xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision 722d4f06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/io.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/platform_device.h>
31 #include <linux/pm_runtime.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41 
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 #define DSI_CMD_FIFO_DEPTH  16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH   4
48 
49 #define DSI0_CTRL		0x00
50 
51 /* Command packet control. */
52 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C		0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
58 
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
63 /* Primary display where cmdfifo provides part of the payload and
64  * pixelvalve the rest.
65  */
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
67 /* Secondary display where cmdfifo provides part of the payload and
68  * pixfifo the rest.
69  */
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
71 
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
74 
75 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
77 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX	0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX	1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
83 /* BTA alone for getting error status after a command, or a TE trigger
84  * without a previous command.
85  */
86 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
87 
88 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
91 # define DSI_TXPKT1C_CMD_EN		BIT(0)
92 
93 /* Command packet header. */
94 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H		0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
98 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
100 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT	0
102 
103 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H		0x14
105 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
106 # define DSI_RXPKT1H_DET_ERR		BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
108 # define DSI_RXPKT1H_COR_ERR		BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
117 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
121 
122 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H		0x18
124 # define DSI_RXPKT1H_DET_ERR		BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
126 # define DSI_RXPKT1H_COR_ERR		BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
130 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT		0
132 
133 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO	0x1c
135 
136 #define DSI0_DISP0_CTRL		0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
141 # define DSI_DISP0_LP_STOP_DISABLE	0
142 # define DSI_DISP0_LP_STOP_PERLINE	1
143 # define DSI_DISP0_LP_STOP_PERFRAME	2
144 
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146  * of going to LP-STOP.
147  */
148 # define DSI_DISP_HACTIVE_NULL		BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL		BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL		BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL		BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT	5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END		BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT	2
161 # define DSI_PFORMAT_RGB565		0
162 # define DSI_PFORMAT_RGB666_PACKED	1
163 # define DSI_PFORMAT_RGB666		2
164 # define DSI_PFORMAT_RGB888		3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE		BIT(1)
167 # define DSI_DISP0_ENABLE		BIT(0)
168 
169 #define DSI0_DISP1_CTRL		0x1c
170 #define DSI1_DISP1_CTRL		0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT	1
174 # define DSI_DISP1_PFORMAT_16BIT	0
175 # define DSI_DISP1_PFORMAT_24BIT	1
176 # define DSI_DISP1_PFORMAT_32BIT_LE	2
177 # define DSI_DISP1_PFORMAT_32BIT_BE	3
178 
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE		BIT(0)
181 
182 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
183 
184 #define DSI0_INT_STAT			0x24
185 #define DSI0_INT_EN			0x28
186 # define DSI0_INT_FIFO_ERR		BIT(25)
187 # define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
188 # define DSI0_INT_CMDC_DONE_SHIFT	23
189 #  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
190 #  define DSI0_INT_CMDC_DONE_REPEAT		3
191 # define DSI0_INT_PHY_DIR_RTF		BIT(22)
192 # define DSI0_INT_PHY_D1_ULPS		BIT(21)
193 # define DSI0_INT_PHY_D1_STOP		BIT(20)
194 # define DSI0_INT_PHY_RXLPDT		BIT(19)
195 # define DSI0_INT_PHY_RXTRIG		BIT(18)
196 # define DSI0_INT_PHY_D0_ULPS		BIT(17)
197 # define DSI0_INT_PHY_D0_LPDT		BIT(16)
198 # define DSI0_INT_PHY_D0_FTR		BIT(15)
199 # define DSI0_INT_PHY_D0_STOP		BIT(14)
200 /* Signaled when the clock lane enters the given state. */
201 # define DSI0_INT_PHY_CLK_ULPS		BIT(13)
202 # define DSI0_INT_PHY_CLK_HS		BIT(12)
203 # define DSI0_INT_PHY_CLK_FTR		BIT(11)
204 /* Signaled on timeouts */
205 # define DSI0_INT_PR_TO			BIT(10)
206 # define DSI0_INT_TA_TO			BIT(9)
207 # define DSI0_INT_LPRX_TO		BIT(8)
208 # define DSI0_INT_HSTX_TO		BIT(7)
209 /* Contention on a line when trying to drive the line low */
210 # define DSI0_INT_ERR_CONT_LP1		BIT(6)
211 # define DSI0_INT_ERR_CONT_LP0		BIT(5)
212 /* Control error: incorrect line state sequence on data lane 0. */
213 # define DSI0_INT_ERR_CONTROL		BIT(4)
214 # define DSI0_INT_ERR_SYNC_ESC		BIT(3)
215 # define DSI0_INT_RX2_PKT		BIT(2)
216 # define DSI0_INT_RX1_PKT		BIT(1)
217 # define DSI0_INT_CMD_PKT		BIT(0)
218 
219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
220 					 DSI0_INT_ERR_CONTROL |	 \
221 					 DSI0_INT_ERR_CONT_LP0 | \
222 					 DSI0_INT_ERR_CONT_LP1 | \
223 					 DSI0_INT_HSTX_TO |	 \
224 					 DSI0_INT_LPRX_TO |	 \
225 					 DSI0_INT_TA_TO |	 \
226 					 DSI0_INT_PR_TO)
227 
228 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
229 # define DSI1_INT_PHY_D3_STOP		BIT(29)
230 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
231 # define DSI1_INT_PHY_D2_STOP		BIT(27)
232 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
233 # define DSI1_INT_PHY_D1_STOP		BIT(25)
234 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
235 # define DSI1_INT_PHY_D0_STOP		BIT(23)
236 # define DSI1_INT_FIFO_ERR		BIT(22)
237 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
238 # define DSI1_INT_PHY_RXLPDT		BIT(20)
239 # define DSI1_INT_PHY_RXTRIG		BIT(19)
240 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
241 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
242 
243 /* Signaled when the clock lane enters the given state. */
244 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
245 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
246 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
247 
248 /* Signaled on timeouts */
249 # define DSI1_INT_PR_TO			BIT(13)
250 # define DSI1_INT_TA_TO			BIT(12)
251 # define DSI1_INT_LPRX_TO		BIT(11)
252 # define DSI1_INT_HSTX_TO		BIT(10)
253 
254 /* Contention on a line when trying to drive the line low */
255 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
256 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
257 
258 /* Control error: incorrect line state sequence on data lane 0. */
259 # define DSI1_INT_ERR_CONTROL		BIT(7)
260 /* LPDT synchronization error (bits received not a multiple of 8. */
261 
262 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
263 /* Signaled after receiving an error packet from the display in
264  * response to a read.
265  */
266 # define DSI1_INT_RXPKT2		BIT(5)
267 /* Signaled after receiving a packet.  The header and optional short
268  * response will be in RXPKT1H, and a long response will be in the
269  * RXPKT_FIFO.
