xref: /openbmc/linux/arch/x86/kernel/cpu/microcode/amd.c (revision 098c0a373cdd51d3a735da7394acd6e57fae45a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/bsearch.h>
27 #include <linux/uaccess.h>
28 #include <linux/vmalloc.h>
29 #include <linux/initrd.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 
33 #include <crypto/sha2.h>
34 
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 #include <asm/cpu.h>
40 #include <asm/msr.h>
41 #include <asm/tlb.h>
42 
43 #include "internal.h"
44 
45 struct ucode_patch {
46 	struct list_head plist;
47 	void *data;
48 	unsigned int size;
49 	u32 patch_id;
50 	u16 equiv_cpu;
51 };
52 
53 static LIST_HEAD(microcode_cache);
54 
55 #define UCODE_MAGIC			0x00414d44
56 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
57 #define UCODE_UCODE_TYPE		0x00000001
58 
59 #define SECTION_HDR_SIZE		8
60 #define CONTAINER_HDR_SZ		12
61 
62 struct equiv_cpu_entry {
63 	u32	installed_cpu;
64 	u32	fixed_errata_mask;
65 	u32	fixed_errata_compare;
66 	u16	equiv_cpu;
67 	u16	res;
68 } __packed;
69 
70 struct microcode_header_amd {
71 	u32	data_code;
72 	u32	patch_id;
73 	u16	mc_patch_data_id;
74 	u8	mc_patch_data_len;
75 	u8	init_flag;
76 	u32	mc_patch_data_checksum;
77 	u32	nb_dev_id;
78 	u32	sb_dev_id;
79 	u16	processor_rev_id;
80 	u8	nb_rev_id;
81 	u8	sb_rev_id;
82 	u8	bios_api_rev;
83 	u8	reserved1[3];
84 	u32	match_reg[8];
85 } __packed;
86 
87 struct microcode_amd {
88 	struct microcode_header_amd	hdr;
89 	unsigned int			mpb[];
90 };
91 
92 #define PATCH_MAX_SIZE (3 * PAGE_SIZE)
93 
94 static struct equiv_cpu_table {
95 	unsigned int num_entries;
96 	struct equiv_cpu_entry *entry;
97 } equiv_table;
98 
99 union zen_patch_rev {
100 	struct {
101 		__u32 rev	 : 8,
102 		      stepping	 : 4,
103 		      model	 : 4,
104 		      __reserved : 4,
105 		      ext_model	 : 4,
106 		      ext_fam	 : 8;
107 	};
108 	__u32 ucode_rev;
109 };
110 
111 union cpuid_1_eax {
112 	struct {
113 		__u32 stepping    : 4,
114 		      model	  : 4,
115 		      family	  : 4,
116 		      __reserved0 : 4,
117 		      ext_model   : 4,
118 		      ext_fam     : 8,
119 		      __reserved1 : 4;
120 	};
121 	__u32 full;
122 };
123 
124 /*
125  * This points to the current valid container of microcode patches which we will
126  * save from the initrd/builtin before jettisoning its contents. @mc is the
127  * microcode patch we found to match.
128  */
129 struct cont_desc {
130 	struct microcode_amd *mc;
131 	u32		     psize;
132 	u8		     *data;
133 	size_t		     size;
134 };
135 
136 /*
137  * Microcode patch container file is prepended to the initrd in cpio
138  * format. See Documentation/arch/x86/microcode.rst
139  */
140 static const char
141 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
142 
143 /*
144  * This is CPUID(1).EAX on the BSP. It is used in two ways:
145  *
146  * 1. To ignore the equivalence table on Zen1 and newer.
147  *
148  * 2. To match which patches to load because the patch revision ID
149  *    already contains the f/m/s for which the microcode is destined
150  *    for.
