1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 *
100 * Should any of these fail, behave as if we couldn't create the LPI
101 * by dropping the refcount and returning the error.
102 */
103 ret = update_lpi_config(kvm, irq, NULL, false);
104 if (ret) {
105 vgic_put_irq(kvm, irq);
106 return ERR_PTR(ret);
107 }
108
109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 if (ret) {
111 vgic_put_irq(kvm, irq);
112 return ERR_PTR(ret);
113 }
114
115 return irq;
116 }
117
118 struct its_device {
119 struct list_head dev_list;
120
121 /* the head for the list of ITTEs */
122 struct list_head itt_head;
123 u32 num_eventid_bits;
124 gpa_t itt_addr;
125 u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131 struct list_head coll_list;
132
133 u32 collection_id;
134 u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141 struct list_head ite_list;
142
143 struct vgic_irq *irq;
144 struct its_collection *collection;
145 u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149 struct list_head entry;
150 phys_addr_t db;
151 u32 devid;
152 u32 eventid;
153 struct vgic_irq *irq;
154 };
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
vgic_its_get_abi(struct vgic_its * its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
vgic_its_set_abi(struct vgic_its * its,u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
find_its_device(struct vgic_its * its,u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
find_collection(struct vgic_its * its,int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308 if (irq->hw)
309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 return 0;
312 }
313
314 /*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 struct vgic_dist *dist = &kvm->arch.vgic;
322 struct vgic_irq *irq;
323 unsigned long flags;
324 u32 *intids;
325 int irq_count, i = 0;
326
327 /*
328 * There is an obvious race between allocating the array and LPIs
329 * being mapped/unmapped. If we ended up here as a result of a
330 * command, we're safe (locks are held, preventing another
331 * command). If coming from another path (such as enabling LPIs),
332 * we must be careful not to overrun the array.
333 */
334 irq_count = READ_ONCE(dist->lpi_list_count);
335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336 if (!intids)
337 return -ENOMEM;
338
339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 if (i == irq_count)
342 break;
343 /* We don't need to "get" the IRQ, as we hold the list lock. */
344 if (vcpu && irq->target_vcpu != vcpu)
345 continue;
346 intids[i++] = irq->intid;
347 }
348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350 *intid_ptr = intids;
351 return i;
352 }
353
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 int ret = 0;
357 unsigned long flags;
358
359 raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 irq->target_vcpu = vcpu;
361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363 if (irq->hw) {
364 struct its_vlpi_map map;
365
366 ret = its_get_vlpi(irq->host_irq, &map);
367 if (ret)
368 return ret;
369
370 if (map.vpe)
371 atomic_dec(&map.vpe->vlpi_count);
372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 atomic_inc(&map.vpe->vlpi_count);
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
381 /*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 struct kvm_vcpu *vcpu;
390
391 if (!its_is_collection_mapped(ite->collection))
392 return;
393
394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 update_affinity(ite->irq, vcpu);
396 }
397
398 /*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 struct its_collection *coll)
404 {
405 struct its_device *device;
406 struct its_ite *ite;
407
408 for_each_lpi_its(device, ite, its) {
409 if (ite->collection != coll)
410 continue;
411
412 update_affinity_ite(kvm, ite);
413 }
414 }
415
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 int nr_idbits = (propbaser & 0x1f) + 1;
419
420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422
423 /*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 struct vgic_irq *irq;
432 int last_byte_offset = -1;
433 int ret = 0;
434 u32 *intids;
435 int nr_irqs, i;
436 unsigned long flags;
437 u8 pendmask;
438
439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 if (nr_irqs < 0)
441 return nr_irqs;
442
443 for (i = 0; i < nr_irqs; i++) {
444 int byte_offset, bit_nr;
445
446 byte_offset = intids[i] / BITS_PER_BYTE;
447 bit_nr = intids[i] % BITS_PER_BYTE;
448
449 /*
450 * For contiguously allocated LPIs chances are we just read
451 * this very same byte in the last iteration. Reuse that.
452 */
453 if (byte_offset != last_byte_offset) {
454 ret = kvm_read_guest_lock(vcpu->kvm,
455 pendbase + byte_offset,
456 &pendmask, 1);
457 if (ret) {
458 kfree(intids);
459 return ret;
460 }
461 last_byte_offset = byte_offset;
462 }
463
464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 if (!irq)
466 continue;
467
468 raw_spin_lock_irqsave(&irq->irq_lock, flags);
469 irq->pending_latch = pendmask & (1U << bit_nr);
470 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
471 vgic_put_irq(vcpu->kvm, irq);
472 }
473
474 kfree(intids);
475
476 return ret;
477 }
478
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)479 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
480 struct vgic_its *its,
481 gpa_t addr, unsigned int len)
482 {
483 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
484 u64 reg = GITS_TYPER_PLPIS;
485
486 /*
487 * We use linear CPU numbers for redistributor addressing,
488 * so GITS_TYPER.PTA is 0.
489 * Also we force all PROPBASER registers to be the same, so
490 * CommonLPIAff is 0 as well.
491 * To avoid memory waste in the guest, we keep the number of IDBits and
492 * DevBits low - as least for the time being.
493 */
494 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
495 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
496 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
497
498 return extract_bytes(reg, addr & 7, len);
499 }
500
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)501 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
502 struct vgic_its *its,
503 gpa_t addr, unsigned int len)
504 {
505 u32 val;
506
507 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
508 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
509 return val;
510 }
511
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)512 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
513 struct vgic_its *its,
514 gpa_t addr, unsigned int len,
515 unsigned long val)
516 {
517 u32 rev = GITS_IIDR_REV(val);
518
519 if (rev >= NR_ITS_ABIS)
520 return -EINVAL;
521 return vgic_its_set_abi(its, rev);
522 }
523
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)524 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
525 struct vgic_its *its,
526 gpa_t addr, unsigned int len)
527 {
528 switch (addr & 0xffff) {
529 case GITS_PIDR0:
530 return 0x92; /* part number, bits[7:0] */
531 case GITS_PIDR1:
532 return 0xb4; /* part number, bits[11:8] */
533 case GITS_PIDR2:
534 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
535 case GITS_PIDR4:
536 return 0x40; /* This is a 64K software visible page */
537 /* The following are the ID registers for (any) GIC. */
538 case GITS_CIDR0:
539 return 0x0d;
540 case GITS_CIDR1:
541 return 0xf0;
542 case GITS_CIDR2:
543 return 0x05;
544 case GITS_CIDR3:
545 return 0xb1;
546 }
547
548 return 0;
549 }
550
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)551 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
552 phys_addr_t db,
553 u32 devid, u32 eventid)
554 {
555 struct vgic_translation_cache_entry *cte;
556
557 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
558 /*
559 * If we hit a NULL entry, there is nothing after this
560 * point.
561 */
562 if (!cte->irq)
563 break;
564
565 if (cte->db != db || cte->devid != devid ||
566 cte->eventid != eventid)
567 continue;
568
569 /*
570 * Move this entry to the head, as it is the most
571 * recently used.
572 */
573 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
574 list_move(&cte->entry, &dist->lpi_translation_cache);
575
576 return cte->irq;
577 }
578
579 return NULL;
580 }
581
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)582 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
583 u32 devid, u32 eventid)
584 {
585 struct vgic_dist *dist = &kvm->arch.vgic;
586 struct vgic_irq *irq;
587 unsigned long flags;
588
589 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
590
591 irq = __vgic_its_check_cache(dist, db, devid, eventid);
592 if (irq)
593 vgic_get_irq_kref(irq);
594
595 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
596
597 return irq;
598 }
599
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)600 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
601 u32 devid, u32 eventid,
602 struct vgic_irq *irq)
603 {
604 struct vgic_dist *dist = &kvm->arch.vgic;
605 struct vgic_translation_cache_entry *cte;
606 unsigned long flags;
607 phys_addr_t db;
608
609 /* Do not cache a directly injected interrupt */
610 if (irq->hw)
611 return;
612
613 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
614
615 if (unlikely(list_empty(&dist->lpi_translation_cache)))
616 goto out;
617
618 /*
619 * We could have raced with another CPU caching the same
620 * translation behind our back, so let's check it is not in
621 * already
622 */
623 db = its->vgic_its_base + GITS_TRANSLATER;
624 if (__vgic_its_check_cache(dist, db, devid, eventid))
625 goto out;
626
627 /* Always reuse the last entry (LRU policy) */
628 cte = list_last_entry(&dist->lpi_translation_cache,
629 typeof(*cte), entry);
630
631 /*
632 * Caching the translation implies having an extra reference
633 * to the interrupt, so drop the potential reference on what
634 * was in the cache, and increment it on the new interrupt.