270  */
271 # define DSI1_INT_RXPKT1		BIT(4)
272 # define DSI1_INT_TXPKT2_DONE		BIT(3)
273 # define DSI1_INT_TXPKT2_END		BIT(2)
274 /* Signaled after all repeats of TXPKT1 are transferred. */
275 # define DSI1_INT_TXPKT1_DONE		BIT(1)
276 /* Signaled after each TXPKT1 repeat is scheduled. */
277 # define DSI1_INT_TXPKT1_END		BIT(0)
278 
279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
280 					 DSI1_INT_ERR_CONTROL |	 \
281 					 DSI1_INT_ERR_CONT_LP0 | \
282 					 DSI1_INT_ERR_CONT_LP1 | \
283 					 DSI1_INT_HSTX_TO |	 \
284 					 DSI1_INT_LPRX_TO |	 \
285 					 DSI1_INT_TA_TO |	 \
286 					 DSI1_INT_PR_TO)
287 
288 #define DSI0_STAT		0x2c
289 #define DSI0_HSTX_TO_CNT	0x30
290 #define DSI0_LPRX_TO_CNT	0x34
291 #define DSI0_TA_TO_CNT		0x38
292 #define DSI0_PR_TO_CNT		0x3c
293 #define DSI0_PHYC		0x40
294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
296 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
299 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
300 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
301 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
302 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
303 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
304 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
305 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
306 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
307 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
308 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
309 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
310 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
311 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
312 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
313 
314 #define DSI0_HS_CLT0		0x44
315 #define DSI0_HS_CLT1		0x48
316 #define DSI0_HS_CLT2		0x4c
317 #define DSI0_HS_DLT3		0x50
318 #define DSI0_HS_DLT4		0x54
319 #define DSI0_HS_DLT5		0x58
320 #define DSI0_HS_DLT6		0x5c
321 #define DSI0_HS_DLT7		0x60
322 
323 #define DSI0_PHY_AFEC0		0x64
324 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
325 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
326 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
343 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
344 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
345 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
346 # define DSI1_PHY_AFEC0_RESET			BIT(13)
347 # define DSI1_PHY_AFEC0_PD			BIT(12)
348 # define DSI0_PHY_AFEC0_RESET			BIT(11)
349 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
350 # define DSI0_PHY_AFEC0_PD			BIT(10)
351 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
352 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
353 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
354 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
355 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
356 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
358 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
360 
361 #define DSI0_PHY_AFEC1		0x68
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
368 
369 #define DSI0_TST_SEL		0x6c
370 #define DSI0_TST_MON		0x70
371 #define DSI0_ID			0x74
372 # define DSI_ID_VALUE		0x00647369
373 
374 #define DSI1_CTRL		0x00
375 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
376 # define DSI_CTRL_HS_CLKC_SHIFT		14
377 # define DSI_CTRL_HS_CLKC_BYTE		0
378 # define DSI_CTRL_HS_CLKC_DDR2		1
379 # define DSI_CTRL_HS_CLKC_DDR		2
380 
381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
382 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
383 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
384 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
385 # define DSI_CTRL_CAL_BYTE		BIT(9)
386 # define DSI_CTRL_INV_BYTE		BIT(8)
387 # define DSI_CTRL_CLR_LDF		BIT(7)
388 # define DSI0_CTRL_CLR_PBCF		BIT(6)
389 # define DSI1_CTRL_CLR_RXF		BIT(6)
390 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
391 # define DSI1_CTRL_CLR_PDF		BIT(5)
392 # define DSI0_CTRL_CLR_PDF		BIT(4)
393 # define DSI1_CTRL_CLR_CDF		BIT(4)
394 # define DSI0_CTRL_CLR_CDF		BIT(3)
395 # define DSI0_CTRL_CTRL2		BIT(2)
396 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
397 # define DSI0_CTRL_CTRL1		BIT(1)
398 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
399 # define DSI0_CTRL_CTRL0		BIT(0)
400 # define DSI1_CTRL_EN			BIT(0)
401 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
402 					 DSI0_CTRL_CLR_PBCF | \
403 					 DSI0_CTRL_CLR_CPBCF |	\
404 					 DSI0_CTRL_CLR_PDF | \
405 					 DSI0_CTRL_CLR_CDF)
406 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
407 					 DSI1_CTRL_CLR_RXF | \
408 					 DSI1_CTRL_CLR_PDF | \
409 					 DSI1_CTRL_CLR_CDF)
410 
411 #define DSI1_TXPKT2C		0x0c
412 #define DSI1_TXPKT2H		0x10
413 #define DSI1_TXPKT_PIX_FIFO	0x20
414 #define DSI1_RXPKT_FIFO		0x24
415 #define DSI1_DISP0_CTRL		0x28
416 #define DSI1_INT_STAT		0x30
417 #define DSI1_INT_EN		0x34
418 /* State reporting bits.  These mostly behave like INT_STAT, where
419  * writing a 1 clears the bit.
420  */
421 #define DSI1_STAT		0x38
422 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
423 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
424 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
425 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
426 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
427 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
428 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
429 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
430 # define DSI1_STAT_FIFO_ERR		BIT(23)
431 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
432 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
433 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
434 /* Set when in forward direction */
435 # define DSI1_STAT_PHY_DIR		BIT(19)
436 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
437 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
438 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
439 # define DSI1_STAT_PR_TO		BIT(15)
440 # define DSI1_STAT_TA_TO		BIT(14)
441 # define DSI1_STAT_LPRX_TO		BIT(13)
442 # define DSI1_STAT_HSTX_TO		BIT(12)
443 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
444 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
445 # define DSI1_STAT_ERR_CONTROL		BIT(9)
446 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
447 # define DSI1_STAT_RXPKT2		BIT(7)
448 # define DSI1_STAT_RXPKT1		BIT(6)
449 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
450 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
451 # define DSI1_STAT_TXPKT2_END		BIT(3)
452 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
453 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
454 # define DSI1_STAT_TXPKT1_END		BIT(0)
455 
456 #define DSI1_HSTX_TO_CNT	0x3c
457 #define DSI1_LPRX_TO_CNT	0x40
458 #define DSI1_TA_TO_CNT		0x44
459 #define DSI1_PR_TO_CNT		0x48
460 #define DSI1_PHYC		0x4c
461 
462 #define DSI1_HS_CLT0		0x50
463 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
464 # define DSI_HS_CLT0_CZERO_SHIFT	18
465 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
466 # define DSI_HS_CLT0_CPRE_SHIFT		9
467 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
468 # define DSI_HS_CLT0_CPREP_SHIFT	0
469 
470 #define DSI1_HS_CLT1		0x54
471 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
472 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
473 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
474 # define DSI_HS_CLT1_CPOST_SHIFT	0
475 
476 #define DSI1_HS_CLT2		0x58
477 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
478 # define DSI_HS_CLT2_WUP_SHIFT		0
479 
480 #define DSI1_HS_DLT3		0x5c
481 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
482 # define DSI_HS_DLT3_EXIT_SHIFT		18
483 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
484 # define DSI_HS_DLT3_ZERO_SHIFT		9
485 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
486 # define DSI_HS_DLT3_PRE_SHIFT		0
487 
488 #define DSI1_HS_DLT4		0x60
489 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
490 # define DSI_HS_DLT4_ANLAT_SHIFT	18
491 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
492 # define DSI_HS_DLT4_TRAIL_SHIFT	9
493 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
494 # define DSI_HS_DLT4_LPX_SHIFT		0
495 
496 #define DSI1_HS_DLT5		0x64
497 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
498 # define DSI_HS_DLT5_INIT_SHIFT		0
499 
500 #define DSI1_HS_DLT6		0x68
501 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
502 # define DSI_HS_DLT6_TA_GET_SHIFT	24
503 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
504 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
505 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
506 # define DSI_HS_DLT6_TA_GO_SHIFT	8
507 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
508 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
509 
510 #define DSI1_HS_DLT7		0x6c
511 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
512 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
513 
514 #define DSI1_PHY_AFEC0		0x70
515 
516 #define DSI1_PHY_AFEC1		0x74
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
527 
528 #define DSI1_TST_SEL		0x78
529 #define DSI1_TST_MON		0x7c
530 #define DSI1_PHY_TST1		0x80
531 #define DSI1_PHY_TST2		0x84
532 #define DSI1_PHY_FIFO_STAT	0x88
533 /* Actually, all registers in the range that aren't otherwise claimed
534  * will return the ID.
