1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * VAS user space API for its accelerators (Only NX-GZIP is supported now)
4  * Copyright (C) 2019 Haren Myneni, IBM Corp
5  */
6 
7 #define pr_fmt(fmt)	"vas-api: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/device.h>
11 #include <linux/cdev.h>
12 #include <linux/fs.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <linux/kthread.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmu_context.h>
18 #include <linux/io.h>
19 #include <asm/vas.h>
20 #include <uapi/asm/vas-api.h>
21 
22 /*
23  * The driver creates the device node that can be used as follows:
24  * For NX-GZIP
25  *
26  *	fd = open("/dev/crypto/nx-gzip", O_RDWR);
27  *	rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr);
28  *	paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL).
29  *	vas_copy(&crb, 0, 1);
30  *	vas_paste(paste_addr, 0, 1);
31  *	close(fd) or exit process to close window.
32  *
33  * where "vas_copy" and "vas_paste" are defined in copy-paste.h.
34  * copy/paste returns to the user space directly. So refer NX hardware
35  * documentation for exact copy/paste usage and completion / error
36  * conditions.
37  */
38 
39 /*
40  * Wrapper object for the nx-gzip device - there is just one instance of
41  * this node for the whole system.
42  */
43 static struct coproc_dev {
44 	struct cdev cdev;
45 	struct device *device;
46 	char *name;
47 	dev_t devt;
48 	struct class *class;
49 	enum vas_cop_type cop_type;
50 	const struct vas_user_win_ops *vops;
51 } coproc_device;
52 
53 struct coproc_instance {
54 	struct coproc_dev *coproc;
55 	struct vas_window *txwin;
56 };
57 
coproc_devnode(const struct device * dev,umode_t * mode)58 static char *coproc_devnode(const struct device *dev, umode_t *mode)
59 {
60 	return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev));
61 }
62 
63 /*
64  * Take reference to pid and mm
65  */
get_vas_user_win_ref(struct vas_user_win_ref * task_ref)66 int get_vas_user_win_ref(struct vas_user_win_ref *task_ref)
67 {
68 	/*
69 	 * Window opened by a child thread may not be closed when
70 	 * it exits. So take reference to its pid and release it
71 	 * when the window is free by parent thread.
72 	 * Acquire a reference to the task's pid to make sure
73 	 * pid will not be re-used - needed only for multithread
74 	 * applications.
75 	 */
76 	task_ref->pid = get_task_pid(current, PIDTYPE_PID);
77 	/*
78 	 * Acquire a reference to the task's mm.
79 	 */
80 	task_ref->mm = get_task_mm(current);
81 	if (!task_ref->mm) {
82 		put_pid(task_ref->pid);
83 		pr_err("pid(%d): mm_struct is not found\n",
84 				current->pid);
85 		return -EPERM;
86 	}
87 
88 	mmgrab(task_ref->mm);
89 	mmput(task_ref->mm);
90 	/*
91 	 * Process closes window during exit. In the case of
92 	 * multithread application, the child thread can open
93 	 * window and can exit without closing it. So takes tgid
94 	 * reference until window closed to make sure tgid is not
95 	 * reused.
96 	 */
97 	task_ref->tgid = find_get_pid(task_tgid_vnr(current));
98 
99 	return 0;
100 }
101 
102 /*
103  * Successful return must release the task reference with
104  * put_task_struct
105  */
ref_get_pid_and_task(struct vas_user_win_ref * task_ref,struct task_struct ** tskp,struct pid ** pidp)106 static bool ref_get_pid_and_task(struct vas_user_win_ref *task_ref,
107 			  struct task_struct **tskp, struct pid **pidp)
108 {
109 	struct task_struct *tsk;
110 	struct pid *pid;
111 
112 	pid = task_ref->pid;
113 	tsk = get_pid_task(pid, PIDTYPE_PID);
114 	if (!tsk) {
115 		pid = task_ref->tgid;
116 		tsk = get_pid_task(pid, PIDTYPE_PID);
117 		/*
118 		 * Parent thread (tgid) will be closing window when it
119 		 * exits. So should not get here.
120 		 */
121 		if (WARN_ON_ONCE(!tsk))
122 			return false;
123 	}
124 
125 	/* Return if the task is exiting. */
126 	if (tsk->flags & PF_EXITING) {
127 		put_task_struct(tsk);
128 		return false;
129 	}
130 
131 	*tskp = tsk;
132 	*pidp = pid;
133 
134 	return true;
135 }
136 
137 /*
138  * Update the CSB to indicate a translation error.
139  *
140  * User space will be polling on CSB after the request is issued.