635 */
636 if (cte->irq)
637 __vgic_put_lpi_locked(kvm, cte->irq);
638
639 vgic_get_irq_kref(irq);
640
641 cte->db = db;
642 cte->devid = devid;
643 cte->eventid = eventid;
644 cte->irq = irq;
645
646 /* Move the new translation to the head of the list */
647 list_move(&cte->entry, &dist->lpi_translation_cache);
648
649 out:
650 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
651 }
652
vgic_its_invalidate_cache(struct kvm * kvm)653 void vgic_its_invalidate_cache(struct kvm *kvm)
654 {
655 struct vgic_dist *dist = &kvm->arch.vgic;
656 struct vgic_translation_cache_entry *cte;
657 unsigned long flags;
658
659 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
660
661 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
662 /*
663 * If we hit a NULL entry, there is nothing after this
664 * point.
665 */
666 if (!cte->irq)
667 break;
668
669 __vgic_put_lpi_locked(kvm, cte->irq);
670 cte->irq = NULL;
671 }
672
673 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
674 }
675
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)676 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
677 u32 devid, u32 eventid, struct vgic_irq **irq)
678 {
679 struct kvm_vcpu *vcpu;
680 struct its_ite *ite;
681
682 if (!its->enabled)
683 return -EBUSY;
684
685 ite = find_ite(its, devid, eventid);
686 if (!ite || !its_is_collection_mapped(ite->collection))
687 return E_ITS_INT_UNMAPPED_INTERRUPT;
688
689 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
690 if (!vcpu)
691 return E_ITS_INT_UNMAPPED_INTERRUPT;
692
693 if (!vgic_lpis_enabled(vcpu))
694 return -EBUSY;
695
696 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
697
698 *irq = ite->irq;
699 return 0;
700 }
701
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)702 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
703 {
704 u64 address;
705 struct kvm_io_device *kvm_io_dev;
706 struct vgic_io_device *iodev;
707
708 if (!vgic_has_its(kvm))
709 return ERR_PTR(-ENODEV);
710
711 if (!(msi->flags & KVM_MSI_VALID_DEVID))
712 return ERR_PTR(-EINVAL);
713
714 address = (u64)msi->address_hi << 32 | msi->address_lo;
715
716 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
717 if (!kvm_io_dev)
718 return ERR_PTR(-EINVAL);
719
720 if (kvm_io_dev->ops != &kvm_io_gic_ops)
721 return ERR_PTR(-EINVAL);
722
723 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
724 if (iodev->iodev_type != IODEV_ITS)
725 return ERR_PTR(-EINVAL);
726
727 return iodev->its;
728 }
729
730 /*
731 * Find the target VCPU and the LPI number for a given devid/eventid pair
732 * and make this IRQ pending, possibly injecting it.
733 * Must be called with the its_lock mutex held.
734 * Returns 0 on success, a positive error value for any ITS mapping
735 * related errors and negative error values for generic errors.
736 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)737 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
738 u32 devid, u32 eventid)
739 {
740 struct vgic_irq *irq = NULL;
741 unsigned long flags;
742 int err;
743
744 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
745 if (err)
746 return err;
747
748 if (irq->hw)
749 return irq_set_irqchip_state(irq->host_irq,
750 IRQCHIP_STATE_PENDING, true);
751
752 raw_spin_lock_irqsave(&irq->irq_lock, flags);
753 irq->pending_latch = true;
754 vgic_queue_irq_unlock(kvm, irq, flags);
755
756 return 0;
757 }
758
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)759 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
760 {
761 struct vgic_irq *irq;
762 unsigned long flags;
763 phys_addr_t db;
764
765 db = (u64)msi->address_hi << 32 | msi->address_lo;
766 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
767 if (!irq)
768 return -EWOULDBLOCK;
769
770 raw_spin_lock_irqsave(&irq->irq_lock, flags);
771 irq->pending_latch = true;
772 vgic_queue_irq_unlock(kvm, irq, flags);
773 vgic_put_irq(kvm, irq);
774
775 return 0;
776 }
777
778 /*
779 * Queries the KVM IO bus framework to get the ITS pointer from the given
780 * doorbell address.
781 * We then call vgic_its_trigger_msi() with the decoded data.
782 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
783 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)784 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
785 {
786 struct vgic_its *its;
787 int ret;
788
789 if (!vgic_its_inject_cached_translation(kvm, msi))
790 return 1;
791
792 its = vgic_msi_to_its(kvm, msi);
793 if (IS_ERR(its))
794 return PTR_ERR(its);
795
796 mutex_lock(&its->its_lock);
797 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
798 mutex_unlock(&its->its_lock);
799
800 if (ret < 0)
801 return ret;
802
803 /*
804 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
805 * if the guest has blocked the MSI. So we map any LPI mapping
806 * related error to that.
807 */
808 if (ret)
809 return 0;
810 else
811 return 1;
812 }
813
814 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)815 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
816 {
817 list_del(&ite->ite_list);
818
819 /* This put matches the get in vgic_add_lpi. */
820 if (ite->irq) {
821 if (ite->irq->hw)
822 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
823
824 vgic_put_irq(kvm, ite->irq);
825 }
826
827 kfree(ite);
828 }
829
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)830 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
831 {
832 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
833 }
834
835 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
836 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
837 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
838 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
839 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
840 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
841 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
842 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
843 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
844
845 /*
846 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
847 * Must be called with the its_lock mutex held.
848 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)849 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
850 u64 *its_cmd)
851 {
852 u32 device_id = its_cmd_get_deviceid(its_cmd);
853 u32 event_id = its_cmd_get_id(its_cmd);
854 struct its_ite *ite;
855
856 ite = find_ite(its, device_id, event_id);
857 if (ite && its_is_collection_mapped(ite->collection)) {
858 /*
859 * Though the spec talks about removing the pending state, we
860 * don't bother here since we clear the ITTE anyway and the
861 * pending state is a property of the ITTE struct.
862 */
863 vgic_its_invalidate_cache(kvm);
864
865 its_free_ite(kvm, ite);
866 return 0;
867 }
868
869 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
870 }
871
872 /*
873 * The MOVI command moves an ITTE to a different collection.
874 * Must be called with the its_lock mutex held.
875 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)876 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
877 u64 *its_cmd)
878 {
879 u32 device_id = its_cmd_get_deviceid(its_cmd);
880 u32 event_id = its_cmd_get_id(its_cmd);
881 u32 coll_id = its_cmd_get_collection(its_cmd);
882 struct kvm_vcpu *vcpu;
883 struct its_ite *ite;
884 struct its_collection *collection;
885
886 ite = find_ite(its, device_id, event_id);
887 if (!ite)
888 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
889
890 if (!its_is_collection_mapped(ite->collection))
891 return E_ITS_MOVI_UNMAPPED_COLLECTION;
892
893 collection = find_collection(its, coll_id);
894 if (!its_is_collection_mapped(collection))
895 return E_ITS_MOVI_UNMAPPED_COLLECTION;
896
897 ite->collection = collection;
898 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
899
900 vgic_its_invalidate_cache(kvm);
901
902 return update_affinity(ite->irq, vcpu);
903 }
904
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)905 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
906 {
907 gfn_t gfn = gpa >> PAGE_SHIFT;
908 int idx;
909 bool ret;
910
911 idx = srcu_read_lock(&its->dev->kvm->srcu);
912 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
913 srcu_read_unlock(&its->dev->kvm->srcu, idx);
914 return ret;
915 }
916
917 /*
918 * Check whether an ID can be stored into the corresponding guest table.
919 * For a direct table this is pretty easy, but gets a bit nasty for
920 * indirect tables. We check whether the resulting guest physical address
921 * is actually valid (covered by a memslot and guest accessible).
922 * For this we have to read the respective first level entry.
923 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)924 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
925 gpa_t *eaddr)
926 {
927 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
928 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
929 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
930 int esz = GITS_BASER_ENTRY_SIZE(baser);
931 int index;
932
933 switch (type) {
934 case GITS_BASER_TYPE_DEVICE:
935 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
936 return false;
937 break;
938 case GITS_BASER_TYPE_COLLECTION:
939 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
940 if (id >= BIT_ULL(16))
941 return false;
942 break;
943 default:
944 return false;
945 }
946
947 if (!(baser & GITS_BASER_INDIRECT)) {
948 phys_addr_t addr;
949
950 if (id >= (l1_tbl_size / esz))
951 return false;
952
953 addr = base + id * esz;
954
955 if (eaddr)
956 *eaddr = addr;
957
958 return __is_visible_gfn_locked(its, addr);
959 }
960
961 /* calculate and check the index into the 1st level */
962 index = id / (SZ_64K / esz);
963 if (index >= (l1_tbl_size / sizeof(u64)))
964 return false;
965
966 /* Each 1st level entry is represented by a 64-bit value. */
967 if (kvm_read_guest_lock(its->dev->kvm,
968 base + index * sizeof(indirect_ptr),
969 &indirect_ptr, sizeof(indirect_ptr)))
970 return false;
971
972 indirect_ptr = le64_to_cpu(indirect_ptr);
973
974 /* check the valid bit of the first level entry */
975 if (!(indirect_ptr & BIT_ULL(63)))
976 return false;
977
978 /* Mask the guest physical address and calculate the frame number. */
979 indirect_ptr &= GENMASK_ULL(51, 16);
980
981 /* Find the address of the actual entry */
982 index = id % (SZ_64K / esz);
983 indirect_ptr += index * esz;
984
985 if (eaddr)
986 *eaddr = indirect_ptr;
987
988 return __is_visible_gfn_locked(its, indirect_ptr);
989 }
990
991 /*
992 * Check whether an event ID can be stored in the corresponding Interrupt
993 * Translation Table, which starts at device->itt_addr.
