xref: /openbmc/linux/drivers/hwmon/mr75203.c (revision 25f98688)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020 MaxLinear, Inc.
4  *
5  * This driver is a hardware monitoring driver for PVT controller
6  * (MR75203) which is used to configure & control Moortec embedded
7  * analog IP to enable multiple embedded temperature sensor(TS),
8  * voltage monitor(VM) & process detector(PD) modules.
9  */
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/hwmon.h>
14 #include <linux/kstrtox.h>
15 #include <linux/module.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/mutex.h>
18 #include <linux/platform_device.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/reset.h>
22 #include <linux/slab.h>
23 #include <linux/units.h>
24 
25 /* PVT Common register */
26 #define PVT_IP_CONFIG	0x04
27 #define TS_NUM_MSK	GENMASK(4, 0)
28 #define TS_NUM_SFT	0
29 #define PD_NUM_MSK	GENMASK(12, 8)
30 #define PD_NUM_SFT	8
31 #define VM_NUM_MSK	GENMASK(20, 16)
32 #define VM_NUM_SFT	16
33 #define CH_NUM_MSK	GENMASK(31, 24)
34 #define CH_NUM_SFT	24
35 
36 #define VM_NUM_MAX	(VM_NUM_MSK >> VM_NUM_SFT)
37 
38 /* Macro Common Register */
39 #define CLK_SYNTH		0x00
40 #define CLK_SYNTH_LO_SFT	0
41 #define CLK_SYNTH_HI_SFT	8
42 #define CLK_SYNTH_HOLD_SFT	16
43 #define CLK_SYNTH_EN		BIT(24)
44 #define CLK_SYS_CYCLES_MAX	514
45 #define CLK_SYS_CYCLES_MIN	2
46 
47 #define SDIF_DISABLE	0x04
48 
49 #define SDIF_STAT	0x08
50 #define SDIF_BUSY	BIT(0)
51 #define SDIF_LOCK	BIT(1)
52 
53 #define SDIF_W		0x0c
54 #define SDIF_PROG	BIT(31)
55 #define SDIF_WRN_W	BIT(27)
56 #define SDIF_WRN_R	0x00
57 #define SDIF_ADDR_SFT	24
58 
59 #define SDIF_HALT	0x10
60 #define SDIF_CTRL	0x14
61 #define SDIF_SMPL_CTRL	0x20
62 
63 /* TS & PD Individual Macro Register */
64 #define COM_REG_SIZE	0x40
65 
66 #define SDIF_DONE(n)	(COM_REG_SIZE + 0x14 + 0x40 * (n))
67 #define SDIF_SMPL_DONE	BIT(0)
68 
69 #define SDIF_DATA(n)	(COM_REG_SIZE + 0x18 + 0x40 * (n))
70 #define SAMPLE_DATA_MSK	GENMASK(15, 0)
71 
72 #define HILO_RESET(n)	(COM_REG_SIZE + 0x2c + 0x40 * (n))
73 
74 /* VM Individual Macro Register */
75 #define VM_COM_REG_SIZE	0x200
76 #define VM_SDIF_DONE(vm)	(VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
77 #define VM_SDIF_DATA(vm, ch)	\
78 	(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
79 
80 /* SDA Slave Register */
81 #define IP_CTRL			0x00
82 #define IP_RST_REL		BIT(1)
83 #define IP_RUN_CONT		BIT(3)
84 #define IP_AUTO			BIT(8)
85 #define IP_VM_MODE		BIT(10)
86 
87 #define IP_CFG			0x01
88 #define CFG0_MODE_2		BIT(0)
89 #define CFG0_PARALLEL_OUT	0
90 #define CFG0_12_BIT		0
91 #define CFG1_VOL_MEAS_MODE	0
92 #define CFG1_PARALLEL_OUT	0
93 #define CFG1_14_BIT		0
94 
95 #define IP_DATA		0x03
96 
97 #define IP_POLL		0x04
98 #define VM_CH_INIT	BIT(20)
99 #define VM_CH_REQ	BIT(21)
100 
101 #define IP_TMR			0x05
102 #define POWER_DELAY_CYCLE_256	0x100
103 #define POWER_DELAY_CYCLE_64	0x40
104 
105 #define PVT_POLL_DELAY_US	20
106 #define PVT_POLL_TIMEOUT_US	20000
107 #define PVT_CONV_BITS		10
108 #define PVT_N_CONST		90
109 #define PVT_R_CONST		245805
110 
111 #define PVT_TEMP_MIN_mC		-40000
112 #define PVT_TEMP_MAX_mC		125000
113 
114 /* Temperature coefficients for series 5 */
115 #define PVT_SERIES5_H_CONST	200000
116 #define PVT_SERIES5_G_CONST	60000
117 #define PVT_SERIES5_J_CONST	-100
118 #define PVT_SERIES5_CAL5_CONST	4094
119 
120 /* Temperature coefficients for series 6 */
121 #define PVT_SERIES6_H_CONST	249400
122 #define PVT_SERIES6_G_CONST	57400
123 #define PVT_SERIES6_J_CONST	0
124 #define PVT_SERIES6_CAL5_CONST	4096
125 
126 #define TEMPERATURE_SENSOR_SERIES_5	5
127 #define TEMPERATURE_SENSOR_SERIES_6	6
128 
129 #define PRE_SCALER_X1	1
130 #define PRE_SCALER_X2	2
131 
132 /**
133  * struct voltage_device - VM single input parameters.