141  * If NX can handle the request without any issues, it updates CSB.
142  * Whereas if NX encounters page fault, the kernel will handle the
143  * fault and update CSB with translation error.
144  *
145  * If we are unable to update the CSB means copy_to_user failed due to
146  * invalid csb_addr, send a signal to the process.
147  */
vas_update_csb(struct coprocessor_request_block * crb,struct vas_user_win_ref * task_ref)148 void vas_update_csb(struct coprocessor_request_block *crb,
149 		    struct vas_user_win_ref *task_ref)
150 {
151 	struct coprocessor_status_block csb;
152 	struct kernel_siginfo info;
153 	struct task_struct *tsk;
154 	void __user *csb_addr;
155 	struct pid *pid;
156 	int rc;
157 
158 	/*
159 	 * NX user space windows can not be opened for task->mm=NULL
160 	 * and faults will not be generated for kernel requests.
161 	 */
162 	if (WARN_ON_ONCE(!task_ref->mm))
163 		return;
164 
165 	csb_addr = (void __user *)be64_to_cpu(crb->csb_addr);
166 
167 	memset(&csb, 0, sizeof(csb));
168 	csb.cc = CSB_CC_FAULT_ADDRESS;
169 	csb.ce = CSB_CE_TERMINATION;
170 	csb.cs = 0;
171 	csb.count = 0;
172 
173 	/*
174 	 * NX operates and returns in BE format as defined CRB struct.
175 	 * So saves fault_storage_addr in BE as NX pastes in FIFO and
176 	 * expects user space to convert to CPU format.
177 	 */
178 	csb.address = crb->stamp.nx.fault_storage_addr;
179 	csb.flags = 0;
180 
181 	/*
182 	 * Process closes send window after all pending NX requests are
183 	 * completed. In multi-thread applications, a child thread can
184 	 * open a window and can exit without closing it. May be some
185 	 * requests are pending or this window can be used by other
186 	 * threads later. We should handle faults if NX encounters
187 	 * pages faults on these requests. Update CSB with translation
188 	 * error and fault address. If csb_addr passed by user space is
189 	 * invalid, send SEGV signal to pid saved in window. If the
190 	 * child thread is not running, send the signal to tgid.
191 	 * Parent thread (tgid) will close this window upon its exit.
192 	 *
193 	 * pid and mm references are taken when window is opened by
194 	 * process (pid). So tgid is used only when child thread opens
195 	 * a window and exits without closing it.
196 	 */
197 
198 	if (!ref_get_pid_and_task(task_ref, &tsk, &pid))
199 		return;
200 
201 	kthread_use_mm(task_ref->mm);
202 	rc = copy_to_user(csb_addr, &csb, sizeof(csb));
203 	/*
204 	 * User space polls on csb.flags (first byte). So add barrier
205 	 * then copy first byte with csb flags update.
206 	 */
207 	if (!rc) {
208 		csb.flags = CSB_V;
209 		/* Make sure update to csb.flags is visible now */
210 		smp_mb();
211 		rc = copy_to_user(csb_addr, &csb, sizeof(u8));
212 	}
213 	kthread_unuse_mm(task_ref->mm);
214 	put_task_struct(tsk);
215 
216 	/* Success */
217 	if (!rc)
218 		return;
219 
220 
221 	pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n",
222 			csb_addr, pid_vnr(pid));
223 
224 	clear_siginfo(&info);
225 	info.si_signo = SIGSEGV;
226 	info.si_errno = EFAULT;
227 	info.si_code = SEGV_MAPERR;
228 	info.si_addr = csb_addr;
229 	/*
230 	 * process will be polling on csb.flags after request is sent to
231 	 * NX. So generally CSB update should not fail except when an
232 	 * application passes invalid csb_addr. So an error message will
233 	 * be displayed and leave it to user space whether to ignore or
234 	 * handle this signal.
