xref: /openbmc/linux/drivers/md/dm-verity-target.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 
26 #define DM_MSG_PREFIX			"verity"
27 
28 #define DM_VERITY_ENV_LENGTH		42
29 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
30 
31 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
32 
33 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
34 
35 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
36 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
37 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
38 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
39 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
40 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
41 
42 #define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
43 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
44 
45 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
46 
47 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
48 
49 static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
50 
51 struct dm_verity_prefetch_work {
52 	struct work_struct work;
53 	struct dm_verity *v;
54 	sector_t block;
55 	unsigned int n_blocks;
56 };
57 
58 /*
59  * Auxiliary structure appended to each dm-bufio buffer. If the value
60  * hash_verified is nonzero, hash of the block has been verified.
61  *
62  * The variable hash_verified is set to 0 when allocating the buffer, then
63  * it can be changed to 1 and it is never reset to 0 again.
64  *
65  * There is no lock around this value, a race condition can at worst cause
66  * that multiple processes verify the hash of the same buffer simultaneously
67  * and write 1 to hash_verified simultaneously.
68  * This condition is harmless, so we don't need locking.
69  */
70 struct buffer_aux {
71 	int hash_verified;
72 };
73 
74 /*
75  * Initialize struct buffer_aux for a freshly created buffer.
76  */
dm_bufio_alloc_callback(struct dm_buffer * buf)77 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
78 {
79 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
80 
81 	aux->hash_verified = 0;
82 }
83 
84 /*
85  * Translate input sector number to the sector number on the target device.
86  */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)87 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
88 {
89 	return v->data_start + dm_target_offset(v->ti, bi_sector);
90 }
91 
92 /*
93  * Return hash position of a specified block at a specified tree level
94  * (0 is the lowest level).
95  * The lowest "hash_per_block_bits"-bits of the result denote hash position
96  * inside a hash block. The remaining bits denote location of the hash block.
97  */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)98 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
99 					 int level)
100 {
101 	return block >> (level * v->hash_per_block_bits);
102 }
103 
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)104 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
105 				const u8 *data, size_t len,
106 				struct crypto_wait *wait)
107 {
108 	struct scatterlist sg;
109 
110 	if (likely(!is_vmalloc_addr(data))) {
111 		sg_init_one(&sg, data, len);
112 		ahash_request_set_crypt(req, &sg, NULL, len);
113 		return crypto_wait_req(crypto_ahash_update(req), wait);
114 	}
115 
116 	do {
117 		int r;
118 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
119 
120 		flush_kernel_vmap_range((void *)data, this_step);
121 		sg_init_table(&sg, 1);
122 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
123 		ahash_request_set_crypt(req, &sg, NULL, this_step);
124 		r = crypto_wait_req(crypto_ahash_update(req), wait);
125 		if (unlikely(r))
126 			return r;
127 		data += this_step;
128 		len -= this_step;
129 	} while (len);
130 
131 	return 0;
132 }
133 
134 /*
135  * Wrapper for crypto_ahash_init, which handles verity salting.
136  */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait,bool may_sleep)137 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
138 				struct crypto_wait *wait, bool may_sleep)
139 {
140 	int r;
141 
142 	ahash_request_set_tfm(req, v->tfm);
143 	ahash_request_set_callback(req,
144 		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
145 		crypto_req_done, (void *)wait);
146 	crypto_init_wait(wait);
147 
148 	r = crypto_wait_req(crypto_ahash_init(req), wait);
149 
150 	if (unlikely(r < 0)) {
151 		if (r != -ENOMEM)
152 			DMERR("crypto_ahash_init failed: %d", r);
153 		return r;
154 	}
155 
156 	if (likely(v->salt_size && (v->version >= 1)))
157 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158 
159 	return r;
160 }
161 
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)162 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
163 			     u8 *digest, struct crypto_wait *wait)
164 {
165 	int r;
166 
167 	if (unlikely(v->salt_size && (!v->version))) {
168 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
169 
170 		if (r < 0) {
171 			DMERR("%s failed updating salt: %d", __func__, r);
172 			goto out;
173 		}
174 	}
175 
176 	ahash_request_set_crypt(req, NULL, digest, 0);
177 	r = crypto_wait_req(crypto_ahash_final(req), wait);
178 out:
179 	return r;
180 }
181 
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest,bool may_sleep)182 int verity_hash(struct dm_verity *v, struct ahash_request *req,
183 		const u8 *data, size_t len, u8 *digest, bool may_sleep)
184 {
185 	int r;
186 	struct crypto_wait wait;
187 
188 	r = verity_hash_init(v, req, &wait, may_sleep);
189 	if (unlikely(r < 0))
190 		goto out;
191 
192 	r = verity_hash_update(v, req, data, len, &wait);
193 	if (unlikely(r < 0))
194 		goto out;
195 
196 	r = verity_hash_final(v, req, digest, &wait);
197 
198 out:
199 	return r;
200 }
201 
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned int * offset)202 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
203 				 sector_t *hash_block, unsigned int *offset)
204 {
205 	sector_t position = verity_position_at_level(v, block, level);
206 	unsigned int idx;
207 
208 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
209 
210 	if (!offset)
211 		return;
212 
213 	idx = position & ((1 << v->hash_per_block_bits) - 1);
214 	if (!v->version)
215 		*offset = idx * v->digest_size;
216 	else
217 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
218 }
219 
220 /*
221  * Handle verification errors.