535  */
536 #define DSI1_ID			0x8c
537 
538 struct vc4_dsi_variant {
539 	/* Whether we're on bcm2835's DSI0 or DSI1. */
540 	unsigned int port;
541 
542 	bool broken_axi_workaround;
543 
544 	const char *debugfs_name;
545 	const struct debugfs_reg32 *regs;
546 	size_t nregs;
547 
548 };
549 
550 /* General DSI hardware state. */
551 struct vc4_dsi {
552 	struct vc4_encoder encoder;
553 	struct mipi_dsi_host dsi_host;
554 
555 	struct kref kref;
556 
557 	struct platform_device *pdev;
558 
559 	struct drm_bridge *out_bridge;
560 	struct drm_bridge bridge;
561 
562 	void __iomem *regs;
563 
564 	struct dma_chan *reg_dma_chan;
565 	dma_addr_t reg_dma_paddr;
566 	u32 *reg_dma_mem;
567 	dma_addr_t reg_paddr;
568 
569 	const struct vc4_dsi_variant *variant;
570 
571 	/* DSI channel for the panel we're connected to. */
572 	u32 channel;
573 	u32 lanes;
574 	u32 format;
575 	u32 divider;
576 	u32 mode_flags;
577 
578 	/* Input clock from CPRMAN to the digital PHY, for the DSI
579 	 * escape clock.
580 	 */
581 	struct clk *escape_clock;
582 
583 	/* Input clock to the analog PHY, used to generate the DSI bit
584 	 * clock.
585 	 */
586 	struct clk *pll_phy_clock;
587 
588 	/* HS Clocks generated within the DSI analog PHY. */
589 	struct clk_fixed_factor phy_clocks[3];
590 
591 	struct clk_hw_onecell_data *clk_onecell;
592 
593 	/* Pixel clock output to the pixelvalve, generated from the HS
594 	 * clock.
595 	 */
596 	struct clk *pixel_clock;
597 
598 	struct completion xfer_completion;
599 	int xfer_result;
600 
601 	struct debugfs_regset32 regset;
602 };
603 
604 #define host_to_dsi(host)					\
605 	container_of_const(host, struct vc4_dsi, dsi_host)
606 
607 #define to_vc4_dsi(_encoder)					\
608 	container_of_const(_encoder, struct vc4_dsi, encoder.base)
609 
610 #define bridge_to_vc4_dsi(_bridge)				\
611 	container_of_const(_bridge, struct vc4_dsi, bridge)
612 
613 static inline void
dsi_dma_workaround_write(struct vc4_dsi * dsi,u32 offset,u32 val)614 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
615 {
616 	struct dma_chan *chan = dsi->reg_dma_chan;
617 	struct dma_async_tx_descriptor *tx;
618 	dma_cookie_t cookie;
619 	int ret;
620 
621 	kunit_fail_current_test("Accessing a register in a unit test!\n");
622 
623 	/* DSI0 should be able to write normally. */
624 	if (!chan) {
625 		writel(val, dsi->regs + offset);
626 		return;
627 	}
628 
629 	*dsi->reg_dma_mem = val;
630 
631 	tx = chan->device->device_prep_dma_memcpy(chan,
632 						  dsi->reg_paddr + offset,
633 						  dsi->reg_dma_paddr,
634 						  4, 0);
635 	if (!tx) {
636 		DRM_ERROR("Failed to set up DMA register write\n");
637 		return;
638 	}
639 
640 	cookie = tx->tx_submit(tx);
641 	ret = dma_submit_error(cookie);
642 	if (ret) {
643 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
644 		return;
645 	}
646 	ret = dma_sync_wait(chan, cookie);
647 	if (ret)
648 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
649 }
650 
651 #define DSI_READ(offset)								\
652 	({										\
653 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
654 		readl(dsi->regs + (offset));						\
655 	})
656 
657 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
658 #define DSI_PORT_READ(offset) \
659 	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
660 #define DSI_PORT_WRITE(offset, val) \
661 	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
662 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
663 
664 static const struct debugfs_reg32 dsi0_regs[] = {
665 	VC4_REG32(DSI0_CTRL),
666 	VC4_REG32(DSI0_STAT),
667 	VC4_REG32(DSI0_HSTX_TO_CNT),
668 	VC4_REG32(DSI0_LPRX_TO_CNT),
669 	VC4_REG32(DSI0_TA_TO_CNT),
670 	VC4_REG32(DSI0_PR_TO_CNT),
671 	VC4_REG32(DSI0_DISP0_CTRL),
672 	VC4_REG32(DSI0_DISP1_CTRL),
673 	VC4_REG32(DSI0_INT_STAT),
674 	VC4_REG32(DSI0_INT_EN),
675 	VC4_REG32(DSI0_PHYC),
676 	VC4_REG32(DSI0_HS_CLT0),
677 	VC4_REG32(DSI0_HS_CLT1),
678 	VC4_REG32(DSI0_HS_CLT2),
679 	VC4_REG32(DSI0_HS_DLT3),
680 	VC4_REG32(DSI0_HS_DLT4),
681 	VC4_REG32(DSI0_HS_DLT5),
682 	VC4_REG32(DSI0_HS_DLT6),
683 	VC4_REG32(DSI0_HS_DLT7),
684 	VC4_REG32(DSI0_PHY_AFEC0),
685 	VC4_REG32(DSI0_PHY_AFEC1),
686 	VC4_REG32(DSI0_ID),
687 };
688 
689 static const struct debugfs_reg32 dsi1_regs[] = {
690 	VC4_REG32(DSI1_CTRL),
691 	VC4_REG32(DSI1_STAT),
692 	VC4_REG32(DSI1_HSTX_TO_CNT),
693 	VC4_REG32(DSI1_LPRX_TO_CNT),
694 	VC4_REG32(DSI1_TA_TO_CNT),
695 	VC4_REG32(DSI1_PR_TO_CNT),
696 	VC4_REG32(DSI1_DISP0_CTRL),
697 	VC4_REG32(DSI1_DISP1_CTRL),
698 	VC4_REG32(DSI1_INT_STAT),
699 	VC4_REG32(DSI1_INT_EN),
700 	VC4_REG32(DSI1_PHYC),
701 	VC4_REG32(DSI1_HS_CLT0),
702 	VC4_REG32(DSI1_HS_CLT1),
703 	VC4_REG32(DSI1_HS_CLT2),
704 	VC4_REG32(DSI1_HS_DLT3),
705 	VC4_REG32(DSI1_HS_DLT4),
706 	VC4_REG32(DSI1_HS_DLT5),
707 	VC4_REG32(DSI1_HS_DLT6),
708 	VC4_REG32(DSI1_HS_DLT7),
709 	VC4_REG32(DSI1_PHY_AFEC0),
710 	VC4_REG32(DSI1_PHY_AFEC1),
711 	VC4_REG32(DSI1_ID),
712 };
713 
vc4_dsi_latch_ulps(struct vc4_dsi * dsi,bool latch)714 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
715 {
716 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
717 
718 	if (latch)
719 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
720 	else
721 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
722 
723 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
724 }
725 
726 /* Enters or exits Ultra Low Power State. */
vc4_dsi_ulps(struct vc4_dsi * dsi,bool ulps)727 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
728 {
729 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
730 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
731 			 DSI_PHYC_DLANE0_ULPS |
732 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
733 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
734 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
735 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
736 			 DSI1_STAT_PHY_D0_ULPS |
737 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
738 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
739 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
740 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
741 			 DSI1_STAT_PHY_D0_STOP |
742 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
743 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
744 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
745 	int ret;
746 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
747 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
748 
749 	if (ulps == ulps_currently_enabled)
750 		return;
751 
752 	DSI_PORT_WRITE(STAT, stat_ulps);
753 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
754 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
755 	if (ret) {
756 		dev_warn(&dsi->pdev->dev,
757 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
758 			 DSI_PORT_READ(STAT));
759 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
760 		vc4_dsi_latch_ulps(dsi, false);
761 		return;
762 	}
763 
764 	/* The DSI module can't be disabled while the module is
765 	 * generating ULPS state.  So, to be able to disable the
766 	 * module, we have the AFE latch the ULPS state and continue
767 	 * on to having the module enter STOP.