235 	 */
236 	rcu_read_lock();
237 	rc = kill_pid_info(SIGSEGV, &info, pid);
238 	rcu_read_unlock();
239 
240 	pr_devel("pid %d kill_proc_info() rc %d\n", pid_vnr(pid), rc);
241 }
242 
vas_dump_crb(struct coprocessor_request_block * crb)243 void vas_dump_crb(struct coprocessor_request_block *crb)
244 {
245 	struct data_descriptor_entry *dde;
246 	struct nx_fault_stamp *nx;
247 
248 	dde = &crb->source;
249 	pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
250 		be64_to_cpu(dde->address), be32_to_cpu(dde->length),
251 		dde->count, dde->index, dde->flags);
252 
253 	dde = &crb->target;
254 	pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
255 		be64_to_cpu(dde->address), be32_to_cpu(dde->length),
256 		dde->count, dde->index, dde->flags);
257 
258 	nx = &crb->stamp.nx;
259 	pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n",
260 		be32_to_cpu(nx->pswid),
261 		be64_to_cpu(crb->stamp.nx.fault_storage_addr),
262 		nx->flags, nx->fault_status);
263 }
264 
coproc_open(struct inode * inode,struct file * fp)265 static int coproc_open(struct inode *inode, struct file *fp)
266 {
267 	struct coproc_instance *cp_inst;
268 
269 	cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL);
270 	if (!cp_inst)
271 		return -ENOMEM;
272 
273 	cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev,
274 					cdev);
275 	fp->private_data = cp_inst;
276 
277 	return 0;
278 }
279 
coproc_ioc_tx_win_open(struct file * fp,unsigned long arg)280 static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg)
281 {
282 	void __user *uptr = (void __user *)arg;
283 	struct vas_tx_win_open_attr uattr;
284 	struct coproc_instance *cp_inst;
285 	struct vas_window *txwin;
286 	int rc;
287 
288 	cp_inst = fp->private_data;
289 
290 	/*
291 	 * One window for file descriptor
292 	 */
293 	if (cp_inst->txwin)
294 		return -EEXIST;
295 
296 	rc = copy_from_user(&uattr, uptr, sizeof(uattr));
297 	if (rc) {
298 		pr_err("copy_from_user() returns %d\n", rc);
299 		return -EFAULT;
300 	}
301 
302 	if (uattr.version != 1) {
303 		pr_err("Invalid window open API version\n");
304 		return -EINVAL;
305 	}
306 
307 	if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->open_win) {
308 		pr_err("VAS API is not registered\n");
309 		return -EACCES;
310 	}
311 
312 	txwin = cp_inst->coproc->vops->open_win(uattr.vas_id, uattr.flags,
313 						cp_inst->coproc->cop_type);
314 	if (IS_ERR(txwin)) {
315 		pr_err_ratelimited("VAS window open failed rc=%ld\n",
316 				PTR_ERR(txwin));
317 		return PTR_ERR(txwin);
318 	}
319 
320 	mutex_init(&txwin->task_ref.mmap_mutex);
321 	cp_inst->txwin = txwin;
322 
323 	return 0;
324 }
325 
coproc_release(struct inode * inode,struct file * fp)326 static int coproc_release(struct inode *inode, struct file *fp)
327 {
328 	struct coproc_instance *cp_inst = fp->private_data;
329 	int rc;
330 
331 	if (cp_inst->txwin) {
332 		if (cp_inst->coproc->vops &&
333 			cp_inst->coproc->vops->close_win) {
334 			rc = cp_inst->coproc->vops->close_win(cp_inst->txwin);
335 			if (rc)
336 				return rc;
337 		}
338 		cp_inst->txwin = NULL;
339 	}
340 
341 	kfree(cp_inst);
342 	fp->private_data = NULL;
343 
344 	/*
345 	 * We don't know here if user has other receive windows
346 	 * open, so we can't really call clear_thread_tidr().
347 	 * So, once the process calls set_thread_tidr(), the
348 	 * TIDR value sticks around until process exits, resulting
349 	 * in an extra copy in restore_sprs().
350 	 */
351 
352 	return 0;
353 }
354 
355 /*
356  * If the executed instruction that caused the fault was a paste, then
357  * clear regs CR0[EQ], advance NIP, and return 0. Else return error code.
358  */
do_fail_paste(void)359 static int do_fail_paste(void)
360 {
361 	struct pt_regs *regs = current->thread.regs;
362 	u32 instword;
363 
364 	if (WARN_ON_ONCE(!regs))
365 		return -EINVAL;
366 
367 	if (WARN_ON_ONCE(!user_mode(regs)))
368 		return -EINVAL;
369 
370 	/*
371 	 * If we couldn't translate the instruction, the driver should
372 	 * return success without handling the fault, it will be retried
373 	 * or the instruction fetch will fault.
374 	 */
375 	if (get_user(instword, (u32 __user *)(regs->nip)))
376 		return -EAGAIN;
377 
378 	/*
379 	 * Not a paste instruction, driver may fail the fault.
380 	 */
381 	if ((instword & PPC_INST_PASTE_MASK) != PPC_INST_PASTE)
382 		return -ENOENT;
383 
384 	regs->ccr &= ~0xe0000000;	/* Clear CR0[0-2] to fail paste */
385 	regs_add_return_ip(regs, 4);	/* Emulate the paste */
386 
387 	return 0;
388 }
389 
390 /*
391  * This fault handler is invoked when the core generates page fault on
392  * the paste address. Happens if the kernel closes window in hypervisor
393  * (on pseries) due to lost credit or the paste address is not mapped.
