1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/irqdomain.h>
10 #include <linux/kvm_host.h>
11 #include <linux/irqchip/arm-gic-v3.h>
12
13 #include "vgic.h"
14
15 /*
16 * How KVM uses GICv4 (insert rude comments here):
17 *
18 * The vgic-v4 layer acts as a bridge between several entities:
19 * - The GICv4 ITS representation offered by the ITS driver
20 * - VFIO, which is in charge of the PCI endpoint
21 * - The virtual ITS, which is the only thing the guest sees
22 *
23 * The configuration of VLPIs is triggered by a callback from VFIO,
24 * instructing KVM that a PCI device has been configured to deliver
25 * MSIs to a vITS.
26 *
27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28 * and this is used to find the corresponding vITS data structures
29 * (ITS instance, device, event and irq) using a process that is
30 * extremely similar to the injection of an MSI.
31 *
32 * At this stage, we can link the guest's view of an LPI (uniquely
33 * identified by the routing entry) and the host irq, using the GICv4
34 * driver mapping operation. Should the mapping succeed, we've then
35 * successfully upgraded the guest's LPI to a VLPI. We can then start
36 * with updating GICv4's view of the property table and generating an
37 * INValidation in order to kickstart the delivery of this VLPI to the
38 * guest directly, without software intervention. Well, almost.
39 *
40 * When the PCI endpoint is deconfigured, this operation is reversed
41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
42 *
43 * Once the VLPI has been mapped, it needs to follow any change the
44 * guest performs on its LPI through the vITS. For that, a number of
45 * command handlers have hooks to communicate these changes to the HW:
46 * - Any invalidation triggers a call to its_prop_update_vlpi()
47 * - The INT command results in a irq_set_irqchip_state(), which
48 * generates an INT on the corresponding VLPI.
49 * - The CLEAR command results in a irq_set_irqchip_state(), which
50 * generates an CLEAR on the corresponding VLPI.
51 * - DISCARD translates into an unmap, similar to a call to
52 * kvm_vgic_v4_unset_forwarding().
53 * - MOVI is translated by an update of the existing mapping, changing
54 * the target vcpu, resulting in a VMOVI being generated.
55 * - MOVALL is translated by a string of mapping updates (similar to
56 * the handling of MOVI). MOVALL is horrible.
57 *
58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
59 * reprogramming the PCI endpoint after MAPTI does not result in a
60 * VLPI being mapped, as there is no callback from VFIO (the guest
61 * will get the interrupt via the normal SW injection). Fixing this is
62 * not trivial, and requires some horrible messing with the VFIO
63 * internals. Not fun. Don't do that.
64 *
65 * Then there is the scheduling. Each time a vcpu is about to run on a
66 * physical CPU, KVM must tell the corresponding redistributor about
67 * it. And if we've migrated our vcpu from one CPU to another, we must
68 * tell the ITS (so that the messages reach the right redistributor).
69 * This is done in two steps: first issue a irq_set_affinity() on the
70 * irq corresponding to the vcpu, then call its_make_vpe_resident().
71 * You must be in a non-preemptible context. On exit, a call to
72 * its_make_vpe_non_resident() tells the redistributor that we're done
73 * with the vcpu.
74 *
75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76 * which will fire each time a VLPI is made pending whilst the vcpu is
77 * not running. Each time the vcpu gets blocked, the doorbell
78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
79 * reason), the doorbell interrupt is disabled.
80 */
81
82 #define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83
vgic_v4_doorbell_handler(int irq,void * info)84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85 {
86 struct kvm_vcpu *vcpu = info;
87
88 /* We got the message, no need to fire again */
89 if (!kvm_vgic_global_state.has_gicv4_1 &&
90 !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91 disable_irq_nosync(irq);
92
93 /*
94 * The v4.1 doorbell can fire concurrently with the vPE being
95 * made non-resident. Ensure we only update pending_last
96 * *after* the non-residency sequence has completed.
97 */
98 raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99 vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100 raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101
102 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103 kvm_vcpu_kick(vcpu);
104
105 return IRQ_HANDLED;
106 }
107
vgic_v4_sync_sgi_config(struct its_vpe * vpe,struct vgic_irq * irq)108 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109 {
110 vpe->sgi_config[irq->intid].enabled = irq->enabled;
111 vpe->sgi_config[irq->intid].group = irq->group;
112 vpe->sgi_config[irq->intid].priority = irq->priority;
113 }
114
vgic_v4_enable_vsgis(struct kvm_vcpu * vcpu)115 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116 {
117 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118 int i;
119
120 /*
121 * With GICv4.1, every virtual SGI can be directly injected. So
122 * let's pretend that they are HW interrupts, tied to a host
123 * IRQ. The SGI code will do its magic.
