *page_ptl_cachep;
6144
ptlock_cache_init(void)6145 void __init ptlock_cache_init(void)
6146 {
6147 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6148 SLAB_PANIC, NULL);
6149 }
6150
ptlock_alloc(struct ptdesc * ptdesc)6151 bool ptlock_alloc(struct ptdesc *ptdesc)
6152 {
6153 spinlock_t *ptl;
6154
6155 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6156 if (!ptl)
6157 return false;
6158 ptdesc->ptl = ptl;
6159 return true;
6160 }
6161
ptlock_free(struct ptdesc * ptdesc)6162 void ptlock_free(struct ptdesc *ptdesc)
6163 {
6164 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6165 }
6166 #endif
6167