151  */
152 static u32 bsp_cpuid_1_eax __ro_after_init;
153 
154 static bool sha_check = true;
155 
156 struct patch_digest {
157 	u32 patch_id;
158 	u8 sha256[SHA256_DIGEST_SIZE];
159 };
160 
161 #include "amd_shas.c"
162 
cmp_id(const void * key,const void * elem)163 static int cmp_id(const void *key, const void *elem)
164 {
165 	struct patch_digest *pd = (struct patch_digest *)elem;
166 	u32 patch_id = *(u32 *)key;
167 
168 	if (patch_id == pd->patch_id)
169 		return 0;
170 	else if (patch_id < pd->patch_id)
171 		return -1;
172 	else
173 		return 1;
174 }
175 
need_sha_check(u32 cur_rev)176 static bool need_sha_check(u32 cur_rev)
177 {
178 	switch (cur_rev >> 8) {
179 	case 0x80012: return cur_rev <= 0x800126f; break;
180 	case 0x80082: return cur_rev <= 0x800820f; break;
181 	case 0x83010: return cur_rev <= 0x830107c; break;
182 	case 0x86001: return cur_rev <= 0x860010e; break;
183 	case 0x86081: return cur_rev <= 0x8608108; break;
184 	case 0x87010: return cur_rev <= 0x8701034; break;
185 	case 0x8a000: return cur_rev <= 0x8a0000a; break;
186 	case 0xa0010: return cur_rev <= 0xa00107a; break;
187 	case 0xa0011: return cur_rev <= 0xa0011da; break;
188 	case 0xa0012: return cur_rev <= 0xa001243; break;
189 	case 0xa0082: return cur_rev <= 0xa00820e; break;
190 	case 0xa1011: return cur_rev <= 0xa101153; break;
191 	case 0xa1012: return cur_rev <= 0xa10124e; break;
192 	case 0xa1081: return cur_rev <= 0xa108109; break;
193 	case 0xa2010: return cur_rev <= 0xa20102f; break;
194 	case 0xa2012: return cur_rev <= 0xa201212; break;
195 	case 0xa4041: return cur_rev <= 0xa404109; break;
196 	case 0xa5000: return cur_rev <= 0xa500013; break;
197 	case 0xa6012: return cur_rev <= 0xa60120a; break;
198 	case 0xa7041: return cur_rev <= 0xa704109; break;
199 	case 0xa7052: return cur_rev <= 0xa705208; break;
200 	case 0xa7080: return cur_rev <= 0xa708009; break;
201 	case 0xa70c0: return cur_rev <= 0xa70C009; break;
202 	case 0xaa001: return cur_rev <= 0xaa00116; break;
203 	case 0xaa002: return cur_rev <= 0xaa00218; break;
204 	case 0xb0021: return cur_rev <= 0xb002146; break;
205 	case 0xb1010: return cur_rev <= 0xb101046; break;
206 	case 0xb2040: return cur_rev <= 0xb204031; break;
207 	case 0xb4040: return cur_rev <= 0xb404031; break;
208 	case 0xb6000: return cur_rev <= 0xb600031; break;
209 	case 0xb7000: return cur_rev <= 0xb700031; break;
210 	default: break;
211 	}
212 
213 	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
214 	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
215 	return true;
216 }
217 
verify_sha256_digest(u32 patch_id,u32 cur_rev,const u8 * data,unsigned int len)218 static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
219 {
220 	struct patch_digest *pd = NULL;
221 	u8 digest[SHA256_DIGEST_SIZE];
222 	struct sha256_state s;
223 	int i;
224 
225 	if (x86_family(bsp_cpuid_1_eax) < 0x17)
226 		return true;
227 
228 	if (!need_sha_check(cur_rev))
229 		return true;
230 
231 	if (!sha_check)
232 		return true;
233 
234 	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
235 	if (!pd) {
236 		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
237 		return false;
238 	}
239 
240 	sha256_init(&s);
241 	sha256_update(&s, data, len);
242 	sha256_final(&s, digest);
243 
244 	if (memcmp(digest, pd->sha256, sizeof(digest))) {
245 		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
246 
247 		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
248 			pr_cont("0x%x ", digest[i]);
249 		pr_info("\n");
250 
251 		return false;
252 	}
253 
254 	return true;
255 }
256 
get_patch_level(void)257 static u32 get_patch_level(void)
258 {
259 	u32 rev, dummy __always_unused;
260 
261 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
262 
263 	return rev;
264 }
265 
ucode_rev_to_cpuid(unsigned int val)266 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
267 {
268 	union zen_patch_rev p;
269 	union cpuid_1_eax c;
270 
271 	p.ucode_rev = val;
272 	c.full = 0;
273 
274 	c.stepping  = p.stepping;
275 	c.model     = p.model;
276 	c.ext_model = p.ext_model;
277 	c.family    = 0xf;
278 	c.ext_fam   = p.ext_fam;
279 
280 	return c;
281 }
282 
find_equiv_id(struct equiv_cpu_table * et,u32 sig)283 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
284 {
285 	unsigned int i;
286 
287 	/* Zen and newer do not need an equivalence table. */
288 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
289 		return 0;
290 
291 	if (!et || !et->num_entries)
292 		return 0;
293 
294 	for (i = 0; i < et->num_entries; i++) {
295 		struct equiv_cpu_entry *e = &et->entry[i];
296 
297 		if (sig == e->installed_cpu)
298 			return e->equiv_cpu;
299 	}
300 	return 0;
301 }
302 
303 /*
304  * Check whether there is a valid microcode container file at the beginning
305  * of @buf of size @buf_size.