222  */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)223 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
224 			     unsigned long long block)
225 {
226 	char verity_env[DM_VERITY_ENV_LENGTH];
227 	char *envp[] = { verity_env, NULL };
228 	const char *type_str = "";
229 	struct mapped_device *md = dm_table_get_md(v->ti->table);
230 
231 	/* Corruption should be visible in device status in all modes */
232 	v->hash_failed = true;
233 
234 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
235 		goto out;
236 
237 	v->corrupted_errs++;
238 
239 	switch (type) {
240 	case DM_VERITY_BLOCK_TYPE_DATA:
241 		type_str = "data";
242 		break;
243 	case DM_VERITY_BLOCK_TYPE_METADATA:
244 		type_str = "metadata";
245 		break;
246 	default:
247 		BUG();
248 	}
249 
250 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
251 		    type_str, block);
252 
253 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
254 		DMERR("%s: reached maximum errors", v->data_dev->name);
255 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
256 	}
257 
258 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
259 		DM_VERITY_ENV_VAR_NAME, type, block);
260 
261 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
262 
263 out:
264 	if (v->mode == DM_VERITY_MODE_LOGGING)
265 		return 0;
266 
267 	if (v->mode == DM_VERITY_MODE_RESTART)
268 		kernel_restart("dm-verity device corrupted");
269 
270 	if (v->mode == DM_VERITY_MODE_PANIC)
271 		panic("dm-verity device corrupted");
272 
273 	return 1;
274 }
275 
276 /*
277  * Verify hash of a metadata block pertaining to the specified data block
278  * ("block" argument) at a specified level ("level" argument).
279  *
280  * On successful return, verity_io_want_digest(v, io) contains the hash value
281  * for a lower tree level or for the data block (if we're at the lowest level).
282  *
283  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
284  * If "skip_unverified" is false, unverified buffer is hashed and verified
285  * against current value of verity_io_want_digest(v, io).
286  */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)287 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
288 			       sector_t block, int level, bool skip_unverified,
289 			       u8 *want_digest)
290 {
291 	struct dm_buffer *buf;
292 	struct buffer_aux *aux;
293 	u8 *data;
294 	int r;
295 	sector_t hash_block;
296 	unsigned int offset;
297 
298 	verity_hash_at_level(v, block, level, &hash_block, &offset);
299 
300 	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
301 		data = dm_bufio_get(v->bufio, hash_block, &buf);
302 		if (data == NULL) {
303 			/*
304 			 * In tasklet and the hash was not in the bufio cache.
305 			 * Return early and resume execution from a work-queue
306 			 * to read the hash from disk.
307 			 */
308 			return -EAGAIN;
309 		}
310 	} else
311 		data = dm_bufio_read(v->bufio, hash_block, &buf);
312 
313 	if (IS_ERR(data))
314 		return PTR_ERR(data);
315 
316 	aux = dm_bufio_get_aux_data(buf);
317 
318 	if (!aux->hash_verified) {
319 		if (skip_unverified) {
320 			r = 1;
321 			goto release_ret_r;
322 		}
323 
324 		r = verity_hash(v, verity_io_hash_req(v, io),
325 				data, 1 << v->hash_dev_block_bits,
326 				verity_io_real_digest(v, io), !io->in_tasklet);
327 		if (unlikely(r < 0))
328 			goto release_ret_r;
329 
330 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
331 				  v->digest_size) == 0))
332 			aux->hash_verified = 1;
333 		else if (static_branch_unlikely(&use_tasklet_enabled) &&
334 			 io->in_tasklet) {
335 			/*
336 			 * Error handling code (FEC included) cannot be run in a
337 			 * tasklet since it may sleep, so fallback to work-queue.
338 			 */
339 			r = -EAGAIN;
340 			goto release_ret_r;
341 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
342 					     hash_block, data, NULL) == 0)
343 			aux->hash_verified = 1;
344 		else if (verity_handle_err(v,
345 					   DM_VERITY_BLOCK_TYPE_METADATA,
346 					   hash_block)) {
347 			struct bio *bio =
348 				dm_bio_from_per_bio_data(io,
349 							 v->ti->per_io_data_size);
350 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
351 					 block, 0);
352 			r = -EIO;
353 			goto release_ret_r;
354 		}
355 	}
356 
357 	data += offset;
358 	memcpy(want_digest, data, v->digest_size);
359 	r = 0;
360 
361 release_ret_r:
362 	dm_bufio_release(buf);
363 	return r;
364 }
365 
366 /*
367  * Find a hash for a given block, write it to digest and verify the integrity
368  * of the hash tree if necessary.
369  */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)370 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
371 			  sector_t block, u8 *digest, bool *is_zero)
372 {
373 	int r = 0, i;
374 
375 	if (likely(v->levels)) {
376 		/*
377 		 * First, we try to get the requested hash for
378 		 * the current block. If the hash block itself is
379 		 * verified, zero is returned. If it isn't, this
380 		 * function returns 1 and we fall back to whole
381 		 * chain verification.
382 		 */
383 		r = verity_verify_level(v, io, block, 0, true, digest);
384 		if (likely(r <= 0))
385 			goto out;
386 	}
387 
388 	memcpy(digest, v->root_digest, v->digest_size);
389 
390 	for (i = v->levels - 1; i >= 0; i--) {
391 		r = verity_verify_level(v, io, block, i, false, digest);
392 		if (unlikely(r))
393 			goto out;
394 	}
395 out:
396 	if (!r && v->zero_digest)
397 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
398 	else
399 		*is_zero = false;
400 
401 	return r;
402 }
403 
404 /*
405  * Calculates the digest for the given bio
406  */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)407 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
408 			       struct bvec_iter *iter, struct crypto_wait *wait)
409 {
410 	unsigned int todo = 1 << v->data_dev_block_bits;
411 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
412 	struct scatterlist sg;
413 	struct ahash_request *req = verity_io_hash_req(v, io);
414 
415 	do {
416 		int r;
417 		unsigned int len;
418 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
419 
420 		sg_init_table(&sg, 1);
421 
422 		len = bv.bv_len;
423 
424 		if (likely(len >= todo))
425 			len = todo;
426 		/*
427 		 * Operating on a single page at a time looks suboptimal
428 		 * until you consider the typical block size is 4,096B.