768 	 */
769 	vc4_dsi_latch_ulps(dsi, ulps);
770 
771 	DSI_PORT_WRITE(STAT, stat_stop);
772 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
773 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
774 	if (ret) {
775 		dev_warn(&dsi->pdev->dev,
776 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
777 			 DSI_PORT_READ(STAT));
778 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
779 		return;
780 	}
781 }
782 
783 static u32
dsi_hs_timing(u32 ui_ns,u32 ns,u32 ui)784 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
785 {
786 	/* The HS timings have to be rounded up to a multiple of 8
787 	 * because we're using the byte clock.
788 	 */
789 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
790 }
791 
792 /* ESC always runs at 100Mhz. */
793 #define ESC_TIME_NS 10
794 
795 static u32
dsi_esc_timing(u32 ns)796 dsi_esc_timing(u32 ns)
797 {
798 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
799 }
800 
vc4_dsi_bridge_disable(struct drm_bridge * bridge,struct drm_bridge_state * state)801 static void vc4_dsi_bridge_disable(struct drm_bridge *bridge,
802 				   struct drm_bridge_state *state)
803 {
804 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
805 	u32 disp0_ctrl;
806 
807 	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
808 	disp0_ctrl &= ~DSI_DISP0_ENABLE;
809 	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
810 }
811 
vc4_dsi_bridge_post_disable(struct drm_bridge * bridge,struct drm_bridge_state * state)812 static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge,
813 					struct drm_bridge_state *state)
814 {
815 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
816 	struct device *dev = &dsi->pdev->dev;
817 
818 	clk_disable_unprepare(dsi->pll_phy_clock);
819 	clk_disable_unprepare(dsi->escape_clock);
820 	clk_disable_unprepare(dsi->pixel_clock);
821 
822 	pm_runtime_put(dev);
823 }
824 
825 /* Extends the mode's blank intervals to handle BCM2835's integer-only
826  * DSI PLL divider.
827  *
828  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
829  * driver since most peripherals are hanging off of the PLLD_PER
830  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
831  * the pixel clock), only has an integer divider off of DSI.
832  *
833  * To get our panel mode to refresh at the expected 60Hz, we need to
834  * extend the horizontal blank time.  This means we drive a
835  * higher-than-expected clock rate to the panel, but that's what the
836  * firmware does too.
837  */
vc4_dsi_bridge_mode_fixup(struct drm_bridge * bridge,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)838 static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
839 				      const struct drm_display_mode *mode,
840 				      struct drm_display_mode *adjusted_mode)
841 {
842 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
843 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
844 	unsigned long parent_rate = clk_get_rate(phy_parent);
845 	unsigned long pixel_clock_hz = mode->clock * 1000;
846 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
847 	int divider;
848 
849 	/* Find what divider gets us a faster clock than the requested
850 	 * pixel clock.
851 	 */
852 	for (divider = 1; divider < 255; divider++) {
853 		if (parent_rate / (divider + 1) < pll_clock)
854 			break;
855 	}
856 
857 	/* Now that we've picked a PLL divider, calculate back to its
858 	 * pixel clock.
859 	 */
860 	pll_clock = parent_rate / divider;
861 	pixel_clock_hz = pll_clock / dsi->divider;
862 
863 	adjusted_mode->clock = pixel_clock_hz / 1000;
864 
865 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
866 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
867 				mode->clock;
868 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
869 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
870 
871 	return true;
872 }
873 
vc4_dsi_bridge_pre_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_state)874 static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge,
875 				      struct drm_bridge_state *old_state)
876 {
877 	struct drm_atomic_state *state = old_state->base.state;
878 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
879 	const struct drm_crtc_state *crtc_state;
880 	struct device *dev = &dsi->pdev->dev;
881 	const struct drm_display_mode *mode;
882 	struct drm_connector *connector;
883 	bool debug_dump_regs = false;
884 	unsigned long hs_clock;
885 	struct drm_crtc *crtc;
886 	u32 ui_ns;
887 	/* Minimum LP state duration in escape clock cycles. */
888 	u32 lpx = dsi_esc_timing(60);
889 	unsigned long pixel_clock_hz;
890 	unsigned long dsip_clock;
891 	unsigned long phy_clock;
892 	int ret;
893 
894 	ret = pm_runtime_resume_and_get(dev);
895 	if (ret) {
896 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
897 		return;
898 	}
899 
900 	if (debug_dump_regs) {
901 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
902 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
903 		drm_print_regset32(&p, &dsi->regset);
904 	}
905 
906 	/*
907 	 * Retrieve the CRTC adjusted mode. This requires a little dance to go
908 	 * from the bridge to the encoder, to the connector and to the CRTC.
909 	 */
910 	connector = drm_atomic_get_new_connector_for_encoder(state,
911 							     bridge->encoder);
912 	crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
913 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
914 	mode = &crtc_state->adjusted_mode;
915 
916 	pixel_clock_hz = mode->clock * 1000;
917 
918 	/* Round up the clk_set_rate() request slightly, since
919 	 * PLLD_DSI1 is an integer divider and its rate selection will
920 	 * never round up.
