1 /*
2 * ARM VFP floating-point operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #ifdef CONFIG_TCG
26 #include "qemu/log.h"
27 #include "fpu/softfloat.h"
28 #endif
29
30 /* VFP support. We follow the convention used for VFP instructions:
31 Single precision routines have a "s" suffix, double precision a
32 "d" suffix. */
33
34 #ifdef CONFIG_TCG
35
36 /* Convert host exception flags to vfp form. */
vfp_exceptbits_from_host(int host_bits)37 static inline int vfp_exceptbits_from_host(int host_bits)
38 {
39 int target_bits = 0;
40
41 if (host_bits & float_flag_invalid) {
42 target_bits |= 1;
43 }
44 if (host_bits & float_flag_divbyzero) {
45 target_bits |= 2;
46 }
47 if (host_bits & float_flag_overflow) {
48 target_bits |= 4;
49 }
50 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51 target_bits |= 8;
52 }
53 if (host_bits & float_flag_inexact) {
54 target_bits |= 0x10;
55 }
56 if (host_bits & float_flag_input_denormal) {
57 target_bits |= 0x80;
58 }
59 return target_bits;
60 }
61
vfp_get_fpsr_from_host(CPUARMState * env)62 static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
63 {
64 uint32_t i;
65
66 i = get_float_exception_flags(&env->vfp.fp_status);
67 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
68 /* FZ16 does not generate an input denormal exception. */
69 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
70 & ~float_flag_input_denormal);
71 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
72 & ~float_flag_input_denormal);
73 return vfp_exceptbits_from_host(i);
74 }
75
vfp_clear_float_status_exc_flags(CPUARMState * env)76 static void vfp_clear_float_status_exc_flags(CPUARMState *env)
77 {
78 /*
79 * Clear out all the exception-flag information in the float_status
80 * values. The caller should have arranged for env->vfp.fpsr to
81 * be the architecturally up-to-date exception flag information first.
82 */
83 set_float_exception_flags(0, &env->vfp.fp_status);
84 set_float_exception_flags(0, &env->vfp.fp_status_f16);
85 set_float_exception_flags(0, &env->vfp.standard_fp_status);
86 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
87 }
88
vfp_set_fpcr_to_host(CPUARMState * env,uint32_t val,uint32_t mask)89 static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
90 {
91 uint64_t changed = env->vfp.fpcr;
92
93 changed ^= val;
94 changed &= mask;
95 if (changed & (3 << 22)) {
96 int i = (val >> 22) & 3;
97 switch (i) {
98 case FPROUNDING_TIEEVEN:
99 i = float_round_nearest_even;
100 break;
101 case FPROUNDING_POSINF:
102 i = float_round_up;
103 break;
104 case FPROUNDING_NEGINF:
105 i = float_round_down;
106 break;
107 case FPROUNDING_ZERO:
108 i = float_round_to_zero;
109 break;
110 }
111 set_float_rounding_mode(i, &env->vfp.fp_status);
112 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
113 }
114 if (changed & FPCR_FZ16) {
115 bool ftz_enabled = val & FPCR_FZ16;
116 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
117 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
118 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
119 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
120 }
121 if (changed & FPCR_FZ) {
122 bool ftz_enabled = val & FPCR_FZ;
123 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
124 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
125 }
126 if (changed & FPCR_DN) {
127 bool dnan_enabled = val & FPCR_DN;
128 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
129 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
130 }
131 }
132
133 #else
134
vfp_get_fpsr_from_host(CPUARMState * env)135 static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
136 {
137 return 0;
138 }
139
vfp_clear_float_status_exc_flags(CPUARMState * env)140 static void vfp_clear_float_status_exc_flags(CPUARMState *env)
141 {
142 }
143
vfp_set_fpcr_to_host(CPUARMState * env,uint32_t val,uint32_t mask)144 static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
145 {
146 }
147
148 #endif
149
vfp_get_fpcr(CPUARMState * env)150 uint32_t vfp_get_fpcr(CPUARMState *env)
151 {
152 uint32_t fpcr = env->vfp.fpcr
153 | (env->vfp.vec_len << 16)
154 | (env->vfp.vec_stride << 20);
155
156 /*
157 * M-profile LTPSIZE is the same bits [18:16] as A-profile Len; whichever
158 * of the two is not applicable to this CPU will always be zero.
159 */
160 fpcr |= env->v7m.ltpsize << 16;
161
162 return fpcr;
163 }
164
vfp_get_fpsr(CPUARMState * env)165 uint32_t vfp_get_fpsr(CPUARMState *env)
166 {
167 uint32_t fpsr = env->vfp.fpsr;
168 uint32_t i;
169
170 fpsr |= vfp_get_fpsr_from_host(env);
171
172 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
173 fpsr |= i ? FPSR_QC : 0;
174 return fpsr;
175 }
176
HELPER(vfp_get_fpscr)177 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
178 {
179 return (vfp_get_fpcr(env) & FPSCR_FPCR_MASK) |
180 (vfp_get_fpsr(env) & FPSCR_FPSR_MASK);
181 }
182
vfp_get_fpscr(CPUARMState * env)183 uint32_t vfp_get_fpscr(CPUARMState *env)
184 {
185 return HELPER(vfp_get_fpscr)(env);
186 }
187
vfp_set_fpsr(CPUARMState * env,uint32_t val)188 void vfp_set_fpsr(CPUARMState *env, uint32_t val)
189 {
190 ARMCPU *cpu = env_archcpu(env);
191
192 if (arm_feature(env, ARM_FEATURE_NEON) ||
193 cpu_isar_feature(aa32_mve, cpu)) {
194 /*
195 * The bit we set within vfp.qc[] is arbitrary; the array as a
196 * whole being zero/non-zero is what counts.