134  * @vm_map: Map channel number to VM index.
135  * @ch_map: Map channel number to channel index.
136  * @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
137  *              result.
138  *
139  * The structure provides mapping between channel-number (0..N-1) to VM-index
140  * (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
141  * It also provides normalization factor for the VM equation.
142  */
143 struct voltage_device {
144 	u32 vm_map;
145 	u32 ch_map;
146 	u32 pre_scaler;
147 };
148 
149 /**
150  * struct voltage_channels - VM channel count.
151  * @total: Total number of channels in all VMs.
152  * @max: Maximum number of channels among all VMs.
153  *
154  * The structure provides channel count information across all VMs.
155  */
156 struct voltage_channels {
157 	u32 total;
158 	u8 max;
159 };
160 
161 struct temp_coeff {
162 	u32 h;
163 	u32 g;
164 	u32 cal5;
165 	s32 j;
166 };
167 
168 struct pvt_device {
169 	struct regmap		*c_map;
170 	struct regmap		*t_map;
171 	struct regmap		*p_map;
172 	struct regmap		*v_map;
173 	struct clk		*clk;
174 	struct reset_control	*rst;
175 	struct dentry		*dbgfs_dir;
176 	struct voltage_device	*vd;
177 	struct voltage_channels	vm_channels;
178 	struct temp_coeff	ts_coeff;
179 	u32			t_num;
180 	u32			p_num;
181 	u32			v_num;
182 	u32			ip_freq;
183 };
184 
pvt_ts_coeff_j_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)185 static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
186 				   size_t count, loff_t *ppos)
187 {
188 	struct pvt_device *pvt = file->private_data;
189 	unsigned int len;
190 	char buf[13];
191 
192 	len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
193 
194 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
195 }
196 
pvt_ts_coeff_j_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)197 static ssize_t pvt_ts_coeff_j_write(struct file *file,
198 				    const char __user *user_buf,
199 				    size_t count, loff_t *ppos)
200 {
201 	struct pvt_device *pvt = file->private_data;
202 	int ret;
203 
204 	ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
205 	if (ret)
206 		return ret;
207 
208 	return count;
209 }
210 
211 static const struct file_operations pvt_ts_coeff_j_fops = {
212 	.read = pvt_ts_coeff_j_read,
213 	.write = pvt_ts_coeff_j_write,
214 	.open = simple_open,
215 	.owner = THIS_MODULE,
216 	.llseek = default_llseek,
217 };
218 
devm_pvt_ts_dbgfs_remove(void * data)219 static void devm_pvt_ts_dbgfs_remove(void *data)
220 {
221 	struct pvt_device *pvt = (struct pvt_device *)data;
222 
223 	debugfs_remove_recursive(pvt->dbgfs_dir);
224 	pvt->dbgfs_dir = NULL;
225 }
226 
pvt_ts_dbgfs_create(struct pvt_device * pvt,struct device * dev)227 static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
228 {
229 	pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
230 
231 	debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
232 			   &pvt->ts_coeff.h);
233 	debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
234 			   &pvt->ts_coeff.g);
235 	debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
236 			   &pvt->ts_coeff.cal5);
237 	debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
238 			    &pvt_ts_coeff_j_fops);
239 
240 	return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
241 }