921 	 */
922 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
923 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
924 	if (ret) {
925 		dev_err(&dsi->pdev->dev,
926 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
927 	}
928 
929 	/* Reset the DSI and all its fifos. */
930 	DSI_PORT_WRITE(CTRL,
931 		       DSI_CTRL_SOFT_RESET_CFG |
932 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
933 
934 	DSI_PORT_WRITE(CTRL,
935 		       DSI_CTRL_HSDT_EOT_DISABLE |
936 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
937 
938 	/* Clear all stat bits so we see what has happened during enable. */
939 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
940 
941 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
942 	if (dsi->variant->port == 0) {
943 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
944 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
945 
946 		if (dsi->lanes < 2)
947 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
948 
949 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
950 			afec0 |= DSI0_PHY_AFEC0_RESET;
951 
952 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
953 
954 		/* AFEC reset hold time */
955 		mdelay(1);
956 
957 		DSI_PORT_WRITE(PHY_AFEC1,
958 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
959 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
960 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
961 	} else {
962 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
963 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
964 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
965 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
966 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
967 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
968 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
969 
970 		if (dsi->lanes < 4)
971 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
972 		if (dsi->lanes < 3)
973 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
974 		if (dsi->lanes < 2)
975 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
976 
977 		afec0 |= DSI1_PHY_AFEC0_RESET;
978 
979 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
980 
981 		DSI_PORT_WRITE(PHY_AFEC1, 0);
982 
983 		/* AFEC reset hold time */
984 		mdelay(1);
985 	}
986 
987 	ret = clk_prepare_enable(dsi->escape_clock);
988 	if (ret) {
989 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
990 		return;
991 	}
992 
993 	ret = clk_prepare_enable(dsi->pll_phy_clock);
994 	if (ret) {
995 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
996 		return;
997 	}
998 
999 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
1000 
1001 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1002 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
1003 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1004 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
1005 	 * and HS_CLKC is fed into the PV to divide down to the actual
1006 	 * pixel clock for pushing pixels into DSI.
1007 	 */
1008 	dsip_clock = phy_clock / 8;
1009 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1010 	if (ret) {
1011 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1012 			dsip_clock, ret);
1013 	}
1014 
1015 	ret = clk_prepare_enable(dsi->pixel_clock);
1016 	if (ret) {
1017 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1018 		return;
1019 	}
1020 
1021 	/* How many ns one DSI unit interval is.  Note that the clock
1022 	 * is DDR, so there's an extra divide by 2.
1023 	 */
1024 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1025 
1026 	DSI_PORT_WRITE(HS_CLT0,
1027 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1028 				     DSI_HS_CLT0_CZERO) |
1029 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1030 				     DSI_HS_CLT0_CPRE) |
1031 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1032 				     DSI_HS_CLT0_CPREP));
1033 
1034 	DSI_PORT_WRITE(HS_CLT1,
1035 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1036 				     DSI_HS_CLT1_CTRAIL) |
1037 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1038 				     DSI_HS_CLT1_CPOST));
1039 
1040 	DSI_PORT_WRITE(HS_CLT2,
1041 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1042 				     DSI_HS_CLT2_WUP));
1043 
1044 	DSI_PORT_WRITE(HS_DLT3,
1045 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1046 				     DSI_HS_DLT3_EXIT) |
1047 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1048 				     DSI_HS_DLT3_ZERO) |
1049 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1050 				     DSI_HS_DLT3_PRE));
1051 
1052 	DSI_PORT_WRITE(HS_DLT4,
1053 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1054 				     DSI_HS_DLT4_LPX) |
1055 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1056 					 dsi_hs_timing(ui_ns, 60, 4)),
1057 				     DSI_HS_DLT4_TRAIL) |
1058 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1059 
1060 	/* T_INIT is how long STOP is driven after power-up to
1061 	 * indicate to the slave (also coming out of power-up) that
1062 	 * master init is complete, and should be greater than the
1063 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1064 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1065 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1066 	 * greater minimums.  The vc4 firmware uses an extremely
1067 	 * conservative 5ms, and we maintain that here.
1068 	 */
1069 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1070 							    5 * 1000 * 1000, 0),
1071 					      DSI_HS_DLT5_INIT));
1072 
1073 	DSI_PORT_WRITE(HS_DLT6,
1074 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1075 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1076 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1077 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1078 
1079 	DSI_PORT_WRITE(HS_DLT7,
1080 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1081 				     DSI_HS_DLT7_LP_WUP));
1082 
1083 	DSI_PORT_WRITE(PHYC,
1084 		       DSI_PHYC_DLANE0_ENABLE |
1085 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1086 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1087 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1088 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1089 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1090 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1091 		       (dsi->variant->port == 0 ?
1092 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1093 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1094 
1095 	DSI_PORT_WRITE(CTRL,
1096 		       DSI_PORT_READ(CTRL) |
1097 		       DSI_CTRL_CAL_BYTE);
1098 
1099 	/* HS timeout in HS clock cycles: disabled. */
1100 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1101 	/* LP receive timeout in HS clocks. */
1102 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1103 	/* Bus turnaround timeout */
1104 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1105 	/* Display reset sequence timeout */
1106 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1107 
1108 	/* Set up DISP1 for transferring long command payloads through
1109 	 * the pixfifo.
1110 	 */
1111 	DSI_PORT_WRITE(DISP1_CTRL,
1112 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1113 				     DSI_DISP1_PFORMAT) |
1114 		       DSI_DISP1_ENABLE);
1115 
1116 	/* Ungate the block. */
1117 	if (dsi->variant->port == 0)
1118 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1119 	else
1120 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1121 
1122 	/* Bring AFE out of reset. */
1123 	DSI_PORT_WRITE(PHY_AFEC0,
1124 		       DSI_PORT_READ(PHY_AFEC0) &
1125 		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1126 
1127 	vc4_dsi_ulps(dsi, false);
1128 
1129 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1130 		DSI_PORT_WRITE(DISP0_CTRL,
1131 			       VC4_SET_FIELD(dsi->divider,
1132 					     DSI_DISP0_PIX_CLK_DIV) |
1133 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1134 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1135 					     DSI_DISP0_LP_STOP_CTRL) |
1136 			       DSI_DISP0_ST_END);
1137 	} else {
1138 		DSI_PORT_WRITE(DISP0_CTRL,
1139 			       DSI_DISP0_COMMAND_MODE);
1140 	}
1141 }
1142 
vc4_dsi_bridge_enable(struct drm_bridge * bridge,struct drm_bridge_state * old_state)1143 static void vc4_dsi_bridge_enable(struct drm_bridge *bridge,
1144 				  struct drm_bridge_state *old_state)
1145 {
1146 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1147 	bool debug_dump_regs = false;
1148 	u32 disp0_ctrl;
1149 
1150 	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
1151 	disp0_ctrl |= DSI_DISP0_ENABLE;
1152 	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
1153 
1154 	if (debug_dump_regs) {
1155 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1156 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1157 		drm_print_regset32(&p, &dsi->regset);
1158 	}
1159 }
1160 
vc4_dsi_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)1161 static int vc4_dsi_bridge_attach(struct drm_bridge *bridge,
1162 				 enum drm_bridge_attach_flags flags)
1163 {
1164 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1165 
1166 	/* Attach the panel or bridge to the dsi bridge */
1167 	return drm_bridge_attach(bridge->encoder, dsi->out_bridge,
1168 				 &dsi->bridge, flags);
1169 }
1170 
vc4_dsi_host_transfer(struct mipi_dsi_host * host,const struct mipi_dsi_msg * msg)1171 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1172 				     const struct mipi_dsi_msg *msg)
1173 {
1174 	struct vc4_dsi *dsi = host_to_dsi(host);
1175 	struct mipi_dsi_packet packet;
1176 	u32 pkth = 0, pktc = 0;
1177 	int i, ret;
1178 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1179 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1180 
1181 	mipi_dsi_create_packet(&packet, msg);
1182 
1183 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1184 	pkth |= VC4_SET_FIELD(packet.header[1] |
1185 			      (packet.header[2] << 8),
1186 			      DSI_TXPKT1H_BC_PARAM);
1187 	if (is_long) {
1188 		/* Divide data across the various FIFOs we have available.