994 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)995 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
996 u32 event_id)
997 {
998 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
999 int ite_esz = abi->ite_esz;
1000 gpa_t gpa;
1001
1002 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1003 if (event_id >= BIT_ULL(device->num_eventid_bits))
1004 return false;
1005
1006 gpa = device->itt_addr + event_id * ite_esz;
1007 return __is_visible_gfn_locked(its, gpa);
1008 }
1009
1010 /*
1011 * Add a new collection into the ITS collection table.
1012 * Returns 0 on success, and a negative error value for generic errors.
1013 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)1014 static int vgic_its_alloc_collection(struct vgic_its *its,
1015 struct its_collection **colp,
1016 u32 coll_id)
1017 {
1018 struct its_collection *collection;
1019
1020 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1021 if (!collection)
1022 return -ENOMEM;
1023
1024 collection->collection_id = coll_id;
1025 collection->target_addr = COLLECTION_NOT_MAPPED;
1026
1027 list_add_tail(&collection->coll_list, &its->collection_list);
1028 *colp = collection;
1029
1030 return 0;
1031 }
1032
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)1033 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1034 {
1035 struct its_collection *collection;
1036 struct its_device *device;
1037 struct its_ite *ite;
1038
1039 /*
1040 * Clearing the mapping for that collection ID removes the
1041 * entry from the list. If there wasn't any before, we can
1042 * go home early.
1043 */
1044 collection = find_collection(its, coll_id);
1045 if (!collection)
1046 return;
1047
1048 for_each_lpi_its(device, ite, its)
1049 if (ite->collection &&
1050 ite->collection->collection_id == coll_id)
1051 ite->collection = NULL;
1052
1053 list_del(&collection->coll_list);
1054 kfree(collection);
1055 }
1056
1057 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1058 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1059 struct its_collection *collection,
1060 u32 event_id)
1061 {
1062 struct its_ite *ite;
1063
1064 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1065 if (!ite)
1066 return ERR_PTR(-ENOMEM);
1067
1068 ite->event_id = event_id;
1069 ite->collection = collection;
1070
1071 list_add_tail(&ite->ite_list, &device->itt_head);
1072 return ite;
1073 }
1074
1075 /*
1076 * The MAPTI and MAPI commands map LPIs to ITTEs.
1077 * Must be called with its_lock mutex held.
1078 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1079 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1080 u64 *its_cmd)
1081 {
1082 u32 device_id = its_cmd_get_deviceid(its_cmd);
1083 u32 event_id = its_cmd_get_id(its_cmd);
1084 u32 coll_id = its_cmd_get_collection(its_cmd);
1085 struct its_ite *ite;
1086 struct kvm_vcpu *vcpu = NULL;
1087 struct its_device *device;
1088 struct its_collection *collection, *new_coll = NULL;
1089 struct vgic_irq *irq;
1090 int lpi_nr;
1091
1092 device = find_its_device(its, device_id);
1093 if (!device)
1094 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1095
1096 if (!vgic_its_check_event_id(its, device, event_id))
1097 return E_ITS_MAPTI_ID_OOR;
1098
1099 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1100 lpi_nr = its_cmd_get_physical_id(its_cmd);
1101 else
1102 lpi_nr = event_id;
1103 if (lpi_nr < GIC_LPI_OFFSET ||
1104 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1105 return E_ITS_MAPTI_PHYSICALID_OOR;
1106
1107 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1108 if (find_ite(its, device_id, event_id))
1109 return 0;
1110
1111 collection = find_collection(its, coll_id);
1112 if (!collection) {
1113 int ret;
1114
1115 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1116 return E_ITS_MAPC_COLLECTION_OOR;
1117
1118 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1119 if (ret)
1120 return ret;
1121 new_coll = collection;
1122 }
1123
1124 ite = vgic_its_alloc_ite(device, collection, event_id);
1125 if (IS_ERR(ite)) {
1126 if (new_coll)
1127 vgic_its_free_collection(its, coll_id);
1128 return PTR_ERR(ite);
1129 }
1130
1131 if (its_is_collection_mapped(collection))
1132 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1133
1134 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1135 if (IS_ERR(irq)) {
1136 if (new_coll)
1137 vgic_its_free_collection(its, coll_id);
1138 its_free_ite(kvm, ite);
1139 return PTR_ERR(irq);
1140 }
1141 ite->irq = irq;
1142
1143 return 0;
1144 }
1145
1146 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1147 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1148 {
1149 struct its_ite *ite, *temp;
1150
1151 /*
1152 * The spec says that unmapping a device with still valid
1153 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1154 * since we cannot leave the memory unreferenced.
1155 */
1156 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1157 its_free_ite(kvm, ite);
1158
1159 vgic_its_invalidate_cache(kvm);
1160
1161 list_del(&device->dev_list);
1162 kfree(device);
1163 }
1164
1165 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1166 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1167 {
1168 struct its_device *cur, *temp;
1169
1170 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1171 vgic_its_free_device(kvm, cur);
1172 }
1173
1174 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1175 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1176 {
1177 struct its_collection *cur, *temp;
1178
1179 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1180 vgic_its_free_collection(its, cur->collection_id);
1181 }
1182
1183 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1184 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1185 u32 device_id, gpa_t itt_addr,
1186 u8 num_eventid_bits)
1187 {
1188 struct its_device *device;
1189
1190 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1191 if (!device)
1192 return ERR_PTR(-ENOMEM);
1193
1194 device->device_id = device_id;
1195 device->itt_addr = itt_addr;
1196 device->num_eventid_bits = num_eventid_bits;
1197 INIT_LIST_HEAD(&device->itt_head);
1198
1199 list_add_tail(&device->dev_list, &its->device_list);
1200 return device;
1201 }
1202
1203 /*
1204 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1205 * Must be called with the its_lock mutex held.
1206 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1207 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1208 u64 *its_cmd)
1209 {
1210 u32 device_id = its_cmd_get_deviceid(its_cmd);
1211 bool valid = its_cmd_get_validbit(its_cmd);
1212 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1213 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1214 struct its_device *device;
1215
1216 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1217 return E_ITS_MAPD_DEVICE_OOR;
1218
1219 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1220 return E_ITS_MAPD_ITTSIZE_OOR;
1221
1222 device = find_its_device(its, device_id);
1223
1224 /*
1225 * The spec says that calling MAPD on an already mapped device
1226 * invalidates all cached data for this device. We implement this
1227 * by removing the mapping and re-establishing it.
1228 */
1229 if (device)
1230 vgic_its_free_device(kvm, device);
1231
1232 /*
1233 * The spec does not say whether unmapping a not-mapped device
1234 * is an error, so we are done in any case.
1235 */
1236 if (!valid)
1237 return 0;
1238
1239 device = vgic_its_alloc_device(its, device_id, itt_addr,
1240 num_eventid_bits);
1241
1242 return PTR_ERR_OR_ZERO(device);
1243 }
1244
1245 /*
1246 * The MAPC command maps collection IDs to redistributors.
1247 * Must be called with the its_lock mutex held.
1248 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1249 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1250 u64 *its_cmd)
1251 {
1252 u16 coll_id;
1253 u32 target_addr;
1254 struct its_collection *collection;
1255 bool valid;
1256
1257 valid = its_cmd_get_validbit(its_cmd);
1258 coll_id = its_cmd_get_collection(its_cmd);
1259 target_addr = its_cmd_get_target_addr(its_cmd);
1260
1261 if (target_addr >= atomic_read(&kvm->online_vcpus))
1262 return E_ITS_MAPC_PROCNUM_OOR;
1263
1264 if (!valid) {
1265 vgic_its_free_collection(its, coll_id);
1266 vgic_its_invalidate_cache(kvm);
1267 } else {
1268 collection = find_collection(its, coll_id);
1269
1270 if (!collection) {
1271 int ret;
1272
1273 if (!vgic_its_check_id(its, its->baser_coll_table,
1274 coll_id, NULL))
1275 return E_ITS_MAPC_COLLECTION_OOR;
1276
1277 ret = vgic_its_alloc_collection(its, &collection,
1278 coll_id);
1279 if (ret)
1280 return ret;
1281 collection->target_addr = target_addr;
1282 } else {
1283 collection->target_addr = target_addr;
1284 update_affinity_collection(kvm, its, collection);
1285 }
1286 }
1287
1288 return 0;
1289 }
1290
1291 /*
1292 * The CLEAR command removes the pending state for a particular LPI.
1293 * Must be called with the its_lock mutex held.
