1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
4 * Author: Alex Williamson <alex.williamson@redhat.com>
5 *
6 * Derived from original vfio:
7 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
8 * Author: Tom Lyon, pugs@cisco.com
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 #include <linux/iommufd.h>
31 #if IS_ENABLED(CONFIG_EEH)
32 #include <asm/eeh.h>
33 #endif
34
35 #include "vfio_pci_priv.h"
36
37 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
38 #define DRIVER_DESC "core driver for VFIO based PCI devices"
39
40 static bool nointxmask;
41 static bool disable_vga;
42 static bool disable_idle_d3;
43
44 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
45 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
46 static LIST_HEAD(vfio_pci_sriov_pfs);
47
48 struct vfio_pci_dummy_resource {
49 struct resource resource;
50 int index;
51 struct list_head res_next;
52 };
53
54 struct vfio_pci_vf_token {
55 struct mutex lock;
56 uuid_t uuid;
57 int users;
58 };
59
60 struct vfio_pci_mmap_vma {
61 struct vm_area_struct *vma;
62 struct list_head vma_next;
63 };
64
vfio_vga_disabled(void)65 static inline bool vfio_vga_disabled(void)
66 {
67 #ifdef CONFIG_VFIO_PCI_VGA
68 return disable_vga;
69 #else
70 return true;
71 #endif
72 }
73
74 /*
75 * Our VGA arbiter participation is limited since we don't know anything
76 * about the device itself. However, if the device is the only VGA device
77 * downstream of a bridge and VFIO VGA support is disabled, then we can
78 * safely return legacy VGA IO and memory as not decoded since the user
79 * has no way to get to it and routing can be disabled externally at the
80 * bridge.
81 */
vfio_pci_set_decode(struct pci_dev * pdev,bool single_vga)82 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
83 {
84 struct pci_dev *tmp = NULL;
85 unsigned char max_busnr;
86 unsigned int decodes;
87
88 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
89 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
90 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
91
92 max_busnr = pci_bus_max_busnr(pdev->bus);
93 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
94
95 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
96 if (tmp == pdev ||
97 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
98 pci_is_root_bus(tmp->bus))
99 continue;
100
101 if (tmp->bus->number >= pdev->bus->number &&
102 tmp->bus->number <= max_busnr) {
103 pci_dev_put(tmp);
104 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
105 break;
106 }
107 }
108
109 return decodes;
110 }
111
vfio_pci_probe_mmaps(struct vfio_pci_core_device * vdev)112 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
113 {
114 struct resource *res;
115 int i;
116 struct vfio_pci_dummy_resource *dummy_res;
117
118 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
119 int bar = i + PCI_STD_RESOURCES;
120
121 res = &vdev->pdev->resource[bar];
122
123 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
124 goto no_mmap;
125
126 if (!(res->flags & IORESOURCE_MEM))
127 goto no_mmap;
128
129 /*
130 * The PCI core shouldn't set up a resource with a
131 * type but zero size. But there may be bugs that
132 * cause us to do that.
133 */
134 if (!resource_size(res))
135 goto no_mmap;
136
137 if (resource_size(res) >= PAGE_SIZE) {
138 vdev->bar_mmap_supported[bar] = true;
139 continue;
140 }
141
142 if (!(res->start & ~PAGE_MASK)) {
143 /*
144 * Add a dummy resource to reserve the remainder
145 * of the exclusive page in case that hot-add
146 * device's bar is assigned into it.
147 */
148 dummy_res =
149 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
150 if (dummy_res == NULL)
151 goto no_mmap;
152
153 dummy_res->resource.name = "vfio sub-page reserved";
154 dummy_res->resource.start = res->end + 1;
155 dummy_res->resource.end = res->start + PAGE_SIZE - 1;
156 dummy_res->resource.flags = res->flags;
157 if (request_resource(res->parent,
158 &dummy_res->resource)) {
159 kfree(dummy_res);
160 goto no_mmap;
161 }
162 dummy_res->index = bar;
163 list_add(&dummy_res->res_next,
164 &vdev->dummy_resources_list);
165 vdev->bar_mmap_supported[bar] = true;
166 continue;
167 }
168 /*
169 * Here we don't handle the case when the BAR is not page
170 * aligned because we can't expect the BAR will be
171 * assigned into the same location in a page in guest
172 * when we passthrough the BAR. And it's hard to access
173 * this BAR in userspace because we have no way to get
174 * the BAR's location in a page.
175 */
176 no_mmap:
177 vdev->bar_mmap_supported[bar] = false;
178 }
179 }
180
181 struct vfio_pci_group_info;
182 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
183 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
184 struct vfio_pci_group_info *groups,
185 struct iommufd_ctx *iommufd_ctx);
186
187 /*
188 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
189 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
190 * If a device implements the former but not the latter we would typically
191 * expect broken_intx_masking be set and require an exclusive interrupt.
192 * However since we do have control of the device's ability to assert INTx,
193 * we can instead pretend that the device does not implement INTx, virtualizing
194 * the pin register to report zero and maintaining DisINTx set on the host.
195 */
vfio_pci_nointx(struct pci_dev * pdev)196 static bool vfio_pci_nointx(struct pci_dev *pdev)
197 {
198 switch (pdev->vendor) {
199 case PCI_VENDOR_ID_INTEL:
200 switch (pdev->device) {
201 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
202 case 0x1572:
203 case 0x1574:
204 case 0x1580 ... 0x1581:
205 case 0x1583 ... 0x158b:
206 case 0x37d0 ... 0x37d2:
207 /* X550 */
208 case 0x1563:
209 return true;
210 default:
211 return false;
212 }
213 }
214
215 return false;
216 }
217
vfio_pci_probe_power_state(struct vfio_pci_core_device * vdev)218 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
219 {
220 struct pci_dev *pdev = vdev->pdev;
221 u16 pmcsr;
222
223 if (!pdev->pm_cap)
224 return;
225
226 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
227
228 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
229 }
230
231 /*
232 * pci_set_power_state() wrapper handling devices which perform a soft reset on
233 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
234 * restore when returned to D0. Saved separately from pci_saved_state for use
235 * by PM capability emulation and separately from pci_dev internal saved state
236 * to avoid it being overwritten and consumed around other resets.
237 */
vfio_pci_set_power_state(struct vfio_pci_core_device * vdev,pci_power_t state)238 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
239 {
240 struct pci_dev *pdev = vdev->pdev;
241 bool needs_restore = false, needs_save = false;
242 int ret;
243
244 /* Prevent changing power state for PFs with VFs enabled */
245 if (pci_num_vf(pdev) && state > PCI_D0)
246 return -EBUSY;
247
248 if (vdev->needs_pm_restore) {
249 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
250 pci_save_state(pdev);
251 needs_save = true;
252 }
253
254 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
255 needs_restore = true;
256 }
257
258 ret = pci_set_power_state(pdev, state);
259
260 if (!ret) {
261 /* D3 might be unsupported via quirk, skip unless in D3 */
262 if (needs_save && pdev->current_state >= PCI_D3hot) {
263 /*
264 * The current PCI state will be saved locally in
265 * 'pm_save' during the D3hot transition. When the
266 * device state is changed to D0 again with the current
267 * function, then pci_store_saved_state() will restore
268 * the state and will free the memory pointed by
269 * 'pm_save'. There are few cases where the PCI power
270 * state can be changed to D0 without the involvement
271 * of the driver. For these cases, free the earlier
272 * allocated memory first before overwriting 'pm_save'
273 * to prevent the memory leak.
274 */
275 kfree(vdev->pm_save);
276 vdev->pm_save = pci_store_saved_state(pdev);
277 } else if (needs_restore) {
278 pci_load_and_free_saved_state(pdev, &vdev->pm_save);
279 pci_restore_state(pdev);
280 }
281 }
282
283 return ret;
284 }
285
vfio_pci_runtime_pm_entry(struct vfio_pci_core_device * vdev,struct eventfd_ctx * efdctx)286 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
287 struct eventfd_ctx *efdctx)
288 {
289 /*
290 * The vdev power related flags are protected with 'memory_lock'
291 * semaphore.
292 */
293 vfio_pci_zap_and_down_write_memory_lock(vdev);
294 if (vdev->pm_runtime_engaged) {
295 up_write(&vdev->memory_lock);
296 return -EINVAL;
297 }
298
299 vdev->pm_runtime_engaged = true;
300 vdev->pm_wake_eventfd_ctx = efdctx;
301 pm_runtime_put_noidle(&vdev->pdev->dev);
302 up_write(&vdev->memory_lock);
303
304 return 0;
305 }
306
vfio_pci_core_pm_entry(struct vfio_device * device,u32 flags,void __user * arg,size_t argsz)307 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
308 void __user *arg, size_t argsz)
309 {
310 struct vfio_pci_core_device *vdev =
311 container_of(device, struct vfio_pci_core_device, vdev);
312 int ret;
313
314 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
315 if (ret != 1)
316 return ret;
317
318 /*
319 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
320 * will be decremented. The pm_runtime_put() will be invoked again
321 * while returning from the ioctl and then the device can go into
322 * runtime suspended state.
323 */
324 return vfio_pci_runtime_pm_entry(vdev, NULL);
325 }
326
vfio_pci_core_pm_entry_with_wakeup(struct vfio_device * device,u32 flags,struct vfio_device_low_power_entry_with_wakeup __user * arg,size_t argsz)327 static int vfio_pci_core_pm_entry_with_wakeup(
328 struct vfio_device *device, u32 flags,
329 struct vfio_device_low_power_entry_with_wakeup __user *arg,
330 size_t argsz)
331 {
332 struct vfio_pci_core_device *vdev =
333 container_of(device, struct vfio_pci_core_device, vdev);
334 struct vfio_device_low_power_entry_with_wakeup entry;
335 struct eventfd_ctx *efdctx;
336 int ret;
337
338 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
339 sizeof(entry));
340 if (ret != 1)
341 return ret;
342
343 if (copy_from_user(&entry, arg, sizeof(entry)))
344 return -EFAULT;
345
346 if (entry.wakeup_eventfd < 0)
347 return -EINVAL;
348
349 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
350 if (IS_ERR(efdctx))
351 return PTR_ERR(efdctx);
352
353 ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
354 if (ret)
355 eventfd_ctx_put(efdctx);
356
357 return ret;
358 }
359
__vfio_pci_runtime_pm_exit(struct vfio_pci_core_device * vdev)360 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
361 {
362 if (vdev->pm_runtime_engaged) {
363 vdev->pm_runtime_engaged = false;
364 pm_runtime_get_noresume(&vdev->pdev->dev);
365
366 if (vdev->pm_wake_eventfd_ctx) {
367 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
368 vdev->pm_wake_eventfd_ctx = NULL;
369 }
370 }
371 }
372
vfio_pci_runtime_pm_exit(struct vfio_pci_core_device * vdev)373 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
374 {
375 /*
376 * The vdev power related flags are protected with 'memory_lock'
377 * semaphore.