242 
pvt_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)243 static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
244 			      u32 attr, int channel)
245 {
246 	switch (type) {
247 	case hwmon_temp:
248 		if (attr == hwmon_temp_input)
249 			return 0444;
250 		break;
251 	case hwmon_in:
252 		if (attr == hwmon_in_input)
253 			return 0444;
254 		break;
255 	default:
256 		break;
257 	}
258 	return 0;
259 }
260 
pvt_calc_temp(struct pvt_device * pvt,u32 nbs)261 static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
262 {
263 	/*
264 	 * Convert the register value to degrees centigrade temperature:
265 	 * T = G + H * (n / cal5 - 0.5) + J * F
266 	 */
267 	struct temp_coeff *ts_coeff = &pvt->ts_coeff;
268 
269 	s64 tmp = ts_coeff->g +
270 		div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
271 		ts_coeff->h / 2 +
272 		div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
273 
274 	return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
275 }
276 
pvt_read_temp(struct device * dev,u32 attr,int channel,long * val)277 static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
278 {
279 	struct pvt_device *pvt = dev_get_drvdata(dev);
280 	struct regmap *t_map = pvt->t_map;
281 	u32 stat, nbs;
282 	int ret;
283 
284 	switch (attr) {
285 	case hwmon_temp_input:
286 		ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
287 					       stat, stat & SDIF_SMPL_DONE,
288 					       PVT_POLL_DELAY_US,
289 					       PVT_POLL_TIMEOUT_US);
290 		if (ret)
291 			return ret;
292 
293 		ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
294 		if (ret < 0)
295 			return ret;
296 
297 		nbs &= SAMPLE_DATA_MSK;
298 
299 		/*
300 		 * Convert the register value to
301 		 * degrees centigrade temperature
302 		 */
303 		*val = pvt_calc_temp(pvt, nbs);
304 
305 		return 0;
306 	default:
307 		return -EOPNOTSUPP;
308 	}
309 }
310 
pvt_read_in(struct device * dev,u32 attr,int channel,long * val)311 static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
312 {
313 	struct pvt_device *pvt = dev_get_drvdata(dev);
314 	struct regmap *v_map = pvt->v_map;
315 	u32 n, stat, pre_scaler;
316 	u8 vm_idx, ch_idx;
317 	int ret;
318 
319 	if (channel >= pvt->vm_channels.total)
320 		return -EINVAL;
321 
322 	vm_idx = pvt->vd[channel].vm_map;
323 	ch_idx = pvt->vd[channel].ch_map;
324 
325 	switch (attr) {
326 	case hwmon_in_input:
327 		ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
328 					       stat, stat & SDIF_SMPL_DONE,
329 					       PVT_POLL_DELAY_US,
330 					       PVT_POLL_TIMEOUT_US);
331 		if (ret)
332 			return ret;
333 
334 		ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
335 		if (ret < 0)
336 			return ret;
337 
338 		n &= SAMPLE_DATA_MSK;
339 		pre_scaler = pvt->vd[channel].pre_scaler;
340 		/*
341 		 * Convert the N bitstream count into voltage.
342 		 * To support negative voltage calculation for 64bit machines
343 		 * n must be cast to long, since n and *val differ both in
344 		 * signedness and in size.
345 		 * Division is used instead of right shift, because for signed
346 		 * numbers, the sign bit is used to fill the vacated bit
347 		 * positions, and if the number is negative, 1 is used.
348 		 * BIT(x) may not be used instead of (1 << x) because it's
349 		 * unsigned.