306  */
verify_container(const u8 * buf,size_t buf_size)307 static bool verify_container(const u8 *buf, size_t buf_size)
308 {
309 	u32 cont_magic;
310 
311 	if (buf_size <= CONTAINER_HDR_SZ) {
312 		pr_debug("Truncated microcode container header.\n");
313 		return false;
314 	}
315 
316 	cont_magic = *(const u32 *)buf;
317 	if (cont_magic != UCODE_MAGIC) {
318 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
319 		return false;
320 	}
321 
322 	return true;
323 }
324 
325 /*
326  * Check whether there is a valid, non-truncated CPU equivalence table at the
327  * beginning of @buf of size @buf_size.
328  */
verify_equivalence_table(const u8 * buf,size_t buf_size)329 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
330 {
331 	const u32 *hdr = (const u32 *)buf;
332 	u32 cont_type, equiv_tbl_len;
333 
334 	if (!verify_container(buf, buf_size))
335 		return false;
336 
337 	/* Zen and newer do not need an equivalence table. */
338 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
339 		return true;
340 
341 	cont_type = hdr[1];
342 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
343 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
344 			 cont_type);
345 		return false;
346 	}
347 
348 	buf_size -= CONTAINER_HDR_SZ;
349 
350 	equiv_tbl_len = hdr[2];
351 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
352 	    buf_size < equiv_tbl_len) {
353 		pr_debug("Truncated equivalence table.\n");
354 		return false;
355 	}
356 
357 	return true;
358 }
359 
360 /*
361  * Check whether there is a valid, non-truncated microcode patch section at the
362  * beginning of @buf of size @buf_size.
363  *
364  * On success, @sh_psize returns the patch size according to the section header,
365  * to the caller.
366  */
367 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize)368 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
369 {
370 	u32 p_type, p_size;
371 	const u32 *hdr;
372 
373 	if (buf_size < SECTION_HDR_SIZE) {
374 		pr_debug("Truncated patch section.\n");
375 		return false;
376 	}
377 
378 	hdr = (const u32 *)buf;
379 	p_type = hdr[0];
380 	p_size = hdr[1];
381 
382 	if (p_type != UCODE_UCODE_TYPE) {
383 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
384 			 p_type);
385 		return false;
386 	}
387 
388 	if (p_size < sizeof(struct microcode_header_amd)) {
389 		pr_debug("Patch of size %u too short.\n", p_size);
390 		return false;
391 	}
392 
393 	*sh_psize = p_size;
394 
395 	return true;
396 }
397 
398 /*
399  * Check whether the passed remaining file @buf_size is large enough to contain
400  * a patch of the indicated @sh_psize (and also whether this size does not
401  * exceed the per-family maximum). @sh_psize is the size read from the section
402  * header.
403  */
__verify_patch_size(u32 sh_psize,size_t buf_size)404 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
405 {
406 	u8 family = x86_family(bsp_cpuid_1_eax);
407 	u32 max_size;
408 
409 	if (family >= 0x15)
410 		goto ret;
411 
412 #define F1XH_MPB_MAX_SIZE 2048
413 #define F14H_MPB_MAX_SIZE 1824
414 
415 	switch (family) {
416 	case 0x10 ... 0x12:
417 		max_size = F1XH_MPB_MAX_SIZE;
418 		break;
419 	case 0x14:
420 		max_size = F14H_MPB_MAX_SIZE;
421 		break;
422 	default:
423 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
424 		return false;
425 	}
426 
427 	if (sh_psize > max_size)
428 		return false;
429 
430 ret:
431 	/* Working with the whole buffer so < is ok. */
432 	return sh_psize <= buf_size;
433 }
434 
435 /*
436  * Verify the patch in @buf.
437  *
438  * Returns:
439  * negative: on error
440  * positive: patch is not for this family, skip it
441  * 0: success
442  */
verify_patch(const u8 * buf,size_t buf_size,u32 * patch_size)443 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
444 {
445 	u8 family = x86_family(bsp_cpuid_1_eax);
446 	struct microcode_header_amd *mc_hdr;
447 	u32 sh_psize;
448 	u16 proc_id;
449 	u8 patch_fam;
450 
451 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
452 		return -1;
453 
454 	/*
455 	 * The section header length is not included in this indicated size
456 	 * but is present in the leftover file length so we need to subtract
457 	 * it before passing this value to the function below.
