1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGICv3 MMIO handling functions
4 */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 unsigned int num)
24 {
25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 unsigned long val)
31 {
32 int lower = (offset & 4) * 8;
33 int upper = lower + 8 * len - 1;
34
35 reg &= ~GENMASK_ULL(upper, lower);
36 val &= GENMASK_ULL(len * 8 - 1, 0);
37
38 return reg | ((u64)val << lower);
39 }
40
vgic_has_its(struct kvm * kvm)41 bool vgic_has_its(struct kvm *kvm)
42 {
43 struct vgic_dist *dist = &kvm->arch.vgic;
44
45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 return false;
47
48 return dist->has_its;
49 }
50
vgic_supports_direct_msis(struct kvm * kvm)51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 return (kvm_vgic_global_state.has_gicv4_1 ||
54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * their configured groups.
62 */
63
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 gpa_t addr, unsigned int len)
66 {
67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 u32 value = 0;
69
70 switch (addr & 0x0c) {
71 case GICD_CTLR:
72 if (vgic->enabled)
73 value |= GICD_CTLR_ENABLE_SS_G1;
74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 if (vgic->nassgireq)
76 value |= GICD_CTLR_nASSGIreq;
77 break;
78 case GICD_TYPER:
79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 value = (value >> 5) - 1;
81 if (vgic_has_its(vcpu->kvm)) {
82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 value |= GICD_TYPER_LPIS;
84 } else {
85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 }
87 break;
88 case GICD_TYPER2:
89 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90 value = GICD_TYPER2_nASSGIcap;
91 break;
92 case GICD_IIDR:
93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 break;
97 default:
98 return 0;
99 }
100
101 return value;
102 }
103
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110 switch (addr & 0x0c) {
111 case GICD_CTLR: {
112 bool was_enabled, is_hwsgi;
113
114 mutex_lock(&vcpu->kvm->arch.config_lock);
115
116 was_enabled = dist->enabled;
117 is_hwsgi = dist->nassgireq;
118
119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121 /* Not a GICv4.1? No HW SGIs */
122 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123 val &= ~GICD_CTLR_nASSGIreq;
124
125 /* Dist stays enabled? nASSGIreq is RO */
126 if (was_enabled && dist->enabled) {
127 val &= ~GICD_CTLR_nASSGIreq;
128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 }
130
131 /* Switching HW SGIs? */
132 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 if (is_hwsgi != dist->nassgireq)
134 vgic_v4_configure_vsgis(vcpu->kvm);
135
136 if (kvm_vgic_global_state.has_gicv4_1 &&
137 was_enabled != dist->enabled)
138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 else if (!was_enabled && dist->enabled)
140 vgic_kick_vcpus(vcpu->kvm);
141
142 mutex_unlock(&vcpu->kvm->arch.config_lock);
143 break;
144 }
145 case GICD_TYPER:
146 case GICD_TYPER2:
147 case GICD_IIDR:
148 /* This is at best for documentation purposes... */
149 return;
150 }
151 }
152
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 gpa_t addr, unsigned int len,
155 unsigned long val)
156 {
157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158 u32 reg;
159
160 switch (addr & 0x0c) {
161 case GICD_TYPER2:
162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 return -EINVAL;
164 return 0;
165 case GICD_IIDR:
166 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168 return -EINVAL;
169
170 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171 switch (reg) {
172 case KVM_VGIC_IMP_REV_2:
173 case KVM_VGIC_IMP_REV_3:
174 dist->implementation_rev = reg;
175 return 0;
176 default:
177 return -EINVAL;
178 }
179 case GICD_CTLR:
180 /* Not a GICv4.1? No HW SGIs */
181 if (!kvm_vgic_global_state.has_gicv4_1)
182 val &= ~GICD_CTLR_nASSGIreq;
183
184 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186 return 0;
187 }
188
189 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190 return 0;
191 }
192
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194 gpa_t addr, unsigned int len)
195 {
196 int intid = VGIC_ADDR_TO_INTID(addr, 64);
197 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198 unsigned long ret = 0;
199
200 if (!irq)
201 return 0;
202
203 /* The upper word is RAZ for us. */
204 if (!(addr & 4))
205 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207 vgic_put_irq(vcpu->kvm, irq);
208 return ret;
209 }
210
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212 gpa_t addr, unsigned int len,
213 unsigned long val)
214 {
215 int intid = VGIC_ADDR_TO_INTID(addr, 64);
216 struct vgic_irq *irq;
217 unsigned long flags;
218
219 /* The upper word is WI for us since we don't implement Aff3. */
220 if (addr & 4)
221 return;
222
223 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225 if (!irq)
226 return;
227
228 raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230 /* We only care about and preserve Aff0, Aff1 and Aff2. */
231 irq->mpidr = val & GENMASK(23, 0);
232 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235 vgic_put_irq(vcpu->kvm, irq);
236 }
237
vgic_lpis_enabled(struct kvm_vcpu * vcpu)238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242 return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246 gpa_t addr, unsigned int len)
247 {
248 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249 unsigned long val;
250
251 val = atomic_read(&vgic_cpu->ctlr);
252 if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255 return val;
256 }
257
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259 gpa_t addr, unsigned int len,
260 unsigned long val)
261 {
262 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263 u32 ctlr;
264
265 if (!vgic_has_its(vcpu->kvm))
266 return;
267
268 if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269 /*
270 * Don't disable if RWP is set, as there already an
271 * ongoing disable. Funky guest...