350 		 */
351 		*val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
352 			(1 << PVT_CONV_BITS);
353 
354 		return 0;
355 	default:
356 		return -EOPNOTSUPP;
357 	}
358 }
359 
pvt_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)360 static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
361 		    u32 attr, int channel, long *val)
362 {
363 	switch (type) {
364 	case hwmon_temp:
365 		return pvt_read_temp(dev, attr, channel, val);
366 	case hwmon_in:
367 		return pvt_read_in(dev, attr, channel, val);
368 	default:
369 		return -EOPNOTSUPP;
370 	}
371 }
372 
373 static struct hwmon_channel_info pvt_temp = {
374 	.type = hwmon_temp,
375 };
376 
377 static struct hwmon_channel_info pvt_in = {
378 	.type = hwmon_in,
379 };
380 
381 static const struct hwmon_ops pvt_hwmon_ops = {
382 	.is_visible = pvt_is_visible,
383 	.read = pvt_read,
384 };
385 
386 static struct hwmon_chip_info pvt_chip_info = {
387 	.ops = &pvt_hwmon_ops,
388 };
389 
pvt_init(struct pvt_device * pvt)390 static int pvt_init(struct pvt_device *pvt)
391 {
392 	u16 sys_freq, key, middle, low = 4, high = 8;
393 	struct regmap *t_map = pvt->t_map;
394 	struct regmap *p_map = pvt->p_map;
395 	struct regmap *v_map = pvt->v_map;
396 	u32 t_num = pvt->t_num;
397 	u32 p_num = pvt->p_num;
398 	u32 v_num = pvt->v_num;
399 	u32 clk_synth, val;
400 	int ret;
401 
402 	sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
403 	while (high >= low) {
404 		middle = (low + high + 1) / 2;
405 		key = DIV_ROUND_CLOSEST(sys_freq, middle);
406 		if (key > CLK_SYS_CYCLES_MAX) {
407 			low = middle + 1;
408 			continue;
409 		} else if (key < CLK_SYS_CYCLES_MIN) {
410 			high = middle - 1;
411 			continue;
412 		} else {
413 			break;
414 		}
415 	}
416 
417 	/*
418 	 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
419 	 * from 2:1 to 512:1
420 	 */
421 	key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
422 
423 	clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
424 		    (key >> 1) << CLK_SYNTH_HI_SFT |
425 		    (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
426 
427 	pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
428 
429 	if (t_num) {
430 		ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
431 		if (ret < 0)
432 			return ret;
433 
434 		ret = regmap_write(t_map, SDIF_HALT, 0x0);
435 		if (ret < 0)
436 			return ret;
437 
438 		ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
439 		if (ret < 0)
440 			return ret;
441 
442 		ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
443 		if (ret < 0)
444 			return ret;
445 
446 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
447 					       val, !(val & SDIF_BUSY),
448 					       PVT_POLL_DELAY_US,
449 					       PVT_POLL_TIMEOUT_US);
450 		if (ret)
451 			return ret;
452 
453 		val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
454 		      IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
455 		ret = regmap_write(t_map, SDIF_W, val);
456 		if (ret < 0)
457 			return ret;
458 
459 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
460 					       val, !(val & SDIF_BUSY),
461 					       PVT_POLL_DELAY_US,
462 					       PVT_POLL_TIMEOUT_US);
463 		if (ret)
464 			return ret;
465 
466 		val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
467 			      SDIF_WRN_W | SDIF_PROG;
468 		ret = regmap_write(t_map, SDIF_W, val);
469 		if (ret < 0)
470 			return ret;
471 
472 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
473 					       val, !(val & SDIF_BUSY),
474 					       PVT_POLL_DELAY_US,
475 					       PVT_POLL_TIMEOUT_US);
476 		if (ret)
477 			return ret;
478 
479 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
480 		      IP_CTRL << SDIF_ADDR_SFT |
481 		      SDIF_WRN_W | SDIF_PROG;
482 		ret = regmap_write(t_map, SDIF_W, val);
483 		if (ret < 0)
484 			return ret;
485 	}
486 
487 	if (p_num) {
488 		ret = regmap_write(p_map, SDIF_HALT, 0x0);
489 		if (ret < 0)
490 			return ret;
491 
492 		ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
493 		if (ret < 0)
494 			return ret;
495 
496 		ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
497 		if (ret < 0)
498 			return ret;
499 	}
500 
501 	if (v_num) {
502 		ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
503 		if (ret < 0)
504 			return ret;
505 
506 		ret = regmap_write(v_map, SDIF_HALT, 0x0);
507 		if (ret < 0)
508 			return ret;
509 
510 		ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
511 		if (ret < 0)
512 			return ret;
513 
514 		ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