378 */
379 down_write(&vdev->memory_lock);
380 __vfio_pci_runtime_pm_exit(vdev);
381 up_write(&vdev->memory_lock);
382 }
383
vfio_pci_core_pm_exit(struct vfio_device * device,u32 flags,void __user * arg,size_t argsz)384 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
385 void __user *arg, size_t argsz)
386 {
387 struct vfio_pci_core_device *vdev =
388 container_of(device, struct vfio_pci_core_device, vdev);
389 int ret;
390
391 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
392 if (ret != 1)
393 return ret;
394
395 /*
396 * The device is always in the active state here due to pm wrappers
397 * around ioctls. If the device had entered a low power state and
398 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
399 * already signaled the eventfd and exited low power mode itself.
400 * pm_runtime_engaged protects the redundant call here.
401 */
402 vfio_pci_runtime_pm_exit(vdev);
403 return 0;
404 }
405
406 #ifdef CONFIG_PM
vfio_pci_core_runtime_suspend(struct device * dev)407 static int vfio_pci_core_runtime_suspend(struct device *dev)
408 {
409 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
410
411 down_write(&vdev->memory_lock);
412 /*
413 * The user can move the device into D3hot state before invoking
414 * power management IOCTL. Move the device into D0 state here and then
415 * the pci-driver core runtime PM suspend function will move the device
416 * into the low power state. Also, for the devices which have
417 * NoSoftRst-, it will help in restoring the original state
418 * (saved locally in 'vdev->pm_save').
419 */
420 vfio_pci_set_power_state(vdev, PCI_D0);
421 up_write(&vdev->memory_lock);
422
423 /*
424 * If INTx is enabled, then mask INTx before going into the runtime
425 * suspended state and unmask the same in the runtime resume.
426 * If INTx has already been masked by the user, then
427 * vfio_pci_intx_mask() will return false and in that case, INTx
428 * should not be unmasked in the runtime resume.
429 */
430 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
431 vfio_pci_intx_mask(vdev));
432
433 return 0;
434 }
435
vfio_pci_core_runtime_resume(struct device * dev)436 static int vfio_pci_core_runtime_resume(struct device *dev)
437 {
438 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
439
440 /*
441 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
442 * low power mode.
443 */
444 down_write(&vdev->memory_lock);
445 if (vdev->pm_wake_eventfd_ctx) {
446 eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
447 __vfio_pci_runtime_pm_exit(vdev);
448 }
449 up_write(&vdev->memory_lock);
450
451 if (vdev->pm_intx_masked)
452 vfio_pci_intx_unmask(vdev);
453
454 return 0;
455 }
456 #endif /* CONFIG_PM */
457
458 /*
459 * The pci-driver core runtime PM routines always save the device state
460 * before going into suspended state. If the device is going into low power
461 * state with only with runtime PM ops, then no explicit handling is needed
462 * for the devices which have NoSoftRst-.
463 */
464 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
465 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
466 vfio_pci_core_runtime_resume,
467 NULL)
468 };
469
vfio_pci_core_enable(struct vfio_pci_core_device * vdev)470 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
471 {
472 struct pci_dev *pdev = vdev->pdev;
473 int ret;
474 u16 cmd;
475 u8 msix_pos;
476
477 if (!disable_idle_d3) {
478 ret = pm_runtime_resume_and_get(&pdev->dev);
479 if (ret < 0)
480 return ret;
481 }
482
483 /* Don't allow our initial saved state to include busmaster */
484 pci_clear_master(pdev);
485
486 ret = pci_enable_device(pdev);
487 if (ret)
488 goto out_power;
489
490 /* If reset fails because of the device lock, fail this path entirely */
491 ret = pci_try_reset_function(pdev);
492 if (ret == -EAGAIN)
493 goto out_disable_device;
494
495 vdev->reset_works = !ret;
496 pci_save_state(pdev);
497 vdev->pci_saved_state = pci_store_saved_state(pdev);
498 if (!vdev->pci_saved_state)
499 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
500
501 if (likely(!nointxmask)) {
502 if (vfio_pci_nointx(pdev)) {
503 pci_info(pdev, "Masking broken INTx support\n");
504 vdev->nointx = true;
505 pci_intx(pdev, 0);
506 } else
507 vdev->pci_2_3 = pci_intx_mask_supported(pdev);
508 }
509
510 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
511 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
512 cmd &= ~PCI_COMMAND_INTX_DISABLE;
513 pci_write_config_word(pdev, PCI_COMMAND, cmd);
514 }
515
516 ret = vfio_pci_zdev_open_device(vdev);
517 if (ret)
518 goto out_free_state;
519
520 ret = vfio_config_init(vdev);
521 if (ret)
522 goto out_free_zdev;
523
524 msix_pos = pdev->msix_cap;
525 if (msix_pos) {
526 u16 flags;
527 u32 table;
528
529 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
530 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
531
532 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
533 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
534 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
535 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
536 } else {
537 vdev->msix_bar = 0xFF;
538 vdev->has_dyn_msix = false;
539 }
540
541 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
542 vdev->has_vga = true;
543
544
545 return 0;
546
547 out_free_zdev:
548 vfio_pci_zdev_close_device(vdev);
549 out_free_state:
550 kfree(vdev->pci_saved_state);
551 vdev->pci_saved_state = NULL;
552 out_disable_device:
553 pci_disable_device(pdev);
554 out_power:
555 if (!disable_idle_d3)
556 pm_runtime_put(&pdev->dev);
557 return ret;
558 }
559 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
560
vfio_pci_core_disable(struct vfio_pci_core_device * vdev)561 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
562 {
563 struct pci_dev *pdev = vdev->pdev;
564 struct vfio_pci_dummy_resource *dummy_res, *tmp;
565 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
566 int i, bar;
567
568 /* For needs_reset */
569 lockdep_assert_held(&vdev->vdev.dev_set->lock);
570
571 /*
572 * This function can be invoked while the power state is non-D0.
573 * This non-D0 power state can be with or without runtime PM.
574 * vfio_pci_runtime_pm_exit() will internally increment the usage
575 * count corresponding to pm_runtime_put() called during low power
576 * feature entry and then pm_runtime_resume() will wake up the device,
577 * if the device has already gone into the suspended state. Otherwise,
578 * the vfio_pci_set_power_state() will change the device power state
579 * to D0.
580 */
581 vfio_pci_runtime_pm_exit(vdev);
582 pm_runtime_resume(&pdev->dev);
583
584 /*
585 * This function calls __pci_reset_function_locked() which internally
586 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
587 * fail if the power state is non-D0. Also, for the devices which
588 * have NoSoftRst-, the reset function can cause the PCI config space
589 * reset without restoring the original state (saved locally in
590 * 'vdev->pm_save').
591 */
592 vfio_pci_set_power_state(vdev, PCI_D0);
593
594 /* Stop the device from further DMA */
595 pci_clear_master(pdev);
596
597 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
598 VFIO_IRQ_SET_ACTION_TRIGGER,
599 vdev->irq_type, 0, 0, NULL);
600
601 /* Device closed, don't need mutex here */
602 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
603 &vdev->ioeventfds_list, next) {
604 vfio_virqfd_disable(&ioeventfd->virqfd);
605 list_del(&ioeventfd->next);
606 kfree(ioeventfd);
607 }
608 vdev->ioeventfds_nr = 0;
609
610 vdev->virq_disabled = false;
611
612 for (i = 0; i < vdev->num_regions; i++)
613 vdev->region[i].ops->release(vdev, &vdev->region[i]);
614
615 vdev->num_regions = 0;
616 kfree(vdev->region);
617 vdev->region = NULL; /* don't krealloc a freed pointer */
618
619 vfio_config_free(vdev);
620
621 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
622 bar = i + PCI_STD_RESOURCES;
623 if (!vdev->barmap[bar])
624 continue;
625 pci_iounmap(pdev, vdev->barmap[bar]);
626 pci_release_selected_regions(pdev, 1 << bar);
627 vdev->barmap[bar] = NULL;
628 }
629
630 list_for_each_entry_safe(dummy_res, tmp,
631 &vdev->dummy_resources_list, res_next) {
632 list_del(&dummy_res->res_next);
633 release_resource(&dummy_res->resource);
634 kfree(dummy_res);
635 }
636
637 vdev->needs_reset = true;
638
639 vfio_pci_zdev_close_device(vdev);
640
641 /*
642 * If we have saved state, restore it. If we can reset the device,
643 * even better. Resetting with current state seems better than
644 * nothing, but saving and restoring current state without reset
645 * is just busy work.
646 */
647 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
648 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
649
650 if (!vdev->reset_works)
651 goto out;
652
653 pci_save_state(pdev);
654 }
655
656 /*
657 * Disable INTx and MSI, presumably to avoid spurious interrupts
658 * during reset. Stolen from pci_reset_function()
659 */
660 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
661
662 /*
663 * Try to get the locks ourselves to prevent a deadlock. The
664 * success of this is dependent on being able to lock the device,
665 * which is not always possible.
666 * We can not use the "try" reset interface here, which will
667 * overwrite the previously restored configuration information.