124 */
125 for (i = 0; i < VGIC_NR_SGIS; i++) {
126 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127 struct irq_desc *desc;
128 unsigned long flags;
129 int ret;
130
131 raw_spin_lock_irqsave(&irq->irq_lock, flags);
132
133 if (irq->hw)
134 goto unlock;
135
136 irq->hw = true;
137 irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138
139 /* Transfer the full irq state to the vPE */
140 vgic_v4_sync_sgi_config(vpe, irq);
141 desc = irq_to_desc(irq->host_irq);
142 ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143 false);
144 if (!WARN_ON(ret)) {
145 /* Transfer pending state */
146 ret = irq_set_irqchip_state(irq->host_irq,
147 IRQCHIP_STATE_PENDING,
148 irq->pending_latch);
149 WARN_ON(ret);
150 irq->pending_latch = false;
151 }
152 unlock:
153 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154 vgic_put_irq(vcpu->kvm, irq);
155 }
156 }
157
vgic_v4_disable_vsgis(struct kvm_vcpu * vcpu)158 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159 {
160 int i;
161
162 for (i = 0; i < VGIC_NR_SGIS; i++) {
163 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164 struct irq_desc *desc;
165 unsigned long flags;
166 int ret;
167
168 raw_spin_lock_irqsave(&irq->irq_lock, flags);
169
170 if (!irq->hw)
171 goto unlock;
172
173 irq->hw = false;
174 ret = irq_get_irqchip_state(irq->host_irq,
175 IRQCHIP_STATE_PENDING,
176 &irq->pending_latch);
177 WARN_ON(ret);
178
179 desc = irq_to_desc(irq->host_irq);
180 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181 unlock:
182 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 vgic_put_irq(vcpu->kvm, irq);
184 }
185 }
186
vgic_v4_configure_vsgis(struct kvm * kvm)187 void vgic_v4_configure_vsgis(struct kvm *kvm)
188 {
189 struct vgic_dist *dist = &kvm->arch.vgic;
190 struct kvm_vcpu *vcpu;
191 unsigned long i;
192
193 lockdep_assert_held(&kvm->arch.config_lock);
194
195 kvm_arm_halt_guest(kvm);
196
197 kvm_for_each_vcpu(i, vcpu, kvm) {
198 if (dist->nassgireq)
199 vgic_v4_enable_vsgis(vcpu);
200 else
201 vgic_v4_disable_vsgis(vcpu);
202 }
203
204 kvm_arm_resume_guest(kvm);
205 }
206
207 /*
208 * Must be called with GICv4.1 and the vPE unmapped, which
209 * indicates the invalidation of any VPT caches associated
210 * with the vPE, thus we can get the VLPI state by peeking
211 * at the VPT.
212 */
vgic_v4_get_vlpi_state(struct vgic_irq * irq,bool * val)213 void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
214 {
215 struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
216 int mask = BIT(irq->intid % BITS_PER_BYTE);
217 void *va;
218 u8 *ptr;
219
220 va = page_address(vpe->vpt_page);
221 ptr = va + irq->intid / BITS_PER_BYTE;
222
223 *val = !!(*ptr & mask);
224 }
225
vgic_v4_request_vpe_irq(struct kvm_vcpu * vcpu,int irq)226 int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq)
227 {
228 return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu);
229 }
230
231 /**
232 * vgic_v4_init - Initialize the GICv4 data structures
233 * @kvm: Pointer to the VM being initialized
234 *
235 * We may be called each time a vITS is created, or when the
236 * vgic is initialized. In both cases, the number of vcpus
237 * should now be fixed.