515 		if (ret < 0)
516 			return ret;
517 
518 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
519 					       val, !(val & SDIF_BUSY),
520 					       PVT_POLL_DELAY_US,
521 					       PVT_POLL_TIMEOUT_US);
522 		if (ret)
523 			return ret;
524 
525 		val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
526 		      IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
527 		ret = regmap_write(v_map, SDIF_W, val);
528 		if (ret < 0)
529 			return ret;
530 
531 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
532 					       val, !(val & SDIF_BUSY),
533 					       PVT_POLL_DELAY_US,
534 					       PVT_POLL_TIMEOUT_US);
535 		if (ret)
536 			return ret;
537 
538 		val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
539 		      CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
540 		      SDIF_WRN_W | SDIF_PROG;
541 		ret = regmap_write(v_map, SDIF_W, val);
542 		if (ret < 0)
543 			return ret;
544 
545 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
546 					       val, !(val & SDIF_BUSY),
547 					       PVT_POLL_DELAY_US,
548 					       PVT_POLL_TIMEOUT_US);
549 		if (ret)
550 			return ret;
551 
552 		val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
553 		      SDIF_WRN_W | SDIF_PROG;
554 		ret = regmap_write(v_map, SDIF_W, val);
555 		if (ret < 0)
556 			return ret;
557 
558 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
559 					       val, !(val & SDIF_BUSY),
560 					       PVT_POLL_DELAY_US,
561 					       PVT_POLL_TIMEOUT_US);
562 		if (ret)
563 			return ret;
564 
565 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
566 		      IP_CTRL << SDIF_ADDR_SFT |
567 		      SDIF_WRN_W | SDIF_PROG;
568 		ret = regmap_write(v_map, SDIF_W, val);
569 		if (ret < 0)
570 			return ret;
571 	}
572 
573 	return 0;
574 }
575 
576 static struct regmap_config pvt_regmap_config = {
577 	.reg_bits = 32,
578 	.reg_stride = 4,
579 	.val_bits = 32,
580 };
581 
pvt_get_regmap(struct platform_device * pdev,char * reg_name,struct pvt_device * pvt)582 static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
583 			  struct pvt_device *pvt)
584 {
585 	struct device *dev = &pdev->dev;
586 	struct regmap **reg_map;
587 	void __iomem *io_base;
588 
589 	if (!strcmp(reg_name, "common"))
590 		reg_map = &pvt->c_map;
591 	else if (!strcmp(reg_name, "ts"))
592 		reg_map = &pvt->t_map;
593 	else if (!strcmp(reg_name, "pd"))
594 		reg_map = &pvt->p_map;
595 	else if (!strcmp(reg_name, "vm"))
596 		reg_map = &pvt->v_map;
597 	else
598 		return -EINVAL;
599 
600 	io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
601 	if (IS_ERR(io_base))
602 		return PTR_ERR(io_base);
603 
604 	pvt_regmap_config.name = reg_name;
605 	*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
606 	if (IS_ERR(*reg_map)) {
607 		dev_err(dev, "failed to init register map\n");
608 		return PTR_ERR(*reg_map);
609 	}
610 
611 	return 0;
612 }
613 
pvt_reset_control_assert(void * data)614 static void pvt_reset_control_assert(void *data)
615 {
616 	struct pvt_device *pvt = data;
617 
618 	reset_control_assert(pvt->rst);
619 }
620 
pvt_reset_control_deassert(struct device * dev,struct pvt_device * pvt)621 static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
622 {
623 	int ret;
624 
625 	ret = reset_control_deassert(pvt->rst);
626 	if (ret)
627 		return ret;
628 
629 	return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
630 }
631 
pvt_get_active_channel(struct device * dev,struct pvt_device * pvt,u32 vm_num,u32 ch_num,u8 * vm_idx)632 static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
633 				  u32 vm_num, u32 ch_num, u8 *vm_idx)
634 {
635 	u8 vm_active_ch[VM_NUM_MAX];
636 	int ret, i, j, k;
637 
638 	ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
639 					    vm_active_ch, vm_num);
640 	if (ret) {
641 		/*
642 		 * Incase "moortec,vm-active-channels" property is not defined,
643 		 * we assume each VM sensor has all of its channels active.
644 		 */
645 		memset(vm_active_ch, ch_num, vm_num);
646 		pvt->vm_channels.max = ch_num;
647 		pvt->vm_channels.total = ch_num * vm_num;
648 	} else {
649 		for (i = 0; i < vm_num; i++) {
650 			if (vm_active_ch[i] > ch_num) {
651 				dev_err(dev, "invalid active channels: %u\n",
652 					vm_active_ch[i]);
653 				return -EINVAL;
654 			}
655 
656 			pvt->vm_channels.total += vm_active_ch[i];
657 
658 			if (vm_active_ch[i] > pvt->vm_channels.max)
659 				pvt->vm_channels.max = vm_active_ch[i];
660 		}
661 	}
662 
663 	/*
664 	 * Map between the channel-number to VM-index and channel-index.