668 */
669 if (vdev->reset_works && pci_dev_trylock(pdev)) {
670 if (!__pci_reset_function_locked(pdev))
671 vdev->needs_reset = false;
672 pci_dev_unlock(pdev);
673 }
674
675 pci_restore_state(pdev);
676 out:
677 pci_disable_device(pdev);
678
679 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
680
681 /* Put the pm-runtime usage counter acquired during enable */
682 if (!disable_idle_d3)
683 pm_runtime_put(&pdev->dev);
684 }
685 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
686
vfio_pci_core_close_device(struct vfio_device * core_vdev)687 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
688 {
689 struct vfio_pci_core_device *vdev =
690 container_of(core_vdev, struct vfio_pci_core_device, vdev);
691
692 if (vdev->sriov_pf_core_dev) {
693 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
694 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
695 vdev->sriov_pf_core_dev->vf_token->users--;
696 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
697 }
698 #if IS_ENABLED(CONFIG_EEH)
699 eeh_dev_release(vdev->pdev);
700 #endif
701 vfio_pci_core_disable(vdev);
702
703 mutex_lock(&vdev->igate);
704 if (vdev->err_trigger) {
705 eventfd_ctx_put(vdev->err_trigger);
706 vdev->err_trigger = NULL;
707 }
708 if (vdev->req_trigger) {
709 eventfd_ctx_put(vdev->req_trigger);
710 vdev->req_trigger = NULL;
711 }
712 mutex_unlock(&vdev->igate);
713 }
714 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
715
vfio_pci_core_finish_enable(struct vfio_pci_core_device * vdev)716 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
717 {
718 vfio_pci_probe_mmaps(vdev);
719 #if IS_ENABLED(CONFIG_EEH)
720 eeh_dev_open(vdev->pdev);
721 #endif
722
723 if (vdev->sriov_pf_core_dev) {
724 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
725 vdev->sriov_pf_core_dev->vf_token->users++;
726 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
727 }
728 }
729 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
730
vfio_pci_get_irq_count(struct vfio_pci_core_device * vdev,int irq_type)731 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
732 {
733 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
734 return vdev->vconfig[PCI_INTERRUPT_PIN] ? 1 : 0;
735 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
736 u8 pos;
737 u16 flags;
738
739 pos = vdev->pdev->msi_cap;
740 if (pos) {
741 pci_read_config_word(vdev->pdev,
742 pos + PCI_MSI_FLAGS, &flags);
743 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
744 }
745 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
746 u8 pos;
747 u16 flags;
748
749 pos = vdev->pdev->msix_cap;
750 if (pos) {
751 pci_read_config_word(vdev->pdev,
752 pos + PCI_MSIX_FLAGS, &flags);
753
754 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
755 }
756 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
757 if (pci_is_pcie(vdev->pdev))
758 return 1;
759 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
760 return 1;
761 }
762
763 return 0;
764 }
765
vfio_pci_count_devs(struct pci_dev * pdev,void * data)766 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
767 {
768 (*(int *)data)++;
769 return 0;
770 }
771
772 struct vfio_pci_fill_info {
773 struct vfio_device *vdev;
774 struct vfio_pci_dependent_device *devices;
775 int nr_devices;
776 u32 count;
777 u32 flags;
778 };
779
vfio_pci_fill_devs(struct pci_dev * pdev,void * data)780 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
781 {
782 struct vfio_pci_dependent_device *info;
783 struct vfio_pci_fill_info *fill = data;
784
785 /* The topology changed since we counted devices */
786 if (fill->count >= fill->nr_devices)
787 return -EAGAIN;
788
789 info = &fill->devices[fill->count++];
790 info->segment = pci_domain_nr(pdev->bus);
791 info->bus = pdev->bus->number;
792 info->devfn = pdev->devfn;
793
794 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
795 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
796 struct vfio_device_set *dev_set = fill->vdev->dev_set;
797 struct vfio_device *vdev;
798
799 /*
800 * hot-reset requires all affected devices be represented in
801 * the dev_set.
802 */
803 vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
804 if (!vdev) {
805 info->devid = VFIO_PCI_DEVID_NOT_OWNED;
806 } else {
807 int id = vfio_iommufd_get_dev_id(vdev, iommufd);
808
809 if (id > 0)
810 info->devid = id;
811 else if (id == -ENOENT)
812 info->devid = VFIO_PCI_DEVID_OWNED;
813 else
814 info->devid = VFIO_PCI_DEVID_NOT_OWNED;
815 }
816 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
817 if (info->devid == VFIO_PCI_DEVID_NOT_OWNED)
818 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
819 } else {
820 struct iommu_group *iommu_group;
821
822 iommu_group = iommu_group_get(&pdev->dev);
823 if (!iommu_group)
824 return -EPERM; /* Cannot reset non-isolated devices */
825
826 info->group_id = iommu_group_id(iommu_group);
827 iommu_group_put(iommu_group);
828 }
829
830 return 0;
831 }
832
833 struct vfio_pci_group_info {
834 int count;
835 struct file **files;
836 };
837
vfio_pci_dev_below_slot(struct pci_dev * pdev,struct pci_slot * slot)838 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
839 {
840 for (; pdev; pdev = pdev->bus->self)
841 if (pdev->bus == slot->bus)
842 return (pdev->slot == slot);
843 return false;
844 }
845
846 struct vfio_pci_walk_info {
847 int (*fn)(struct pci_dev *pdev, void *data);
848 void *data;
849 struct pci_dev *pdev;
850 bool slot;
851 int ret;
852 };
853
vfio_pci_walk_wrapper(struct pci_dev * pdev,void * data)854 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
855 {
856 struct vfio_pci_walk_info *walk = data;
857
858 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
859 walk->ret = walk->fn(pdev, walk->data);
860
861 return walk->ret;
862 }
863
vfio_pci_for_each_slot_or_bus(struct pci_dev * pdev,int (* fn)(struct pci_dev *,void * data),void * data,bool slot)864 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
865 int (*fn)(struct pci_dev *,
866 void *data), void *data,
867 bool slot)
868 {
869 struct vfio_pci_walk_info walk = {
870 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
871 };
872
873 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
874
875 return walk.ret;
876 }
877
msix_mmappable_cap(struct vfio_pci_core_device * vdev,struct vfio_info_cap * caps)878 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
879 struct vfio_info_cap *caps)
880 {
881 struct vfio_info_cap_header header = {
882 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
883 .version = 1
884 };
885
886 return vfio_info_add_capability(caps, &header, sizeof(header));
887 }
888
vfio_pci_core_register_dev_region(struct vfio_pci_core_device * vdev,unsigned int type,unsigned int subtype,const struct vfio_pci_regops * ops,size_t size,u32 flags,void * data)889 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
890 unsigned int type, unsigned int subtype,
891 const struct vfio_pci_regops *ops,
892 size_t size, u32 flags, void *data)
893 {
894 struct vfio_pci_region *region;
895
896 region = krealloc(vdev->region,
897 (vdev->num_regions + 1) * sizeof(*region),
898 GFP_KERNEL_ACCOUNT);
899 if (!region)
900 return -ENOMEM;
901
902 vdev->region = region;
903 vdev->region[vdev->num_regions].type = type;
904 vdev->region[vdev->num_regions].subtype = subtype;
905 vdev->region[vdev->num_regions].ops = ops;
906 vdev->region[vdev->num_regions].size = size;
907 vdev->region[vdev->num_regions].flags = flags;
908 vdev->region[vdev->num_regions].data = data;
909
910 vdev->num_regions++;
911
912 return 0;
913 }
914 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
915
vfio_pci_info_atomic_cap(struct vfio_pci_core_device * vdev,struct vfio_info_cap * caps)916 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
917 struct vfio_info_cap *caps)
918 {
919 struct vfio_device_info_cap_pci_atomic_comp cap = {
920 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
921 .header.version = 1
922 };
923 struct pci_dev *pdev = pci_physfn(vdev->pdev);
924 u32 devcap2;
925
926 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
927
928 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
929 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
930 cap.flags |= VFIO_PCI_ATOMIC_COMP32;
931
932 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
933 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
934 cap.flags |= VFIO_PCI_ATOMIC_COMP64;
935
936 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
937 !pci_enable_atomic_ops_to_root(pdev,
938 PCI_EXP_DEVCAP2_ATOMIC_COMP128))
939 cap.flags |= VFIO_PCI_ATOMIC_COMP128;
940
941 if (!cap.flags)
942 return -ENODEV;
943
944 return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
945 }
946
vfio_pci_ioctl_get_info(struct vfio_pci_core_device * vdev,struct vfio_device_info __user * arg)947 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
948 struct vfio_device_info __user *arg)
949 {
950 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
951 struct vfio_device_info info = {};
952 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
953 int ret;
954
955 if (copy_from_user(&info, arg, minsz))
956 return -EFAULT;
957
958 if (info.argsz < minsz)
959 return -EINVAL;
960
961 minsz = min_t(size_t, info.argsz, sizeof(info));
962
963 info.flags = VFIO_DEVICE_FLAGS_PCI;
964
965 if (vdev->reset_works)
966 info.flags |= VFIO_DEVICE_FLAGS_RESET;
967
968 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
969 info.num_irqs = VFIO_PCI_NUM_IRQS;
970
971 ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
972 if (ret && ret != -ENODEV) {
973 pci_warn(vdev->pdev,
974 "Failed to setup zPCI info capabilities\n");
975 return ret;
976 }
977
978 ret = vfio_pci_info_atomic_cap(vdev, &caps);
979 if (ret && ret != -ENODEV) {
980 pci_warn(vdev->pdev,
981 "Failed to setup AtomicOps info capability\n");
982 return ret;
983 }
984
985 if (caps.size) {
986 info.flags |= VFIO_DEVICE_FLAGS_CAPS;
987 if (info.argsz < sizeof(info) + caps.size) {
988 info.argsz = sizeof(info) + caps.size;
989 } else {
990 vfio_info_cap_shift(&caps, sizeof(info));
991 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
992 kfree(caps.buf);
993 return -EFAULT;
994 }
995 info.cap_offset = sizeof(*arg);
996 }
997
998 kfree(caps.buf);
999 }
1000
1001 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1002 }
1003
vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device * vdev,struct vfio_region_info __user * arg)1004 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
1005 struct vfio_region_info __user *arg)
1006 {
1007 unsigned long minsz = offsetofend(struct vfio_region_info, offset);
1008 struct pci_dev *pdev = vdev->pdev;
1009 struct vfio_region_info info;
1010 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1011 int i, ret;
1012
1013 if (copy_from_user(&info, arg, minsz))
1014 return -EFAULT;
1015
1016 if (info.argsz < minsz)
1017 return -EINVAL;
1018
1019 switch (info.index) {
1020 case VFIO_PCI_CONFIG_REGION_INDEX:
1021 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1022 info.size = pdev->cfg_size;
1023 info.flags = VFIO_REGION_INFO_FLAG_READ |
1024 VFIO_REGION_INFO_FLAG_WRITE;
1025 break;
1026 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1027 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1028 info.size = pci_resource_len(pdev, info.index);
1029 if (!info.size) {
1030 info.flags = 0;
1031 break;
1032 }
1033
1034 info.flags = VFIO_REGION_INFO_FLAG_READ |
1035 VFIO_REGION_INFO_FLAG_WRITE;
1036 if (vdev->bar_mmap_supported[info.index]) {
1037 info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1038 if (info.index == vdev->msix_bar) {
1039 ret = msix_mmappable_cap(vdev, &caps);
1040 if (ret)
1041 return ret;
1042 }
1043 }
1044
1045 break;
1046 case VFIO_PCI_ROM_REGION_INDEX: {
1047 void __iomem *io;
1048 size_t size;
1049 u16 cmd;
1050
1051 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1052 info.flags = 0;
1053
1054 /* Report the BAR size, not the ROM size */
1055 info.size = pci_resource_len(pdev, info.index);
1056 if (!info.size) {
1057 /* Shadow ROMs appear as PCI option ROMs */
1058 if (pdev->resource[PCI_ROM_RESOURCE].flags &
1059 IORESOURCE_ROM_SHADOW)
1060 info.size = 0x20000;
1061 else
1062 break;
1063 }
1064
1065 /*
1066 * Is it really there? Enable memory decode for implicit access
1067 * in pci_map_rom().