1189 		 * The command FIFO takes byte-oriented data, but is of
1190 		 * limited size. The pixel FIFO (never actually used for
1191 		 * pixel data in reality) is word oriented, and substantially
1192 		 * larger. So, we use the pixel FIFO for most of the data,
1193 		 * sending the residual bytes in the command FIFO at the start.
1194 		 *
1195 		 * With this arrangement, the command FIFO will never get full.
1196 		 */
1197 		if (packet.payload_length <= 16) {
1198 			cmd_fifo_len = packet.payload_length;
1199 			pix_fifo_len = 0;
1200 		} else {
1201 			cmd_fifo_len = (packet.payload_length %
1202 					DSI_PIX_FIFO_WIDTH);
1203 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1204 					DSI_PIX_FIFO_WIDTH);
1205 		}
1206 
1207 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1208 
1209 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1210 	}
1211 
1212 	if (msg->rx_len) {
1213 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1214 				      DSI_TXPKT1C_CMD_CTRL);
1215 	} else {
1216 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1217 				      DSI_TXPKT1C_CMD_CTRL);
1218 	}
1219 
1220 	for (i = 0; i < cmd_fifo_len; i++)
1221 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1222 	for (i = 0; i < pix_fifo_len; i++) {
1223 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1224 
1225 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1226 			       pix[0] |
1227 			       pix[1] << 8 |
1228 			       pix[2] << 16 |
1229 			       pix[3] << 24);
1230 	}
1231 
1232 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1233 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1234 	if (is_long)
1235 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1236 
1237 	/* Send one copy of the packet.  Larger repeats are used for pixel
1238 	 * data in command mode.
1239 	 */
1240 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1241 
1242 	pktc |= DSI_TXPKT1C_CMD_EN;
1243 	if (pix_fifo_len) {
1244 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1245 				      DSI_TXPKT1C_DISPLAY_NO);
1246 	} else {
1247 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1248 				      DSI_TXPKT1C_DISPLAY_NO);
1249 	}
1250 
1251 	/* Enable the appropriate interrupt for the transfer completion. */
1252 	dsi->xfer_result = 0;
1253 	reinit_completion(&dsi->xfer_completion);
1254 	if (dsi->variant->port == 0) {
1255 		DSI_PORT_WRITE(INT_STAT,
1256 			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1257 		if (msg->rx_len) {
1258 			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1259 						DSI0_INT_PHY_DIR_RTF));
1260 		} else {
1261 			DSI_PORT_WRITE(INT_EN,
1262 				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1263 					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1264 						      DSI0_INT_CMDC_DONE)));
1265 		}
1266 	} else {
1267 		DSI_PORT_WRITE(INT_STAT,
1268 			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1269 		if (msg->rx_len) {
1270 			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1271 						DSI1_INT_PHY_DIR_RTF));
1272 		} else {
1273 			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1274 						DSI1_INT_TXPKT1_DONE));
1275 		}
1276 	}
1277 
1278 	/* Send the packet. */
1279 	DSI_PORT_WRITE(TXPKT1H, pkth);
1280 	DSI_PORT_WRITE(TXPKT1C, pktc);
1281 
1282 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1283 					 msecs_to_jiffies(1000))) {
1284 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1285 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1286 			DSI_PORT_READ(INT_STAT));
1287 		ret = -ETIMEDOUT;
1288 	} else {
1289 		ret = dsi->xfer_result;
1290 	}
1291 
1292 	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1293 
1294 	if (ret)
1295 		goto reset_fifo_and_return;
1296 
1297 	if (ret == 0 && msg->rx_len) {
1298 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1299 		u8 *msg_rx = msg->rx_buf;
1300 
1301 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1302 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1303 						  DSI_RXPKT1H_BC_PARAM);
1304 
1305 			if (rxlen != msg->rx_len) {
1306 				DRM_ERROR("DSI returned %db, expecting %db\n",
1307 					  rxlen, (int)msg->rx_len);
1308 				ret = -ENXIO;
1309 				goto reset_fifo_and_return;
1310 			}
1311 
1312 			for (i = 0; i < msg->rx_len; i++)
1313 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1314 		} else {
1315 			/* FINISHME: Handle AWER */
1316 
1317 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1318 						  DSI_RXPKT1H_SHORT_0);
1319 			if (msg->rx_len > 1) {
1320 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1321 							  DSI_RXPKT1H_SHORT_1);
1322 			}
1323 		}
1324 	}
1325 
1326 	return ret;
1327 
1328 reset_fifo_and_return:
1329 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1330 
1331 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1332 	udelay(1);
1333 	DSI_PORT_WRITE(CTRL,
1334 		       DSI_PORT_READ(CTRL) |
1335 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1336 
1337 	DSI_PORT_WRITE(TXPKT1C, 0);
1338 	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1339 	return ret;
1340 }
1341 
1342 static const struct component_ops vc4_dsi_ops;
vc4_dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1343 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1344 			       struct mipi_dsi_device *device)
1345 {
1346 	struct vc4_dsi *dsi = host_to_dsi(host);
1347 	int ret;
1348 
1349 	dsi->lanes = device->lanes;
1350 	dsi->channel = device->channel;
1351 	dsi->mode_flags = device->mode_flags;
1352 
1353 	switch (device->format) {
1354 	case MIPI_DSI_FMT_RGB888:
1355 		dsi->format = DSI_PFORMAT_RGB888;
1356 		dsi->divider = 24 / dsi->lanes;
1357 		break;
1358 	case MIPI_DSI_FMT_RGB666:
1359 		dsi->format = DSI_PFORMAT_RGB666;
1360 		dsi->divider = 24 / dsi->lanes;
1361 		break;
1362 	case MIPI_DSI_FMT_RGB666_PACKED:
1363 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1364 		dsi->divider = 18 / dsi->lanes;
1365 		break;
1366 	case MIPI_DSI_FMT_RGB565:
1367 		dsi->format = DSI_PFORMAT_RGB565;
1368 		dsi->divider = 16 / dsi->lanes;
1369 		break;
1370 	default:
1371 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1372 			dsi->format);
1373 		return 0;
1374 	}
1375 
1376 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1377 		dev_err(&dsi->pdev->dev,
1378 			"Only VIDEO mode panels supported currently.\n");
1379 		return 0;
1380 	}
1381 
1382 	drm_bridge_add(&dsi->bridge);
1383 
1384 	ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1385 	if (ret) {
1386 		drm_bridge_remove(&dsi->bridge);
1387 		return ret;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
vc4_dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1393 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1394 			       struct mipi_dsi_device *device)
1395 {
1396 	struct vc4_dsi *dsi = host_to_dsi(host);
1397 
1398 	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1399 	drm_bridge_remove(&dsi->bridge);
1400 	return 0;
1401 }
1402 
1403 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1404 	.attach = vc4_dsi_host_attach,
1405 	.detach = vc4_dsi_host_detach,
1406 	.transfer = vc4_dsi_host_transfer,
1407 };
1408 
1409 static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = {
1410 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1411 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1412 	.atomic_reset = drm_atomic_helper_bridge_reset,
1413 	.atomic_pre_enable = vc4_dsi_bridge_pre_enable,
1414 	.atomic_enable = vc4_dsi_bridge_enable,
1415 	.atomic_disable = vc4_dsi_bridge_disable,
1416 	.atomic_post_disable = vc4_dsi_bridge_post_disable,
1417 	.attach = vc4_dsi_bridge_attach,
1418 	.mode_fixup = vc4_dsi_bridge_mode_fixup,
1419 };
1420 
vc4_dsi_late_register(struct drm_encoder * encoder)1421 static int vc4_dsi_late_register(struct drm_encoder *encoder)
1422 {
1423 	struct drm_device *drm = encoder->dev;
1424 	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1425 
1426 	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1427 
1428 	return 0;
1429 }
1430 
1431 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1432 	.late_register = vc4_dsi_late_register,
1433 };
1434 
1435 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1436 	.port			= 1,
1437 	.debugfs_name		= "dsi1_regs",
1438 	.regs			= dsi1_regs,
1439 	.nregs			= ARRAY_SIZE(dsi1_regs),
1440 };
1441 
1442 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1443 	.port			= 0,
1444 	.debugfs_name		= "dsi0_regs",
1445 	.regs			= dsi0_regs,
1446 	.nregs			= ARRAY_SIZE(dsi0_regs),
1447 };
1448 
1449 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1450 	.port			= 1,
1451 	.broken_axi_workaround	= true,
1452 	.debugfs_name		= "dsi1_regs",
1453 	.regs			= dsi1_regs,
1454 	.nregs			= ARRAY_SIZE(dsi1_regs),
1455 };
1456 
1457 static const struct of_device_id vc4_dsi_dt_match[] = {
1458 	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1459 	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1460 	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1461 	{}
1462 };
1463 
dsi_handle_error(struct vc4_dsi * dsi,irqreturn_t * ret,u32 stat,u32 bit,const char * type)1464 static void dsi_handle_error(struct vc4_dsi *dsi,
1465 			     irqreturn_t *ret, u32 stat, u32 bit,
1466 			     const char *type)
1467 {
1468 	if (!(stat & bit))
1469 		return;
1470 
1471 	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1472 	*ret = IRQ_HANDLED;
1473 }
1474 
1475 /*
1476  * Initial handler for port 1 where we need the reg_dma workaround.