238 */
vgic_v4_init(struct kvm * kvm)239 int vgic_v4_init(struct kvm *kvm)
240 {
241 struct vgic_dist *dist = &kvm->arch.vgic;
242 struct kvm_vcpu *vcpu;
243 int nr_vcpus, ret;
244 unsigned long i;
245
246 lockdep_assert_held(&kvm->arch.config_lock);
247
248 if (!kvm_vgic_global_state.has_gicv4)
249 return 0; /* Nothing to see here... move along. */
250
251 if (dist->its_vm.vpes)
252 return 0;
253
254 nr_vcpus = atomic_read(&kvm->online_vcpus);
255
256 dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
257 GFP_KERNEL_ACCOUNT);
258 if (!dist->its_vm.vpes)
259 return -ENOMEM;
260
261 dist->its_vm.nr_vpes = nr_vcpus;
262
263 kvm_for_each_vcpu(i, vcpu, kvm)
264 dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
265
266 ret = its_alloc_vcpu_irqs(&dist->its_vm);
267 if (ret < 0) {
268 kvm_err("VPE IRQ allocation failure\n");
269 kfree(dist->its_vm.vpes);
270 dist->its_vm.nr_vpes = 0;
271 dist->its_vm.vpes = NULL;
272 return ret;
273 }
274
275 kvm_for_each_vcpu(i, vcpu, kvm) {
276 int irq = dist->its_vm.vpes[i]->irq;
277 unsigned long irq_flags = DB_IRQ_FLAGS;
278
279 /*
280 * Don't automatically enable the doorbell, as we're
281 * flipping it back and forth when the vcpu gets
282 * blocked. Also disable the lazy disabling, as the
283 * doorbell could kick us out of the guest too
284 * early...
285 *
286 * On GICv4.1, the doorbell is managed in HW and must
287 * be left enabled.
288 */
289 if (kvm_vgic_global_state.has_gicv4_1)
290 irq_flags &= ~IRQ_NOAUTOEN;
291 irq_set_status_flags(irq, irq_flags);
292
293 ret = vgic_v4_request_vpe_irq(vcpu, irq);
294 if (ret) {
295 kvm_err("failed to allocate vcpu IRQ%d\n", irq);
296 /*
297 * Trick: adjust the number of vpes so we know
298 * how many to nuke on teardown...
299 */
300 dist->its_vm.nr_vpes = i;
301 break;
302 }
303 }
304
305 if (ret)
306 vgic_v4_teardown(kvm);
307
308 return ret;
309 }
310
311 /**
312 * vgic_v4_teardown - Free the GICv4 data structures
313 * @kvm: Pointer to the VM being destroyed
314 */
vgic_v4_teardown(struct kvm * kvm)315 void vgic_v4_teardown(struct kvm *kvm)
316 {
317 struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
318 int i;
319
320 lockdep_assert_held(&kvm->arch.config_lock);
321
322 if (!its_vm->vpes)
323 return;
324
325 for (i = 0; i < its_vm->nr_vpes; i++) {
326 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
327 int irq = its_vm->vpes[i]->irq;
328
329 irq_clear_status_flags(irq, DB_IRQ_FLAGS);
330 free_irq(irq, vcpu);
331 }
332
333 its_free_vcpu_irqs(its_vm);
334 kfree(its_vm->vpes);
335 its_vm->nr_vpes = 0;
336 its_vm->vpes = NULL;
337 }
338
vgic_v4_put(struct kvm_vcpu * vcpu)339 int vgic_v4_put(struct kvm_vcpu *vcpu)
340 {
341 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
342
343 if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
344 return 0;
345
346 return its_make_vpe_non_resident(vpe, !!vcpu_get_flag(vcpu, IN_WFI));
347 }
348
vgic_v4_load(struct kvm_vcpu * vcpu)349 int vgic_v4_load(struct kvm_vcpu *vcpu)
350 {
351 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
352 int err;
353
354 if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
355 return 0;
356
357 if (vcpu_get_flag(vcpu, IN_WFI))
358 return 0;
359
360 /*
361 * Before making the VPE resident, make sure the redistributor
362 * corresponding to our current CPU expects us here. See the
363 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
364 * turns into a VMOVP command at the ITS level.
365 */
366 err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
367 if (err)
368 return err;
369
370 err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
371 if (err)
372 return err;
373
374 /*
375 * Now that the VPE is resident, let's get rid of a potential
376 * doorbell interrupt that would still be pending. This is a
377 * GICv4.0 only "feature"...
378 */
379 if (!kvm_vgic_global_state.has_gicv4_1)
380 err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
381
382 return err;
383 }
384
vgic_v4_commit(struct kvm_vcpu * vcpu)385 void vgic_v4_commit(struct kvm_vcpu *vcpu)
386 {
387 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
388
389 /*
390 * No need to wait for the vPE to be ready across a shallow guest
391 * exit, as only a vcpu_put will invalidate it.