1068 */
1069 cmd = vfio_pci_memory_lock_and_enable(vdev);
1070 io = pci_map_rom(pdev, &size);
1071 if (io) {
1072 info.flags = VFIO_REGION_INFO_FLAG_READ;
1073 pci_unmap_rom(pdev, io);
1074 } else {
1075 info.size = 0;
1076 }
1077 vfio_pci_memory_unlock_and_restore(vdev, cmd);
1078
1079 break;
1080 }
1081 case VFIO_PCI_VGA_REGION_INDEX:
1082 if (!vdev->has_vga)
1083 return -EINVAL;
1084
1085 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1086 info.size = 0xc0000;
1087 info.flags = VFIO_REGION_INFO_FLAG_READ |
1088 VFIO_REGION_INFO_FLAG_WRITE;
1089
1090 break;
1091 default: {
1092 struct vfio_region_info_cap_type cap_type = {
1093 .header.id = VFIO_REGION_INFO_CAP_TYPE,
1094 .header.version = 1
1095 };
1096
1097 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1098 return -EINVAL;
1099 info.index = array_index_nospec(
1100 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1101
1102 i = info.index - VFIO_PCI_NUM_REGIONS;
1103
1104 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1105 info.size = vdev->region[i].size;
1106 info.flags = vdev->region[i].flags;
1107
1108 cap_type.type = vdev->region[i].type;
1109 cap_type.subtype = vdev->region[i].subtype;
1110
1111 ret = vfio_info_add_capability(&caps, &cap_type.header,
1112 sizeof(cap_type));
1113 if (ret)
1114 return ret;
1115
1116 if (vdev->region[i].ops->add_capability) {
1117 ret = vdev->region[i].ops->add_capability(
1118 vdev, &vdev->region[i], &caps);
1119 if (ret)
1120 return ret;
1121 }
1122 }
1123 }
1124
1125 if (caps.size) {
1126 info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1127 if (info.argsz < sizeof(info) + caps.size) {
1128 info.argsz = sizeof(info) + caps.size;
1129 info.cap_offset = 0;
1130 } else {
1131 vfio_info_cap_shift(&caps, sizeof(info));
1132 if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1133 kfree(caps.buf);
1134 return -EFAULT;
1135 }
1136 info.cap_offset = sizeof(*arg);
1137 }
1138
1139 kfree(caps.buf);
1140 }
1141
1142 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1143 }
1144
vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device * vdev,struct vfio_irq_info __user * arg)1145 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1146 struct vfio_irq_info __user *arg)
1147 {
1148 unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1149 struct vfio_irq_info info;
1150
1151 if (copy_from_user(&info, arg, minsz))
1152 return -EFAULT;
1153
1154 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1155 return -EINVAL;
1156
1157 switch (info.index) {
1158 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1159 case VFIO_PCI_REQ_IRQ_INDEX:
1160 break;
1161 case VFIO_PCI_ERR_IRQ_INDEX:
1162 if (pci_is_pcie(vdev->pdev))
1163 break;
1164 fallthrough;
1165 default:
1166 return -EINVAL;
1167 }
1168
1169 info.flags = VFIO_IRQ_INFO_EVENTFD;
1170
1171 info.count = vfio_pci_get_irq_count(vdev, info.index);
1172
1173 if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1174 info.flags |=
1175 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1176 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1177 info.flags |= VFIO_IRQ_INFO_NORESIZE;
1178
1179 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1180 }
1181
vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device * vdev,struct vfio_irq_set __user * arg)1182 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1183 struct vfio_irq_set __user *arg)
1184 {
1185 unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1186 struct vfio_irq_set hdr;
1187 u8 *data = NULL;
1188 int max, ret = 0;
1189 size_t data_size = 0;
1190
1191 if (copy_from_user(&hdr, arg, minsz))
1192 return -EFAULT;
1193
1194 max = vfio_pci_get_irq_count(vdev, hdr.index);
1195
1196 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1197 &data_size);
1198 if (ret)
1199 return ret;
1200
1201 if (data_size) {
1202 data = memdup_user(&arg->data, data_size);
1203 if (IS_ERR(data))
1204 return PTR_ERR(data);
1205 }
1206
1207 mutex_lock(&vdev->igate);
1208
1209 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1210 hdr.count, data);
1211
1212 mutex_unlock(&vdev->igate);
1213 kfree(data);
1214
1215 return ret;
1216 }
1217
vfio_pci_ioctl_reset(struct vfio_pci_core_device * vdev,void __user * arg)1218 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1219 void __user *arg)
1220 {
1221 int ret;
1222
1223 if (!vdev->reset_works)
1224 return -EINVAL;
1225
1226 vfio_pci_zap_and_down_write_memory_lock(vdev);
1227
1228 /*
1229 * This function can be invoked while the power state is non-D0. If
1230 * pci_try_reset_function() has been called while the power state is
1231 * non-D0, then pci_try_reset_function() will internally set the power
1232 * state to D0 without vfio driver involvement. For the devices which
1233 * have NoSoftRst-, the reset function can cause the PCI config space
1234 * reset without restoring the original state (saved locally in
1235 * 'vdev->pm_save').
1236 */
1237 vfio_pci_set_power_state(vdev, PCI_D0);
1238
1239 ret = pci_try_reset_function(vdev->pdev);
1240 up_write(&vdev->memory_lock);
1241
1242 return ret;
1243 }
1244
vfio_pci_ioctl_get_pci_hot_reset_info(struct vfio_pci_core_device * vdev,struct vfio_pci_hot_reset_info __user * arg)1245 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1246 struct vfio_pci_core_device *vdev,
1247 struct vfio_pci_hot_reset_info __user *arg)
1248 {
1249 unsigned long minsz =
1250 offsetofend(struct vfio_pci_hot_reset_info, count);
1251 struct vfio_pci_dependent_device *devices = NULL;
1252 struct vfio_pci_hot_reset_info hdr;
1253 struct vfio_pci_fill_info fill = {};
1254 bool slot = false;
1255 int ret, count = 0;
1256
1257 if (copy_from_user(&hdr, arg, minsz))
1258 return -EFAULT;
1259
1260 if (hdr.argsz < minsz)
1261 return -EINVAL;
1262
1263 hdr.flags = 0;
1264
1265 /* Can we do a slot or bus reset or neither? */
1266 if (!pci_probe_reset_slot(vdev->pdev->slot))
1267 slot = true;
1268 else if (pci_probe_reset_bus(vdev->pdev->bus))
1269 return -ENODEV;
1270
1271 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1272 &count, slot);
1273 if (ret)
1274 return ret;
1275
1276 if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) {
1277 hdr.count = count;
1278 ret = -ENOSPC;
1279 goto header;
1280 }
1281
1282 devices = kcalloc(count, sizeof(*devices), GFP_KERNEL);
1283 if (!devices)
1284 return -ENOMEM;
1285
1286 fill.devices = devices;
1287 fill.nr_devices = count;
1288 fill.vdev = &vdev->vdev;
1289
1290 if (vfio_device_cdev_opened(&vdev->vdev))
1291 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
1292 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
1293
1294 mutex_lock(&vdev->vdev.dev_set->lock);
1295 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1296 &fill, slot);
1297 mutex_unlock(&vdev->vdev.dev_set->lock);
1298 if (ret)
1299 goto out;
1300
1301 if (copy_to_user(arg->devices, devices,
1302 sizeof(*devices) * fill.count)) {
1303 ret = -EFAULT;
1304 goto out;
1305 }
1306
1307 hdr.count = fill.count;
1308 hdr.flags = fill.flags;
1309
1310 header:
1311 if (copy_to_user(arg, &hdr, minsz))
1312 ret = -EFAULT;
1313 out:
1314 kfree(devices);
1315 return ret;
1316 }
1317
1318 static int
vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device * vdev,int array_count,bool slot,struct vfio_pci_hot_reset __user * arg)1319 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
1320 int array_count, bool slot,
1321 struct vfio_pci_hot_reset __user *arg)
1322 {
1323 int32_t *group_fds;
1324 struct file **files;
1325 struct vfio_pci_group_info info;
1326 int file_idx, count = 0, ret = 0;
1327
1328 /*
1329 * We can't let userspace give us an arbitrarily large buffer to copy,
1330 * so verify how many we think there could be. Note groups can have
1331 * multiple devices so one group per device is the max.