197 */
198 env->vfp.qc[0] = val & FPSR_QC;
199 env->vfp.qc[1] = 0;
200 env->vfp.qc[2] = 0;
201 env->vfp.qc[3] = 0;
202 }
203
204 /*
205 * NZCV lives only in env->vfp.fpsr. The cumulative exception flags
206 * IOC|DZC|OFC|UFC|IXC|IDC also live in env->vfp.fpsr, with possible
207 * extra pending exception information that hasn't yet been folded in
208 * living in the float_status values (for TCG).
209 * Since this FPSR write gives us the up to date values of the exception
210 * flags, we want to store into vfp.fpsr the NZCV and CEXC bits, zeroing
211 * anything else. We also need to clear out the float_status exception
212 * information so that the next vfp_get_fpsr does not fold in stale data.
213 */
214 val &= FPSR_NZCV_MASK | FPSR_CEXC_MASK;
215 env->vfp.fpsr = val;
216 vfp_clear_float_status_exc_flags(env);
217 }
218
vfp_set_fpcr_masked(CPUARMState * env,uint32_t val,uint32_t mask)219 static void vfp_set_fpcr_masked(CPUARMState *env, uint32_t val, uint32_t mask)
220 {
221 /*
222 * We only set FPCR bits defined by mask, and leave the others alone.
223 * We assume the mask is sensible (e.g. doesn't try to set only
224 * part of a field)
225 */
226 ARMCPU *cpu = env_archcpu(env);
227
228 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
229 if (!cpu_isar_feature(any_fp16, cpu)) {
230 val &= ~FPCR_FZ16;
231 }
232
233 vfp_set_fpcr_to_host(env, val, mask);
234
235 if (mask & (FPCR_LEN_MASK | FPCR_STRIDE_MASK)) {
236 if (!arm_feature(env, ARM_FEATURE_M)) {
237 /*
238 * Short-vector length and stride; on M-profile these bits
239 * are used for different purposes.
240 * We can't make this conditional be "if MVFR0.FPShVec != 0",
241 * because in v7A no-short-vector-support cores still had to
242 * allow Stride/Len to be written with the only effect that
243 * some insns are required to UNDEF if the guest sets them.
244 */
245 env->vfp.vec_len = extract32(val, 16, 3);
246 env->vfp.vec_stride = extract32(val, 20, 2);
247 } else if (cpu_isar_feature(aa32_mve, cpu)) {
248 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
249 FPCR_LTPSIZE_LENGTH);
250 }
251 }
252
253 /*
254 * We don't implement trapped exception handling, so the
255 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
256 *
257 * The FPCR bits we keep in vfp.fpcr are AHP, DN, FZ, RMode
258 * and FZ16. Len, Stride and LTPSIZE we just handled. Store those bits
259 * there, and zero any of the other FPCR bits and the RES0 and RAZ/WI
260 * bits.
261 */
262 val &= FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK | FPCR_FZ16;
263 env->vfp.fpcr &= ~mask;
264 env->vfp.fpcr |= val;
265 }
266
vfp_set_fpcr(CPUARMState * env,uint32_t val)267 void vfp_set_fpcr(CPUARMState *env, uint32_t val)
268 {
269 vfp_set_fpcr_masked(env, val, MAKE_64BIT_MASK(0, 32));
270 }
271
HELPER(vfp_set_fpscr)272 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
273 {
274 vfp_set_fpcr_masked(env, val, FPSCR_FPCR_MASK);
275 vfp_set_fpsr(env, val & FPSCR_FPSR_MASK);
276 }
277
vfp_set_fpscr(CPUARMState * env,uint32_t val)278 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
279 {
280 HELPER(vfp_set_fpscr)(env, val);
281 }
282
283 #ifdef CONFIG_TCG
284
285 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
286
287 #define VFP_BINOP(name) \
288 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
289 { \
290 float_status *fpst = fpstp; \
291 return float16_ ## name(a, b, fpst); \
292 } \
293 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
294 { \
295 float_status *fpst = fpstp; \
296 return float32_ ## name(a, b, fpst); \
297 } \
298 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
299 { \
300 float_status *fpst = fpstp; \
301 return float64_ ## name(a, b, fpst); \
302 }
303 VFP_BINOP(add)
VFP_BINOP(sub)304 VFP_BINOP(sub)
305 VFP_BINOP(mul)
306 VFP_BINOP(div)
307 VFP_BINOP(min)
308 VFP_BINOP(max)
309 VFP_BINOP(minnum)
310 VFP_BINOP(maxnum)
311 #undef VFP_BINOP
312
313 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
314 {
315 return float16_sqrt(a, &env->vfp.fp_status_f16);
316 }
317
VFP_HELPER(sqrt,s)318 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
319 {
320 return float32_sqrt(a, &env->vfp.fp_status);
321 }
322
VFP_HELPER(sqrt,d)323 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
324 {
325 return float64_sqrt(a, &env->vfp.fp_status);
326 }
327
softfloat_to_vfp_compare(CPUARMState * env,FloatRelation cmp)328 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
329 {
330 uint32_t flags;
331 switch (cmp) {
332 case float_relation_equal:
333 flags = 0x6;
334 break;
335 case float_relation_less:
336 flags = 0x8;
337 break;
338 case float_relation_greater:
339 flags = 0x2;
340 break;
341 case float_relation_unordered:
342 flags = 0x3;
343 break;
344 default:
345 g_assert_not_reached();
346 }
347 env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
348 }
349
350 /* XXX: check quiet/signaling case */
351 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
352 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
353 { \
354 softfloat_to_vfp_compare(env, \
355 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
356 } \
357 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
358 { \
359 softfloat_to_vfp_compare(env, \
360 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
361 }
DO_VFP_cmp(h,float16,dh_ctype_f16,fp_status_f16)362 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
363 DO_VFP_cmp(s, float32, float32, fp_status)
364 DO_VFP_cmp(d, float64, float64, fp_status)
365 #undef DO_VFP_cmp
366