272 */
273 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274 GICR_CTLR_ENABLE_LPIS,
275 GICR_CTLR_RWP);
276 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277 return;
278
279 vgic_flush_pending_lpis(vcpu);
280 vgic_its_invalidate_cache(vcpu->kvm);
281 atomic_set_release(&vgic_cpu->ctlr, 0);
282 } else {
283 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284 GICR_CTLR_ENABLE_LPIS);
285 if (ctlr != 0)
286 return;
287
288 vgic_enable_lpis(vcpu);
289 }
290 }
291
vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu * vcpu)292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296 struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298 if (!rdreg)
299 return false;
300
301 if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302 return false;
303 } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304 struct list_head *rd_regions = &vgic->rd_regions;
305 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307 /*
308 * the rdist is the last one of the redist region,
309 * check whether there is no other contiguous rdist region
310 */
311 list_for_each_entry(iter, rd_regions, list) {
312 if (iter->base == end && iter->free_index > 0)
313 return false;
314 }
315 }
316 return true;
317 }
318
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320 gpa_t addr, unsigned int len)
321 {
322 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323 int target_vcpu_id = vcpu->vcpu_id;
324 u64 value;
325
326 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327 value |= ((target_vcpu_id & 0xffff) << 8);
328
329 if (vgic_has_its(vcpu->kvm))
330 value |= GICR_TYPER_PLPIS;
331
332 if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333 value |= GICR_TYPER_LAST;
334
335 return extract_bytes(value, addr & 7, len);
336 }
337
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339 gpa_t addr, unsigned int len)
340 {
341 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345 gpa_t addr, unsigned int len)
346 {
347 switch (addr & 0xffff) {
348 case GICD_PIDR2:
349 /* report a GICv3 compliant implementation */
350 return 0x3b;
351 }
352
353 return 0;
354 }
355
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357 gpa_t addr, unsigned int len,
358 unsigned long val)
359 {
360 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
361 int i;
362 unsigned long flags;
363
364 for (i = 0; i < len * 8; i++) {
365 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
366
367 raw_spin_lock_irqsave(&irq->irq_lock, flags);
368
369 /*
370 * pending_latch is set irrespective of irq type
371 * (level or edge) to avoid dependency that VM should
372 * restore irq config before pending info.