1332 */
1333 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1334 &count, slot);
1335 if (ret)
1336 return ret;
1337
1338 if (array_count > count)
1339 return -EINVAL;
1340
1341 group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
1342 files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
1343 if (!group_fds || !files) {
1344 kfree(group_fds);
1345 kfree(files);
1346 return -ENOMEM;
1347 }
1348
1349 if (copy_from_user(group_fds, arg->group_fds,
1350 array_count * sizeof(*group_fds))) {
1351 kfree(group_fds);
1352 kfree(files);
1353 return -EFAULT;
1354 }
1355
1356 /*
1357 * Get the group file for each fd to ensure the group is held across
1358 * the reset
1359 */
1360 for (file_idx = 0; file_idx < array_count; file_idx++) {
1361 struct file *file = fget(group_fds[file_idx]);
1362
1363 if (!file) {
1364 ret = -EBADF;
1365 break;
1366 }
1367
1368 /* Ensure the FD is a vfio group FD.*/
1369 if (!vfio_file_is_group(file)) {
1370 fput(file);
1371 ret = -EINVAL;
1372 break;
1373 }
1374
1375 files[file_idx] = file;
1376 }
1377
1378 kfree(group_fds);
1379
1380 /* release reference to groups on error */
1381 if (ret)
1382 goto hot_reset_release;
1383
1384 info.count = array_count;
1385 info.files = files;
1386
1387 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
1388
1389 hot_reset_release:
1390 for (file_idx--; file_idx >= 0; file_idx--)
1391 fput(files[file_idx]);
1392
1393 kfree(files);
1394 return ret;
1395 }
1396
vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device * vdev,struct vfio_pci_hot_reset __user * arg)1397 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1398 struct vfio_pci_hot_reset __user *arg)
1399 {
1400 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1401 struct vfio_pci_hot_reset hdr;
1402 bool slot = false;
1403
1404 if (copy_from_user(&hdr, arg, minsz))
1405 return -EFAULT;
1406
1407 if (hdr.argsz < minsz || hdr.flags)
1408 return -EINVAL;
1409
1410 /* zero-length array is only for cdev opened devices */
1411 if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
1412 return -EINVAL;
1413
1414 /* Can we do a slot or bus reset or neither? */
1415 if (!pci_probe_reset_slot(vdev->pdev->slot))
1416 slot = true;
1417 else if (pci_probe_reset_bus(vdev->pdev->bus))
1418 return -ENODEV;
1419
1420 if (hdr.count)
1421 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
1422
1423 return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
1424 vfio_iommufd_device_ictx(&vdev->vdev));
1425 }
1426
vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device * vdev,struct vfio_device_ioeventfd __user * arg)1427 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1428 struct vfio_device_ioeventfd __user *arg)
1429 {
1430 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1431 struct vfio_device_ioeventfd ioeventfd;
1432 int count;
1433
1434 if (copy_from_user(&ioeventfd, arg, minsz))
1435 return -EFAULT;
1436
1437 if (ioeventfd.argsz < minsz)
1438 return -EINVAL;
1439
1440 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1441 return -EINVAL;
1442
1443 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1444
1445 if (hweight8(count) != 1 || ioeventfd.fd < -1)
1446 return -EINVAL;
1447
1448 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1449 ioeventfd.fd);
1450 }
1451
vfio_pci_core_ioctl(struct vfio_device * core_vdev,unsigned int cmd,unsigned long arg)1452 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1453 unsigned long arg)
1454 {
1455 struct vfio_pci_core_device *vdev =
1456 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1457 void __user *uarg = (void __user *)arg;
1458
1459 switch (cmd) {
1460 case VFIO_DEVICE_GET_INFO:
1461 return vfio_pci_ioctl_get_info(vdev, uarg);
1462 case VFIO_DEVICE_GET_IRQ_INFO:
1463 return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1464 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1465 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1466 case VFIO_DEVICE_GET_REGION_INFO:
1467 return vfio_pci_ioctl_get_region_info(vdev, uarg);
1468 case VFIO_DEVICE_IOEVENTFD:
1469 return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1470 case VFIO_DEVICE_PCI_HOT_RESET:
1471 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1472 case VFIO_DEVICE_RESET:
1473 return vfio_pci_ioctl_reset(vdev, uarg);
1474 case VFIO_DEVICE_SET_IRQS:
1475 return vfio_pci_ioctl_set_irqs(vdev, uarg);
1476 default:
1477 return -ENOTTY;
1478 }
1479 }
1480 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1481
vfio_pci_core_feature_token(struct vfio_device * device,u32 flags,uuid_t __user * arg,size_t argsz)1482 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1483 uuid_t __user *arg, size_t argsz)
1484 {
1485 struct vfio_pci_core_device *vdev =
1486 container_of(device, struct vfio_pci_core_device, vdev);
1487 uuid_t uuid;
1488 int ret;
1489
1490 if (!vdev->vf_token)
1491 return -ENOTTY;
1492 /*
1493 * We do not support GET of the VF Token UUID as this could
1494 * expose the token of the previous device user.
1495 */
1496 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1497 sizeof(uuid));
1498 if (ret != 1)
1499 return ret;
1500
1501 if (copy_from_user(&uuid, arg, sizeof(uuid)))
1502 return -EFAULT;
1503
1504 mutex_lock(&vdev->vf_token->lock);
1505 uuid_copy(&vdev->vf_token->uuid, &uuid);
1506 mutex_unlock(&vdev->vf_token->lock);
1507 return 0;
1508 }
1509
vfio_pci_core_ioctl_feature(struct vfio_device * device,u32 flags,void __user * arg,size_t argsz)1510 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1511 void __user *arg, size_t argsz)
1512 {
1513 switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1514 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1515 return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1516 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1517 return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1518 arg, argsz);
1519 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1520 return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1521 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1522 return vfio_pci_core_feature_token(device, flags, arg, argsz);
1523 default:
1524 return -ENOTTY;
1525 }
1526 }
1527 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1528
vfio_pci_rw(struct vfio_pci_core_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1529 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1530 size_t count, loff_t *ppos, bool iswrite)
1531 {
1532 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1533 int ret;
1534
1535 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1536 return -EINVAL;
1537
1538 ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1539 if (ret) {
1540 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1541 ret);
1542 return -EIO;
1543 }
1544
1545 switch (index) {
1546 case VFIO_PCI_CONFIG_REGION_INDEX:
1547 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1548 break;
1549
1550 case VFIO_PCI_ROM_REGION_INDEX:
1551 if (iswrite)
1552 ret = -EINVAL;
1553 else
1554 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1555 break;
1556
1557 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1558 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1559 break;
1560
1561 case VFIO_PCI_VGA_REGION_INDEX:
1562 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1563 break;
1564
1565 default:
1566 index -= VFIO_PCI_NUM_REGIONS;
1567 ret = vdev->region[index].ops->rw(vdev, buf,
1568 count, ppos, iswrite);
1569 break;
1570 }
1571
1572 pm_runtime_put(&vdev->pdev->dev);
1573 return ret;
1574 }
1575
vfio_pci_core_read(struct vfio_device * core_vdev,char __user * buf,size_t count,loff_t * ppos)1576 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1577 size_t count, loff_t *ppos)
1578 {
1579 struct vfio_pci_core_device *vdev =
1580 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1581
1582 if (!count)
1583 return 0;
1584
1585 return vfio_pci_rw(vdev, buf, count, ppos, false);
1586 }
1587 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1588
vfio_pci_core_write(struct vfio_device * core_vdev,const char __user * buf,size_t count,loff_t * ppos)1589 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1590 size_t count, loff_t *ppos)
1591 {
1592 struct vfio_pci_core_device *vdev =
1593 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1594
1595 if (!count)
1596 return 0;
1597
1598 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1599 }
1600 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1601
1602 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device * vdev,bool try)1603 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1604 {
1605 struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1606
1607 /*
1608 * Lock ordering:
1609 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1610 * The memory_lock semaphore is used by both code paths calling
1611 * into this function to zap vmas and the vm_ops.fault callback
1612 * to protect the memory enable state of the device.
1613 *
1614 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1615 * ordering, which requires using vma_lock to walk vma_list to
1616 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1617 * reacquiring vma_lock. This logic is derived from similar
1618 * requirements in uverbs_user_mmap_disassociate().
1619 *
1620 * mmap_lock must always be the top-level lock when it is taken.
1621 * Therefore we can only hold the memory_lock write lock when
1622 * vma_list is empty, as we'd need to take mmap_lock to clear
1623 * entries. vma_list can only be guaranteed empty when holding
1624 * vma_lock, thus memory_lock is nested under vma_lock.
1625 *
1626 * This enables the vm_ops.fault callback to acquire vma_lock,
1627 * followed by memory_lock read lock, while already holding
1628 * mmap_lock without risk of deadlock.
1629 */
1630 while (1) {
1631 struct mm_struct *mm = NULL;
1632
1633 if (try) {
1634 if (!mutex_trylock(&vdev->vma_lock))
1635 return 0;
1636 } else {
1637 mutex_lock(&vdev->vma_lock);
1638 }
1639 while (!list_empty(&vdev->vma_list)) {
1640 mmap_vma = list_first_entry(&vdev->vma_list,
1641 struct vfio_pci_mmap_vma,
1642 vma_next);
1643 mm = mmap_vma->vma->vm_mm;
1644 if (mmget_not_zero(mm))
1645 break;
1646
1647 list_del(&mmap_vma->vma_next);
1648 kfree(mmap_vma);
1649 mm = NULL;
1650 }
1651 if (!mm)
1652 return 1;
1653 mutex_unlock(&vdev->vma_lock);
1654
1655 if (try) {
1656 if (!mmap_read_trylock(mm)) {
1657 mmput(mm);
1658 return 0;
1659 }
1660 } else {
1661 mmap_read_lock(mm);
1662 }
1663 if (try) {
1664 if (!mutex_trylock(&vdev->vma_lock)) {
1665 mmap_read_unlock(mm);
1666 mmput(mm);
1667 return 0;
1668 }
1669 } else {
1670 mutex_lock(&vdev->vma_lock);
1671 }
1672 list_for_each_entry_safe(mmap_vma, tmp,
1673 &vdev->vma_list, vma_next) {
1674 struct vm_area_struct *vma = mmap_vma->vma;
1675
1676 if (vma->vm_mm != mm)
1677 continue;
1678
1679 list_del(&mmap_vma->vma_next);
1680 kfree(mmap_vma);
1681
1682 zap_vma_ptes(vma, vma->vm_start,
1683 vma->vm_end - vma->vm_start);
1684 }
1685 mutex_unlock(&vdev->vma_lock);
1686 mmap_read_unlock(mm);
1687 mmput(mm);
1688 }
1689 }
1690
vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device * vdev)1691 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1692 {
1693 vfio_pci_zap_and_vma_lock(vdev, false);
1694 down_write(&vdev->memory_lock);
1695 mutex_unlock(&vdev->vma_lock);
1696 }
1697
vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device * vdev)1698 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1699 {
1700 u16 cmd;
1701
1702 down_write(&vdev->memory_lock);
1703 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1704 if (!(cmd & PCI_COMMAND_MEMORY))
1705 pci_write_config_word(vdev->pdev, PCI_COMMAND,
1706 cmd | PCI_COMMAND_MEMORY);
1707
1708 return cmd;
1709 }
1710
vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device * vdev,u16 cmd)1711 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1712 {
1713 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1714 up_write(&vdev->memory_lock);
1715 }
1716
1717 /* Caller holds vma_lock */
__vfio_pci_add_vma(struct vfio_pci_core_device * vdev,struct vm_area_struct * vma)1718 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1719 struct vm_area_struct *vma)
1720 {
1721 struct vfio_pci_mmap_vma *mmap_vma;
1722
1723 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1724 if (!mmap_vma)
1725 return -ENOMEM;
1726
1727 mmap_vma->vma = vma;
1728 list_add(&mmap_vma->vma_next, &vdev->vma_list);
1729
1730 return 0;
1731 }
1732
1733 /*
1734 * Zap mmaps on open so that we can fault them in on access and therefore
1735 * our vma_list only tracks mappings accessed since last zap.