429 		 * Going through this loops twice should be very rare.
430 		 */
431 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
432 		ahash_request_set_crypt(req, &sg, NULL, len);
433 		r = crypto_wait_req(crypto_ahash_update(req), wait);
434 
435 		if (unlikely(r < 0)) {
436 			DMERR("%s crypto op failed: %d", __func__, r);
437 			return r;
438 		}
439 
440 		bio_advance_iter(bio, iter, len);
441 		todo -= len;
442 	} while (todo);
443 
444 	return 0;
445 }
446 
447 /*
448  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
449  * starting from iter.
450  */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))451 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
452 			struct bvec_iter *iter,
453 			int (*process)(struct dm_verity *v,
454 				       struct dm_verity_io *io, u8 *data,
455 				       size_t len))
456 {
457 	unsigned int todo = 1 << v->data_dev_block_bits;
458 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
459 
460 	do {
461 		int r;
462 		u8 *page;
463 		unsigned int len;
464 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
465 
466 		page = bvec_kmap_local(&bv);
467 		len = bv.bv_len;
468 
469 		if (likely(len >= todo))
470 			len = todo;
471 
472 		r = process(v, io, page, len);
473 		kunmap_local(page);
474 
475 		if (r < 0)
476 			return r;
477 
478 		bio_advance_iter(bio, iter, len);
479 		todo -= len;
480 	} while (todo);
481 
482 	return 0;
483 }
484 
verity_recheck_copy(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)485 static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
486 			       u8 *data, size_t len)
487 {
488 	memcpy(data, io->recheck_buffer, len);
489 	io->recheck_buffer += len;
490 
491 	return 0;
492 }
493 
verity_recheck(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter start,sector_t cur_block)494 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
495 				   struct bvec_iter start, sector_t cur_block)
496 {
497 	struct page *page;
498 	void *buffer;
499 	int r;
500 	struct dm_io_request io_req;
501 	struct dm_io_region io_loc;
502 
503 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
504 	buffer = page_to_virt(page);
505 
506 	io_req.bi_opf = REQ_OP_READ;
507 	io_req.mem.type = DM_IO_KMEM;
508 	io_req.mem.ptr.addr = buffer;
509 	io_req.notify.fn = NULL;
510 	io_req.client = v->io;
511 	io_loc.bdev = v->data_dev->bdev;
512 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
513 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
514 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
515 	if (unlikely(r))
516 		goto free_ret;
517 
518 	r = verity_hash(v, verity_io_hash_req(v, io), buffer,
519 			1 << v->data_dev_block_bits,
520 			verity_io_real_digest(v, io), true);
521 	if (unlikely(r))
522 		goto free_ret;
523 
524 	if (memcmp(verity_io_real_digest(v, io),
525 		   verity_io_want_digest(v, io), v->digest_size)) {
526 		r = -EIO;
527 		goto free_ret;
528 	}
529 
530 	io->recheck_buffer = buffer;
531 	r = verity_for_bv_block(v, io, &start, verity_recheck_copy);
532 	if (unlikely(r))
533 		goto free_ret;
534 
535 	r = 0;
536 free_ret:
537 	mempool_free(page, &v->recheck_pool);
538 
539 	return r;
540 }
541 
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)542 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
543 			  u8 *data, size_t len)
544 {
545 	memset(data, 0, len);
546 	return 0;
547 }
548 
549 /*
550  * Moves the bio iter one data block forward.
551  */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)552 static inline void verity_bv_skip_block(struct dm_verity *v,
553 					struct dm_verity_io *io,
554 					struct bvec_iter *iter)
555 {
556 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
557 
558 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
559 }
560 
561 /*
562  * Verify one "dm_verity_io" structure.
563  */
verity_verify_io(struct dm_verity_io * io)564 static int verity_verify_io(struct dm_verity_io *io)
565 {
566 	bool is_zero;
567 	struct dm_verity *v = io->v;
568 	struct bvec_iter start;
569 	struct bvec_iter iter_copy;
570 	struct bvec_iter *iter;
571 	struct crypto_wait wait;
572 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
573 	unsigned int b;
574 
575 	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
576 		/*
577 		 * Copy the iterator in case we need to restart
578 		 * verification in a work-queue.
579 		 */
580 		iter_copy = io->iter;
581 		iter = &iter_copy;
582 	} else
583 		iter = &io->iter;
584 
585 	for (b = 0; b < io->n_blocks; b++) {
586 		int r;
587 		sector_t cur_block = io->block + b;
588 		struct ahash_request *req = verity_io_hash_req(v, io);
589 
590 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
591 		    likely(test_bit(cur_block, v->validated_blocks))) {
592 			verity_bv_skip_block(v, io, iter);
593 			continue;
594 		}
595 
596 		r = verity_hash_for_block(v, io, cur_block,
597 					  verity_io_want_digest(v, io),
598 					  &is_zero);
599 		if (unlikely(r < 0))
600 			return r;
601 
602 		if (is_zero) {
603 			/*
604 			 * If we expect a zero block, don't validate, just
605 			 * return zeros.
606 			 */
607 			r = verity_for_bv_block(v, io, iter,
608 						verity_bv_zero);
609 			if (unlikely(r < 0))
610 				return r;
611 
612 			continue;
613 		}
614 
615 		r = verity_hash_init(v, req, &wait, !io->in_tasklet);
616 		if (unlikely(r < 0))
617 			return r;
618 
619 		start = *iter;
620 		r = verity_for_io_block(v, io, iter, &wait);
621 		if (unlikely(r < 0))
622 			return r;
623 
624 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
625 					&wait);
626 		if (unlikely(r < 0))
627 			return r;
628 
629 		if (likely(memcmp(verity_io_real_digest(v, io),
630 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
631 			if (v->validated_blocks)
632 				set_bit(cur_block, v->validated_blocks);
633 			continue;
634 		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
635 			   io->in_tasklet) {
636 			/*
637 			 * Error handling code (FEC included) cannot be run in a
638 			 * tasklet since it may sleep, so fallback to work-queue.