1294 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1295 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1296 u64 *its_cmd)
1297 {
1298 u32 device_id = its_cmd_get_deviceid(its_cmd);
1299 u32 event_id = its_cmd_get_id(its_cmd);
1300 struct its_ite *ite;
1301
1302
1303 ite = find_ite(its, device_id, event_id);
1304 if (!ite)
1305 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1306
1307 ite->irq->pending_latch = false;
1308
1309 if (ite->irq->hw)
1310 return irq_set_irqchip_state(ite->irq->host_irq,
1311 IRQCHIP_STATE_PENDING, false);
1312
1313 return 0;
1314 }
1315
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1316 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1317 {
1318 return update_lpi_config(kvm, irq, NULL, true);
1319 }
1320
1321 /*
1322 * The INV command syncs the configuration bits from the memory table.
1323 * Must be called with the its_lock mutex held.
1324 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1325 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1326 u64 *its_cmd)
1327 {
1328 u32 device_id = its_cmd_get_deviceid(its_cmd);
1329 u32 event_id = its_cmd_get_id(its_cmd);
1330 struct its_ite *ite;
1331
1332
1333 ite = find_ite(its, device_id, event_id);
1334 if (!ite)
1335 return E_ITS_INV_UNMAPPED_INTERRUPT;
1336
1337 return vgic_its_inv_lpi(kvm, ite->irq);
1338 }
1339
1340 /**
1341 * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1342 * @vcpu: the vcpu for which the RD is targetted by an invalidation
1343 *
1344 * Contrary to the INVALL command, this targets a RD instead of a
1345 * collection, and we don't need to hold the its_lock, since no ITS is
1346 * involved here.
1347 */
vgic_its_invall(struct kvm_vcpu * vcpu)1348 int vgic_its_invall(struct kvm_vcpu *vcpu)
1349 {
1350 struct kvm *kvm = vcpu->kvm;
1351 int irq_count, i = 0;
1352 u32 *intids;
1353
1354 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1355 if (irq_count < 0)
1356 return irq_count;
1357
1358 for (i = 0; i < irq_count; i++) {
1359 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1360 if (!irq)
1361 continue;
1362 update_lpi_config(kvm, irq, vcpu, false);
1363 vgic_put_irq(kvm, irq);
1364 }
1365
1366 kfree(intids);
1367
1368 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1369 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1370
1371 return 0;
1372 }
1373
1374 /*
1375 * The INVALL command requests flushing of all IRQ data in this collection.
1376 * Find the VCPU mapped to that collection, then iterate over the VM's list
1377 * of mapped LPIs and update the configuration for each IRQ which targets
1378 * the specified vcpu. The configuration will be read from the in-memory
1379 * configuration table.
1380 * Must be called with the its_lock mutex held.
1381 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1382 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1383 u64 *its_cmd)
1384 {
1385 u32 coll_id = its_cmd_get_collection(its_cmd);
1386 struct its_collection *collection;
1387 struct kvm_vcpu *vcpu;
1388
1389 collection = find_collection(its, coll_id);
1390 if (!its_is_collection_mapped(collection))
1391 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1392
1393 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1394 vgic_its_invall(vcpu);
1395
1396 return 0;
1397 }
1398
1399 /*
1400 * The MOVALL command moves the pending state of all IRQs targeting one
1401 * redistributor to another. We don't hold the pending state in the VCPUs,
1402 * but in the IRQs instead, so there is really not much to do for us here.
1403 * However the spec says that no IRQ must target the old redistributor
1404 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1405 * This command affects all LPIs in the system that target that redistributor.
1406 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1407 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1408 u64 *its_cmd)
1409 {
1410 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1411 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1412 struct kvm_vcpu *vcpu1, *vcpu2;
1413 struct vgic_irq *irq;
1414 u32 *intids;
1415 int irq_count, i;
1416
1417 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1418 target2_addr >= atomic_read(&kvm->online_vcpus))
1419 return E_ITS_MOVALL_PROCNUM_OOR;
1420
1421 if (target1_addr == target2_addr)
1422 return 0;
1423
1424 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1425 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1426
1427 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1428 if (irq_count < 0)
1429 return irq_count;
1430
1431 for (i = 0; i < irq_count; i++) {
1432 irq = vgic_get_irq(kvm, NULL, intids[i]);
1433 if (!irq)
1434 continue;
1435
1436 update_affinity(irq, vcpu2);
1437
1438 vgic_put_irq(kvm, irq);
1439 }
1440
1441 vgic_its_invalidate_cache(kvm);
1442
1443 kfree(intids);
1444 return 0;
1445 }
1446
1447 /*
1448 * The INT command injects the LPI associated with that DevID/EvID pair.
1449 * Must be called with the its_lock mutex held.
1450 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1451 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1452 u64 *its_cmd)
1453 {
1454 u32 msi_data = its_cmd_get_id(its_cmd);
1455 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1456
1457 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1458 }
1459
1460 /*
1461 * This function is called with the its_cmd lock held, but the ITS data
1462 * structure lock dropped.
1463 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1464 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1465 u64 *its_cmd)
1466 {
1467 int ret = -ENODEV;
1468
1469 mutex_lock(&its->its_lock);
1470 switch (its_cmd_get_command(its_cmd)) {
1471 case GITS_CMD_MAPD:
1472 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1473 break;
1474 case GITS_CMD_MAPC:
1475 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1476 break;
1477 case GITS_CMD_MAPI:
1478 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1479 break;
1480 case GITS_CMD_MAPTI:
1481 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1482 break;
1483 case GITS_CMD_MOVI:
1484 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1485 break;
1486 case GITS_CMD_DISCARD:
1487 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1488 break;
1489 case GITS_CMD_CLEAR:
1490 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1491 break;
1492 case GITS_CMD_MOVALL:
1493 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1494 break;
1495 case GITS_CMD_INT:
1496 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1497 break;
1498 case GITS_CMD_INV:
1499 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1500 break;
1501 case GITS_CMD_INVALL:
1502 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1503 break;
1504 case GITS_CMD_SYNC:
1505 /* we ignore this command: we are in sync all of the time */
1506 ret = 0;
1507 break;
1508 }
1509 mutex_unlock(&its->its_lock);
1510
1511 return ret;
1512 }
1513
vgic_sanitise_its_baser(u64 reg)1514 static u64 vgic_sanitise_its_baser(u64 reg)
1515 {
1516 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1517 GITS_BASER_SHAREABILITY_SHIFT,
1518 vgic_sanitise_shareability);
1519 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1520 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1521 vgic_sanitise_inner_cacheability);
1522 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1523 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1524 vgic_sanitise_outer_cacheability);
1525
1526 /* We support only one (ITS) page size: 64K */
1527 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1528
1529 return reg;
1530 }
1531
vgic_sanitise_its_cbaser(u64 reg)1532 static u64 vgic_sanitise_its_cbaser(u64 reg)
1533 {
1534 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1535 GITS_CBASER_SHAREABILITY_SHIFT,
1536 vgic_sanitise_shareability);
1537 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1538 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1539 vgic_sanitise_inner_cacheability);
1540 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1541 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1542 vgic_sanitise_outer_cacheability);
1543
1544 /* Sanitise the physical address to be 64k aligned. */
1545 reg &= ~GENMASK_ULL(15, 12);
1546
1547 return reg;
1548 }
1549
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1550 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1551 struct vgic_its *its,
1552 gpa_t addr, unsigned int len)
1553 {
1554 return extract_bytes(its->cbaser, addr & 7, len);
1555 }
1556
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1557 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1558 gpa_t addr, unsigned int len,
1559 unsigned long val)
1560 {
1561 /* When GITS_CTLR.Enable is 1, this register is RO. */
1562 if (its->enabled)
1563 return;
1564
1565 mutex_lock(&its->cmd_lock);
1566 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1567 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1568 its->creadr = 0;
1569 /*
1570 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1571 * it to CREADR to make sure we start with an empty command buffer.
1572 */
1573 its->cwriter = its->creadr;
1574 mutex_unlock(&its->cmd_lock);
1575 }
1576
1577 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1578 #define ITS_CMD_SIZE 32
1579 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1580
1581 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1582 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1583 {
1584 gpa_t cbaser;
1585 u64 cmd_buf[4];
1586
1587 /* Commands are only processed when the ITS is enabled. */
1588 if (!its->enabled)
1589 return;
1590
1591 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1592
1593 while (its->cwriter != its->creadr) {
1594 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1595 cmd_buf, ITS_CMD_SIZE);
1596 /*
1597 * If kvm_read_guest() fails, this could be due to the guest
1598 * programming a bogus value in CBASER or something else going
1599 * wrong from which we cannot easily recover.
1600 * According to section 6.3.2 in the GICv3 spec we can just
1601 * ignore that command then.
1602 */
1603 if (!ret)
1604 vgic_its_handle_command(kvm, its, cmd_buf);
1605
1606 its->creadr += ITS_CMD_SIZE;
1607 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1608 its->creadr = 0;
1609 }
1610 }
1611
1612 /*
1613 * By writing to CWRITER the guest announces new commands to be processed.