1736 */
vfio_pci_mmap_open(struct vm_area_struct * vma)1737 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1738 {
1739 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1740 }
1741
vfio_pci_mmap_close(struct vm_area_struct * vma)1742 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1743 {
1744 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1745 struct vfio_pci_mmap_vma *mmap_vma;
1746
1747 mutex_lock(&vdev->vma_lock);
1748 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1749 if (mmap_vma->vma == vma) {
1750 list_del(&mmap_vma->vma_next);
1751 kfree(mmap_vma);
1752 break;
1753 }
1754 }
1755 mutex_unlock(&vdev->vma_lock);
1756 }
1757
vfio_pci_mmap_fault(struct vm_fault * vmf)1758 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1759 {
1760 struct vm_area_struct *vma = vmf->vma;
1761 struct vfio_pci_core_device *vdev = vma->vm_private_data;
1762 struct vfio_pci_mmap_vma *mmap_vma;
1763 vm_fault_t ret = VM_FAULT_NOPAGE;
1764
1765 mutex_lock(&vdev->vma_lock);
1766 down_read(&vdev->memory_lock);
1767
1768 /*
1769 * Memory region cannot be accessed if the low power feature is engaged
1770 * or memory access is disabled.
1771 */
1772 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1773 ret = VM_FAULT_SIGBUS;
1774 goto up_out;
1775 }
1776
1777 /*
1778 * We populate the whole vma on fault, so we need to test whether
1779 * the vma has already been mapped, such as for concurrent faults
1780 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if
1781 * we ask it to fill the same range again.
1782 */
1783 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1784 if (mmap_vma->vma == vma)
1785 goto up_out;
1786 }
1787
1788 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1789 vma->vm_end - vma->vm_start,
1790 vma->vm_page_prot)) {
1791 ret = VM_FAULT_SIGBUS;
1792 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1793 goto up_out;
1794 }
1795
1796 if (__vfio_pci_add_vma(vdev, vma)) {
1797 ret = VM_FAULT_OOM;
1798 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1799 }
1800
1801 up_out:
1802 up_read(&vdev->memory_lock);
1803 mutex_unlock(&vdev->vma_lock);
1804 return ret;
1805 }
1806
1807 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1808 .open = vfio_pci_mmap_open,
1809 .close = vfio_pci_mmap_close,
1810 .fault = vfio_pci_mmap_fault,
1811 };
1812
vfio_pci_core_mmap(struct vfio_device * core_vdev,struct vm_area_struct * vma)1813 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1814 {
1815 struct vfio_pci_core_device *vdev =
1816 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1817 struct pci_dev *pdev = vdev->pdev;
1818 unsigned int index;
1819 u64 phys_len, req_len, pgoff, req_start;
1820 int ret;
1821
1822 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1823
1824 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1825 return -EINVAL;
1826 if (vma->vm_end < vma->vm_start)
1827 return -EINVAL;
1828 if ((vma->vm_flags & VM_SHARED) == 0)
1829 return -EINVAL;
1830 if (index >= VFIO_PCI_NUM_REGIONS) {
1831 int regnum = index - VFIO_PCI_NUM_REGIONS;
1832 struct vfio_pci_region *region = vdev->region + regnum;
1833
1834 if (region->ops && region->ops->mmap &&
1835 (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1836 return region->ops->mmap(vdev, region, vma);
1837 return -EINVAL;
1838 }
1839 if (index >= VFIO_PCI_ROM_REGION_INDEX)
1840 return -EINVAL;
1841 if (!vdev->bar_mmap_supported[index])
1842 return -EINVAL;
1843
1844 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1845 req_len = vma->vm_end - vma->vm_start;
1846 pgoff = vma->vm_pgoff &
1847 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1848 req_start = pgoff << PAGE_SHIFT;
1849
1850 if (req_start + req_len > phys_len)
1851 return -EINVAL;
1852
1853 /*
1854 * Even though we don't make use of the barmap for the mmap,
1855 * we need to request the region and the barmap tracks that.
1856 */
1857 if (!vdev->barmap[index]) {
1858 ret = pci_request_selected_regions(pdev,
1859 1 << index, "vfio-pci");
1860 if (ret)
1861 return ret;
1862
1863 vdev->barmap[index] = pci_iomap(pdev, index, 0);
1864 if (!vdev->barmap[index]) {
1865 pci_release_selected_regions(pdev, 1 << index);
1866 return -ENOMEM;
1867 }
1868 }
1869
1870 vma->vm_private_data = vdev;
1871 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1872 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1873
1874 /*
1875 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1876 * change vm_flags within the fault handler. Set them now.
1877 */
1878 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1879 vma->vm_ops = &vfio_pci_mmap_ops;
1880
1881 return 0;
1882 }
1883 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1884
vfio_pci_core_request(struct vfio_device * core_vdev,unsigned int count)1885 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1886 {
1887 struct vfio_pci_core_device *vdev =
1888 container_of(core_vdev, struct vfio_pci_core_device, vdev);
1889 struct pci_dev *pdev = vdev->pdev;
1890
1891 mutex_lock(&vdev->igate);
1892
1893 if (vdev->req_trigger) {
1894 if (!(count % 10))
1895 pci_notice_ratelimited(pdev,
1896 "Relaying device request to user (#%u)\n",
1897 count);
1898 eventfd_signal(vdev->req_trigger, 1);
1899 } else if (count == 0) {
1900 pci_warn(pdev,
1901 "No device request channel registered, blocked until released by user\n");
1902 }
1903
1904 mutex_unlock(&vdev->igate);
1905 }
1906 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1907
vfio_pci_validate_vf_token(struct vfio_pci_core_device * vdev,bool vf_token,uuid_t * uuid)1908 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1909 bool vf_token, uuid_t *uuid)
1910 {
1911 /*
1912 * There's always some degree of trust or collaboration between SR-IOV
1913 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1914 * can disrupt VFs with a reset, but often the PF has more explicit
1915 * access to deny service to the VF or access data passed through the
1916 * VF. We therefore require an opt-in via a shared VF token (UUID) to
1917 * represent this trust. This both prevents that a VF driver might
1918 * assume the PF driver is a trusted, in-kernel driver, and also that
1919 * a PF driver might be replaced with a rogue driver, unknown to in-use
1920 * VF drivers.
1921 *
1922 * Therefore when presented with a VF, if the PF is a vfio device and
1923 * it is bound to the vfio-pci driver, the user needs to provide a VF
1924 * token to access the device, in the form of appending a vf_token to
1925 * the device name, for example:
1926 *
1927 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1928 *
1929 * When presented with a PF which has VFs in use, the user must also
1930 * provide the current VF token to prove collaboration with existing
1931 * VF users. If VFs are not in use, the VF token provided for the PF
1932 * device will act to set the VF token.
1933 *
1934 * If the VF token is provided but unused, an error is generated.
1935 */
1936 if (vdev->pdev->is_virtfn) {
1937 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1938 bool match;
1939
1940 if (!pf_vdev) {
1941 if (!vf_token)
1942 return 0; /* PF is not vfio-pci, no VF token */
1943
1944 pci_info_ratelimited(vdev->pdev,
1945 "VF token incorrectly provided, PF not bound to vfio-pci\n");
1946 return -EINVAL;
1947 }
1948
1949 if (!vf_token) {
1950 pci_info_ratelimited(vdev->pdev,
1951 "VF token required to access device\n");
1952 return -EACCES;
1953 }
1954
1955 mutex_lock(&pf_vdev->vf_token->lock);
1956 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1957 mutex_unlock(&pf_vdev->vf_token->lock);
1958
1959 if (!match) {
1960 pci_info_ratelimited(vdev->pdev,
1961 "Incorrect VF token provided for device\n");
1962 return -EACCES;
1963 }
1964 } else if (vdev->vf_token) {
1965 mutex_lock(&vdev->vf_token->lock);
1966 if (vdev->vf_token->users) {
1967 if (!vf_token) {
1968 mutex_unlock(&vdev->vf_token->lock);
1969 pci_info_ratelimited(vdev->pdev,
1970 "VF token required to access device\n");
1971 return -EACCES;
1972 }
1973
1974 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
1975 mutex_unlock(&vdev->vf_token->lock);
1976 pci_info_ratelimited(vdev->pdev,
1977 "Incorrect VF token provided for device\n");
1978 return -EACCES;
1979 }
1980 } else if (vf_token) {
1981 uuid_copy(&vdev->vf_token->uuid, uuid);
1982 }
1983
1984 mutex_unlock(&vdev->vf_token->lock);
1985 } else if (vf_token) {
1986 pci_info_ratelimited(vdev->pdev,
1987 "VF token incorrectly provided, not a PF or VF\n");
1988 return -EINVAL;
1989 }
1990
1991 return 0;
1992 }
1993
1994 #define VF_TOKEN_ARG "vf_token="
1995
vfio_pci_core_match(struct vfio_device * core_vdev,char * buf)1996 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
1997 {
1998 struct vfio_pci_core_device *vdev =
1999 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2000 bool vf_token = false;
2001 uuid_t uuid;
2002 int ret;
2003
2004 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
2005 return 0; /* No match */
2006
2007 if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
2008 buf += strlen(pci_name(vdev->pdev));
2009
2010 if (*buf != ' ')
2011 return 0; /* No match: non-whitespace after name */
2012
2013 while (*buf) {
2014 if (*buf == ' ') {
2015 buf++;
2016 continue;
2017 }
2018
2019 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
2020 strlen(VF_TOKEN_ARG))) {
2021 buf += strlen(VF_TOKEN_ARG);
2022
2023 if (strlen(buf) < UUID_STRING_LEN)
2024 return -EINVAL;
2025
2026 ret = uuid_parse(buf, &uuid);
2027 if (ret)
2028 return ret;
2029
2030 vf_token = true;
2031 buf += UUID_STRING_LEN;
2032 } else {
2033 /* Unknown/duplicate option */
2034 return -EINVAL;
2035 }
2036 }
2037 }
2038
2039 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
2040 if (ret)
2041 return ret;
2042
2043 return 1; /* Match */
2044 }
2045 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
2046
vfio_pci_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2047 static int vfio_pci_bus_notifier(struct notifier_block *nb,
2048 unsigned long action, void *data)
2049 {
2050 struct vfio_pci_core_device *vdev = container_of(nb,
2051 struct vfio_pci_core_device, nb);
2052 struct device *dev = data;
2053 struct pci_dev *pdev = to_pci_dev(dev);
2054 struct pci_dev *physfn = pci_physfn(pdev);
2055
2056 if (action == BUS_NOTIFY_ADD_DEVICE &&
2057 pdev->is_virtfn && physfn == vdev->pdev) {
2058 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
2059 pci_name(pdev));
2060 pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
2061 vdev->vdev.ops->name);
2062 } else if (action == BUS_NOTIFY_BOUND_DRIVER &&
2063 pdev->is_virtfn && physfn == vdev->pdev) {
2064 struct pci_driver *drv = pci_dev_driver(pdev);
2065
2066 if (drv && drv != pci_dev_driver(vdev->pdev))
2067 pci_warn(vdev->pdev,
2068 "VF %s bound to driver %s while PF bound to driver %s\n",
2069 pci_name(pdev), drv->name,
2070 pci_dev_driver(vdev->pdev)->name);
2071 }
2072
2073 return 0;
2074 }
2075
vfio_pci_vf_init(struct vfio_pci_core_device * vdev)2076 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2077 {
2078 struct pci_dev *pdev = vdev->pdev;
2079 struct vfio_pci_core_device *cur;
2080 struct pci_dev *physfn;
2081 int ret;
2082
2083 if (pdev->is_virtfn) {
2084 /*
2085 * If this VF was created by our vfio_pci_core_sriov_configure()
2086 * then we can find the PF vfio_pci_core_device now, and due to
2087 * the locking in pci_disable_sriov() it cannot change until
2088 * this VF device driver is removed.