639 			 */
640 			return -EAGAIN;
641 		} else if (verity_recheck(v, io, start, cur_block) == 0) {
642 			if (v->validated_blocks)
643 				set_bit(cur_block, v->validated_blocks);
644 			continue;
645 #if defined(CONFIG_DM_VERITY_FEC)
646 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
647 					     cur_block, NULL, &start) == 0) {
648 			continue;
649 #endif
650 		} else {
651 			if (bio->bi_status) {
652 				/*
653 				 * Error correction failed; Just return error
654 				 */
655 				return -EIO;
656 			}
657 			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
658 					      cur_block)) {
659 				dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
660 						 bio, cur_block, 0);
661 				return -EIO;
662 			}
663 		}
664 	}
665 
666 	return 0;
667 }
668 
669 /*
670  * Skip verity work in response to I/O error when system is shutting down.
671  */
verity_is_system_shutting_down(void)672 static inline bool verity_is_system_shutting_down(void)
673 {
674 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
675 		|| system_state == SYSTEM_RESTART;
676 }
677 
678 /*
679  * End one "io" structure with a given error.
680  */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)681 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
682 {
683 	struct dm_verity *v = io->v;
684 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
685 
686 	bio->bi_end_io = io->orig_bi_end_io;
687 	bio->bi_status = status;
688 
689 	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
690 		verity_fec_finish_io(io);
691 
692 	bio_endio(bio);
693 }
694 
verity_work(struct work_struct * w)695 static void verity_work(struct work_struct *w)
696 {
697 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
698 
699 	io->in_tasklet = false;
700 
701 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
702 }
703 
verity_end_io(struct bio * bio)704 static void verity_end_io(struct bio *bio)
705 {
706 	struct dm_verity_io *io = bio->bi_private;
707 
708 	if (bio->bi_status &&
709 	    (!verity_fec_is_enabled(io->v) ||
710 	     verity_is_system_shutting_down() ||
711 	     (bio->bi_opf & REQ_RAHEAD))) {
712 		verity_finish_io(io, bio->bi_status);
713 		return;
714 	}
715 
716 	INIT_WORK(&io->work, verity_work);
717 	queue_work(io->v->verify_wq, &io->work);
718 }
719 
720 /*
721  * Prefetch buffers for the specified io.
722  * The root buffer is not prefetched, it is assumed that it will be cached
723  * all the time.
724  */
verity_prefetch_io(struct work_struct * work)725 static void verity_prefetch_io(struct work_struct *work)
726 {
727 	struct dm_verity_prefetch_work *pw =
728 		container_of(work, struct dm_verity_prefetch_work, work);
729 	struct dm_verity *v = pw->v;
730 	int i;
731 
732 	for (i = v->levels - 2; i >= 0; i--) {
733 		sector_t hash_block_start;
734 		sector_t hash_block_end;
735 
736 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
737 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
738 
739 		if (!i) {
740 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
741 
742 			cluster >>= v->data_dev_block_bits;
743 			if (unlikely(!cluster))
744 				goto no_prefetch_cluster;
745 
746 			if (unlikely(cluster & (cluster - 1)))
747 				cluster = 1 << __fls(cluster);
748 
749 			hash_block_start &= ~(sector_t)(cluster - 1);
750 			hash_block_end |= cluster - 1;
751 			if (unlikely(hash_block_end >= v->hash_blocks))
752 				hash_block_end = v->hash_blocks - 1;
753 		}
754 no_prefetch_cluster:
755 		dm_bufio_prefetch(v->bufio, hash_block_start,
756 				  hash_block_end - hash_block_start + 1);
757 	}
758 
759 	kfree(pw);
760 }
761 
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)762 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
763 {
764 	sector_t block = io->block;
765 	unsigned int n_blocks = io->n_blocks;
766 	struct dm_verity_prefetch_work *pw;
767 
768 	if (v->validated_blocks) {
769 		while (n_blocks && test_bit(block, v->validated_blocks)) {
770 			block++;
771 			n_blocks--;
772 		}
773 		while (n_blocks && test_bit(block + n_blocks - 1,
774 					    v->validated_blocks))
775 			n_blocks--;
776 		if (!n_blocks)
777 			return;
778 	}
779 
780 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
781 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
782 
783 	if (!pw)
784 		return;
785 
786 	INIT_WORK(&pw->work, verity_prefetch_io);
787 	pw->v = v;
788 	pw->block = block;
789 	pw->n_blocks = n_blocks;
790 	queue_work(v->verify_wq, &pw->work);
791 }
792 
793 /*
794  * Bio map function. It allocates dm_verity_io structure and bio vector and
795  * fills them. Then it issues prefetches and the I/O.