1614 * To avoid any races in the first place, we take the its_cmd lock, which
1615 * protects our ring buffer variables, so that there is only one user
1616 * per ITS handling commands at a given time.
1617 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1618 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1619 gpa_t addr, unsigned int len,
1620 unsigned long val)
1621 {
1622 u64 reg;
1623
1624 if (!its)
1625 return;
1626
1627 mutex_lock(&its->cmd_lock);
1628
1629 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1630 reg = ITS_CMD_OFFSET(reg);
1631 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1632 mutex_unlock(&its->cmd_lock);
1633 return;
1634 }
1635 its->cwriter = reg;
1636
1637 vgic_its_process_commands(kvm, its);
1638
1639 mutex_unlock(&its->cmd_lock);
1640 }
1641
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1642 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1643 struct vgic_its *its,
1644 gpa_t addr, unsigned int len)
1645 {
1646 return extract_bytes(its->cwriter, addr & 0x7, len);
1647 }
1648
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1649 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1650 struct vgic_its *its,
1651 gpa_t addr, unsigned int len)
1652 {
1653 return extract_bytes(its->creadr, addr & 0x7, len);
1654 }
1655
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1656 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1657 struct vgic_its *its,
1658 gpa_t addr, unsigned int len,
1659 unsigned long val)
1660 {
1661 u32 cmd_offset;
1662 int ret = 0;
1663
1664 mutex_lock(&its->cmd_lock);
1665
1666 if (its->enabled) {
1667 ret = -EBUSY;
1668 goto out;
1669 }
1670
1671 cmd_offset = ITS_CMD_OFFSET(val);
1672 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1673 ret = -EINVAL;
1674 goto out;
1675 }
1676
1677 its->creadr = cmd_offset;
1678 out:
1679 mutex_unlock(&its->cmd_lock);
1680 return ret;
1681 }
1682
1683 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1684 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1685 struct vgic_its *its,
1686 gpa_t addr, unsigned int len)
1687 {
1688 u64 reg;
1689
1690 switch (BASER_INDEX(addr)) {
1691 case 0:
1692 reg = its->baser_device_table;
1693 break;
1694 case 1:
1695 reg = its->baser_coll_table;
1696 break;
1697 default:
1698 reg = 0;
1699 break;
1700 }
1701
1702 return extract_bytes(reg, addr & 7, len);
1703 }
1704
1705 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1706 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1707 struct vgic_its *its,
1708 gpa_t addr, unsigned int len,
1709 unsigned long val)
1710 {
1711 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1712 u64 entry_size, table_type;
1713 u64 reg, *regptr, clearbits = 0;
1714
1715 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1716 if (its->enabled)
1717 return;
1718
1719 switch (BASER_INDEX(addr)) {
1720 case 0:
1721 regptr = &its->baser_device_table;
1722 entry_size = abi->dte_esz;
1723 table_type = GITS_BASER_TYPE_DEVICE;
1724 break;
1725 case 1:
1726 regptr = &its->baser_coll_table;
1727 entry_size = abi->cte_esz;
1728 table_type = GITS_BASER_TYPE_COLLECTION;
1729 clearbits = GITS_BASER_INDIRECT;
1730 break;
1731 default:
1732 return;
1733 }
1734
1735 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1736 reg &= ~GITS_BASER_RO_MASK;
1737 reg &= ~clearbits;
1738
1739 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1740 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1741 reg = vgic_sanitise_its_baser(reg);
1742
1743 *regptr = reg;
1744
1745 if (!(reg & GITS_BASER_VALID)) {
1746 /* Take the its_lock to prevent a race with a save/restore */
1747 mutex_lock(&its->its_lock);
1748 switch (table_type) {
1749 case GITS_BASER_TYPE_DEVICE:
1750 vgic_its_free_device_list(kvm, its);
1751 break;
1752 case GITS_BASER_TYPE_COLLECTION:
1753 vgic_its_free_collection_list(kvm, its);
1754 break;
1755 }
1756 mutex_unlock(&its->its_lock);
1757 }
1758 }
1759
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1760 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1761 struct vgic_its *its,
1762 gpa_t addr, unsigned int len)
1763 {
1764 u32 reg = 0;
1765
1766 mutex_lock(&its->cmd_lock);
1767 if (its->creadr == its->cwriter)
1768 reg |= GITS_CTLR_QUIESCENT;
1769 if (its->enabled)
1770 reg |= GITS_CTLR_ENABLE;
1771 mutex_unlock(&its->cmd_lock);
1772
1773 return reg;
1774 }
1775
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1776 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1777 gpa_t addr, unsigned int len,
1778 unsigned long val)
1779 {
1780 mutex_lock(&its->cmd_lock);
1781
1782 /*
1783 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1784 * device/collection BASER are invalid
1785 */
1786 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1787 (!(its->baser_device_table & GITS_BASER_VALID) ||
1788 !(its->baser_coll_table & GITS_BASER_VALID) ||
1789 !(its->cbaser & GITS_CBASER_VALID)))
1790 goto out;
1791
1792 its->enabled = !!(val & GITS_CTLR_ENABLE);
1793 if (!its->enabled)
1794 vgic_its_invalidate_cache(kvm);
1795
1796 /*
1797 * Try to process any pending commands. This function bails out early
1798 * if the ITS is disabled or no commands have been queued.
1799 */
1800 vgic_its_process_commands(kvm, its);
1801
1802 out:
1803 mutex_unlock(&its->cmd_lock);
1804 }
1805
1806 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1807 { \
1808 .reg_offset = off, \
1809 .len = length, \
1810 .access_flags = acc, \
1811 .its_read = rd, \
1812 .its_write = wr, \
1813 }
1814
1815 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1816 { \
1817 .reg_offset = off, \
1818 .len = length, \
1819 .access_flags = acc, \
1820 .its_read = rd, \
1821 .its_write = wr, \
1822 .uaccess_its_write = uwr, \
1823 }
1824
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1825 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1826 gpa_t addr, unsigned int len, unsigned long val)
1827 {
1828 /* Ignore */
1829 }
1830
1831 static struct vgic_register_region its_registers[] = {
1832 REGISTER_ITS_DESC(GITS_CTLR,
1833 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1834 VGIC_ACCESS_32bit),
1835 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1836 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1837 vgic_mmio_uaccess_write_its_iidr, 4,
1838 VGIC_ACCESS_32bit),
1839 REGISTER_ITS_DESC(GITS_TYPER,
1840 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1841 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1842 REGISTER_ITS_DESC(GITS_CBASER,
1843 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1844 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1845 REGISTER_ITS_DESC(GITS_CWRITER,
1846 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1847 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1848 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1849 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1850 vgic_mmio_uaccess_write_its_creadr, 8,
1851 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1852 REGISTER_ITS_DESC(GITS_BASER,
1853 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1854 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1855 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1856 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1857 VGIC_ACCESS_32bit),
1858 };
1859
1860 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1861 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1862 {
1863 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1864 its_sync_lpi_pending_table(vcpu);
1865 }
1866
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1867 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1868 u64 addr)
1869 {
1870 struct vgic_io_device *iodev = &its->iodev;
1871 int ret;
1872
1873 mutex_lock(&kvm->slots_lock);
1874 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1875 ret = -EBUSY;
1876 goto out;
1877 }
1878
1879 its->vgic_its_base = addr;
1880 iodev->regions = its_registers;
1881 iodev->nr_regions = ARRAY_SIZE(its_registers);
1882 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1883
1884 iodev->base_addr = its->vgic_its_base;
1885 iodev->iodev_type = IODEV_ITS;
1886 iodev->its = its;
1887 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1888 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1889 out:
1890 mutex_unlock(&kvm->slots_lock);
1891
1892 return ret;
1893 }
1894
1895 /* Default is 16 cached LPIs per vcpu */
1896 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1897
vgic_lpi_translation_cache_init(struct kvm * kvm)1898 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1899 {
1900 struct vgic_dist *dist = &kvm->arch.vgic;
1901 unsigned int sz;
1902 int i;
1903
1904 if (!list_empty(&dist->lpi_translation_cache))
1905 return;
1906
1907 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1908
1909 for (i = 0; i < sz; i++) {
1910 struct vgic_translation_cache_entry *cte;
1911
1912 /* An allocation failure is not fatal */
1913 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1914 if (WARN_ON(!cte))
1915 break;
1916
1917 INIT_LIST_HEAD(&cte->entry);
1918 list_add(&cte->entry, &dist->lpi_translation_cache);
1919 }
1920 }
1921
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1922 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1923 {
1924 struct vgic_dist *dist = &kvm->arch.vgic;
1925 struct vgic_translation_cache_entry *cte, *tmp;
1926
1927 vgic_its_invalidate_cache(kvm);
1928
1929 list_for_each_entry_safe(cte, tmp,
1930 &dist->lpi_translation_cache, entry) {
1931 list_del(&cte->entry);
1932 kfree(cte);
1933 }
1934 }
1935
1936 #define INITIAL_BASER_VALUE \
1937 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1938 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1939 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1940 GITS_BASER_PAGE_SIZE_64K)
1941
1942 #define INITIAL_PROPBASER_VALUE \
1943 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1944 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1945 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1946
vgic_its_create(struct kvm_device * dev,u32 type)1947 static int vgic_its_create(struct kvm_device *dev, u32 type)
1948 {
1949 int ret;
1950 struct vgic_its *its;
1951
1952 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1953 return -ENODEV;