665 	 * Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
666 	 * vm_map = [0 0 0 0 0 1 1 2 2 2 2]
667 	 * ch_map = [0 1 2 3 4 0 1 0 1 2 3]
668 	 */
669 	pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
670 			       GFP_KERNEL);
671 	if (!pvt->vd)
672 		return -ENOMEM;
673 
674 	k = 0;
675 	for (i = 0; i < vm_num; i++) {
676 		for (j = 0; j < vm_active_ch[i]; j++) {
677 			pvt->vd[k].vm_map = vm_idx[i];
678 			pvt->vd[k].ch_map = j;
679 			k++;
680 		}
681 	}
682 
683 	return 0;
684 }
685 
pvt_get_pre_scaler(struct device * dev,struct pvt_device * pvt)686 static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
687 {
688 	u8 *pre_scaler_ch_list;
689 	int i, ret, num_ch;
690 	u32 channel;
691 
692 	/* Set default pre-scaler value to be 1. */
693 	for (i = 0; i < pvt->vm_channels.total; i++)
694 		pvt->vd[i].pre_scaler = PRE_SCALER_X1;
695 
696 	/* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
697 	num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
698 	if (num_ch <= 0)
699 		return 0;
700 
701 	pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
702 				     GFP_KERNEL);
703 	if (!pre_scaler_ch_list)
704 		return -ENOMEM;
705 
706 	/* Get list of all channels that have pre-scaler of 2. */
707 	ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
708 					    pre_scaler_ch_list, num_ch);
709 	if (ret)
710 		goto out;
711 
712 	for (i = 0; i < num_ch; i++) {
713 		channel = pre_scaler_ch_list[i];
714 		pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
715 	}
716 
717 out:
718 	kfree(pre_scaler_ch_list);
719 
720 	return ret;
721 }
722 
pvt_set_temp_coeff(struct device * dev,struct pvt_device * pvt)723 static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
724 {
725 	struct temp_coeff *ts_coeff = &pvt->ts_coeff;
726 	u32 series;
727 	int ret;
728 
729 	/* Incase ts-series property is not defined, use default 5. */
730 	ret = device_property_read_u32(dev, "moortec,ts-series", &series);
731 	if (ret)
732 		series = TEMPERATURE_SENSOR_SERIES_5;
733 
734 	switch (series) {
735 	case TEMPERATURE_SENSOR_SERIES_5:
736 		ts_coeff->h = PVT_SERIES5_H_CONST;
737 		ts_coeff->g = PVT_SERIES5_G_CONST;
738 		ts_coeff->j = PVT_SERIES5_J_CONST;
739 		ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
740 		break;
741 	case TEMPERATURE_SENSOR_SERIES_6:
742 		ts_coeff->h = PVT_SERIES6_H_CONST;
743 		ts_coeff->g = PVT_SERIES6_G_CONST;
744 		ts_coeff->j = PVT_SERIES6_J_CONST;
745 		ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
746 		break;
747 	default:
748 		dev_err(dev, "invalid temperature sensor series (%u)\n",
749 			series);
750 		return -EINVAL;
751 	}
752 
753 	dev_dbg(dev, "temperature sensor series = %u\n", series);
754 
755 	/* Override ts-coeff-h/g/j/cal5 if they are defined. */
756 	device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
757 	device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
758 	device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
759 	device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
760 
761 	dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
762 		ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
763 
764 	return 0;
765 }
766 
mr75203_probe(struct platform_device * pdev)767 static int mr75203_probe(struct platform_device *pdev)
768 {
769 	u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
770 	const struct hwmon_channel_info **pvt_info;
771 	struct device *dev = &pdev->dev;
772 	u32 *temp_config, *in_config;
773 	struct device *hwmon_dev;
774 	struct pvt_device *pvt;
775 	int ret;
776 
777 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
778 	if (!pvt)
779 		return -ENOMEM;
780 
781 	ret = pvt_get_regmap(pdev, "common", pvt);
782 	if (ret)
783 		return ret;
784 
785 	pvt->clk = devm_clk_get_enabled(dev, NULL);