458 	 */
459 	buf_size -= SECTION_HDR_SIZE;
460 
461 	/*
462 	 * Check if the remaining buffer is big enough to contain a patch of
463 	 * size sh_psize, as the section claims.
464 	 */
465 	if (buf_size < sh_psize) {
466 		pr_debug("Patch of size %u truncated.\n", sh_psize);
467 		return -1;
468 	}
469 
470 	if (!__verify_patch_size(sh_psize, buf_size)) {
471 		pr_debug("Per-family patch size mismatch.\n");
472 		return -1;
473 	}
474 
475 	*patch_size = sh_psize;
476 
477 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
478 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
479 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
480 		return -1;
481 	}
482 
483 	proc_id	= mc_hdr->processor_rev_id;
484 	patch_fam = 0xf + (proc_id >> 12);
485 	if (patch_fam != family)
486 		return 1;
487 
488 	return 0;
489 }
490 
mc_patch_matches(struct microcode_amd * mc,u16 eq_id)491 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
492 {
493 	/* Zen and newer do not need an equivalence table. */
494 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
495 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
496 	else
497 		return eq_id == mc->hdr.processor_rev_id;
498 }
499 
500 /*
501  * This scans the ucode blob for the proper container as we can have multiple
502  * containers glued together. Returns the equivalence ID from the equivalence
503  * table or 0 if none found.
504  * Returns the amount of bytes consumed while scanning. @desc contains all the
505  * data we're going to use in later stages of the application.
506  */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)507 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
508 {
509 	struct equiv_cpu_table table;
510 	size_t orig_size = size;
511 	u32 *hdr = (u32 *)ucode;
512 	u16 eq_id;
513 	u8 *buf;
514 
515 	if (!verify_equivalence_table(ucode, size))
516 		return 0;
517 
518 	buf = ucode;
519 
520 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
521 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
522 
523 	/*
524 	 * Find the equivalence ID of our CPU in this table. Even if this table
525 	 * doesn't contain a patch for the CPU, scan through the whole container
526 	 * so that it can be skipped in case there are other containers appended.
527 	 */
528 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
529 
530 	buf  += hdr[2] + CONTAINER_HDR_SZ;
531 	size -= hdr[2] + CONTAINER_HDR_SZ;
532 
533 	/*
534 	 * Scan through the rest of the container to find where it ends. We do
535 	 * some basic sanity-checking too.
536 	 */
537 	while (size > 0) {
538 		struct microcode_amd *mc;
539 		u32 patch_size;
540 		int ret;
541 
542 		ret = verify_patch(buf, size, &patch_size);
543 		if (ret < 0) {
544 			/*
545 			 * Patch verification failed, skip to the next container, if
546 			 * there is one. Before exit, check whether that container has
547 			 * found a patch already. If so, use it.
548 			 */
549 			goto out;
550 		} else if (ret > 0) {
551 			goto skip;
552 		}
553 
554 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
555 		if (mc_patch_matches(mc, eq_id)) {
556 			desc->psize = patch_size;
557 			desc->mc = mc;
558 		}
559 
560 skip:
561 		/* Skip patch section header too: */
562 		buf  += patch_size + SECTION_HDR_SIZE;
563 		size -= patch_size + SECTION_HDR_SIZE;
564 	}
565 
566 out:
567 	/*
568 	 * If we have found a patch (desc->mc), it means we're looking at the
569 	 * container which has a patch for this CPU so return 0 to mean, @ucode
570 	 * already points to the proper container. Otherwise, we return the size
571 	 * we scanned so that we can advance to the next container in the
572 	 * buffer.
573 	 */
574 	if (desc->mc) {
575 		desc->data = ucode;
576 		desc->size = orig_size - size;
577 
578 		return 0;
579 	}
580 
581 	return orig_size - size;
582 }
583 
584 /*
585  * Scan the ucode blob for the proper container as we can have multiple
586  * containers glued together.
587  */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)588 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
589 {
590 	while (size) {
591 		size_t s = parse_container(ucode, size, desc);
592 		if (!s)
593 			return;
594 
595 		/* catch wraparound */
596 		if (size >= s) {
597 			ucode += s;
598 			size  -= s;
599 		} else {
600 			return;
601 		}
602 	}
603 }
604 
__apply_microcode_amd(struct microcode_amd * mc,u32 * cur_rev,unsigned int psize)605 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
606 				  unsigned int psize)
607 {
608 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
609 
610 	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
611 		return false;
612 
613 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
614 
615 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
616 		unsigned long p_addr_end = p_addr + psize - 1;
617 
618 		invlpg(p_addr);
619 
620 		/*
621 		 * Flush next page too if patch image is crossing a page
622 		 * boundary.