2089 */
2090 physfn = pci_physfn(vdev->pdev);
2091 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2092 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2093 if (cur->pdev == physfn) {
2094 vdev->sriov_pf_core_dev = cur;
2095 break;
2096 }
2097 }
2098 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2099 return 0;
2100 }
2101
2102 /* Not a SRIOV PF */
2103 if (!pdev->is_physfn)
2104 return 0;
2105
2106 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2107 if (!vdev->vf_token)
2108 return -ENOMEM;
2109
2110 mutex_init(&vdev->vf_token->lock);
2111 uuid_gen(&vdev->vf_token->uuid);
2112
2113 vdev->nb.notifier_call = vfio_pci_bus_notifier;
2114 ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2115 if (ret) {
2116 kfree(vdev->vf_token);
2117 return ret;
2118 }
2119 return 0;
2120 }
2121
vfio_pci_vf_uninit(struct vfio_pci_core_device * vdev)2122 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2123 {
2124 if (!vdev->vf_token)
2125 return;
2126
2127 bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2128 WARN_ON(vdev->vf_token->users);
2129 mutex_destroy(&vdev->vf_token->lock);
2130 kfree(vdev->vf_token);
2131 }
2132
vfio_pci_vga_init(struct vfio_pci_core_device * vdev)2133 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2134 {
2135 struct pci_dev *pdev = vdev->pdev;
2136 int ret;
2137
2138 if (!vfio_pci_is_vga(pdev))
2139 return 0;
2140
2141 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2142 if (ret)
2143 return ret;
2144
2145 ret = vga_client_register(pdev, vfio_pci_set_decode);
2146 if (ret)
2147 return ret;
2148 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2149 return 0;
2150 }
2151
vfio_pci_vga_uninit(struct vfio_pci_core_device * vdev)2152 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2153 {
2154 struct pci_dev *pdev = vdev->pdev;
2155
2156 if (!vfio_pci_is_vga(pdev))
2157 return;
2158 vga_client_unregister(pdev);
2159 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2160 VGA_RSRC_LEGACY_IO |
2161 VGA_RSRC_LEGACY_MEM);
2162 }
2163
vfio_pci_core_init_dev(struct vfio_device * core_vdev)2164 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2165 {
2166 struct vfio_pci_core_device *vdev =
2167 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2168
2169 vdev->pdev = to_pci_dev(core_vdev->dev);
2170 vdev->irq_type = VFIO_PCI_NUM_IRQS;
2171 mutex_init(&vdev->igate);
2172 spin_lock_init(&vdev->irqlock);
2173 mutex_init(&vdev->ioeventfds_lock);
2174 INIT_LIST_HEAD(&vdev->dummy_resources_list);
2175 INIT_LIST_HEAD(&vdev->ioeventfds_list);
2176 mutex_init(&vdev->vma_lock);
2177 INIT_LIST_HEAD(&vdev->vma_list);
2178 INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2179 init_rwsem(&vdev->memory_lock);
2180 xa_init(&vdev->ctx);
2181
2182 return 0;
2183 }
2184 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2185
vfio_pci_core_release_dev(struct vfio_device * core_vdev)2186 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2187 {
2188 struct vfio_pci_core_device *vdev =
2189 container_of(core_vdev, struct vfio_pci_core_device, vdev);
2190
2191 mutex_destroy(&vdev->igate);
2192 mutex_destroy(&vdev->ioeventfds_lock);
2193 mutex_destroy(&vdev->vma_lock);
2194 kfree(vdev->region);
2195 kfree(vdev->pm_save);
2196 }
2197 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2198
vfio_pci_core_register_device(struct vfio_pci_core_device * vdev)2199 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2200 {
2201 struct pci_dev *pdev = vdev->pdev;
2202 struct device *dev = &pdev->dev;
2203 int ret;
2204
2205 /* Drivers must set the vfio_pci_core_device to their drvdata */
2206 if (WARN_ON(vdev != dev_get_drvdata(dev)))
2207 return -EINVAL;
2208
2209 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2210 return -EINVAL;
2211
2212 if (vdev->vdev.mig_ops) {
2213 if (!(vdev->vdev.mig_ops->migration_get_state &&
2214 vdev->vdev.mig_ops->migration_set_state &&
2215 vdev->vdev.mig_ops->migration_get_data_size) ||
2216 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2217 return -EINVAL;
2218 }
2219
2220 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2221 vdev->vdev.log_ops->log_stop &&
2222 vdev->vdev.log_ops->log_read_and_clear))
2223 return -EINVAL;
2224
2225 /*
2226 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2227 * by the host or other users. We cannot capture the VFs if they
2228 * already exist, nor can we track VF users. Disabling SR-IOV here
2229 * would initiate removing the VFs, which would unbind the driver,
2230 * which is prone to blocking if that VF is also in use by vfio-pci.
2231 * Just reject these PFs and let the user sort it out.
2232 */
2233 if (pci_num_vf(pdev)) {
2234 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2235 return -EBUSY;
2236 }
2237
2238 if (pci_is_root_bus(pdev->bus)) {
2239 ret = vfio_assign_device_set(&vdev->vdev, vdev);
2240 } else if (!pci_probe_reset_slot(pdev->slot)) {
2241 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2242 } else {
2243 /*
2244 * If there is no slot reset support for this device, the whole
2245 * bus needs to be grouped together to support bus-wide resets.
2246 */
2247 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2248 }
2249
2250 if (ret)
2251 return ret;
2252 ret = vfio_pci_vf_init(vdev);
2253 if (ret)
2254 return ret;
2255 ret = vfio_pci_vga_init(vdev);
2256 if (ret)
2257 goto out_vf;
2258
2259 vfio_pci_probe_power_state(vdev);
2260
2261 /*
2262 * pci-core sets the device power state to an unknown value at
2263 * bootup and after being removed from a driver. The only
2264 * transition it allows from this unknown state is to D0, which
2265 * typically happens when a driver calls pci_enable_device().
2266 * We're not ready to enable the device yet, but we do want to
2267 * be able to get to D3. Therefore first do a D0 transition
2268 * before enabling runtime PM.
2269 */
2270 vfio_pci_set_power_state(vdev, PCI_D0);
2271
2272 dev->driver->pm = &vfio_pci_core_pm_ops;
2273 pm_runtime_allow(dev);
2274 if (!disable_idle_d3)
2275 pm_runtime_put(dev);
2276
2277 ret = vfio_register_group_dev(&vdev->vdev);
2278 if (ret)
2279 goto out_power;
2280 return 0;
2281
2282 out_power:
2283 if (!disable_idle_d3)
2284 pm_runtime_get_noresume(dev);
2285
2286 pm_runtime_forbid(dev);
2287 out_vf:
2288 vfio_pci_vf_uninit(vdev);
2289 return ret;
2290 }
2291 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2292
vfio_pci_core_unregister_device(struct vfio_pci_core_device * vdev)2293 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2294 {
2295 vfio_pci_core_sriov_configure(vdev, 0);
2296
2297 vfio_unregister_group_dev(&vdev->vdev);
2298
2299 vfio_pci_vf_uninit(vdev);
2300 vfio_pci_vga_uninit(vdev);
2301
2302 if (!disable_idle_d3)
2303 pm_runtime_get_noresume(&vdev->pdev->dev);
2304
2305 pm_runtime_forbid(&vdev->pdev->dev);
2306 }
2307 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2308
vfio_pci_core_aer_err_detected(struct pci_dev * pdev,pci_channel_state_t state)2309 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2310 pci_channel_state_t state)
2311 {
2312 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2313
2314 mutex_lock(&vdev->igate);
2315
2316 if (vdev->err_trigger)
2317 eventfd_signal(vdev->err_trigger, 1);
2318
2319 mutex_unlock(&vdev->igate);
2320
2321 return PCI_ERS_RESULT_CAN_RECOVER;
2322 }
2323 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2324
vfio_pci_core_sriov_configure(struct vfio_pci_core_device * vdev,int nr_virtfn)2325 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2326 int nr_virtfn)
2327 {
2328 struct pci_dev *pdev = vdev->pdev;
2329 int ret = 0;
2330
2331 device_lock_assert(&pdev->dev);
2332
2333 if (nr_virtfn) {
2334 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2335 /*
2336 * The thread that adds the vdev to the list is the only thread
2337 * that gets to call pci_enable_sriov() and we will only allow
2338 * it to be called once without going through
2339 * pci_disable_sriov()
2340 */
2341 if (!list_empty(&vdev->sriov_pfs_item)) {
2342 ret = -EINVAL;
2343 goto out_unlock;
2344 }
2345 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2346 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2347
2348 /*
2349 * The PF power state should always be higher than the VF power
2350 * state. The PF can be in low power state either with runtime
2351 * power management (when there is no user) or PCI_PM_CTRL
2352 * register write by the user. If PF is in the low power state,
2353 * then change the power state to D0 first before enabling
2354 * SR-IOV. Also, this function can be called at any time, and
2355 * userspace PCI_PM_CTRL write can race against this code path,
2356 * so protect the same with 'memory_lock'.