392 */
393 if (!vpe->ready)
394 its_commit_vpe(vpe);
395 }
396
vgic_get_its(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * irq_entry)397 static struct vgic_its *vgic_get_its(struct kvm *kvm,
398 struct kvm_kernel_irq_routing_entry *irq_entry)
399 {
400 struct kvm_msi msi = (struct kvm_msi) {
401 .address_lo = irq_entry->msi.address_lo,
402 .address_hi = irq_entry->msi.address_hi,
403 .data = irq_entry->msi.data,
404 .flags = irq_entry->msi.flags,
405 .devid = irq_entry->msi.devid,
406 };
407
408 return vgic_msi_to_its(kvm, &msi);
409 }
410
kvm_vgic_v4_set_forwarding(struct kvm * kvm,int virq,struct kvm_kernel_irq_routing_entry * irq_entry)411 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
412 struct kvm_kernel_irq_routing_entry *irq_entry)
413 {
414 struct vgic_its *its;
415 struct vgic_irq *irq;
416 struct its_vlpi_map map;
417 unsigned long flags;
418 int ret;
419
420 if (!vgic_supports_direct_msis(kvm))
421 return 0;
422
423 /*
424 * Get the ITS, and escape early on error (not a valid
425 * doorbell for any of our vITSs).
426 */
427 its = vgic_get_its(kvm, irq_entry);
428 if (IS_ERR(its))
429 return 0;
430
431 mutex_lock(&its->its_lock);
432
433 /* Perform the actual DevID/EventID -> LPI translation. */
434 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
435 irq_entry->msi.data, &irq);
436 if (ret)
437 goto out;
438
439 /*
440 * Emit the mapping request. If it fails, the ITS probably
441 * isn't v4 compatible, so let's silently bail out. Holding
442 * the ITS lock should ensure that nothing can modify the
443 * target vcpu.
444 */
445 map = (struct its_vlpi_map) {
446 .vm = &kvm->arch.vgic.its_vm,
447 .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
448 .vintid = irq->intid,
449 .properties = ((irq->priority & 0xfc) |
450 (irq->enabled ? LPI_PROP_ENABLED : 0) |
451 LPI_PROP_GROUP1),
452 .db_enabled = true,
453 };
454
455 ret = its_map_vlpi(virq, &map);
456 if (ret)
457 goto out;
458
459 irq->hw = true;
460 irq->host_irq = virq;
461 atomic_inc(&map.vpe->vlpi_count);
462
463 /* Transfer pending state */
464 raw_spin_lock_irqsave(&irq->irq_lock, flags);
465 if (irq->pending_latch) {
466 ret = irq_set_irqchip_state(irq->host_irq,
467 IRQCHIP_STATE_PENDING,
468 irq->pending_latch);
469 WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
470
471 /*
472 * Clear pending_latch and communicate this state
473 * change via vgic_queue_irq_unlock.
474 */
475 irq->pending_latch = false;
476 vgic_queue_irq_unlock(kvm, irq, flags);
477 } else {
478 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
479 }
480
481 out:
482 mutex_unlock(&its->its_lock);
483 return ret;
484 }
485
kvm_vgic_v4_unset_forwarding(struct kvm * kvm,int virq,struct kvm_kernel_irq_routing_entry * irq_entry)486 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
487 struct kvm_kernel_irq_routing_entry *irq_entry)
488 {
489 struct vgic_its *its;
490 struct vgic_irq *irq;
491 int ret;
492
493 if (!vgic_supports_direct_msis(kvm))
494 return 0;
495
496 /*
497 * Get the ITS, and escape early on error (not a valid
498 * doorbell for any of our vITSs).
499 */
500 its = vgic_get_its(kvm, irq_entry);
501 if (IS_ERR(its))
502 return 0;
503
504 mutex_lock(&its->its_lock);
505
506 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
507 irq_entry->msi.data, &irq);
508 if (ret)
509 goto out;
510
511 WARN_ON(!(irq->hw && irq->host_irq == virq));
512 if (irq->hw) {
513 atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
514 irq->hw = false;
515 ret = its_unmap_vlpi(virq);
516 }
517
518 out:
519 mutex_unlock(&its->its_lock);
520 return ret;
521 }
522