1954
1955 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1956 if (!its)
1957 return -ENOMEM;
1958
1959 mutex_lock(&dev->kvm->arch.config_lock);
1960
1961 if (vgic_initialized(dev->kvm)) {
1962 ret = vgic_v4_init(dev->kvm);
1963 if (ret < 0) {
1964 mutex_unlock(&dev->kvm->arch.config_lock);
1965 kfree(its);
1966 return ret;
1967 }
1968
1969 vgic_lpi_translation_cache_init(dev->kvm);
1970 }
1971
1972 mutex_init(&its->its_lock);
1973 mutex_init(&its->cmd_lock);
1974
1975 /* Yep, even more trickery for lock ordering... */
1976 #ifdef CONFIG_LOCKDEP
1977 mutex_lock(&its->cmd_lock);
1978 mutex_lock(&its->its_lock);
1979 mutex_unlock(&its->its_lock);
1980 mutex_unlock(&its->cmd_lock);
1981 #endif
1982
1983 its->vgic_its_base = VGIC_ADDR_UNDEF;
1984
1985 INIT_LIST_HEAD(&its->device_list);
1986 INIT_LIST_HEAD(&its->collection_list);
1987
1988 dev->kvm->arch.vgic.msis_require_devid = true;
1989 dev->kvm->arch.vgic.has_its = true;
1990 its->enabled = false;
1991 its->dev = dev;
1992
1993 its->baser_device_table = INITIAL_BASER_VALUE |
1994 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1995 its->baser_coll_table = INITIAL_BASER_VALUE |
1996 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1997 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1998
1999 dev->private = its;
2000
2001 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2002
2003 mutex_unlock(&dev->kvm->arch.config_lock);
2004
2005 return ret;
2006 }
2007
vgic_its_destroy(struct kvm_device * kvm_dev)2008 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2009 {
2010 struct kvm *kvm = kvm_dev->kvm;
2011 struct vgic_its *its = kvm_dev->private;
2012
2013 mutex_lock(&its->its_lock);
2014
2015 vgic_its_free_device_list(kvm, its);
2016 vgic_its_free_collection_list(kvm, its);
2017
2018 mutex_unlock(&its->its_lock);
2019 kfree(its);
2020 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2021 }
2022
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)2023 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2024 struct kvm_device_attr *attr)
2025 {
2026 const struct vgic_register_region *region;
2027 gpa_t offset = attr->attr;
2028 int align;
2029
2030 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2031
2032 if (offset & align)
2033 return -EINVAL;
2034
2035 region = vgic_find_mmio_region(its_registers,
2036 ARRAY_SIZE(its_registers),
2037 offset);
2038 if (!region)
2039 return -ENXIO;
2040
2041 return 0;
2042 }
2043
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)2044 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2045 struct kvm_device_attr *attr,
2046 u64 *reg, bool is_write)
2047 {
2048 const struct vgic_register_region *region;
2049 struct vgic_its *its;
2050 gpa_t addr, offset;
2051 unsigned int len;
2052 int align, ret = 0;
2053
2054 its = dev->private;
2055 offset = attr->attr;
2056
2057 /*
2058 * Although the spec supports upper/lower 32-bit accesses to
2059 * 64-bit ITS registers, the userspace ABI requires 64-bit
2060 * accesses to all 64-bit wide registers. We therefore only
2061 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2062 * registers
2063 */
2064 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2065 align = 0x3;
2066 else
2067 align = 0x7;
2068
2069 if (offset & align)
2070 return -EINVAL;
2071
2072 mutex_lock(&dev->kvm->lock);
2073
2074 if (!lock_all_vcpus(dev->kvm)) {
2075 mutex_unlock(&dev->kvm->lock);
2076 return -EBUSY;
2077 }
2078
2079 mutex_lock(&dev->kvm->arch.config_lock);
2080
2081 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2082 ret = -ENXIO;
2083 goto out;
2084 }
2085
2086 region = vgic_find_mmio_region(its_registers,
2087 ARRAY_SIZE(its_registers),
2088 offset);
2089 if (!region) {
2090 ret = -ENXIO;
2091 goto out;
2092 }
2093
2094 addr = its->vgic_its_base + offset;
2095
2096 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2097
2098 if (is_write) {
2099 if (region->uaccess_its_write)
2100 ret = region->uaccess_its_write(dev->kvm, its, addr,
2101 len, *reg);
2102 else
2103 region->its_write(dev->kvm, its, addr, len, *reg);
2104 } else {
2105 *reg = region->its_read(dev->kvm, its, addr, len);
2106 }
2107 out:
2108 mutex_unlock(&dev->kvm->arch.config_lock);
2109 unlock_all_vcpus(dev->kvm);
2110 mutex_unlock(&dev->kvm->lock);
2111 return ret;
2112 }
2113
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2114 static u32 compute_next_devid_offset(struct list_head *h,
2115 struct its_device *dev)
2116 {
2117 struct its_device *next;
2118 u32 next_offset;
2119
2120 if (list_is_last(&dev->dev_list, h))
2121 return 0;
2122 next = list_next_entry(dev, dev_list);
2123 next_offset = next->device_id - dev->device_id;
2124
2125 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2126 }
2127
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2128 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2129 {
2130 struct its_ite *next;
2131 u32 next_offset;
2132
2133 if (list_is_last(&ite->ite_list, h))
2134 return 0;
2135 next = list_next_entry(ite, ite_list);
2136 next_offset = next->event_id - ite->event_id;
2137
2138 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2139 }
2140
2141 /**
2142 * entry_fn_t - Callback called on a table entry restore path
2143 * @its: its handle
2144 * @id: id of the entry
2145 * @entry: pointer to the entry
2146 * @opaque: pointer to an opaque data
2147 *
2148 * Return: < 0 on error, 0 if last element was identified, id offset to next
2149 * element otherwise
2150 */
2151 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2152 void *opaque);
2153
2154 /**
2155 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2156 * to each entry
2157 *
2158 * @its: its handle
2159 * @base: base gpa of the table
2160 * @size: size of the table in bytes
2161 * @esz: entry size in bytes
2162 * @start_id: the ID of the first entry in the table
2163 * (non zero for 2d level tables)
2164 * @fn: function to apply on each entry
2165 *
2166 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2167 * (the last element may not be found on second level tables)
2168 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2169 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2170 int start_id, entry_fn_t fn, void *opaque)
2171 {
2172 struct kvm *kvm = its->dev->kvm;
2173 unsigned long len = size;
2174 int id = start_id;
2175 gpa_t gpa = base;
2176 char entry[ESZ_MAX];
2177 int ret;
2178
2179 memset(entry, 0, esz);
2180
2181 while (true) {
2182 int next_offset;
2183 size_t byte_offset;
2184
2185 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2186 if (ret)
2187 return ret;
2188
2189 next_offset = fn(its, id, entry, opaque);
2190 if (next_offset <= 0)
2191 return next_offset;
2192
2193 byte_offset = next_offset * esz;
2194 if (byte_offset >= len)
2195 break;
2196
2197 id += next_offset;
2198 gpa += byte_offset;
2199 len -= byte_offset;
2200 }
2201 return 1;
2202 }
2203
2204 /**
2205 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2206 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2207 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2208 struct its_ite *ite, gpa_t gpa, int ite_esz)
2209 {
2210 struct kvm *kvm = its->dev->kvm;
2211 u32 next_offset;
2212 u64 val;
2213
2214 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2215 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2216 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2217 ite->collection->collection_id;
2218 val = cpu_to_le64(val);
2219 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2220 }
2221
2222 /**
2223 * vgic_its_restore_ite - restore an interrupt translation entry
2224 * @event_id: id used for indexing
2225 * @ptr: pointer to the ITE entry
2226 * @opaque: pointer to the its_device
2227 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2228 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2229 void *ptr, void *opaque)
2230 {
2231 struct its_device *dev = opaque;
2232 struct its_collection *collection;
2233 struct kvm *kvm = its->dev->kvm;
2234 struct kvm_vcpu *vcpu = NULL;
2235 u64 val;
2236 u64 *p = (u64 *)ptr;
2237 struct vgic_irq *irq;
2238 u32 coll_id, lpi_id;
2239 struct its_ite *ite;
2240 u32 offset;
2241
2242 val = *p;
2243
2244 val = le64_to_cpu(val);
2245
2246 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2247 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2248
2249 if (!lpi_id)
2250 return 1; /* invalid entry, no choice but to scan next entry */
2251
2252 if (lpi_id < VGIC_MIN_LPI)
2253 return -EINVAL;
2254
2255 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2256 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2257 return -EINVAL;
2258
2259 collection = find_collection(its, coll_id);
2260 if (!collection)
2261 return -EINVAL;
2262
2263 if (!vgic_its_check_event_id(its, dev, event_id))
2264 return -EINVAL;
2265
2266 ite = vgic_its_alloc_ite(dev, collection, event_id);
2267 if (IS_ERR(ite))
2268 return PTR_ERR(ite);
2269
2270 if (its_is_collection_mapped(collection))
2271 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2272
2273 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2274 if (IS_ERR(irq)) {
2275 its_free_ite(kvm, ite);
2276 return PTR_ERR(irq);
2277 }
2278 ite->irq = irq;
2279
2280 return offset;
2281 }
2282
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2283 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2284 const struct list_head *b)
2285 {
2286 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2287 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2288
2289 if (itea->event_id < iteb->event_id)
2290 return -1;
2291 else
2292 return 1;
2293 }
2294
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2295 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2296 {
2297 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2298 gpa_t base = device->itt_addr;
2299 struct its_ite *ite;
2300 int ret;
2301 int ite_esz = abi->ite_esz;
2302
2303 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2304
2305 list_for_each_entry(ite, &device->itt_head, ite_list) {
2306 gpa_t gpa = base + ite->event_id * ite_esz;
2307
2308 /*
2309 * If an LPI carries the HW bit, this means that this
2310 * interrupt is controlled by GICv4, and we do not
2311 * have direct access to that state without GICv4.1.