373 */
374 irq->pending_latch = test_bit(i, &val);
375
376 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
377 irq_set_irqchip_state(irq->host_irq,
378 IRQCHIP_STATE_PENDING,
379 irq->pending_latch);
380 irq->pending_latch = false;
381 }
382
383 if (irq->pending_latch)
384 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
385 else
386 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
387
388 vgic_put_irq(vcpu->kvm, irq);
389 }
390
391 return 0;
392 }
393
394 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)395 u64 vgic_sanitise_shareability(u64 field)
396 {
397 switch (field) {
398 case GIC_BASER_OuterShareable:
399 return GIC_BASER_InnerShareable;
400 default:
401 return field;
402 }
403 }
404
405 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)406 u64 vgic_sanitise_inner_cacheability(u64 field)
407 {
408 switch (field) {
409 case GIC_BASER_CACHE_nCnB:
410 case GIC_BASER_CACHE_nC:
411 return GIC_BASER_CACHE_RaWb;
412 default:
413 return field;
414 }
415 }
416
417 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)418 u64 vgic_sanitise_outer_cacheability(u64 field)
419 {
420 switch (field) {
421 case GIC_BASER_CACHE_SameAsInner:
422 case GIC_BASER_CACHE_nC:
423 return field;
424 default:
425 return GIC_BASER_CACHE_SameAsInner;
426 }
427 }
428
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))429 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
430 u64 (*sanitise_fn)(u64))
431 {
432 u64 field = (reg & field_mask) >> field_shift;
433
434 field = sanitise_fn(field) << field_shift;
435 return (reg & ~field_mask) | field;
436 }
437
438 #define PROPBASER_RES0_MASK \
439 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
440 #define PENDBASER_RES0_MASK \
441 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
442 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
443
vgic_sanitise_pendbaser(u64 reg)444 static u64 vgic_sanitise_pendbaser(u64 reg)
445 {
446 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
447 GICR_PENDBASER_SHAREABILITY_SHIFT,
448 vgic_sanitise_shareability);
449 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
450 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
451 vgic_sanitise_inner_cacheability);
452 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
453 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
454 vgic_sanitise_outer_cacheability);
455
456 reg &= ~PENDBASER_RES0_MASK;
457
458 return reg;
459 }
460
vgic_sanitise_propbaser(u64 reg)461 static u64 vgic_sanitise_propbaser(u64 reg)
462 {
463 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
464 GICR_PROPBASER_SHAREABILITY_SHIFT,
465 vgic_sanitise_shareability);
466 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
467 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
468 vgic_sanitise_inner_cacheability);
469 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
470 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
471 vgic_sanitise_outer_cacheability);
472
473 reg &= ~PROPBASER_RES0_MASK;
474 return reg;
475 }
476
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)477 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
478 gpa_t addr, unsigned int len)
479 {
480 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
481
482 return extract_bytes(dist->propbaser, addr & 7, len);
483 }
484
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)485 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
486 gpa_t addr, unsigned int len,
487 unsigned long val)
488 {
489 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
490 u64 old_propbaser, propbaser;
491
492 /* Storing a value with LPIs already enabled is undefined */
493 if (vgic_lpis_enabled(vcpu))
494 return;
495
496 do {
497 old_propbaser = READ_ONCE(dist->propbaser);
498 propbaser = old_propbaser;
499 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
500 propbaser = vgic_sanitise_propbaser(propbaser);
501 } while (cmpxchg64(&dist->propbaser, old_propbaser,
502 propbaser) != old_propbaser);
503 }
504
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)505 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
506 gpa_t addr, unsigned int len)
507 {
508 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
509 u64 value = vgic_cpu->pendbaser;
510
511 value &= ~GICR_PENDBASER_PTZ;
512
513 return extract_bytes(value, addr & 7, len);
514 }
515
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)516 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
517 gpa_t addr, unsigned int len,
518 unsigned long val)
519 {
520 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
521 u64 old_pendbaser, pendbaser;
522
523 /* Storing a value with LPIs already enabled is undefined */
524 if (vgic_lpis_enabled(vcpu))
525 return;
526
527 do {
528 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
529 pendbaser = old_pendbaser;
530 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
531 pendbaser = vgic_sanitise_pendbaser(pendbaser);
532 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
533 pendbaser) != old_pendbaser);
534 }
535
vgic_mmio_read_sync(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)536 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
537 gpa_t addr, unsigned int len)
538 {
539 return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
540 }
541
vgic_set_rdist_busy(struct kvm_vcpu * vcpu,bool busy)542 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
543 {
544 if (busy) {
545 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
546 smp_mb__after_atomic();
547 } else {
548 smp_mb__before_atomic();
549 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
550 }
551 }
552
vgic_mmio_write_invlpi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)553 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
554 gpa_t addr, unsigned int len,
555 unsigned long val)
556 {
557 struct vgic_irq *irq;
558 u32 intid;
559
560 /*
561 * If the guest wrote only to the upper 32bit part of the
562 * register, drop the write on the floor, as it is only for
563 * vPEs (which we don't support for obvious reasons).
564 *
565 * Also discard the access if LPIs are not enabled.