367 /* Integer to float and float to integer conversions */
368
369 #define CONV_ITOF(name, ftype, fsz, sign) \
370 ftype HELPER(name)(uint32_t x, void *fpstp) \
371 { \
372 float_status *fpst = fpstp; \
373 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
374 }
375
376 #define CONV_FTOI(name, ftype, fsz, sign, round) \
377 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
378 { \
379 float_status *fpst = fpstp; \
380 if (float##fsz##_is_any_nan(x)) { \
381 float_raise(float_flag_invalid, fpst); \
382 return 0; \
383 } \
384 return float##fsz##_to_##sign##int32##round(x, fpst); \
385 }
386
387 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
388 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
389 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
390 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
391
392 FLOAT_CONVS(si, h, uint32_t, 16, )
393 FLOAT_CONVS(si, s, float32, 32, )
394 FLOAT_CONVS(si, d, float64, 64, )
395 FLOAT_CONVS(ui, h, uint32_t, 16, u)
396 FLOAT_CONVS(ui, s, float32, 32, u)
397 FLOAT_CONVS(ui, d, float64, 64, u)
398
399 #undef CONV_ITOF
400 #undef CONV_FTOI
401 #undef FLOAT_CONVS
402
403 /* floating point conversion */
404 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
405 {
406 return float32_to_float64(x, &env->vfp.fp_status);
407 }
408
VFP_HELPER(fcvts,d)409 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
410 {
411 return float64_to_float32(x, &env->vfp.fp_status);
412 }
413
HELPER(bfcvt)414 uint32_t HELPER(bfcvt)(float32 x, void *status)
415 {
416 return float32_to_bfloat16(x, status);
417 }
418
HELPER(bfcvt_pair)419 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
420 {
421 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
422 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
423 return deposit32(lo, 16, 16, hi);
424 }
425
426 /*
427 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
428 * must always round-to-nearest; the AArch64 ones honour the FPSCR
429 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
430 * round-to-nearest so either helper will work.) AArch32 float-to-fix
431 * must round-to-zero.
432 */
433 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
434 ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
435 void *fpstp) \
436 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
437
438 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
439 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
440 uint32_t shift, \
441 void *fpstp) \
442 { \
443 ftype ret; \
444 float_status *fpst = fpstp; \
445 FloatRoundMode oldmode = fpst->float_rounding_mode; \
446 fpst->float_rounding_mode = float_round_nearest_even; \
447 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \
448 fpst->float_rounding_mode = oldmode; \
449 return ret; \
450 }
451
452 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
453 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
454 void *fpst) \
455 { \
456 if (unlikely(float##fsz##_is_any_nan(x))) { \
457 float_raise(float_flag_invalid, fpst); \
458 return 0; \
459 } \
460 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
461 }
462
463 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
464 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
465 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
466 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
467 float_round_to_zero, _round_to_zero) \
468 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
469 get_float_rounding_mode(fpst), )
470
471 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
472 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
473 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
474 get_float_rounding_mode(fpst), )
475
476 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
477 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
478 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
479 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
480 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
481 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
482 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
483 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
484 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
485 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
486 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
487 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
488 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
489 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
490 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
491 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
492 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
493 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
494
495 #undef VFP_CONV_FIX
496 #undef VFP_CONV_FIX_FLOAT
497 #undef VFP_CONV_FLOAT_FIX_ROUND
498 #undef VFP_CONV_FIX_A64
499
500 /* Set the current fp rounding mode and return the old one.
501 * The argument is a softfloat float_round_ value.
502 */
HELPER(set_rmode)503 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
504 {
505 float_status *fp_status = fpstp;
506
507 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
508 set_float_rounding_mode(rmode, fp_status);
509
510 return prev_rmode;
511 }
512
513 /* Half precision conversions. */
HELPER(vfp_fcvt_f16_to_f32)514 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
515 {
516 /* Squash FZ16 to 0 for the duration of conversion. In this case,
517 * it would affect flushing input denormals.