1477  * The register DMA writes sleep, so we can't do it in the top half.
1478  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1479  * parent interrupt contrller until our interrupt thread is done.
1480  */
vc4_dsi_irq_defer_to_thread_handler(int irq,void * data)1481 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1482 {
1483 	struct vc4_dsi *dsi = data;
1484 	u32 stat = DSI_PORT_READ(INT_STAT);
1485 
1486 	if (!stat)
1487 		return IRQ_NONE;
1488 
1489 	return IRQ_WAKE_THREAD;
1490 }
1491 
1492 /*
1493  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1494  * 1 where we need the reg_dma workaround.
1495  */
vc4_dsi_irq_handler(int irq,void * data)1496 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1497 {
1498 	struct vc4_dsi *dsi = data;
1499 	u32 stat = DSI_PORT_READ(INT_STAT);
1500 	irqreturn_t ret = IRQ_NONE;
1501 
1502 	DSI_PORT_WRITE(INT_STAT, stat);
1503 
1504 	dsi_handle_error(dsi, &ret, stat,
1505 			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1506 	dsi_handle_error(dsi, &ret, stat,
1507 			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1508 	dsi_handle_error(dsi, &ret, stat,
1509 			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1510 	dsi_handle_error(dsi, &ret, stat,
1511 			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1512 	dsi_handle_error(dsi, &ret, stat,
1513 			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1514 	dsi_handle_error(dsi, &ret, stat,
1515 			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1516 	dsi_handle_error(dsi, &ret, stat,
1517 			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1518 	dsi_handle_error(dsi, &ret, stat,
1519 			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1520 
1521 	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1522 					  DSI0_INT_CMDC_DONE_MASK) |
1523 		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1524 		complete(&dsi->xfer_completion);
1525 		ret = IRQ_HANDLED;
1526 	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1527 		complete(&dsi->xfer_completion);
1528 		dsi->xfer_result = -ETIMEDOUT;
1529 		ret = IRQ_HANDLED;
1530 	}
1531 
1532 	return ret;
1533 }
1534 
1535 /**
1536  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1537  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1538  * @dsi: DSI encoder
1539  */
1540 static int
vc4_dsi_init_phy_clocks(struct vc4_dsi * dsi)1541 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1542 {
1543 	struct device *dev = &dsi->pdev->dev;
1544 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1545 	static const struct {
1546 		const char *name;
1547 		int div;
1548 	} phy_clocks[] = {
1549 		{ "byte", 8 },
1550 		{ "ddr2", 4 },
1551 		{ "ddr", 2 },
1552 	};
1553 	int i;
1554 
1555 	dsi->clk_onecell = devm_kzalloc(dev,
1556 					sizeof(*dsi->clk_onecell) +
1557 					ARRAY_SIZE(phy_clocks) *
1558 					sizeof(struct clk_hw *),
1559 					GFP_KERNEL);
1560 	if (!dsi->clk_onecell)
1561 		return -ENOMEM;
1562 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1563 
1564 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1565 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1566 		struct clk_init_data init;
1567 		char clk_name[16];
1568 		int ret;
1569 
1570 		snprintf(clk_name, sizeof(clk_name),
1571 			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1572 
1573 		/* We just use core fixed factor clock ops for the PHY
1574 		 * clocks.  The clocks are actually gated by the
1575 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1576 		 * setting if we use the DDR/DDR2 clocks.  However,
1577 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1578 		 * setting both our parent DSI PLL's rate and this
1579 		 * clock's rate, so it knows if DDR/DDR2 are going to
1580 		 * be used and could enable the gates itself.
1581 		 */
1582 		fix->mult = 1;
1583 		fix->div = phy_clocks[i].div;
1584 		fix->hw.init = &init;
1585 
1586 		memset(&init, 0, sizeof(init));
1587 		init.parent_names = &parent_name;
1588 		init.num_parents = 1;
1589 		init.name = clk_name;
1590 		init.ops = &clk_fixed_factor_ops;
1591 
1592 		ret = devm_clk_hw_register(dev, &fix->hw);
1593 		if (ret)
1594 			return ret;
1595 
1596 		dsi->clk_onecell->hws[i] = &fix->hw;
1597 	}
1598 
1599 	return of_clk_add_hw_provider(dev->of_node,
1600 				      of_clk_hw_onecell_get,
1601 				      dsi->clk_onecell);
1602 }
1603 
vc4_dsi_dma_mem_release(void * ptr)1604 static void vc4_dsi_dma_mem_release(void *ptr)
1605 {
1606 	struct vc4_dsi *dsi = ptr;
1607 	struct device *dev = &dsi->pdev->dev;
1608 
1609 	dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1610 	dsi->reg_dma_mem = NULL;
1611 }
1612 
vc4_dsi_dma_chan_release(void * ptr)1613 static void vc4_dsi_dma_chan_release(void *ptr)
1614 {
1615 	struct vc4_dsi *dsi = ptr;
1616 
1617 	dma_release_channel(dsi->reg_dma_chan);
1618 	dsi->reg_dma_chan = NULL;
1619 }
1620 
vc4_dsi_release(struct kref * kref)1621 static void vc4_dsi_release(struct kref *kref)
1622 {
1623 	struct vc4_dsi *dsi =
1624 		container_of(kref, struct vc4_dsi, kref);
1625 
1626 	kfree(dsi);
1627 }
1628 
vc4_dsi_get(struct vc4_dsi * dsi)1629 static void vc4_dsi_get(struct vc4_dsi *dsi)
1630 {
1631 	kref_get(&dsi->kref);
1632 }
1633 
vc4_dsi_put(struct vc4_dsi * dsi)1634 static void vc4_dsi_put(struct vc4_dsi *dsi)
1635 {
1636 	kref_put(&dsi->kref, &vc4_dsi_release);
1637 }
1638 
vc4_dsi_release_action(struct drm_device * drm,void * ptr)1639 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1640 {
1641 	struct vc4_dsi *dsi = ptr;
1642 
1643 	vc4_dsi_put(dsi);
1644 }
1645 
vc4_dsi_bind(struct device * dev,struct device * master,void * data)1646 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1647 {
1648 	struct platform_device *pdev = to_platform_device(dev);
1649 	struct drm_device *drm = dev_get_drvdata(master);
1650 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1651 	struct drm_encoder *encoder = &dsi->encoder.base;
1652 	int ret;
1653 
1654 	vc4_dsi_get(dsi);
1655 
1656 	ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1657 	if (ret)
1658 		return ret;
1659 
1660 	dsi->variant = of_device_get_match_data(dev);
1661 
1662 	dsi->encoder.type = dsi->variant->port ?