566 */
567 if ((addr & 4) || !vgic_lpis_enabled(vcpu))
568 return;
569
570 intid = lower_32_bits(val);
571 if (intid < VGIC_MIN_LPI)
572 return;
573
574 vgic_set_rdist_busy(vcpu, true);
575
576 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
577 if (irq) {
578 vgic_its_inv_lpi(vcpu->kvm, irq);
579 vgic_put_irq(vcpu->kvm, irq);
580 }
581
582 vgic_set_rdist_busy(vcpu, false);
583 }
584
vgic_mmio_write_invall(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)585 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
586 gpa_t addr, unsigned int len,
587 unsigned long val)
588 {
589 /* See vgic_mmio_write_invlpi() for the early return rationale */
590 if ((addr & 4) || !vgic_lpis_enabled(vcpu))
591 return;
592
593 vgic_set_rdist_busy(vcpu, true);
594 vgic_its_invall(vcpu);
595 vgic_set_rdist_busy(vcpu, false);
596 }
597
598 /*
599 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
600 * redistributors, while SPIs are covered by registers in the distributor
601 * block. Trying to set private IRQs in this block gets ignored.
602 * We take some special care here to fix the calculation of the register
603 * offset.
604 */
605 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
606 { \
607 .reg_offset = off, \
608 .bits_per_irq = bpi, \
609 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
610 .access_flags = acc, \
611 .read = vgic_mmio_read_raz, \
612 .write = vgic_mmio_write_wi, \
613 }, { \
614 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
615 .bits_per_irq = bpi, \
616 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
617 .access_flags = acc, \
618 .read = rd, \
619 .write = wr, \
620 .uaccess_read = ur, \
621 .uaccess_write = uw, \
622 }
623
624 static const struct vgic_register_region vgic_v3_dist_registers[] = {
625 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
626 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
627 NULL, vgic_mmio_uaccess_write_v3_misc,
628 16, VGIC_ACCESS_32bit),
629 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
630 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
631 VGIC_ACCESS_32bit),
632 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
633 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
634 VGIC_ACCESS_32bit),
635 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
636 vgic_mmio_read_enable, vgic_mmio_write_senable,
637 NULL, vgic_uaccess_write_senable, 1,
638 VGIC_ACCESS_32bit),
639 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
640 vgic_mmio_read_enable, vgic_mmio_write_cenable,
641 NULL, vgic_uaccess_write_cenable, 1,
642 VGIC_ACCESS_32bit),
643 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
644 vgic_mmio_read_pending, vgic_mmio_write_spending,
645 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
646 VGIC_ACCESS_32bit),
647 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
648 vgic_mmio_read_pending, vgic_mmio_write_cpending,
649 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
650 VGIC_ACCESS_32bit),
651 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
652 vgic_mmio_read_active, vgic_mmio_write_sactive,
653 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
654 VGIC_ACCESS_32bit),
655 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
656 vgic_mmio_read_active, vgic_mmio_write_cactive,
657 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
658 1, VGIC_ACCESS_32bit),
659 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
660 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
661 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
662 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
663 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
664 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
665 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
666 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
667 VGIC_ACCESS_32bit),
668 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
669 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
670 VGIC_ACCESS_32bit),
671 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
672 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
673 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
674 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
675 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
676 VGIC_ACCESS_32bit),
677 };
678
679 static const struct vgic_register_region vgic_v3_rd_registers[] = {
680 /* RD_base registers */
681 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
682 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
683 VGIC_ACCESS_32bit),
684 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
685 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
686 VGIC_ACCESS_32bit),
687 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
688 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
689 VGIC_ACCESS_32bit),
690 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
691 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
692 NULL, vgic_mmio_uaccess_write_wi, 8,
693 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
694 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
695 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
696 VGIC_ACCESS_32bit),
697 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
698 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
699 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
700 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
701 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
702 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
703 REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
704 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
705 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