623 		 */
624 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
625 			invlpg(p_addr_end);
626 	}
627 
628 	/* verify patch application was successful */
629 	*cur_rev = get_patch_level();
630 	if (*cur_rev != mc->hdr.patch_id)
631 		return false;
632 
633 	return true;
634 }
635 
636 
get_builtin_microcode(struct cpio_data * cp)637 static bool get_builtin_microcode(struct cpio_data *cp)
638 {
639 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
640 	u8 family = x86_family(bsp_cpuid_1_eax);
641 	struct firmware fw;
642 
643 	if (IS_ENABLED(CONFIG_X86_32))
644 		return false;
645 
646 	if (family >= 0x15)
647 		snprintf(fw_name, sizeof(fw_name),
648 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
649 
650 	if (firmware_request_builtin(&fw, fw_name)) {
651 		cp->size = fw.size;
652 		cp->data = (void *)fw.data;
653 		return true;
654 	}
655 
656 	return false;
657 }
658 
find_blobs_in_containers(struct cpio_data * ret)659 static bool __init find_blobs_in_containers(struct cpio_data *ret)
660 {
661 	struct cpio_data cp;
662 	bool found;
663 
664 	if (!get_builtin_microcode(&cp))
665 		cp = find_microcode_in_initrd(ucode_path);
666 
667 	found = cp.data && cp.size;
668 	if (found)
669 		*ret = cp;
670 
671 	return found;
672 }
673 
674 /*
675  * Early load occurs before we can vmalloc(). So we look for the microcode
676  * patch container file in initrd, traverse equivalent cpu table, look for a
677  * matching microcode patch, and update, all in initrd memory in place.
678  * When vmalloc() is available for use later -- on 64-bit during first AP load,
679  * and on 32-bit during save_microcode_in_initrd() -- we can call
680  * load_microcode_amd() to save equivalent cpu table and microcode patches in
681  * kernel heap memory.
682  */
load_ucode_amd_bsp(struct early_load_data * ed,unsigned int cpuid_1_eax)683 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
684 {
685 	struct cont_desc desc = { };
686 	struct microcode_amd *mc;
687 	struct cpio_data cp = { };
688 	char buf[4];
689 	u32 rev;
690 
691 	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
692 		if (!strncmp(buf, "off", 3)) {
693 			sha_check = false;
694 			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
695 			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
696 		}
697 	}
698 
699 	bsp_cpuid_1_eax = cpuid_1_eax;
700 
701 	rev = get_patch_level();
702 	ed->old_rev = rev;
703 
704 	/* Needed in load_microcode_amd() */
705 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
706 
707 	if (!find_blobs_in_containers(&cp))
708 		return;
709 
710 	scan_containers(cp.data, cp.size, &desc);
711 
712 	mc = desc.mc;
713 	if (!mc)
714 		return;
715 
716 	/*
717 	 * Allow application of the same revision to pick up SMT-specific
718 	 * changes even if the revision of the other SMT thread is already
719 	 * up-to-date.