518 */
519 float_status *fpst = fpstp;
520 bool save = get_flush_inputs_to_zero(fpst);
521 set_flush_inputs_to_zero(false, fpst);
522 float32 r = float16_to_float32(a, !ahp_mode, fpst);
523 set_flush_inputs_to_zero(save, fpst);
524 return r;
525 }
526
HELPER(vfp_fcvt_f32_to_f16)527 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
528 {
529 /* Squash FZ16 to 0 for the duration of conversion. In this case,
530 * it would affect flushing output denormals.
531 */
532 float_status *fpst = fpstp;
533 bool save = get_flush_to_zero(fpst);
534 set_flush_to_zero(false, fpst);
535 float16 r = float32_to_float16(a, !ahp_mode, fpst);
536 set_flush_to_zero(save, fpst);
537 return r;
538 }
539
HELPER(vfp_fcvt_f16_to_f64)540 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
541 {
542 /* Squash FZ16 to 0 for the duration of conversion. In this case,
543 * it would affect flushing input denormals.
544 */
545 float_status *fpst = fpstp;
546 bool save = get_flush_inputs_to_zero(fpst);
547 set_flush_inputs_to_zero(false, fpst);
548 float64 r = float16_to_float64(a, !ahp_mode, fpst);
549 set_flush_inputs_to_zero(save, fpst);
550 return r;
551 }
552
HELPER(vfp_fcvt_f64_to_f16)553 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
554 {
555 /* Squash FZ16 to 0 for the duration of conversion. In this case,
556 * it would affect flushing output denormals.
557 */
558 float_status *fpst = fpstp;
559 bool save = get_flush_to_zero(fpst);
560 set_flush_to_zero(false, fpst);
561 float16 r = float64_to_float16(a, !ahp_mode, fpst);
562 set_flush_to_zero(save, fpst);
563 return r;
564 }
565
566 /* NEON helpers. */
567
568 /* Constants 256 and 512 are used in some helpers; we avoid relying on
569 * int->float conversions at run-time. */
570 #define float64_256 make_float64(0x4070000000000000LL)
571 #define float64_512 make_float64(0x4080000000000000LL)
572 #define float16_maxnorm make_float16(0x7bff)
573 #define float32_maxnorm make_float32(0x7f7fffff)
574 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
575
576 /* Reciprocal functions
577 *
578 * The algorithm that must be used to calculate the estimate
579 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
580 */
581
582 /* See RecipEstimate()
583 *
584 * input is a 9 bit fixed point number
585 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
586 * result range 256 .. 511 for a number from 1.0 to 511/256.
587 */
588
recip_estimate(int input)589 static int recip_estimate(int input)
590 {
591 int a, b, r;
592 assert(256 <= input && input < 512);
593 a = (input * 2) + 1;
594 b = (1 << 19) / a;
595 r = (b + 1) >> 1;
596 assert(256 <= r && r < 512);
597 return r;
598 }
599
600 /*
601 * Common wrapper to call recip_estimate
602 *
603 * The parameters are exponent and 64 bit fraction (without implicit
604 * bit) where the binary point is nominally at bit 52. Returns a
605 * float64 which can then be rounded to the appropriate size by the
606 * callee.
607 */
608
call_recip_estimate(int * exp,int exp_off,uint64_t frac)609 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
610 {
611 uint32_t scaled, estimate;
612 uint64_t result_frac;
613 int result_exp;
614
615 /* Handle sub-normals */
616 if (*exp == 0) {
617 if (extract64(frac, 51, 1) == 0) {
618 *exp = -1;
619 frac <<= 2;
620 } else {
621 frac <<= 1;
622 }
623 }
624
625 /* scaled = UInt('1':fraction<51:44>) */
626 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
627 estimate = recip_estimate(scaled);
628
629 result_exp = exp_off - *exp;
630 result_frac = deposit64(0, 44, 8, estimate);
631 if (result_exp == 0) {
632 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
633 } else if (result_exp == -1) {
634 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
635 result_exp = 0;
636 }
637
638 *exp = result_exp;
639
640 return result_frac;
641 }
642
round_to_inf(float_status * fpst,bool sign_bit)643 static bool round_to_inf(float_status *fpst, bool sign_bit)
644 {
645 switch (fpst->float_rounding_mode) {
646 case float_round_nearest_even: /* Round to Nearest */
647 return true;
648 case float_round_up: /* Round to +Inf */
649 return !sign_bit;
650 case float_round_down: /* Round to -Inf */
651 return sign_bit;
652 case float_round_to_zero: /* Round to Zero */
653 return false;
654 default:
655 g_assert_not_reached();
656 }
657 }
658
HELPER(recpe_f16)659 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
660 {
661 float_status *fpst = fpstp;
662 float16 f16 = float16_squash_input_denormal(input, fpst);
663 uint32_t f16_val = float16_val(f16);
664 uint32_t f16_sign = float16_is_neg(f16);
665 int f16_exp = extract32(f16_val, 10, 5);
666 uint32_t f16_frac = extract32(f16_val, 0, 10);
667 uint64_t f64_frac;
668
669 if (float16_is_any_nan(f16)) {
670 float16 nan = f16;
671 if (float16_is_signaling_nan(f16, fpst)) {
672 float_raise(float_flag_invalid, fpst);
673 if (!fpst->default_nan_mode) {
674 nan = float16_silence_nan(f16, fpst);
675 }