394  */
vas_mmap_fault(struct vm_fault * vmf)395 static vm_fault_t vas_mmap_fault(struct vm_fault *vmf)
396 {
397 	struct vm_area_struct *vma = vmf->vma;
398 	struct file *fp = vma->vm_file;
399 	struct coproc_instance *cp_inst = fp->private_data;
400 	struct vas_window *txwin;
401 	vm_fault_t fault;
402 	u64 paste_addr;
403 	int ret;
404 
405 	/*
406 	 * window is not opened. Shouldn't expect this error.
407 	 */
408 	if (!cp_inst || !cp_inst->txwin) {
409 		pr_err("Unexpected fault on paste address with TX window closed\n");
410 		return VM_FAULT_SIGBUS;
411 	}
412 
413 	txwin = cp_inst->txwin;
414 	/*
415 	 * When the LPAR lost credits due to core removal or during
416 	 * migration, invalidate the existing mapping for the current
417 	 * paste addresses and set windows in-active (zap_vma_pages in
418 	 * reconfig_close_windows()).
419 	 * New mapping will be done later after migration or new credits
420 	 * available. So continue to receive faults if the user space
421 	 * issue NX request.
422 	 */
423 	if (txwin->task_ref.vma != vmf->vma) {
424 		pr_err("No previous mapping with paste address\n");
425 		return VM_FAULT_SIGBUS;
426 	}
427 
428 	mutex_lock(&txwin->task_ref.mmap_mutex);
429 	/*
430 	 * The window may be inactive due to lost credit (Ex: core
431 	 * removal with DLPAR). If the window is active again when
432 	 * the credit is available, map the new paste address at the
433 	 * window virtual address.
434 	 */
435 	if (txwin->status == VAS_WIN_ACTIVE) {
436 		paste_addr = cp_inst->coproc->vops->paste_addr(txwin);
437 		if (paste_addr) {
438 			fault = vmf_insert_pfn(vma, vma->vm_start,
439 					(paste_addr >> PAGE_SHIFT));
440 			mutex_unlock(&txwin->task_ref.mmap_mutex);
441 			return fault;
442 		}
443 	}
444 	mutex_unlock(&txwin->task_ref.mmap_mutex);
445 
446 	/*
447 	 * Received this fault due to closing the actual window.
448 	 * It can happen during migration or lost credits.
449 	 * Since no mapping, return the paste instruction failure
450 	 * to the user space.
451 	 */
452 	ret = do_fail_paste();
453 	/*
454 	 * The user space can retry several times until success (needed
455 	 * for migration) or should fallback to SW compression or
456 	 * manage with the existing open windows if available.
457 	 * Looking at sysfs interface, it can determine whether these
458 	 * failures are coming during migration or core removal:
459 	 * nr_used_credits > nr_total_credits when lost credits
460 	 */
461 	if (!ret || (ret == -EAGAIN))
462 		return VM_FAULT_NOPAGE;
463 
464 	return VM_FAULT_SIGBUS;
465 }
466 
467 static const struct vm_operations_struct vas_vm_ops = {
468 	.fault = vas_mmap_fault,
469 };
470 
coproc_mmap(struct file * fp,struct vm_area_struct * vma)471 static int coproc_mmap(struct file *fp, struct vm_area_struct *vma)
472 {
473 	struct coproc_instance *cp_inst = fp->private_data;
474 	struct vas_window *txwin;
475 	unsigned long pfn;
476 	u64 paste_addr;
477 	pgprot_t prot;
478 	int rc;
479 
480 	txwin = cp_inst->txwin;
481 
482 	if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) {
483 		pr_debug("size 0x%zx, PAGE_SIZE 0x%zx\n",
484 				(vma->vm_end - vma->vm_start), PAGE_SIZE);
485 		return -EINVAL;
486 	}
487 
488 	/* Ensure instance has an open send window */
489 	if (!txwin) {
490 		pr_err("No send window open?\n");
491 		return -EINVAL;
492 	}
493 
494 	if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->paste_addr) {
495 		pr_err("VAS API is not registered\n");
496 		return -EACCES;
497 	}
498 
499 	/*
500 	 * The initial mmap is done after the window is opened
501 	 * with ioctl. But before mmap(), this window can be closed in
502 	 * the hypervisor due to lost credit (core removal on pseries).
503 	 * So if the window is not active, return mmap() failure with
504 	 * -EACCES and expects the user space reissue mmap() when it
505 	 * is active again or open new window when the credit is available.