796  */
verity_map(struct dm_target * ti,struct bio * bio)797 static int verity_map(struct dm_target *ti, struct bio *bio)
798 {
799 	struct dm_verity *v = ti->private;
800 	struct dm_verity_io *io;
801 
802 	bio_set_dev(bio, v->data_dev->bdev);
803 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
804 
805 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
806 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
807 		DMERR_LIMIT("unaligned io");
808 		return DM_MAPIO_KILL;
809 	}
810 
811 	if (bio_end_sector(bio) >>
812 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
813 		DMERR_LIMIT("io out of range");
814 		return DM_MAPIO_KILL;
815 	}
816 
817 	if (bio_data_dir(bio) == WRITE)
818 		return DM_MAPIO_KILL;
819 
820 	io = dm_per_bio_data(bio, ti->per_io_data_size);
821 	io->v = v;
822 	io->orig_bi_end_io = bio->bi_end_io;
823 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
824 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
825 
826 	bio->bi_end_io = verity_end_io;
827 	bio->bi_private = io;
828 	io->iter = bio->bi_iter;
829 
830 	verity_fec_init_io(io);
831 
832 	verity_submit_prefetch(v, io);
833 
834 	submit_bio_noacct(bio);
835 
836 	return DM_MAPIO_SUBMITTED;
837 }
838 
verity_postsuspend(struct dm_target * ti)839 static void verity_postsuspend(struct dm_target *ti)
840 {
841 	struct dm_verity *v = ti->private;
842 	flush_workqueue(v->verify_wq);
843 	dm_bufio_client_reset(v->bufio);
844 }
845 
846 /*
847  * Status: V (valid) or C (corruption found)
848  */
verity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)849 static void verity_status(struct dm_target *ti, status_type_t type,
850 			  unsigned int status_flags, char *result, unsigned int maxlen)
851 {
852 	struct dm_verity *v = ti->private;
853 	unsigned int args = 0;
854 	unsigned int sz = 0;
855 	unsigned int x;
856 
857 	switch (type) {
858 	case STATUSTYPE_INFO:
859 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
860 		break;
861 	case STATUSTYPE_TABLE:
862 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
863 			v->version,
864 			v->data_dev->name,
865 			v->hash_dev->name,
866 			1 << v->data_dev_block_bits,
867 			1 << v->hash_dev_block_bits,
868 			(unsigned long long)v->data_blocks,
869 			(unsigned long long)v->hash_start,
870 			v->alg_name
871 			);
872 		for (x = 0; x < v->digest_size; x++)
873 			DMEMIT("%02x", v->root_digest[x]);
874 		DMEMIT(" ");
875 		if (!v->salt_size)
876 			DMEMIT("-");
877 		else
878 			for (x = 0; x < v->salt_size; x++)
879 				DMEMIT("%02x", v->salt[x]);
880 		if (v->mode != DM_VERITY_MODE_EIO)
881 			args++;
882 		if (verity_fec_is_enabled(v))
883 			args += DM_VERITY_OPTS_FEC;
884 		if (v->zero_digest)
885 			args++;
886 		if (v->validated_blocks)
887 			args++;
888 		if (v->use_tasklet)
889 			args++;
890 		if (v->signature_key_desc)
891 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
892 		if (!args)
893 			return;
894 		DMEMIT(" %u", args);
895 		if (v->mode != DM_VERITY_MODE_EIO) {
896 			DMEMIT(" ");
897 			switch (v->mode) {
898 			case DM_VERITY_MODE_LOGGING:
899 				DMEMIT(DM_VERITY_OPT_LOGGING);
900 				break;
901 			case DM_VERITY_MODE_RESTART:
902 				DMEMIT(DM_VERITY_OPT_RESTART);
903 				break;
904 			case DM_VERITY_MODE_PANIC:
905 				DMEMIT(DM_VERITY_OPT_PANIC);
906 				break;
907 			default:
908 				BUG();
909 			}
910 		}
911 		if (v->zero_digest)
912 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
913 		if (v->validated_blocks)
914 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
915 		if (v->use_tasklet)
916 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
917 		sz = verity_fec_status_table(v, sz, result, maxlen);
918 		if (v->signature_key_desc)
919 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
920 				" %s", v->signature_key_desc);
921 		break;
922 
923 	case STATUSTYPE_IMA:
924 		DMEMIT_TARGET_NAME_VERSION(ti->type);
925 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
926 		DMEMIT(",verity_version=%u", v->version);
927 		DMEMIT(",data_device_name=%s", v->data_dev->name);
928 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
929 		DMEMIT(",verity_algorithm=%s", v->alg_name);
930 
931 		DMEMIT(",root_digest=");
932 		for (x = 0; x < v->digest_size; x++)
933 			DMEMIT("%02x", v->root_digest[x]);
934 
935 		DMEMIT(",salt=");
936 		if (!v->salt_size)
937 			DMEMIT("-");
938 		else
939 			for (x = 0; x < v->salt_size; x++)
940 				DMEMIT("%02x", v->salt[x]);
941 
942 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
943 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
944 		if (v->signature_key_desc)
945 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
946 
947 		if (v->mode != DM_VERITY_MODE_EIO) {
948 			DMEMIT(",verity_mode=");
949 			switch (v->mode) {
950 			case DM_VERITY_MODE_LOGGING:
951 				DMEMIT(DM_VERITY_OPT_LOGGING);
952 				break;
953 			case DM_VERITY_MODE_RESTART:
954 				DMEMIT(DM_VERITY_OPT_RESTART);
955 				break;
956 			case DM_VERITY_MODE_PANIC:
957 				DMEMIT(DM_VERITY_OPT_PANIC);
958 				break;
959 			default:
960 				DMEMIT("invalid");
961 			}
962 		}
963 		DMEMIT(";");
964 		break;
965 	}
966 }
967 
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)968 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
969 {
970 	struct dm_verity *v = ti->private;
971 
972 	*bdev = v->data_dev->bdev;
973 
974 	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
975 		return 1;
976 	return 0;
977 }
978 
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)979 static int verity_iterate_devices(struct dm_target *ti,
980 				  iterate_devices_callout_fn fn, void *data)
981 {
982 	struct dm_verity *v = ti->private;
983 
984 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
985 }
986 
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)987 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
988 {
989 	struct dm_verity *v = ti->private;