706 REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
707 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
708 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
709 REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
710 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
711 VGIC_ACCESS_32bit),
712 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
713 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
714 VGIC_ACCESS_32bit),
715 /* SGI_base registers */
716 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
717 vgic_mmio_read_group, vgic_mmio_write_group, 4,
718 VGIC_ACCESS_32bit),
719 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
720 vgic_mmio_read_enable, vgic_mmio_write_senable,
721 NULL, vgic_uaccess_write_senable, 4,
722 VGIC_ACCESS_32bit),
723 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
724 vgic_mmio_read_enable, vgic_mmio_write_cenable,
725 NULL, vgic_uaccess_write_cenable, 4,
726 VGIC_ACCESS_32bit),
727 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
728 vgic_mmio_read_pending, vgic_mmio_write_spending,
729 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
730 VGIC_ACCESS_32bit),
731 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
732 vgic_mmio_read_pending, vgic_mmio_write_cpending,
733 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
734 VGIC_ACCESS_32bit),
735 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
736 vgic_mmio_read_active, vgic_mmio_write_sactive,
737 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
738 VGIC_ACCESS_32bit),
739 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
740 vgic_mmio_read_active, vgic_mmio_write_cactive,
741 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
742 VGIC_ACCESS_32bit),
743 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
744 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
745 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
746 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
747 vgic_mmio_read_config, vgic_mmio_write_config, 8,
748 VGIC_ACCESS_32bit),
749 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
750 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
751 VGIC_ACCESS_32bit),
752 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
753 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
754 VGIC_ACCESS_32bit),
755 };
756
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)757 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
758 {
759 dev->regions = vgic_v3_dist_registers;
760 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
761
762 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
763
764 return SZ_64K;
765 }
766
767 /**
768 * vgic_register_redist_iodev - register a single redist iodev
769 * @vcpu: The VCPU to which the redistributor belongs
770 *
771 * Register a KVM iodev for this VCPU's redistributor using the address
772 * provided.
773 *
774 * Return 0 on success, -ERRNO otherwise.
775 */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)776 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
777 {
778 struct kvm *kvm = vcpu->kvm;
779 struct vgic_dist *vgic = &kvm->arch.vgic;
780 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
781 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
782 struct vgic_redist_region *rdreg;
783 gpa_t rd_base;
784 int ret = 0;
785
786 lockdep_assert_held(&kvm->slots_lock);
787 mutex_lock(&kvm->arch.config_lock);
788
789 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
790 goto out_unlock;
791
792 /*
793 * We may be creating VCPUs before having set the base address for the
794 * redistributor region, in which case we will come back to this
795 * function for all VCPUs when the base address is set. Just return
796 * without doing any work for now.
797 */
798 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
799 if (!rdreg)
800 goto out_unlock;
801
802 if (!vgic_v3_check_base(kvm)) {
803 ret = -EINVAL;
804 goto out_unlock;
805 }
806
807 vgic_cpu->rdreg = rdreg;
808 vgic_cpu->rdreg_index = rdreg->free_index;
809
810 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
811
812 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
813 rd_dev->base_addr = rd_base;
814 rd_dev->iodev_type = IODEV_REDIST;
815 rd_dev->regions = vgic_v3_rd_registers;
816 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
817 rd_dev->redist_vcpu = vcpu;
818
819 mutex_unlock(&kvm->arch.config_lock);
820
821 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
822 2 * SZ_64K, &rd_dev->dev);
823 if (ret)
824 return ret;
825
826 /* Protected by slots_lock */
827 rdreg->free_index++;
828 return 0;
829
830 out_unlock:
831 mutex_unlock(&kvm->arch.config_lock);
832 return ret;
833 }
834
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)835 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
836 {
837 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
838
839 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
840 }
841
vgic_register_all_redist_iodevs(struct kvm * kvm)842 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
843 {
844 struct kvm_vcpu *vcpu;
845 unsigned long c;
846 int ret = 0;
847
848 kvm_for_each_vcpu(c, vcpu, kvm) {
849 ret = vgic_register_redist_iodev(vcpu);
850 if (ret)
851 break;
852 }
853
854 if (ret) {
855 /* The current c failed, so iterate over the previous ones. */
856 int i;
857
858 for (i = 0; i < c; i++) {
859 vcpu = kvm_get_vcpu(kvm, i);
860 vgic_unregister_redist_iodev(vcpu);
861 }
862 }
863
864 return ret;
865 }
866
867 /**
868 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
869 *
870 * Performs various checks before inserting the rdist region in the list.
871 * Those tests depend on whether the size of the rdist region is known
872 * (ie. count != 0). The list is sorted by rdist region index.