676 }
677 if (fpst->default_nan_mode) {
678 nan = float16_default_nan(fpst);
679 }
680 return nan;
681 } else if (float16_is_infinity(f16)) {
682 return float16_set_sign(float16_zero, float16_is_neg(f16));
683 } else if (float16_is_zero(f16)) {
684 float_raise(float_flag_divbyzero, fpst);
685 return float16_set_sign(float16_infinity, float16_is_neg(f16));
686 } else if (float16_abs(f16) < (1 << 8)) {
687 /* Abs(value) < 2.0^-16 */
688 float_raise(float_flag_overflow | float_flag_inexact, fpst);
689 if (round_to_inf(fpst, f16_sign)) {
690 return float16_set_sign(float16_infinity, f16_sign);
691 } else {
692 return float16_set_sign(float16_maxnorm, f16_sign);
693 }
694 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
695 float_raise(float_flag_underflow, fpst);
696 return float16_set_sign(float16_zero, float16_is_neg(f16));
697 }
698
699 f64_frac = call_recip_estimate(&f16_exp, 29,
700 ((uint64_t) f16_frac) << (52 - 10));
701
702 /* result = sign : result_exp<4:0> : fraction<51:42> */
703 f16_val = deposit32(0, 15, 1, f16_sign);
704 f16_val = deposit32(f16_val, 10, 5, f16_exp);
705 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
706 return make_float16(f16_val);
707 }
708
HELPER(recpe_f32)709 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
710 {
711 float_status *fpst = fpstp;
712 float32 f32 = float32_squash_input_denormal(input, fpst);
713 uint32_t f32_val = float32_val(f32);
714 bool f32_sign = float32_is_neg(f32);
715 int f32_exp = extract32(f32_val, 23, 8);
716 uint32_t f32_frac = extract32(f32_val, 0, 23);
717 uint64_t f64_frac;
718
719 if (float32_is_any_nan(f32)) {
720 float32 nan = f32;
721 if (float32_is_signaling_nan(f32, fpst)) {
722 float_raise(float_flag_invalid, fpst);
723 if (!fpst->default_nan_mode) {
724 nan = float32_silence_nan(f32, fpst);
725 }
726 }
727 if (fpst->default_nan_mode) {
728 nan = float32_default_nan(fpst);
729 }
730 return nan;
731 } else if (float32_is_infinity(f32)) {
732 return float32_set_sign(float32_zero, float32_is_neg(f32));
733 } else if (float32_is_zero(f32)) {
734 float_raise(float_flag_divbyzero, fpst);
735 return float32_set_sign(float32_infinity, float32_is_neg(f32));
736 } else if (float32_abs(f32) < (1ULL << 21)) {
737 /* Abs(value) < 2.0^-128 */
738 float_raise(float_flag_overflow | float_flag_inexact, fpst);
739 if (round_to_inf(fpst, f32_sign)) {
740 return float32_set_sign(float32_infinity, f32_sign);
741 } else {
742 return float32_set_sign(float32_maxnorm, f32_sign);
743 }
744 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
745 float_raise(float_flag_underflow, fpst);
746 return float32_set_sign(float32_zero, float32_is_neg(f32));
747 }
748
749 f64_frac = call_recip_estimate(&f32_exp, 253,
750 ((uint64_t) f32_frac) << (52 - 23));
751
752 /* result = sign : result_exp<7:0> : fraction<51:29> */
753 f32_val = deposit32(0, 31, 1, f32_sign);
754 f32_val = deposit32(f32_val, 23, 8, f32_exp);
755 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
756 return make_float32(f32_val);
757 }
758
HELPER(recpe_f64)759 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
760 {
761 float_status *fpst = fpstp;
762 float64 f64 = float64_squash_input_denormal(input, fpst);
763 uint64_t f64_val = float64_val(f64);
764 bool f64_sign = float64_is_neg(f64);
765 int f64_exp = extract64(f64_val, 52, 11);
766 uint64_t f64_frac = extract64(f64_val, 0, 52);
767
768 /* Deal with any special cases */
769 if (float64_is_any_nan(f64)) {
770 float64 nan = f64;
771 if (float64_is_signaling_nan(f64, fpst)) {
772 float_raise(float_flag_invalid, fpst);
773 if (!fpst->default_nan_mode) {
774 nan = float64_silence_nan(f64, fpst);
775 }
776 }
777 if (fpst->default_nan_mode) {
778 nan = float64_default_nan(fpst);
779 }
780 return nan;
781 } else if (float64_is_infinity(f64)) {
782 return float64_set_sign(float64_zero, float64_is_neg(f64));
783 } else if (float64_is_zero(f64)) {
784 float_raise(float_flag_divbyzero, fpst);
785 return float64_set_sign(float64_infinity, float64_is_neg(f64));
786 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
787 /* Abs(value) < 2.0^-1024 */
788 float_raise(float_flag_overflow | float_flag_inexact, fpst);
789 if (round_to_inf(fpst, f64_sign)) {
790 return float64_set_sign(float64_infinity, f64_sign);
791 } else {
792 return float64_set_sign(float64_maxnorm, f64_sign);
793 }
794 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
795 float_raise(float_flag_underflow, fpst);
796 return float64_set_sign(float64_zero, float64_is_neg(f64));
797 }
798
799 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
800
801 /* result = sign : result_exp<10:0> : fraction<51:0>; */
802 f64_val = deposit64(0, 63, 1, f64_sign);
803 f64_val = deposit64(f64_val, 52, 11, f64_exp);
804 f64_val = deposit64(f64_val, 0, 52, f64_frac);
805 return make_float64(f64_val);
806 }
807
808 /* The algorithm that must be used to calculate the estimate
809 * is specified by the ARM ARM.