990 
991 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
992 		limits->logical_block_size = 1 << v->data_dev_block_bits;
993 
994 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
995 		limits->physical_block_size = 1 << v->data_dev_block_bits;
996 
997 	blk_limits_io_min(limits, limits->logical_block_size);
998 }
999 
verity_dtr(struct dm_target * ti)1000 static void verity_dtr(struct dm_target *ti)
1001 {
1002 	struct dm_verity *v = ti->private;
1003 
1004 	if (v->verify_wq)
1005 		destroy_workqueue(v->verify_wq);
1006 
1007 	mempool_exit(&v->recheck_pool);
1008 	if (v->io)
1009 		dm_io_client_destroy(v->io);
1010 
1011 	if (v->bufio)
1012 		dm_bufio_client_destroy(v->bufio);
1013 
1014 	kvfree(v->validated_blocks);
1015 	kfree(v->salt);
1016 	kfree(v->root_digest);
1017 	kfree(v->zero_digest);
1018 
1019 	if (v->tfm)
1020 		crypto_free_ahash(v->tfm);
1021 
1022 	kfree(v->alg_name);
1023 
1024 	if (v->hash_dev)
1025 		dm_put_device(ti, v->hash_dev);
1026 
1027 	if (v->data_dev)
1028 		dm_put_device(ti, v->data_dev);
1029 
1030 	verity_fec_dtr(v);
1031 
1032 	kfree(v->signature_key_desc);
1033 
1034 	if (v->use_tasklet)
1035 		static_branch_dec(&use_tasklet_enabled);
1036 
1037 	kfree(v);
1038 
1039 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1040 }
1041 
verity_alloc_most_once(struct dm_verity * v)1042 static int verity_alloc_most_once(struct dm_verity *v)
1043 {
1044 	struct dm_target *ti = v->ti;
1045 
1046 	/* the bitset can only handle INT_MAX blocks */
1047 	if (v->data_blocks > INT_MAX) {
1048 		ti->error = "device too large to use check_at_most_once";
1049 		return -E2BIG;
1050 	}
1051 
1052 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1053 				       sizeof(unsigned long),
1054 				       GFP_KERNEL);
1055 	if (!v->validated_blocks) {
1056 		ti->error = "failed to allocate bitset for check_at_most_once";
1057 		return -ENOMEM;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
verity_alloc_zero_digest(struct dm_verity * v)1063 static int verity_alloc_zero_digest(struct dm_verity *v)
1064 {
1065 	int r = -ENOMEM;
1066 	struct ahash_request *req;
1067 	u8 *zero_data;
1068 
1069 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1070 
1071 	if (!v->zero_digest)
1072 		return r;
1073 
1074 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1075 
1076 	if (!req)
1077 		return r; /* verity_dtr will free zero_digest */
1078 
1079 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1080 
1081 	if (!zero_data)
1082 		goto out;
1083 
1084 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1085 			v->zero_digest, true);
1086 
1087 out:
1088 	kfree(req);
1089 	kfree(zero_data);
1090 
1091 	return r;
1092 }
1093 
verity_is_verity_mode(const char * arg_name)1094 static inline bool verity_is_verity_mode(const char *arg_name)
1095 {
1096 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1097 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1098 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1099 }
1100 
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)1101 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1102 {
1103 	if (v->mode)
1104 		return -EINVAL;
1105 
1106 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1107 		v->mode = DM_VERITY_MODE_LOGGING;
1108 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1109 		v->mode = DM_VERITY_MODE_RESTART;
1110 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1111 		v->mode = DM_VERITY_MODE_PANIC;
1112 
1113 	return 0;
1114 }
1115 
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args,bool only_modifier_opts)1116 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1117 				 struct dm_verity_sig_opts *verify_args,
1118 				 bool only_modifier_opts)
1119 {
1120 	int r = 0;
1121 	unsigned int argc;
1122 	struct dm_target *ti = v->ti;
1123 	const char *arg_name;
1124 
1125 	static const struct dm_arg _args[] = {
1126 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1127 	};
1128 
1129 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1130 	if (r)
1131 		return -EINVAL;
1132 
1133 	if (!argc)
1134 		return 0;
1135 
1136 	do {
1137 		arg_name = dm_shift_arg(as);
1138 		argc--;
1139 
1140 		if (verity_is_verity_mode(arg_name)) {
1141 			if (only_modifier_opts)
1142 				continue;
1143 			r = verity_parse_verity_mode(v, arg_name);
1144 			if (r) {
1145 				ti->error = "Conflicting error handling parameters";
1146 				return r;
1147 			}
1148 			continue;
1149 
1150 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1151 			if (only_modifier_opts)
1152 				continue;
1153 			r = verity_alloc_zero_digest(v);
1154 			if (r) {
1155 				ti->error = "Cannot allocate zero digest";
1156 				return r;
1157 			}
1158 			continue;
1159 
1160 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1161 			if (only_modifier_opts)
1162 				continue;
1163 			r = verity_alloc_most_once(v);
1164 			if (r)
1165 				return r;
1166 			continue;
1167 
1168 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1169 			v->use_tasklet = true;
1170 			static_branch_inc(&use_tasklet_enabled);
1171 			continue;
1172 
1173 		} else if (verity_is_fec_opt_arg(arg_name)) {
1174 			if (only_modifier_opts)
1175 				continue;
1176 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1177 			if (r)
1178 				return r;
1179 			continue;
1180 
1181 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1182 			if (only_modifier_opts)
1183 				continue;
1184 			r = verity_verify_sig_parse_opt_args(as, v,
1185 							     verify_args,
1186 							     &argc, arg_name);
1187 			if (r)
1188 				return r;
1189 			continue;
1190 
1191 		} else if (only_modifier_opts) {
1192 			/*
1193 			 * Ignore unrecognized opt, could easily be an extra
1194 			 * argument to an option whose parsing was skipped.
1195 			 * Normal parsing (@only_modifier_opts=false) will
1196 			 * properly parse all options (and their extra args).