873 *
874 * @kvm: kvm handle
875 * @index: redist region index
876 * @base: base of the new rdist region
877 * @count: number of redistributors the region is made of (0 in the old style
878 * single region, whose size is induced from the number of vcpus)
879 *
880 * Return 0 on success, < 0 otherwise
881 */
vgic_v3_alloc_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)882 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
883 gpa_t base, uint32_t count)
884 {
885 struct vgic_dist *d = &kvm->arch.vgic;
886 struct vgic_redist_region *rdreg;
887 struct list_head *rd_regions = &d->rd_regions;
888 int nr_vcpus = atomic_read(&kvm->online_vcpus);
889 size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
890 : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
891 int ret;
892
893 /* cross the end of memory ? */
894 if (base + size < base)
895 return -EINVAL;
896
897 if (list_empty(rd_regions)) {
898 if (index != 0)
899 return -EINVAL;
900 } else {
901 rdreg = list_last_entry(rd_regions,
902 struct vgic_redist_region, list);
903
904 /* Don't mix single region and discrete redist regions */
905 if (!count && rdreg->count)
906 return -EINVAL;
907
908 if (!count)
909 return -EEXIST;
910
911 if (index != rdreg->index + 1)
912 return -EINVAL;
913 }
914
915 /*
916 * For legacy single-region redistributor regions (!count),
917 * check that the redistributor region does not overlap with the
918 * distributor's address space.
919 */
920 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
921 vgic_dist_overlap(kvm, base, size))
922 return -EINVAL;
923
924 /* collision with any other rdist region? */
925 if (vgic_v3_rdist_overlap(kvm, base, size))
926 return -EINVAL;
927
928 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
929 if (!rdreg)
930 return -ENOMEM;
931
932 rdreg->base = VGIC_ADDR_UNDEF;
933
934 ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
935 if (ret)
936 goto free;
937
938 rdreg->base = base;
939 rdreg->count = count;
940 rdreg->free_index = 0;
941 rdreg->index = index;
942
943 list_add_tail(&rdreg->list, rd_regions);
944 return 0;
945 free:
946 kfree(rdreg);
947 return ret;
948 }
949
vgic_v3_free_redist_region(struct kvm * kvm,struct vgic_redist_region * rdreg)950 void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
951 {
952 struct kvm_vcpu *vcpu;
953 unsigned long c;
954
955 lockdep_assert_held(&kvm->arch.config_lock);
956
957 /* Garbage collect the region */
958 kvm_for_each_vcpu(c, vcpu, kvm) {
959 if (vcpu->arch.vgic_cpu.rdreg == rdreg)
960 vcpu->arch.vgic_cpu.rdreg = NULL;
961 }
962
963 list_del(&rdreg->list);
964 kfree(rdreg);
965 }
966
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)967 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
968 {
969 int ret;
970
971 mutex_lock(&kvm->arch.config_lock);
972 ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
973 mutex_unlock(&kvm->arch.config_lock);
974 if (ret)
975 return ret;
976
977 /*
978 * Register iodevs for each existing VCPU. Adding more VCPUs
979 * afterwards will register the iodevs when needed.
980 */
981 ret = vgic_register_all_redist_iodevs(kvm);
982 if (ret) {
983 struct vgic_redist_region *rdreg;
984
985 mutex_lock(&kvm->arch.config_lock);
986 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
987 vgic_v3_free_redist_region(kvm, rdreg);
988 mutex_unlock(&kvm->arch.config_lock);
989 return ret;
990 }
991
992 return 0;
993 }
994
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)995 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
996 {
997 const struct vgic_register_region *region;
998 struct vgic_io_device iodev;
999 struct vgic_reg_attr reg_attr;
1000 struct kvm_vcpu *vcpu;
1001 gpa_t addr;
1002 int ret;
1003
1004 ret = vgic_v3_parse_attr(dev, attr, ®_attr);
1005 if (ret)
1006 return ret;
1007
1008 vcpu = reg_attr.vcpu;
1009 addr = reg_attr.addr;
1010
1011 switch (attr->group) {
1012 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1013 iodev.regions = vgic_v3_dist_registers;
1014 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1015 iodev.base_addr = 0;
1016 break;
1017 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1018 iodev.regions = vgic_v3_rd_registers;
1019 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1020 iodev.base_addr = 0;
1021 break;
1022 }
1023 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
1024 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
1025 default:
1026 return -ENXIO;
1027 }
1028
1029 /* We only support aligned 32-bit accesses. */
1030 if (addr & 3)
1031 return -ENXIO;
1032
1033 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1034 if (!region)
1035 return -ENXIO;
1036
1037 return 0;
1038 }
1039 /*
1040 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1041 * generation register ICC_SGI1R_EL1) with a given VCPU.