810 */
811
do_recip_sqrt_estimate(int a)812 static int do_recip_sqrt_estimate(int a)
813 {
814 int b, estimate;
815
816 assert(128 <= a && a < 512);
817 if (a < 256) {
818 a = a * 2 + 1;
819 } else {
820 a = (a >> 1) << 1;
821 a = (a + 1) * 2;
822 }
823 b = 512;
824 while (a * (b + 1) * (b + 1) < (1 << 28)) {
825 b += 1;
826 }
827 estimate = (b + 1) / 2;
828 assert(256 <= estimate && estimate < 512);
829
830 return estimate;
831 }
832
833
recip_sqrt_estimate(int * exp,int exp_off,uint64_t frac)834 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
835 {
836 int estimate;
837 uint32_t scaled;
838
839 if (*exp == 0) {
840 while (extract64(frac, 51, 1) == 0) {
841 frac = frac << 1;
842 *exp -= 1;
843 }
844 frac = extract64(frac, 0, 51) << 1;
845 }
846
847 if (*exp & 1) {
848 /* scaled = UInt('01':fraction<51:45>) */
849 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
850 } else {
851 /* scaled = UInt('1':fraction<51:44>) */
852 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
853 }
854 estimate = do_recip_sqrt_estimate(scaled);
855
856 *exp = (exp_off - *exp) / 2;
857 return extract64(estimate, 0, 8) << 44;
858 }
859
HELPER(rsqrte_f16)860 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
861 {
862 float_status *s = fpstp;
863 float16 f16 = float16_squash_input_denormal(input, s);
864 uint16_t val = float16_val(f16);
865 bool f16_sign = float16_is_neg(f16);
866 int f16_exp = extract32(val, 10, 5);
867 uint16_t f16_frac = extract32(val, 0, 10);
868 uint64_t f64_frac;
869
870 if (float16_is_any_nan(f16)) {
871 float16 nan = f16;
872 if (float16_is_signaling_nan(f16, s)) {
873 float_raise(float_flag_invalid, s);
874 if (!s->default_nan_mode) {
875 nan = float16_silence_nan(f16, fpstp);
876 }
877 }
878 if (s->default_nan_mode) {
879 nan = float16_default_nan(s);
880 }
881 return nan;
882 } else if (float16_is_zero(f16)) {
883 float_raise(float_flag_divbyzero, s);
884 return float16_set_sign(float16_infinity, f16_sign);
885 } else if (f16_sign) {
886 float_raise(float_flag_invalid, s);
887 return float16_default_nan(s);
888 } else if (float16_is_infinity(f16)) {
889 return float16_zero;
890 }
891
892 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
893 * preserving the parity of the exponent. */
894
895 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
896
897 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
898
899 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
900 val = deposit32(0, 15, 1, f16_sign);
901 val = deposit32(val, 10, 5, f16_exp);
902 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
903 return make_float16(val);
904 }
905
HELPER(rsqrte_f32)906 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
907 {
908 float_status *s = fpstp;
909 float32 f32 = float32_squash_input_denormal(input, s);
910 uint32_t val = float32_val(f32);
911 uint32_t f32_sign = float32_is_neg(f32);
912 int f32_exp = extract32(val, 23, 8);
913 uint32_t f32_frac = extract32(val, 0, 23);
914 uint64_t f64_frac;
915
916 if (float32_is_any_nan(f32)) {
917 float32 nan = f32;
918 if (float32_is_signaling_nan(f32, s)) {
919 float_raise(float_flag_invalid, s);
920 if (!s->default_nan_mode) {
921 nan = float32_silence_nan(f32, fpstp);
922 }
923 }
924 if (s->default_nan_mode) {
925 nan = float32_default_nan(s);
926 }
927 return nan;
928 } else if (float32_is_zero(f32)) {
929 float_raise(float_flag_divbyzero, s);
930 return float32_set_sign(float32_infinity, float32_is_neg(f32));
931 } else if (float32_is_neg(f32)) {
932 float_raise(float_flag_invalid, s);
933 return float32_default_nan(s);
934 } else if (float32_is_infinity(f32)) {
935 return float32_zero;
936 }
937
938 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
939 * preserving the parity of the exponent. */
940
941 f64_frac = ((uint64_t) f32_frac) << 29;
942
943 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
944
945 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
946 val = deposit32(0, 31, 1, f32_sign);
947 val = deposit32(val, 23, 8, f32_exp);
948 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
949 return make_float32(val);
950 }
951
HELPER(rsqrte_f64)952 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
953 {
954 float_status *s = fpstp;
955 float64 f64 = float64_squash_input_denormal(input, s);
956 uint64_t val = float64_val(f64);
957 bool f64_sign = float64_is_neg(f64);
958 int f64_exp = extract64(val, 52, 11);
959 uint64_t f64_frac = extract64(val, 0, 52);
960
961 if (float64_is_any_nan(f64)) {
962 float64 nan = f64;
963 if (float64_is_signaling_nan(f64, s)) {