2312 * Let's simply fail the save operation...
2313 */
2314 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2315 return -EACCES;
2316
2317 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2318 if (ret)
2319 return ret;
2320 }
2321 return 0;
2322 }
2323
2324 /**
2325 * vgic_its_restore_itt - restore the ITT of a device
2326 *
2327 * @its: its handle
2328 * @dev: device handle
2329 *
2330 * Return 0 on success, < 0 on error
2331 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2332 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2333 {
2334 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2335 gpa_t base = dev->itt_addr;
2336 int ret;
2337 int ite_esz = abi->ite_esz;
2338 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2339
2340 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2341 vgic_its_restore_ite, dev);
2342
2343 /* scan_its_table returns +1 if all ITEs are invalid */
2344 if (ret > 0)
2345 ret = 0;
2346
2347 return ret;
2348 }
2349
2350 /**
2351 * vgic_its_save_dte - Save a device table entry at a given GPA
2352 *
2353 * @its: ITS handle
2354 * @dev: ITS device
2355 * @ptr: GPA
2356 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2357 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2358 gpa_t ptr, int dte_esz)
2359 {
2360 struct kvm *kvm = its->dev->kvm;
2361 u64 val, itt_addr_field;
2362 u32 next_offset;
2363
2364 itt_addr_field = dev->itt_addr >> 8;
2365 next_offset = compute_next_devid_offset(&its->device_list, dev);
2366 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2367 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2368 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2369 (dev->num_eventid_bits - 1));
2370 val = cpu_to_le64(val);
2371 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2372 }
2373
2374 /**
2375 * vgic_its_restore_dte - restore a device table entry
2376 *
2377 * @its: its handle
2378 * @id: device id the DTE corresponds to
2379 * @ptr: kernel VA where the 8 byte DTE is located
2380 * @opaque: unused
2381 *
2382 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2383 * next dte otherwise
2384 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2385 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2386 void *ptr, void *opaque)
2387 {
2388 struct its_device *dev;
2389 u64 baser = its->baser_device_table;
2390 gpa_t itt_addr;
2391 u8 num_eventid_bits;
2392 u64 entry = *(u64 *)ptr;
2393 bool valid;
2394 u32 offset;
2395 int ret;
2396
2397 entry = le64_to_cpu(entry);
2398
2399 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2400 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2401 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2402 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2403
2404 if (!valid)
2405 return 1;
2406
2407 /* dte entry is valid */
2408 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2409
2410 if (!vgic_its_check_id(its, baser, id, NULL))
2411 return -EINVAL;
2412
2413 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2414 if (IS_ERR(dev))
2415 return PTR_ERR(dev);
2416
2417 ret = vgic_its_restore_itt(its, dev);
2418 if (ret) {
2419 vgic_its_free_device(its->dev->kvm, dev);
2420 return ret;
2421 }
2422
2423 return offset;
2424 }
2425
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2426 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2427 const struct list_head *b)
2428 {
2429 struct its_device *deva = container_of(a, struct its_device, dev_list);
2430 struct its_device *devb = container_of(b, struct its_device, dev_list);
2431
2432 if (deva->device_id < devb->device_id)
2433 return -1;
2434 else
2435 return 1;
2436 }
2437
2438 /**
2439 * vgic_its_save_device_tables - Save the device table and all ITT
2440 * into guest RAM
2441 *
2442 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2443 * returns the GPA of the device entry
2444 */
vgic_its_save_device_tables(struct vgic_its * its)2445 static int vgic_its_save_device_tables(struct vgic_its *its)
2446 {
2447 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2448 u64 baser = its->baser_device_table;
2449 struct its_device *dev;
2450 int dte_esz = abi->dte_esz;
2451
2452 if (!(baser & GITS_BASER_VALID))
2453 return 0;
2454
2455 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2456
2457 list_for_each_entry(dev, &its->device_list, dev_list) {
2458 int ret;
2459 gpa_t eaddr;
2460
2461 if (!vgic_its_check_id(its, baser,
2462 dev->device_id, &eaddr))
2463 return -EINVAL;
2464
2465 ret = vgic_its_save_itt(its, dev);
2466 if (ret)
2467 return ret;
2468
2469 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2470 if (ret)
2471 return ret;
2472 }
2473 return 0;
2474 }
2475
2476 /**
2477 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2478 *
2479 * @its: its handle
2480 * @id: index of the entry in the L1 table
2481 * @addr: kernel VA
2482 * @opaque: unused
2483 *
2484 * L1 table entries are scanned by steps of 1 entry
2485 * Return < 0 if error, 0 if last dte was found when scanning the L2
2486 * table, +1 otherwise (meaning next L1 entry must be scanned)
2487 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2488 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2489 void *opaque)
2490 {
2491 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2492 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2493 u64 entry = *(u64 *)addr;
2494 int dte_esz = abi->dte_esz;
2495 gpa_t gpa;
2496 int ret;
2497
2498 entry = le64_to_cpu(entry);
2499
2500 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2501 return 1;
2502
2503 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2504
2505 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2506 l2_start_id, vgic_its_restore_dte, NULL);
2507
2508 return ret;
2509 }
2510
2511 /**
2512 * vgic_its_restore_device_tables - Restore the device table and all ITT
2513 * from guest RAM to internal data structs
2514 */
vgic_its_restore_device_tables(struct vgic_its * its)2515 static int vgic_its_restore_device_tables(struct vgic_its *its)
2516 {
2517 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2518 u64 baser = its->baser_device_table;
2519 int l1_esz, ret;
2520 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2521 gpa_t l1_gpa;
2522
2523 if (!(baser & GITS_BASER_VALID))
2524 return 0;
2525
2526 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2527
2528 if (baser & GITS_BASER_INDIRECT) {
2529 l1_esz = GITS_LVL1_ENTRY_SIZE;
2530 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2531 handle_l1_dte, NULL);
2532 } else {
2533 l1_esz = abi->dte_esz;
2534 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2535 vgic_its_restore_dte, NULL);
2536 }
2537
2538 /* scan_its_table returns +1 if all entries are invalid */
2539 if (ret > 0)
2540 ret = 0;
2541
2542 if (ret < 0)
2543 vgic_its_free_device_list(its->dev->kvm, its);
2544
2545 return ret;
2546 }
2547
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2548 static int vgic_its_save_cte(struct vgic_its *its,
2549 struct its_collection *collection,
2550 gpa_t gpa, int esz)
2551 {
2552 u64 val;
2553
2554 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2555 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2556 collection->collection_id);
2557 val = cpu_to_le64(val);
2558 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2559 }
2560
2561 /*
2562 * Restore a collection entry into the ITS collection table.
2563 * Return +1 on success, 0 if the entry was invalid (which should be
2564 * interpreted as end-of-table), and a negative error value for generic errors.