1042 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1043 * return -1.
1044 */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)1045 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1046 {
1047 unsigned long affinity;
1048 int level0;
1049
1050 /*
1051 * Split the current VCPU's MPIDR into affinity level 0 and the
1052 * rest as this is what we have to compare against.
1053 */
1054 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1055 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1056 affinity &= ~MPIDR_LEVEL_MASK;
1057
1058 /* bail out if the upper three levels don't match */
1059 if (sgi_aff != affinity)
1060 return -1;
1061
1062 /* Is this VCPU's bit set in the mask ? */
1063 if (!(sgi_cpu_mask & BIT(level0)))
1064 return -1;
1065
1066 return level0;
1067 }
1068
1069 /*
1070 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1071 * so provide a wrapper to use the existing defines to isolate a certain
1072 * affinity level.
1073 */
1074 #define SGI_AFFINITY_LEVEL(reg, level) \
1075 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1076 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1077
1078 /**
1079 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1080 * @vcpu: The VCPU requesting a SGI
1081 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1082 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1083 *
1084 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1085 * This will trap in sys_regs.c and call this function.
1086 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1087 * target processors as well as a bitmask of 16 Aff0 CPUs.
1088 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1089 * check for matching ones. If this bit is set, we signal all, but not the
1090 * calling VCPU.
1091 */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)1092 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1093 {
1094 struct kvm *kvm = vcpu->kvm;
1095 struct kvm_vcpu *c_vcpu;
1096 u16 target_cpus;
1097 u64 mpidr;
1098 int sgi;
1099 int vcpu_id = vcpu->vcpu_id;
1100 bool broadcast;
1101 unsigned long c, flags;
1102
1103 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1104 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1105 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1106 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1107 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1108 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1109
1110 /*
1111 * We iterate over all VCPUs to find the MPIDRs matching the request.
1112 * If we have handled one CPU, we clear its bit to detect early
1113 * if we are already finished. This avoids iterating through all
1114 * VCPUs when most of the times we just signal a single VCPU.
1115 */
1116 kvm_for_each_vcpu(c, c_vcpu, kvm) {
1117 struct vgic_irq *irq;
1118
1119 /* Exit early if we have dealt with all requested CPUs */
1120 if (!broadcast && target_cpus == 0)
1121 break;
1122
1123 /* Don't signal the calling VCPU */
1124 if (broadcast && c == vcpu_id)
1125 continue;
1126
1127 if (!broadcast) {
1128 int level0;
1129
1130 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1131 if (level0 == -1)
1132 continue;
1133
1134 /* remove this matching VCPU from the mask */
1135 target_cpus &= ~BIT(level0);
1136 }
1137
1138 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1139
1140 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1141
1142 /*
1143 * An access targeting Group0 SGIs can only generate
1144 * those, while an access targeting Group1 SGIs can
1145 * generate interrupts of either group.
1146 */
1147 if (!irq->group || allow_group1) {
1148 if (!irq->hw) {
1149 irq->pending_latch = true;
1150 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1151 } else {
1152 /* HW SGI? Ask the GIC to inject it */
1153 int err;
1154 err = irq_set_irqchip_state(irq->host_irq,
1155 IRQCHIP_STATE_PENDING,
1156 true);
1157 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1158 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1159 }
1160 } else {
1161 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1162 }
1163
1164 vgic_put_irq(vcpu->kvm, irq);
1165 }
1166 }
1167
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1168 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1169 int offset, u32 *val)
1170 {
1171 struct vgic_io_device dev = {
1172 .regions = vgic_v3_dist_registers,
1173 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1174 };
1175
1176 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1177 }
1178
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1179 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1180 int offset, u32 *val)
1181 {
1182 struct vgic_io_device rd_dev = {
1183 .regions = vgic_v3_rd_registers,
1184 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1185 };
1186
1187 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1188 }
1189
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u32 * val)1190 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1191 u32 intid, u32 *val)
1192 {
1193 if (intid % 32)
1194 return -EINVAL;
1195
1196 if (is_write)
1197 vgic_write_irq_line_level_info(vcpu, intid, *val);
1198 else
1199 *val = vgic_read_irq_line_level_info(vcpu, intid);
1200
1201 return 0;
1202 }
1203