2357 */
2358 ret = pm_runtime_resume_and_get(&pdev->dev);
2359 if (ret)
2360 goto out_del;
2361
2362 down_write(&vdev->memory_lock);
2363 vfio_pci_set_power_state(vdev, PCI_D0);
2364 ret = pci_enable_sriov(pdev, nr_virtfn);
2365 up_write(&vdev->memory_lock);
2366 if (ret) {
2367 pm_runtime_put(&pdev->dev);
2368 goto out_del;
2369 }
2370 return nr_virtfn;
2371 }
2372
2373 if (pci_num_vf(pdev)) {
2374 pci_disable_sriov(pdev);
2375 pm_runtime_put(&pdev->dev);
2376 }
2377
2378 out_del:
2379 mutex_lock(&vfio_pci_sriov_pfs_mutex);
2380 list_del_init(&vdev->sriov_pfs_item);
2381 out_unlock:
2382 mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2383 return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2386
2387 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2388 .error_detected = vfio_pci_core_aer_err_detected,
2389 };
2390 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2391
vfio_dev_in_groups(struct vfio_device * vdev,struct vfio_pci_group_info * groups)2392 static bool vfio_dev_in_groups(struct vfio_device *vdev,
2393 struct vfio_pci_group_info *groups)
2394 {
2395 unsigned int i;
2396
2397 if (!groups)
2398 return false;
2399
2400 for (i = 0; i < groups->count; i++)
2401 if (vfio_file_has_dev(groups->files[i], vdev))
2402 return true;
2403 return false;
2404 }
2405
vfio_pci_is_device_in_set(struct pci_dev * pdev,void * data)2406 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2407 {
2408 struct vfio_device_set *dev_set = data;
2409
2410 return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
2411 }
2412
2413 /*
2414 * vfio-core considers a group to be viable and will create a vfio_device even
2415 * if some devices are bound to drivers like pci-stub or pcieport. Here we
2416 * require all PCI devices to be inside our dev_set since that ensures they stay
2417 * put and that every driver controlling the device can co-ordinate with the
2418 * device reset.
2419 *
2420 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2421 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2422 */
2423 static struct pci_dev *
vfio_pci_dev_set_resettable(struct vfio_device_set * dev_set)2424 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2425 {
2426 struct pci_dev *pdev;
2427
2428 lockdep_assert_held(&dev_set->lock);
2429
2430 /*
2431 * By definition all PCI devices in the dev_set share the same PCI
2432 * reset, so any pci_dev will have the same outcomes for
2433 * pci_probe_reset_*() and pci_reset_bus().
2434 */
2435 pdev = list_first_entry(&dev_set->device_list,
2436 struct vfio_pci_core_device,
2437 vdev.dev_set_list)->pdev;
2438
2439 /* pci_reset_bus() is supported */
2440 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2441 return NULL;
2442
2443 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2444 dev_set,
2445 !pci_probe_reset_slot(pdev->slot)))
2446 return NULL;
2447 return pdev;
2448 }
2449
vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set * dev_set)2450 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2451 {
2452 struct vfio_pci_core_device *cur;
2453 int ret;
2454
2455 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2456 ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2457 if (ret)
2458 goto unwind;
2459 }
2460
2461 return 0;
2462
2463 unwind:
2464 list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2465 vdev.dev_set_list)
2466 pm_runtime_put(&cur->pdev->dev);
2467
2468 return ret;
2469 }
2470
2471 /*
2472 * We need to get memory_lock for each device, but devices can share mmap_lock,
2473 * therefore we need to zap and hold the vma_lock for each device, and only then
2474 * get each memory_lock.
2475 */
vfio_pci_dev_set_hot_reset(struct vfio_device_set * dev_set,struct vfio_pci_group_info * groups,struct iommufd_ctx * iommufd_ctx)2476 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2477 struct vfio_pci_group_info *groups,
2478 struct iommufd_ctx *iommufd_ctx)
2479 {
2480 struct vfio_pci_core_device *cur_mem;
2481 struct vfio_pci_core_device *cur_vma;
2482 struct vfio_pci_core_device *cur;
2483 struct pci_dev *pdev;
2484 bool is_mem = true;
2485 int ret;
2486
2487 mutex_lock(&dev_set->lock);
2488 cur_mem = list_first_entry(&dev_set->device_list,
2489 struct vfio_pci_core_device,
2490 vdev.dev_set_list);
2491
2492 pdev = vfio_pci_dev_set_resettable(dev_set);
2493 if (!pdev) {
2494 ret = -EINVAL;
2495 goto err_unlock;
2496 }
2497
2498 /*
2499 * Some of the devices in the dev_set can be in the runtime suspended
2500 * state. Increment the usage count for all the devices in the dev_set
2501 * before reset and decrement the same after reset.
2502 */
2503 ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2504 if (ret)
2505 goto err_unlock;
2506
2507 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2508 bool owned;
2509
2510 /*
2511 * Test whether all the affected devices can be reset by the
2512 * user.
2513 *
2514 * If called from a group opened device and the user provides
2515 * a set of groups, all the devices in the dev_set should be
2516 * contained by the set of groups provided by the user.
2517 *
2518 * If called from a cdev opened device and the user provides
2519 * a zero-length array, all the devices in the dev_set must
2520 * be bound to the same iommufd_ctx as the input iommufd_ctx.
2521 * If there is any device that has not been bound to any
2522 * iommufd_ctx yet, check if its iommu_group has any device
2523 * bound to the input iommufd_ctx. Such devices can be
2524 * considered owned by the input iommufd_ctx as the device
2525 * cannot be owned by another iommufd_ctx when its iommu_group
2526 * is owned.
2527 *
2528 * Otherwise, reset is not allowed.
2529 */
2530 if (iommufd_ctx) {
2531 int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev,
2532 iommufd_ctx);
2533
2534 owned = (devid > 0 || devid == -ENOENT);
2535 } else {
2536 owned = vfio_dev_in_groups(&cur_vma->vdev, groups);
2537 }
2538
2539 if (!owned) {
2540 ret = -EINVAL;
2541 goto err_undo;
2542 }
2543
2544 /*
2545 * Locking multiple devices is prone to deadlock, runaway and
2546 * unwind if we hit contention.
2547 */
2548 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2549 ret = -EBUSY;
2550 goto err_undo;
2551 }
2552 }
2553 cur_vma = NULL;
2554
2555 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2556 if (!down_write_trylock(&cur_mem->memory_lock)) {
2557 ret = -EBUSY;
2558 goto err_undo;
2559 }
2560 mutex_unlock(&cur_mem->vma_lock);
2561 }
2562 cur_mem = NULL;
2563
2564 /*
2565 * The pci_reset_bus() will reset all the devices in the bus.
2566 * The power state can be non-D0 for some of the devices in the bus.
2567 * For these devices, the pci_reset_bus() will internally set
2568 * the power state to D0 without vfio driver involvement.
2569 * For the devices which have NoSoftRst-, the reset function can
2570 * cause the PCI config space reset without restoring the original
2571 * state (saved locally in 'vdev->pm_save').
2572 */
2573 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2574 vfio_pci_set_power_state(cur, PCI_D0);
2575
2576 ret = pci_reset_bus(pdev);
2577
2578 err_undo:
2579 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2580 if (cur == cur_mem)
2581 is_mem = false;
2582 if (cur == cur_vma)
2583 break;
2584 if (is_mem)
2585 up_write(&cur->memory_lock);
2586 else
2587 mutex_unlock(&cur->vma_lock);
2588 }
2589
2590 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2591 pm_runtime_put(&cur->pdev->dev);
2592 err_unlock:
2593 mutex_unlock(&dev_set->lock);
2594 return ret;
2595 }
2596
vfio_pci_dev_set_needs_reset(struct vfio_device_set * dev_set)2597 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2598 {
2599 struct vfio_pci_core_device *cur;
2600 bool needs_reset = false;
2601
2602 /* No other VFIO device in the set can be open. */
2603 if (vfio_device_set_open_count(dev_set) > 1)
2604 return false;
2605
2606 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2607 needs_reset |= cur->needs_reset;
2608 return needs_reset;
2609 }
2610
2611 /*
2612 * If a bus or slot reset is available for the provided dev_set and:
2613 * - All of the devices affected by that bus or slot reset are unused
2614 * - At least one of the affected devices is marked dirty via
2615 * needs_reset (such as by lack of FLR support)
2616 * Then attempt to perform that bus or slot reset.
2617 */
vfio_pci_dev_set_try_reset(struct vfio_device_set * dev_set)2618 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2619 {
2620 struct vfio_pci_core_device *cur;
2621 struct pci_dev *pdev;
2622 bool reset_done = false;
2623
2624 if (!vfio_pci_dev_set_needs_reset(dev_set))
2625 return;
2626
2627 pdev = vfio_pci_dev_set_resettable(dev_set);
2628 if (!pdev)
2629 return;
2630
2631 /*
2632 * Some of the devices in the bus can be in the runtime suspended
2633 * state. Increment the usage count for all the devices in the dev_set
2634 * before reset and decrement the same after reset.
2635 */
2636 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2637 return;
2638
2639 if (!pci_reset_bus(pdev))
2640 reset_done = true;
2641
2642 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2643 if (reset_done)
2644 cur->needs_reset = false;
2645
2646 if (!disable_idle_d3)
2647 pm_runtime_put(&cur->pdev->dev);
2648 }
2649 }
2650
vfio_pci_core_set_params(bool is_nointxmask,bool is_disable_vga,bool is_disable_idle_d3)2651 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2652 bool is_disable_idle_d3)
2653 {
2654 nointxmask = is_nointxmask;
2655 disable_vga = is_disable_vga;
2656 disable_idle_d3 = is_disable_idle_d3;
2657 }
2658 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2659
vfio_pci_core_cleanup(void)2660 static void vfio_pci_core_cleanup(void)
2661 {
2662 vfio_pci_uninit_perm_bits();
2663 }
2664
vfio_pci_core_init(void)2665 static int __init vfio_pci_core_init(void)
2666 {
2667 /* Allocate shared config space permission data used by all devices */
2668 return vfio_pci_init_perm_bits();
2669 }
2670
2671 module_init(vfio_pci_core_init);
2672 module_exit(vfio_pci_core_cleanup);
2673
2674 MODULE_LICENSE("GPL v2");
2675 MODULE_AUTHOR(DRIVER_AUTHOR);
2676 MODULE_DESCRIPTION(DRIVER_DESC);
2677