2565 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2566 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2567 {
2568 struct its_collection *collection;
2569 struct kvm *kvm = its->dev->kvm;
2570 u32 target_addr, coll_id;
2571 u64 val;
2572 int ret;
2573
2574 BUG_ON(esz > sizeof(val));
2575 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2576 if (ret)
2577 return ret;
2578 val = le64_to_cpu(val);
2579 if (!(val & KVM_ITS_CTE_VALID_MASK))
2580 return 0;
2581
2582 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2583 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2584
2585 if (target_addr != COLLECTION_NOT_MAPPED &&
2586 target_addr >= atomic_read(&kvm->online_vcpus))
2587 return -EINVAL;
2588
2589 collection = find_collection(its, coll_id);
2590 if (collection)
2591 return -EEXIST;
2592
2593 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2594 return -EINVAL;
2595
2596 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2597 if (ret)
2598 return ret;
2599 collection->target_addr = target_addr;
2600 return 1;
2601 }
2602
2603 /**
2604 * vgic_its_save_collection_table - Save the collection table into
2605 * guest RAM
2606 */
vgic_its_save_collection_table(struct vgic_its * its)2607 static int vgic_its_save_collection_table(struct vgic_its *its)
2608 {
2609 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2610 u64 baser = its->baser_coll_table;
2611 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2612 struct its_collection *collection;
2613 u64 val;
2614 size_t max_size, filled = 0;
2615 int ret, cte_esz = abi->cte_esz;
2616
2617 if (!(baser & GITS_BASER_VALID))
2618 return 0;
2619
2620 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2621
2622 list_for_each_entry(collection, &its->collection_list, coll_list) {
2623 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2624 if (ret)
2625 return ret;
2626 gpa += cte_esz;
2627 filled += cte_esz;
2628 }
2629
2630 if (filled == max_size)
2631 return 0;
2632
2633 /*
2634 * table is not fully filled, add a last dummy element
2635 * with valid bit unset
2636 */
2637 val = 0;
2638 BUG_ON(cte_esz > sizeof(val));
2639 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2640 return ret;
2641 }
2642
2643 /**
2644 * vgic_its_restore_collection_table - reads the collection table
2645 * in guest memory and restores the ITS internal state. Requires the
2646 * BASER registers to be restored before.
2647 */
vgic_its_restore_collection_table(struct vgic_its * its)2648 static int vgic_its_restore_collection_table(struct vgic_its *its)
2649 {
2650 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2651 u64 baser = its->baser_coll_table;
2652 int cte_esz = abi->cte_esz;
2653 size_t max_size, read = 0;
2654 gpa_t gpa;
2655 int ret;
2656
2657 if (!(baser & GITS_BASER_VALID))
2658 return 0;
2659
2660 gpa = GITS_BASER_ADDR_48_to_52(baser);
2661
2662 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2663
2664 while (read < max_size) {
2665 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2666 if (ret <= 0)
2667 break;
2668 gpa += cte_esz;
2669 read += cte_esz;
2670 }
2671
2672 if (ret > 0)
2673 return 0;
2674
2675 if (ret < 0)
2676 vgic_its_free_collection_list(its->dev->kvm, its);
2677
2678 return ret;
2679 }
2680
2681 /**
2682 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2683 * according to v0 ABI
2684 */
vgic_its_save_tables_v0(struct vgic_its * its)2685 static int vgic_its_save_tables_v0(struct vgic_its *its)
2686 {
2687 int ret;
2688
2689 ret = vgic_its_save_device_tables(its);
2690 if (ret)
2691 return ret;
2692
2693 return vgic_its_save_collection_table(its);
2694 }
2695
2696 /**
2697 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2698 * to internal data structs according to V0 ABI
2699 *
2700 */
vgic_its_restore_tables_v0(struct vgic_its * its)2701 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2702 {
2703 int ret;
2704
2705 ret = vgic_its_restore_collection_table(its);
2706 if (ret)
2707 return ret;
2708
2709 ret = vgic_its_restore_device_tables(its);
2710 if (ret)
2711 vgic_its_free_collection_list(its->dev->kvm, its);
2712 return ret;
2713 }
2714
vgic_its_commit_v0(struct vgic_its * its)2715 static int vgic_its_commit_v0(struct vgic_its *its)
2716 {
2717 const struct vgic_its_abi *abi;
2718
2719 abi = vgic_its_get_abi(its);
2720 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2721 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2722
2723 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2724 << GITS_BASER_ENTRY_SIZE_SHIFT);
2725
2726 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2727 << GITS_BASER_ENTRY_SIZE_SHIFT);
2728 return 0;
2729 }
2730
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2731 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2732 {
2733 /* We need to keep the ABI specific field values */
2734 its->baser_coll_table &= ~GITS_BASER_VALID;
2735 its->baser_device_table &= ~GITS_BASER_VALID;
2736 its->cbaser = 0;
2737 its->creadr = 0;
2738 its->cwriter = 0;
2739 its->enabled = 0;
2740 vgic_its_free_device_list(kvm, its);
2741 vgic_its_free_collection_list(kvm, its);
2742 }
2743
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2744 static int vgic_its_has_attr(struct kvm_device *dev,
2745 struct kvm_device_attr *attr)
2746 {
2747 switch (attr->group) {
2748 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2749 switch (attr->attr) {
2750 case KVM_VGIC_ITS_ADDR_TYPE:
2751 return 0;
2752 }
2753 break;
2754 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2755 switch (attr->attr) {
2756 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2757 return 0;
2758 case KVM_DEV_ARM_ITS_CTRL_RESET:
2759 return 0;
2760 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2761 return 0;
2762 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2763 return 0;
2764 }
2765 break;
2766 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2767 return vgic_its_has_attr_regs(dev, attr);
2768 }
2769 return -ENXIO;
2770 }
2771
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2772 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2773 {
2774 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2775 int ret = 0;
2776
2777 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2778 return 0;
2779
2780 mutex_lock(&kvm->lock);
2781
2782 if (!lock_all_vcpus(kvm)) {
2783 mutex_unlock(&kvm->lock);
2784 return -EBUSY;
2785 }
2786
2787 mutex_lock(&kvm->arch.config_lock);
2788 mutex_lock(&its->its_lock);
2789
2790 switch (attr) {
2791 case KVM_DEV_ARM_ITS_CTRL_RESET:
2792 vgic_its_reset(kvm, its);
2793 break;
2794 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2795 ret = abi->save_tables(its);
2796 break;
2797 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2798 ret = abi->restore_tables(its);
2799 break;
2800 }
2801
2802 mutex_unlock(&its->its_lock);
2803 mutex_unlock(&kvm->arch.config_lock);
2804 unlock_all_vcpus(kvm);
2805 mutex_unlock(&kvm->lock);
2806 return ret;
2807 }
2808
2809 /*
2810 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2811 * without the running VCPU when dirty ring is enabled.
2812 *
2813 * The running VCPU is required to track dirty guest pages when dirty ring
2814 * is enabled. Otherwise, the backup bitmap should be used to track the
2815 * dirty guest pages. When vgic/its tables are being saved, the backup
2816 * bitmap is used to track the dirty guest pages due to the missed running
2817 * VCPU in the period.
2818 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2819 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2820 {
2821 struct vgic_dist *dist = &kvm->arch.vgic;
2822
2823 return dist->table_write_in_progress;
2824 }
2825
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2826 static int vgic_its_set_attr(struct kvm_device *dev,
2827 struct kvm_device_attr *attr)
2828 {
2829 struct vgic_its *its = dev->private;
2830 int ret;
2831
2832 switch (attr->group) {
2833 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2834 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2835 unsigned long type = (unsigned long)attr->attr;
2836 u64 addr;
2837
2838 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2839 return -ENODEV;
2840
2841 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2842 return -EFAULT;
2843
2844 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2845 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2846 if (ret)
2847 return ret;
2848
2849 return vgic_register_its_iodev(dev->kvm, its, addr);
2850 }
2851 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2852 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2853 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2854 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2855 u64 reg;
2856
2857 if (get_user(reg, uaddr))
2858 return -EFAULT;
2859
2860 return vgic_its_attr_regs_access(dev, attr, ®, true);
2861 }
2862 }
2863 return -ENXIO;
2864 }
2865
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2866 static int vgic_its_get_attr(struct kvm_device *dev,
2867 struct kvm_device_attr *attr)
2868 {
2869 switch (attr->group) {
2870 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2871 struct vgic_its *its = dev->private;
2872 u64 addr = its->vgic_its_base;
2873 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2874 unsigned long type = (unsigned long)attr->attr;
2875
2876 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2877 return -ENODEV;
2878
2879 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2880 return -EFAULT;
2881 break;
2882 }
2883 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2884 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2885 u64 reg;
2886 int ret;
2887
2888 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2889 if (ret)
2890 return ret;
2891 return put_user(reg, uaddr);
2892 }
2893 default:
2894 return -ENXIO;
2895 }
2896
2897 return 0;
2898 }
2899
2900 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2901 .name = "kvm-arm-vgic-its",
2902 .create = vgic_its_create,
2903 .destroy = vgic_its_destroy,
2904 .set_attr = vgic_its_set_attr,
2905 .get_attr = vgic_its_get_attr,
2906 .has_attr = vgic_its_has_attr,
2907 };
2908
kvm_vgic_register_its_device(void)2909 int kvm_vgic_register_its_device(void)
2910 {
2911 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2912 KVM_DEV_TYPE_ARM_VGIC_ITS);
2913 }
2914