964 float_raise(float_flag_invalid, s);
965 if (!s->default_nan_mode) {
966 nan = float64_silence_nan(f64, fpstp);
967 }
968 }
969 if (s->default_nan_mode) {
970 nan = float64_default_nan(s);
971 }
972 return nan;
973 } else if (float64_is_zero(f64)) {
974 float_raise(float_flag_divbyzero, s);
975 return float64_set_sign(float64_infinity, float64_is_neg(f64));
976 } else if (float64_is_neg(f64)) {
977 float_raise(float_flag_invalid, s);
978 return float64_default_nan(s);
979 } else if (float64_is_infinity(f64)) {
980 return float64_zero;
981 }
982
983 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
984
985 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
986 val = deposit64(0, 61, 1, f64_sign);
987 val = deposit64(val, 52, 11, f64_exp);
988 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
989 return make_float64(val);
990 }
991
HELPER(recpe_u32)992 uint32_t HELPER(recpe_u32)(uint32_t a)
993 {
994 int input, estimate;
995
996 if ((a & 0x80000000) == 0) {
997 return 0xffffffff;
998 }
999
1000 input = extract32(a, 23, 9);
1001 estimate = recip_estimate(input);
1002
1003 return deposit32(0, (32 - 9), 9, estimate);
1004 }
1005
HELPER(rsqrte_u32)1006 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1007 {
1008 int estimate;
1009
1010 if ((a & 0xc0000000) == 0) {
1011 return 0xffffffff;
1012 }
1013
1014 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1015
1016 return deposit32(0, 23, 9, estimate);
1017 }
1018
1019 /* VFPv4 fused multiply-accumulate */
VFP_HELPER(muladd,h)1020 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1021 dh_ctype_f16 c, void *fpstp)
1022 {
1023 float_status *fpst = fpstp;
1024 return float16_muladd(a, b, c, 0, fpst);
1025 }
1026
VFP_HELPER(muladd,s)1027 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1028 {
1029 float_status *fpst = fpstp;
1030 return float32_muladd(a, b, c, 0, fpst);
1031 }
1032
VFP_HELPER(muladd,d)1033 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1034 {
1035 float_status *fpst = fpstp;
1036 return float64_muladd(a, b, c, 0, fpst);
1037 }
1038
1039 /* ARMv8 round to integral */
HELPER(rinth_exact)1040 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1041 {
1042 return float16_round_to_int(x, fp_status);
1043 }
1044
HELPER(rints_exact)1045 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1046 {
1047 return float32_round_to_int(x, fp_status);
1048 }
1049
HELPER(rintd_exact)1050 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1051 {
1052 return float64_round_to_int(x, fp_status);
1053 }
1054
HELPER(rinth)1055 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1056 {
1057 int old_flags = get_float_exception_flags(fp_status), new_flags;
1058 float16 ret;
1059
1060 ret = float16_round_to_int(x, fp_status);
1061
1062 /* Suppress any inexact exceptions the conversion produced */
1063 if (!(old_flags & float_flag_inexact)) {
1064 new_flags = get_float_exception_flags(fp_status);
1065 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1066 }
1067
1068 return ret;
1069 }
1070
HELPER(rints)1071 float32 HELPER(rints)(float32 x, void *fp_status)
1072 {
1073 int old_flags = get_float_exception_flags(fp_status), new_flags;
1074 float32 ret;
1075
1076 ret = float32_round_to_int(x, fp_status);
1077
1078 /* Suppress any inexact exceptions the conversion produced */
1079 if (!(old_flags & float_flag_inexact)) {
1080 new_flags = get_float_exception_flags(fp_status);
1081 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1082 }
1083
1084 return ret;
1085 }
1086
HELPER(rintd)1087 float64 HELPER(rintd)(float64 x, void *fp_status)
1088 {
1089 int old_flags = get_float_exception_flags(fp_status), new_flags;
1090 float64 ret;
1091
1092 ret = float64_round_to_int(x, fp_status);
1093
1094 new_flags = get_float_exception_flags(fp_status);
1095
1096 /* Suppress any inexact exceptions the conversion produced */
1097 if (!(old_flags & float_flag_inexact)) {
1098 new_flags = get_float_exception_flags(fp_status);
1099 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1100 }
1101
1102 return ret;
1103 }
1104
1105 /* Convert ARM rounding mode to softfloat */
1106 const FloatRoundMode arm_rmode_to_sf_map[] = {
1107 [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1108 [FPROUNDING_POSINF] = float_round_up,
1109 [FPROUNDING_NEGINF] = float_round_down,
1110 [FPROUNDING_ZERO] = float_round_to_zero,
1111 [FPROUNDING_TIEAWAY] = float_round_ties_away,
1112 [FPROUNDING_ODD] = float_round_to_odd,
1113 };
1114
1115 /*
1116 * Implement float64 to int32_t conversion without saturation;
1117 * the result is supplied modulo 2^32.