720 	 */
721 	if (ed->old_rev > mc->hdr.patch_id)
722 		return;
723 
724 	if (__apply_microcode_amd(mc, &rev, desc.psize))
725 		ed->new_rev = rev;
726 }
727 
patch_cpus_equivalent(struct ucode_patch * p,struct ucode_patch * n,bool ignore_stepping)728 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
729 					 struct ucode_patch *n,
730 					 bool ignore_stepping)
731 {
732 	/* Zen and newer hardcode the f/m/s in the patch ID */
733         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
734 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
735 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
736 
737 		if (ignore_stepping) {
738 			p_cid.stepping = 0;
739 			n_cid.stepping = 0;
740 		}
741 
742 		return p_cid.full == n_cid.full;
743 	} else {
744 		return p->equiv_cpu == n->equiv_cpu;
745 	}
746 }
747 
748 /*
749  * a small, trivial cache of per-family ucode patches
750  */
cache_find_patch(struct ucode_cpu_info * uci,u16 equiv_cpu)751 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
752 {
753 	struct ucode_patch *p;
754 	struct ucode_patch n;
755 
756 	n.equiv_cpu = equiv_cpu;
757 	n.patch_id  = uci->cpu_sig.rev;
758 
759 	WARN_ON_ONCE(!n.patch_id);
760 
761 	list_for_each_entry(p, &microcode_cache, plist)
762 		if (patch_cpus_equivalent(p, &n, false))
763 			return p;
764 
765 	return NULL;
766 }
767 
patch_newer(struct ucode_patch * p,struct ucode_patch * n)768 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
769 {
770 	/* Zen and newer hardcode the f/m/s in the patch ID */
771         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
772 		union zen_patch_rev zp, zn;
773 
774 		zp.ucode_rev = p->patch_id;
775 		zn.ucode_rev = n->patch_id;
776 
777 		if (zn.stepping != zp.stepping)
778 			return -1;
779 
780 		return zn.rev > zp.rev;
781 	} else {
782 		return n->patch_id > p->patch_id;
783 	}
784 }
785 
update_cache(struct ucode_patch * new_patch)786 static void update_cache(struct ucode_patch *new_patch)
787 {
788 	struct ucode_patch *p;
789 	int ret;
790 
791 	list_for_each_entry(p, &microcode_cache, plist) {
792 		if (patch_cpus_equivalent(p, new_patch, true)) {
793 			ret = patch_newer(p, new_patch);
794 			if (ret < 0)
795 				continue;
796 			else if (!ret) {
797 				/* we already have the latest patch */
798 				kfree(new_patch->data);
799 				kfree(new_patch);
800 				return;
801 			}
802 
803 			list_replace(&p->plist, &new_patch->plist);
804 			kfree(p->data);
805 			kfree(p);
806 			return;
807 		}
808 	}
809 	/* no patch found, add it */
810 	list_add_tail(&new_patch->plist, &microcode_cache);
811 }
812 
free_cache(void)813 static void free_cache(void)
814 {
815 	struct ucode_patch *p, *tmp;
816 
817 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
818 		__list_del(p->plist.prev, p->plist.next);
819 		kfree(p->data);
820 		kfree(p);
821 	}
822 }
823 
find_patch(unsigned int cpu)824 static struct ucode_patch *find_patch(unsigned int cpu)
825 {
826 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
827 	u16 equiv_id = 0;
828 
829 	uci->cpu_sig.rev = get_patch_level();
830 
831 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
832 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
833 		if (!equiv_id)
834 			return NULL;
835 	}
836 
837 	return cache_find_patch(uci, equiv_id);
838 }
839 
reload_ucode_amd(unsigned int cpu)840 void reload_ucode_amd(unsigned int cpu)
841 {
842 	u32 rev, dummy __always_unused;
843 	struct microcode_amd *mc;
844 	struct ucode_patch *p;
845 
846 	p = find_patch(cpu);
847 	if (!p)
848 		return;
849 
850 	mc = p->data;
851 
852 	rev = get_patch_level();
853 	if (rev < mc->hdr.patch_id) {
854 		if (__apply_microcode_amd(mc, &rev, p->size))
855 			pr_info_once("reload revision: 0x%08x\n", rev);
856 	}
857 }
858 
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)859 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
860 {
861 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
862 	struct ucode_patch *p;
863 
864 	csig->sig = cpuid_eax(0x00000001);
865 	csig->rev = get_patch_level();
866 
867 	/*
868 	 * a patch could have been loaded early, set uci->mc so that
869 	 * mc_bp_resume() can call apply_microcode()
870 	 */
871 	p = find_patch(cpu);
872 	if (p && (p->patch_id == csig->rev))
873 		uci->mc = p->data;
874 
875 	return 0;
876 }
877 
apply_microcode_amd(int cpu)878 static enum ucode_state apply_microcode_amd(int cpu)
879 {
880 	struct cpuinfo_x86 *c = &cpu_data(cpu);
881 	struct microcode_amd *mc_amd;