1197 			 */
1198 			continue;
1199 		}
1200 
1201 		DMERR("Unrecognized verity feature request: %s", arg_name);
1202 		ti->error = "Unrecognized verity feature request";
1203 		return -EINVAL;
1204 	} while (argc && !r);
1205 
1206 	return r;
1207 }
1208 
1209 /*
1210  * Target parameters:
1211  *	<version>	The current format is version 1.
1212  *			Vsn 0 is compatible with original Chromium OS releases.
1213  *	<data device>
1214  *	<hash device>
1215  *	<data block size>
1216  *	<hash block size>
1217  *	<the number of data blocks>
1218  *	<hash start block>
1219  *	<algorithm>
1220  *	<digest>
1221  *	<salt>		Hex string or "-" if no salt.
1222  */
verity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1223 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1224 {
1225 	struct dm_verity *v;
1226 	struct dm_verity_sig_opts verify_args = {0};
1227 	struct dm_arg_set as;
1228 	unsigned int num;
1229 	unsigned long long num_ll;
1230 	int r;
1231 	int i;
1232 	sector_t hash_position;
1233 	char dummy;
1234 	char *root_hash_digest_to_validate;
1235 
1236 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1237 	if (!v) {
1238 		ti->error = "Cannot allocate verity structure";
1239 		return -ENOMEM;
1240 	}
1241 	ti->private = v;
1242 	v->ti = ti;
1243 
1244 	r = verity_fec_ctr_alloc(v);
1245 	if (r)
1246 		goto bad;
1247 
1248 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1249 		ti->error = "Device must be readonly";
1250 		r = -EINVAL;
1251 		goto bad;
1252 	}
1253 
1254 	if (argc < 10) {
1255 		ti->error = "Not enough arguments";
1256 		r = -EINVAL;
1257 		goto bad;
1258 	}
1259 
1260 	/* Parse optional parameters that modify primary args */
1261 	if (argc > 10) {
1262 		as.argc = argc - 10;
1263 		as.argv = argv + 10;
1264 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1265 		if (r < 0)
1266 			goto bad;
1267 	}
1268 
1269 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1270 	    num > 1) {
1271 		ti->error = "Invalid version";
1272 		r = -EINVAL;
1273 		goto bad;
1274 	}
1275 	v->version = num;
1276 
1277 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1278 	if (r) {
1279 		ti->error = "Data device lookup failed";
1280 		goto bad;
1281 	}
1282 
1283 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1284 	if (r) {
1285 		ti->error = "Hash device lookup failed";
1286 		goto bad;
1287 	}
1288 
1289 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1290 	    !num || (num & (num - 1)) ||
1291 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1292 	    num > PAGE_SIZE) {
1293 		ti->error = "Invalid data device block size";
1294 		r = -EINVAL;
1295 		goto bad;
1296 	}
1297 	v->data_dev_block_bits = __ffs(num);
1298 
1299 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1300 	    !num || (num & (num - 1)) ||
1301 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1302 	    num > INT_MAX) {
1303 		ti->error = "Invalid hash device block size";
1304 		r = -EINVAL;
1305 		goto bad;
1306 	}
1307 	v->hash_dev_block_bits = __ffs(num);
1308 
1309 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1310 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1311 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1312 		ti->error = "Invalid data blocks";
1313 		r = -EINVAL;
1314 		goto bad;
1315 	}
1316 	v->data_blocks = num_ll;
1317 
1318 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1319 		ti->error = "Data device is too small";
1320 		r = -EINVAL;
1321 		goto bad;
1322 	}
1323 
1324 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1325 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1326 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1327 		ti->error = "Invalid hash start";
1328 		r = -EINVAL;
1329 		goto bad;
1330 	}
1331 	v->hash_start = num_ll;
1332 
1333 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1334 	if (!v->alg_name) {
1335 		ti->error = "Cannot allocate algorithm name";
1336 		r = -ENOMEM;
1337 		goto bad;
1338 	}
1339 
1340 	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1341 				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1342 	if (IS_ERR(v->tfm)) {
1343 		ti->error = "Cannot initialize hash function";
1344 		r = PTR_ERR(v->tfm);
1345 		v->tfm = NULL;
1346 		goto bad;
1347 	}
1348 
1349 	/*
1350 	 * dm-verity performance can vary greatly depending on which hash
1351 	 * algorithm implementation is used.  Help people debug performance
1352 	 * problems by logging the ->cra_driver_name.