786 	if (IS_ERR(pvt->clk))
787 		return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
788 
789 	pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
790 	if (IS_ERR(pvt->rst))
791 		return dev_err_probe(dev, PTR_ERR(pvt->rst),
792 				     "failed to get reset control\n");
793 
794 	if (pvt->rst) {
795 		ret = pvt_reset_control_deassert(dev, pvt);
796 		if (ret)
797 			return dev_err_probe(dev, ret,
798 					     "cannot deassert reset control\n");
799 	}
800 
801 	ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
802 	if (ret < 0)
803 		return ret;
804 
805 	ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
806 	pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
807 	vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
808 	ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
809 	pvt->t_num = ts_num;
810 	pvt->p_num = pd_num;
811 	pvt->v_num = vm_num;
812 	val = 0;
813 	if (ts_num)
814 		val++;
815 	if (vm_num)
816 		val++;
817 	if (!val)
818 		return -ENODEV;
819 
820 	pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
821 	if (!pvt_info)
822 		return -ENOMEM;
823 	pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
824 	index = 1;
825 
826 	if (ts_num) {
827 		ret = pvt_get_regmap(pdev, "ts", pvt);
828 		if (ret)
829 			return ret;
830 
831 		ret = pvt_set_temp_coeff(dev, pvt);
832 		if (ret)
833 			return ret;
834 
835 		temp_config = devm_kcalloc(dev, ts_num + 1,
836 					   sizeof(*temp_config), GFP_KERNEL);
837 		if (!temp_config)
838 			return -ENOMEM;
839 
840 		memset32(temp_config, HWMON_T_INPUT, ts_num);
841 		pvt_temp.config = temp_config;
842 		pvt_info[index++] = &pvt_temp;
843 
844 		pvt_ts_dbgfs_create(pvt, dev);
845 	}
846 
847 	if (pd_num) {
848 		ret = pvt_get_regmap(pdev, "pd", pvt);
849 		if (ret)
850 			return ret;
851 	}
852 
853 	if (vm_num) {
854 		u8 vm_idx[VM_NUM_MAX];
855 
856 		ret = pvt_get_regmap(pdev, "vm", pvt);
857 		if (ret)
858 			return ret;
859 
860 		ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
861 						    vm_num);
862 		if (ret) {
863 			/*
864 			 * Incase intel,vm-map property is not defined, we
865 			 * assume incremental channel numbers.
866 			 */
867 			for (i = 0; i < vm_num; i++)
868 				vm_idx[i] = i;
869 		} else {
870 			for (i = 0; i < vm_num; i++)
871 				if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
872 					pvt->v_num = i;
873 					vm_num = i;
874 					break;
875 				}
876 		}
877 
878 		ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
879 		if (ret)
880 			return ret;
881 
882 		ret = pvt_get_pre_scaler(dev, pvt);
883 		if (ret)
884 			return ret;
885 
886 		in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
887 					 sizeof(*in_config), GFP_KERNEL);
888 		if (!in_config)
889 			return -ENOMEM;
890 
891 		memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
892 		in_config[pvt->vm_channels.total] = 0;
893 		pvt_in.config = in_config;
894 
895 		pvt_info[index++] = &pvt_in;
896 	}
897 
898 	ret = pvt_init(pvt);
899 	if (ret) {
900 		dev_err(dev, "failed to init pvt: %d\n", ret);
901 		return ret;
902 	}
903 
904 	pvt_chip_info.info = pvt_info;
905 	hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
906 							 pvt,
907 							 &pvt_chip_info,
908 							 NULL);
909 
910 	return PTR_ERR_OR_ZERO(hwmon_dev);
911 }
912 
913 static const struct of_device_id moortec_pvt_of_match[] = {
914 	{ .compatible = "moortec,mr75203" },
915 	{ }
916 };
917 MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
918 
919 static struct platform_driver moortec_pvt_driver = {
920 	.driver = {
921 		.name = "moortec-pvt",
922 		.of_match_table = moortec_pvt_of_match,
923 	},
924 	.probe = mr75203_probe,
925 };
926 module_platform_driver(moortec_pvt_driver);
927 
928 MODULE_LICENSE("GPL v2");
929