882 	struct ucode_cpu_info *uci;
883 	struct ucode_patch *p;
884 	enum ucode_state ret;
885 	u32 rev;
886 
887 	BUG_ON(raw_smp_processor_id() != cpu);
888 
889 	uci = ucode_cpu_info + cpu;
890 
891 	p = find_patch(cpu);
892 	if (!p)
893 		return UCODE_NFOUND;
894 
895 	rev = uci->cpu_sig.rev;
896 
897 	mc_amd  = p->data;
898 	uci->mc = p->data;
899 
900 	/* need to apply patch? */
901 	if (rev > mc_amd->hdr.patch_id) {
902 		ret = UCODE_OK;
903 		goto out;
904 	}
905 
906 	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
907 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
908 			cpu, mc_amd->hdr.patch_id);
909 		return UCODE_ERROR;
910 	}
911 
912 	rev = mc_amd->hdr.patch_id;
913 	ret = UCODE_UPDATED;
914 
915 out:
916 	uci->cpu_sig.rev = rev;
917 	c->microcode	 = rev;
918 
919 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
920 	if (c->cpu_index == boot_cpu_data.cpu_index)
921 		boot_cpu_data.microcode = rev;
922 
923 	return ret;
924 }
925 
load_ucode_amd_ap(unsigned int cpuid_1_eax)926 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
927 {
928 	unsigned int cpu = smp_processor_id();
929 
930 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
931 	apply_microcode_amd(cpu);
932 }
933 
install_equiv_cpu_table(const u8 * buf,size_t buf_size)934 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
935 {
936 	u32 equiv_tbl_len;
937 	const u32 *hdr;
938 
939 	if (!verify_equivalence_table(buf, buf_size))
940 		return 0;
941 
942 	hdr = (const u32 *)buf;
943 	equiv_tbl_len = hdr[2];
944 
945 	/* Zen and newer do not need an equivalence table. */
946 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
947 		goto out;
948 
949 	equiv_table.entry = vmalloc(equiv_tbl_len);
950 	if (!equiv_table.entry) {
951 		pr_err("failed to allocate equivalent CPU table\n");
952 		return 0;
953 	}
954 
955 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
956 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
957 
958 out:
959 	/* add header length */
960 	return equiv_tbl_len + CONTAINER_HDR_SZ;
961 }
962 
free_equiv_cpu_table(void)963 static void free_equiv_cpu_table(void)
964 {
965 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
966 		return;
967 
968 	vfree(equiv_table.entry);
969 	memset(&equiv_table, 0, sizeof(equiv_table));
970 }
971 
cleanup(void)972 static void cleanup(void)
973 {
974 	free_equiv_cpu_table();
975 	free_cache();
976 }
977 
978 /*
979  * Return a non-negative value even if some of the checks failed so that
980  * we can skip over the next patch. If we return a negative value, we
981  * signal a grave error like a memory allocation has failed and the
982  * driver cannot continue functioning normally. In such cases, we tear
983  * down everything we've used up so far and exit.
984  */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)985 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
986 				unsigned int *patch_size)
987 {
988 	struct microcode_header_amd *mc_hdr;
989 	struct ucode_patch *patch;
990 	u16 proc_id;
991 	int ret;
992 
993 	ret = verify_patch(fw, leftover, patch_size);
994 	if (ret)
995 		return ret;
996 
997 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
998 	if (!patch) {
999 		pr_err("Patch allocation failure.\n");
1000 		return -EINVAL;
1001 	}
1002 
1003 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
1004 	if (!patch->data) {
1005 		pr_err("Patch data allocation failure.\n");
1006 		kfree(patch);
1007 		return -EINVAL;
1008 	}
1009 	patch->size = *patch_size;
1010 
1011 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1012 	proc_id     = mc_hdr->processor_rev_id;
1013 
1014 	INIT_LIST_HEAD(&patch->plist);
1015 	patch->patch_id  = mc_hdr->patch_id;
1016 	patch->equiv_cpu = proc_id;
1017 
1018 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1019 		 __func__, patch->patch_id, proc_id);
1020 
1021 	/* ... and add to cache. */
1022 	update_cache(patch);
1023 
1024 	return 0;
1025 }
1026 
1027 /* Scan the blob in @data and add microcode patches to the cache. */
__load_microcode_amd(u8 family,const u8 * data,size_t size)1028 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1029 {
1030 	u8 *fw = (u8 *)data;
1031 	size_t offset;
1032 
1033 	offset = install_equiv_cpu_table(data, size);
1034 	if (!offset)
1035 		return UCODE_ERROR;
1036 
1037 	fw   += offset;
1038 	size -= offset;
1039 
1040 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1041 		pr_err("invalid type field in container file section header\n");