1663 		VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1664 
1665 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1666 	if (IS_ERR(dsi->regs))
1667 		return PTR_ERR(dsi->regs);
1668 
1669 	dsi->regset.base = dsi->regs;
1670 	dsi->regset.regs = dsi->variant->regs;
1671 	dsi->regset.nregs = dsi->variant->nregs;
1672 
1673 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1674 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1675 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1676 		return -ENODEV;
1677 	}
1678 
1679 	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1680 	 * writes from the ARM.  It does handle writes from the DMA engine,
1681 	 * so set up a channel for talking to it.
1682 	 */
1683 	if (dsi->variant->broken_axi_workaround) {
1684 		dma_cap_mask_t dma_mask;
1685 
1686 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1687 						      &dsi->reg_dma_paddr,
1688 						      GFP_KERNEL);
1689 		if (!dsi->reg_dma_mem) {
1690 			DRM_ERROR("Failed to get DMA memory\n");
1691 			return -ENOMEM;
1692 		}
1693 
1694 		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1695 		if (ret)
1696 			return ret;
1697 
1698 		dma_cap_zero(dma_mask);
1699 		dma_cap_set(DMA_MEMCPY, dma_mask);
1700 
1701 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1702 		if (IS_ERR(dsi->reg_dma_chan)) {
1703 			ret = PTR_ERR(dsi->reg_dma_chan);
1704 			if (ret != -EPROBE_DEFER)
1705 				DRM_ERROR("Failed to get DMA channel: %d\n",
1706 					  ret);
1707 			return ret;
1708 		}
1709 
1710 		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1711 		if (ret)
1712 			return ret;
1713 
1714 		/* Get the physical address of the device's registers.  The
1715 		 * struct resource for the regs gives us the bus address
1716 		 * instead.
1717 		 */
1718 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1719 							     0, NULL, NULL));
1720 	}
1721 
1722 	init_completion(&dsi->xfer_completion);
1723 	/* At startup enable error-reporting interrupts and nothing else. */
1724 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1725 	/* Clear any existing interrupt state. */
1726 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1727 
1728 	if (dsi->reg_dma_mem)
1729 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1730 						vc4_dsi_irq_defer_to_thread_handler,
1731 						vc4_dsi_irq_handler,
1732 						IRQF_ONESHOT,
1733 						"vc4 dsi", dsi);
1734 	else
1735 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1736 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1737 	if (ret) {
1738 		if (ret != -EPROBE_DEFER)
1739 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1740 		return ret;
1741 	}
1742 
1743 	dsi->escape_clock = devm_clk_get(dev, "escape");
1744 	if (IS_ERR(dsi->escape_clock)) {
1745 		ret = PTR_ERR(dsi->escape_clock);
1746 		if (ret != -EPROBE_DEFER)
1747 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1748 		return ret;
1749 	}
1750 
1751 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1752 	if (IS_ERR(dsi->pll_phy_clock)) {
1753 		ret = PTR_ERR(dsi->pll_phy_clock);
1754 		if (ret != -EPROBE_DEFER)
1755 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1756 		return ret;
1757 	}
1758 
1759 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1760 	if (IS_ERR(dsi->pixel_clock)) {
1761 		ret = PTR_ERR(dsi->pixel_clock);
1762 		if (ret != -EPROBE_DEFER)
1763 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1764 		return ret;
1765 	}
1766 
1767 	dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1768 	if (IS_ERR(dsi->out_bridge))
1769 		return PTR_ERR(dsi->out_bridge);
1770 
1771 	/* The esc clock rate is supposed to always be 100Mhz. */
1772 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1773 	if (ret) {
1774 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1775 		return ret;
1776 	}
1777 
1778 	ret = vc4_dsi_init_phy_clocks(dsi);
1779 	if (ret)
1780 		return ret;
1781 
1782 	ret = drmm_encoder_init(drm, encoder,
1783 				&vc4_dsi_encoder_funcs,
1784 				DRM_MODE_ENCODER_DSI,
1785 				NULL);
1786 	if (ret)
1787 		return ret;
1788 
1789 	ret = devm_pm_runtime_enable(dev);
1790 	if (ret)
1791 		return ret;
1792 
1793 	ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0);
1794 	if (ret)
1795 		return ret;
1796 
1797 	return 0;
1798 }
1799 
1800 static const struct component_ops vc4_dsi_ops = {
1801 	.bind   = vc4_dsi_bind,
1802 };
1803 
vc4_dsi_dev_probe(struct platform_device * pdev)1804 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1805 {
1806 	struct device *dev = &pdev->dev;
1807 	struct vc4_dsi *dsi;
1808 
1809 	dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1810 	if (!dsi)
1811 		return -ENOMEM;
1812 	dev_set_drvdata(dev, dsi);
1813 
1814 	kref_init(&dsi->kref);
1815 
1816 	dsi->pdev = pdev;
1817 	dsi->bridge.funcs = &vc4_dsi_bridge_funcs;
1818 #ifdef CONFIG_OF
1819 	dsi->bridge.of_node = dev->of_node;
1820 #endif
1821 	dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
1822 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1823 	dsi->dsi_host.dev = dev;
1824 	mipi_dsi_host_register(&dsi->dsi_host);
1825 
1826 	return 0;
1827 }
1828 
vc4_dsi_dev_remove(struct platform_device * pdev)1829 static void vc4_dsi_dev_remove(struct platform_device *pdev)
1830 {
1831 	struct device *dev = &pdev->dev;
1832 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1833 
1834 	mipi_dsi_host_unregister(&dsi->dsi_host);
1835 	vc4_dsi_put(dsi);
1836 }
1837 
1838 struct platform_driver vc4_dsi_driver = {
1839 	.probe = vc4_dsi_dev_probe,
1840 	.remove_new = vc4_dsi_dev_remove,
1841 	.driver = {
1842 		.name = "vc4_dsi",
1843 		.of_match_table = vc4_dsi_dt_match,
1844 	},
1845 };
1846