1353 	 */
1354 	DMINFO("%s using implementation \"%s\"", v->alg_name,
1355 	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1356 
1357 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1358 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1359 		ti->error = "Digest size too big";
1360 		r = -EINVAL;
1361 		goto bad;
1362 	}
1363 	v->ahash_reqsize = sizeof(struct ahash_request) +
1364 		crypto_ahash_reqsize(v->tfm);
1365 
1366 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1367 	if (!v->root_digest) {
1368 		ti->error = "Cannot allocate root digest";
1369 		r = -ENOMEM;
1370 		goto bad;
1371 	}
1372 	if (strlen(argv[8]) != v->digest_size * 2 ||
1373 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1374 		ti->error = "Invalid root digest";
1375 		r = -EINVAL;
1376 		goto bad;
1377 	}
1378 	root_hash_digest_to_validate = argv[8];
1379 
1380 	if (strcmp(argv[9], "-")) {
1381 		v->salt_size = strlen(argv[9]) / 2;
1382 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1383 		if (!v->salt) {
1384 			ti->error = "Cannot allocate salt";
1385 			r = -ENOMEM;
1386 			goto bad;
1387 		}
1388 		if (strlen(argv[9]) != v->salt_size * 2 ||
1389 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1390 			ti->error = "Invalid salt";
1391 			r = -EINVAL;
1392 			goto bad;
1393 		}
1394 	}
1395 
1396 	argv += 10;
1397 	argc -= 10;
1398 
1399 	/* Optional parameters */
1400 	if (argc) {
1401 		as.argc = argc;
1402 		as.argv = argv;
1403 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1404 		if (r < 0)
1405 			goto bad;
1406 	}
1407 
1408 	/* Root hash signature is  a optional parameter*/
1409 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1410 				    strlen(root_hash_digest_to_validate),
1411 				    verify_args.sig,
1412 				    verify_args.sig_size);
1413 	if (r < 0) {
1414 		ti->error = "Root hash verification failed";
1415 		goto bad;
1416 	}
1417 	v->hash_per_block_bits =
1418 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1419 
1420 	v->levels = 0;
1421 	if (v->data_blocks)
1422 		while (v->hash_per_block_bits * v->levels < 64 &&
1423 		       (unsigned long long)(v->data_blocks - 1) >>
1424 		       (v->hash_per_block_bits * v->levels))
1425 			v->levels++;
1426 
1427 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1428 		ti->error = "Too many tree levels";
1429 		r = -E2BIG;
1430 		goto bad;
1431 	}
1432 
1433 	hash_position = v->hash_start;
1434 	for (i = v->levels - 1; i >= 0; i--) {
1435 		sector_t s;
1436 
1437 		v->hash_level_block[i] = hash_position;
1438 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1439 					>> ((i + 1) * v->hash_per_block_bits);
1440 		if (hash_position + s < hash_position) {
1441 			ti->error = "Hash device offset overflow";
1442 			r = -E2BIG;
1443 			goto bad;
1444 		}
1445 		hash_position += s;
1446 	}
1447 	v->hash_blocks = hash_position;
1448 
1449 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1450 	if (unlikely(r)) {
1451 		ti->error = "Cannot allocate mempool";
1452 		goto bad;
1453 	}
1454 
1455 	v->io = dm_io_client_create();
1456 	if (IS_ERR(v->io)) {
1457 		r = PTR_ERR(v->io);
1458 		v->io = NULL;
1459 		ti->error = "Cannot allocate dm io";
1460 		goto bad;
1461 	}
1462 
1463 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1464 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1465 		dm_bufio_alloc_callback, NULL,
1466 		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1467 	if (IS_ERR(v->bufio)) {
1468 		ti->error = "Cannot initialize dm-bufio";
1469 		r = PTR_ERR(v->bufio);
1470 		v->bufio = NULL;
1471 		goto bad;
1472 	}
1473 
1474 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1475 		ti->error = "Hash device is too small";
1476 		r = -E2BIG;
1477 		goto bad;
1478 	}
1479 
1480 	/*
1481 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1482 	 * reducing wait times when reading from a dm-verity device.
1483 	 *
1484 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1485 	 * allows verify_wq to preempt softirq since verification in tasklet
1486 	 * will fall-back to using it for error handling (or if the bufio cache
1487 	 * doesn't have required hashes).
1488 	 */
1489 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1490 	if (!v->verify_wq) {
1491 		ti->error = "Cannot allocate workqueue";
1492 		r = -ENOMEM;
1493 		goto bad;
1494 	}
1495 
1496 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1497 				v->ahash_reqsize + v->digest_size * 2;
1498 
1499 	r = verity_fec_ctr(v);
1500 	if (r)
1501 		goto bad;
1502 
1503 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1504 				       __alignof__(struct dm_verity_io));
1505 
1506 	verity_verify_sig_opts_cleanup(&verify_args);
1507 
1508 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1509 
1510 	return 0;
1511 
1512 bad:
1513 
1514 	verity_verify_sig_opts_cleanup(&verify_args);
1515 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1516 	verity_dtr(ti);
1517 
1518 	return r;
1519 }
1520 
1521 /*
1522  * Get the verity mode (error behavior) of a verity target.
1523  *
1524  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1525  * target.
1526  */
dm_verity_get_mode(struct dm_target * ti)1527 int dm_verity_get_mode(struct dm_target *ti)
1528 {
1529 	struct dm_verity *v = ti->private;
1530 
1531 	if (!dm_is_verity_target(ti))
1532 		return -EINVAL;
1533 
1534 	return v->mode;
1535 }
1536 
1537 /*
1538  * Get the root digest of a verity target.
1539  *
1540  * Returns a copy of the root digest, the caller is responsible for
1541  * freeing the memory of the digest.
1542  */
dm_verity_get_root_digest(struct dm_target * ti,u8 ** root_digest,unsigned int * digest_size)1543 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1544 {
1545 	struct dm_verity *v = ti->private;
1546 
1547 	if (!dm_is_verity_target(ti))
1548 		return -EINVAL;
1549 
1550 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1551 	if (*root_digest == NULL)
1552 		return -ENOMEM;
1553 
1554 	*digest_size = v->digest_size;
1555 
1556 	return 0;
1557 }
1558 
1559 static struct target_type verity_target = {
1560 	.name		= "verity",
1561 	.features	= DM_TARGET_IMMUTABLE,
1562 	.version	= {1, 9, 0},
1563 	.module		= THIS_MODULE,
1564 	.ctr		= verity_ctr,
1565 	.dtr		= verity_dtr,
1566 	.map		= verity_map,
1567 	.postsuspend	= verity_postsuspend,
1568 	.status		= verity_status,
1569 	.prepare_ioctl	= verity_prepare_ioctl,
1570 	.iterate_devices = verity_iterate_devices,
1571 	.io_hints	= verity_io_hints,
1572 };
1573 module_dm(verity);
1574 
1575 /*
1576  * Check whether a DM target is a verity target.
1577  */
dm_is_verity_target(struct dm_target * ti)1578 bool dm_is_verity_target(struct dm_target *ti)
1579 {
1580 	return ti->type == &verity_target;
1581 }
1582 
1583 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1584 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1585 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1586 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1587 MODULE_LICENSE("GPL");
1588