1042 		free_equiv_cpu_table();
1043 		return UCODE_ERROR;
1044 	}
1045 
1046 	while (size > 0) {
1047 		unsigned int crnt_size = 0;
1048 		int ret;
1049 
1050 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1051 		if (ret < 0)
1052 			return UCODE_ERROR;
1053 
1054 		fw   +=  crnt_size + SECTION_HDR_SIZE;
1055 		size -= (crnt_size + SECTION_HDR_SIZE);
1056 	}
1057 
1058 	return UCODE_OK;
1059 }
1060 
_load_microcode_amd(u8 family,const u8 * data,size_t size)1061 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1062 {
1063 	enum ucode_state ret;
1064 
1065 	/* free old equiv table */
1066 	free_equiv_cpu_table();
1067 
1068 	ret = __load_microcode_amd(family, data, size);
1069 	if (ret != UCODE_OK)
1070 		cleanup();
1071 
1072 	return ret;
1073 }
1074 
load_microcode_amd(u8 family,const u8 * data,size_t size)1075 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1076 {
1077 	struct cpuinfo_x86 *c;
1078 	unsigned int nid, cpu;
1079 	struct ucode_patch *p;
1080 	enum ucode_state ret;
1081 
1082 	ret = _load_microcode_amd(family, data, size);
1083 	if (ret != UCODE_OK)
1084 		return ret;
1085 
1086 	for_each_node_with_cpus(nid) {
1087 		cpu = cpumask_first(cpumask_of_node(nid));
1088 		c = &cpu_data(cpu);
1089 
1090 		p = find_patch(cpu);
1091 		if (!p)
1092 			continue;
1093 
1094 		if (c->microcode >= p->patch_id)
1095 			continue;
1096 
1097 		ret = UCODE_NEW;
1098 	}
1099 
1100 	return ret;
1101 }
1102 
save_microcode_in_initrd(void)1103 static int __init save_microcode_in_initrd(void)
1104 {
1105 	struct cpuinfo_x86 *c = &boot_cpu_data;
1106 	struct cont_desc desc = { 0 };
1107 	unsigned int cpuid_1_eax;
1108 	enum ucode_state ret;
1109 	struct cpio_data cp;
1110 
1111 	if (microcode_loader_disabled() || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1112 		return 0;
1113 
1114 	cpuid_1_eax = native_cpuid_eax(1);
1115 
1116 	if (!find_blobs_in_containers(&cp))
1117 		return -EINVAL;
1118 
1119 	scan_containers(cp.data, cp.size, &desc);
1120 	if (!desc.mc)
1121 		return -EINVAL;
1122 
1123 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1124 	if (ret > UCODE_UPDATED)
1125 		return -EINVAL;
1126 
1127 	return 0;
1128 }
1129 early_initcall(save_microcode_in_initrd);
1130 
1131 /*
1132  * AMD microcode firmware naming convention, up to family 15h they are in
1133  * the legacy file:
1134  *
1135  *    amd-ucode/microcode_amd.bin
1136  *
1137  * This legacy file is always smaller than 2K in size.
1138  *
1139  * Beginning with family 15h, they are in family-specific firmware files:
1140  *
1141  *    amd-ucode/microcode_amd_fam15h.bin
1142  *    amd-ucode/microcode_amd_fam16h.bin
1143  *    ...
1144  *
1145  * These might be larger than 2K.
1146  */
request_microcode_amd(int cpu,struct device * device)1147 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1148 {
1149 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1150 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1151 	enum ucode_state ret = UCODE_NFOUND;
1152 	const struct firmware *fw;
1153 
1154 	if (force_minrev)
1155 		return UCODE_NFOUND;
1156 
1157 	if (c->x86 >= 0x15)
1158 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1159 
1160 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1161 		pr_debug("failed to load file %s\n", fw_name);
1162 		goto out;
1163 	}
1164 
1165 	ret = UCODE_ERROR;
1166 	if (!verify_container(fw->data, fw->size))
1167 		goto fw_release;
1168 
1169 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1170 
1171  fw_release:
1172 	release_firmware(fw);
1173 
1174  out:
1175 	return ret;
1176 }
1177 
microcode_fini_cpu_amd(int cpu)1178 static void microcode_fini_cpu_amd(int cpu)
1179 {
1180 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1181 
1182 	uci->mc = NULL;
1183 }
1184 
1185 static struct microcode_ops microcode_amd_ops = {
1186 	.request_microcode_fw	= request_microcode_amd,
1187 	.collect_cpu_info	= collect_cpu_info_amd,
1188 	.apply_microcode	= apply_microcode_amd,
1189 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1190 	.nmi_safe		= true,
1191 };
1192 
init_amd_microcode(void)1193 struct microcode_ops * __init init_amd_microcode(void)
1194 {
1195 	struct cpuinfo_x86 *c = &boot_cpu_data;
1196 
1197 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1198 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1199 		return NULL;
1200 	}
1201 	return &microcode_amd_ops;
1202 }
1203 
exit_amd_microcode(void)1204 void __exit exit_amd_microcode(void)
1205 {
1206 	cleanup();
1207 }
1208