1118 */
HELPER(fjcvtzs)1119 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1120 {
1121 float_status *status = vstatus;
1122 uint32_t frac, e_old, e_new;
1123 bool inexact;
1124
1125 e_old = get_float_exception_flags(status);
1126 set_float_exception_flags(0, status);
1127 frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1128 e_new = get_float_exception_flags(status);
1129 set_float_exception_flags(e_old | e_new, status);
1130
1131 /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
1132 inexact = e_new & (float_flag_inexact |
1133 float_flag_input_denormal |
1134 float_flag_invalid);
1135
1136 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1137 inexact |= value == float64_chs(float64_zero);
1138
1139 /* Pack the result and the env->ZF representation of Z together. */
1140 return deposit64(frac, 32, 32, inexact);
1141 }
1142
HELPER(vjcvt)1143 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1144 {
1145 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1146 uint32_t result = pair;
1147 uint32_t z = (pair >> 32) == 0;
1148
1149 /* Store Z, clear NCV, in FPSCR.NZCV. */
1150 env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
1151
1152 return result;
1153 }
1154
1155 /* Round a float32 to an integer that fits in int32_t or int64_t. */
frint_s(float32 f,float_status * fpst,int intsize)1156 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1157 {
1158 int old_flags = get_float_exception_flags(fpst);
1159 uint32_t exp = extract32(f, 23, 8);
1160
1161 if (unlikely(exp == 0xff)) {
1162 /* NaN or Inf. */
1163 goto overflow;
1164 }
1165
1166 /* Round and re-extract the exponent. */
1167 f = float32_round_to_int(f, fpst);
1168 exp = extract32(f, 23, 8);
1169
1170 /* Validate the range of the result. */
1171 if (exp < 126 + intsize) {
1172 /* abs(F) <= INT{N}_MAX */
1173 return f;
1174 }
1175 if (exp == 126 + intsize) {
1176 uint32_t sign = extract32(f, 31, 1);
1177 uint32_t frac = extract32(f, 0, 23);
1178 if (sign && frac == 0) {
1179 /* F == INT{N}_MIN */
1180 return f;
1181 }
1182 }
1183
1184 overflow:
1185 /*
1186 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1187 * inexact exception float32_round_to_int may have raised.
1188 */
1189 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1190 return (0x100u + 126u + intsize) << 23;
1191 }
1192
HELPER(frint32_s)1193 float32 HELPER(frint32_s)(float32 f, void *fpst)
1194 {
1195 return frint_s(f, fpst, 32);
1196 }
1197
HELPER(frint64_s)1198 float32 HELPER(frint64_s)(float32 f, void *fpst)
1199 {
1200 return frint_s(f, fpst, 64);
1201 }
1202
1203 /* Round a float64 to an integer that fits in int32_t or int64_t. */
frint_d(float64 f,float_status * fpst,int intsize)1204 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1205 {
1206 int old_flags = get_float_exception_flags(fpst);
1207 uint32_t exp = extract64(f, 52, 11);
1208
1209 if (unlikely(exp == 0x7ff)) {
1210 /* NaN or Inf. */
1211 goto overflow;
1212 }
1213
1214 /* Round and re-extract the exponent. */
1215 f = float64_round_to_int(f, fpst);
1216 exp = extract64(f, 52, 11);
1217
1218 /* Validate the range of the result. */
1219 if (exp < 1022 + intsize) {
1220 /* abs(F) <= INT{N}_MAX */
1221 return f;
1222 }
1223 if (exp == 1022 + intsize) {
1224 uint64_t sign = extract64(f, 63, 1);
1225 uint64_t frac = extract64(f, 0, 52);
1226 if (sign && frac == 0) {
1227 /* F == INT{N}_MIN */
1228 return f;
1229 }
1230 }
1231
1232 overflow:
1233 /*
1234 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1235 * inexact exception float64_round_to_int may have raised.
1236 */
1237 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1238 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1239 }
1240
HELPER(frint32_d)1241 float64 HELPER(frint32_d)(float64 f, void *fpst)
1242 {
1243 return frint_d(f, fpst, 32);
1244 }
1245
HELPER(frint64_d)1246 float64 HELPER(frint64_d)(float64 f, void *fpst)
1247 {
1248 return frint_d(f, fpst, 64);
1249 }
1250
HELPER(check_hcr_el2_trap)1251 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1252 {
1253 uint32_t syndrome;
1254
1255 switch (reg) {
1256 case ARM_VFP_MVFR0:
1257 case ARM_VFP_MVFR1:
1258 case ARM_VFP_MVFR2:
1259 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1260 return;
1261 }
1262 break;
1263 case ARM_VFP_FPSID:
1264 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1265 return;
1266 }
1267 break;
1268 default:
1269 g_assert_not_reached();
1270 }
1271
1272 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1273 | ARM_EL_IL
1274 | (1 << 24) | (0xe << 20) | (7 << 14)
1275 | (reg << 10) | (rt << 5) | 1);
1276
1277 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1278 }
1279
1280 #endif
1281