506 	 * mmap_mutex protects the paste address mmap() with DLPAR
507 	 * close/open event and allows mmap() only when the window is
508 	 * active.
509 	 */
510 	mutex_lock(&txwin->task_ref.mmap_mutex);
511 	if (txwin->status != VAS_WIN_ACTIVE) {
512 		pr_err("Window is not active\n");
513 		rc = -EACCES;
514 		goto out;
515 	}
516 
517 	paste_addr = cp_inst->coproc->vops->paste_addr(txwin);
518 	if (!paste_addr) {
519 		pr_err("Window paste address failed\n");
520 		rc = -EINVAL;
521 		goto out;
522 	}
523 
524 	pfn = paste_addr >> PAGE_SHIFT;
525 
526 	/* flags, page_prot from cxl_mmap(), except we want cachable */
527 	vm_flags_set(vma, VM_IO | VM_PFNMAP);
528 	vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
529 
530 	prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY);
531 
532 	rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
533 			vma->vm_end - vma->vm_start, prot);
534 
535 	pr_devel("paste addr %llx at %lx, rc %d\n", paste_addr,
536 			vma->vm_start, rc);
537 
538 	txwin->task_ref.vma = vma;
539 	vma->vm_ops = &vas_vm_ops;
540 
541 out:
542 	mutex_unlock(&txwin->task_ref.mmap_mutex);
543 	return rc;
544 }
545 
coproc_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)546 static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg)
547 {
548 	switch (cmd) {
549 	case VAS_TX_WIN_OPEN:
550 		return coproc_ioc_tx_win_open(fp, arg);
551 	default:
552 		return -EINVAL;
553 	}
554 }
555 
556 static struct file_operations coproc_fops = {
557 	.open = coproc_open,
558 	.release = coproc_release,
559 	.mmap = coproc_mmap,
560 	.unlocked_ioctl = coproc_ioctl,
561 };
562 
563 /*
564  * Supporting only nx-gzip coprocessor type now, but this API code
565  * extended to other coprocessor types later.
566  */
vas_register_coproc_api(struct module * mod,enum vas_cop_type cop_type,const char * name,const struct vas_user_win_ops * vops)567 int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type,
568 			    const char *name,
569 			    const struct vas_user_win_ops *vops)
570 {
571 	int rc = -EINVAL;
572 	dev_t devno;
573 
574 	rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name);
575 	if (rc) {
576 		pr_err("Unable to allocate coproc major number: %i\n", rc);
577 		return rc;
578 	}
579 
580 	pr_devel("%s device allocated, dev [%i,%i]\n", name,
581 			MAJOR(coproc_device.devt), MINOR(coproc_device.devt));
582 
583 	coproc_device.class = class_create(name);
584 	if (IS_ERR(coproc_device.class)) {
585 		rc = PTR_ERR(coproc_device.class);
586 		pr_err("Unable to create %s class %d\n", name, rc);
587 		goto err_class;
588 	}
589 	coproc_device.class->devnode = coproc_devnode;
590 	coproc_device.cop_type = cop_type;
591 	coproc_device.vops = vops;
592 
593 	coproc_fops.owner = mod;
594 	cdev_init(&coproc_device.cdev, &coproc_fops);
595 
596 	devno = MKDEV(MAJOR(coproc_device.devt), 0);
597 	rc = cdev_add(&coproc_device.cdev, devno, 1);
598 	if (rc) {
599 		pr_err("cdev_add() failed %d\n", rc);
600 		goto err_cdev;
601 	}
602 
603 	coproc_device.device = device_create(coproc_device.class, NULL,
604 			devno, NULL, name, MINOR(devno));
605 	if (IS_ERR(coproc_device.device)) {
606 		rc = PTR_ERR(coproc_device.device);
607 		pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc);
608 		goto err;
609 	}
610 
611 	pr_devel("Added dev [%d,%d]\n", MAJOR(devno), MINOR(devno));
612 
613 	return 0;
614 
615 err:
616 	cdev_del(&coproc_device.cdev);
617 err_cdev:
618 	class_destroy(coproc_device.class);
619 err_class:
620 	unregister_chrdev_region(coproc_device.devt, 1);
621 	return rc;
622 }
623 
vas_unregister_coproc_api(void)624 void vas_unregister_coproc_api(void)
625 {
626 	dev_t devno;
627 
628 	cdev_del(&coproc_device.cdev);
629 	devno = MKDEV(MAJOR(coproc_device.devt), 0);
630 	device_destroy(coproc_device.class, devno);
631 
632 	class_destroy(coproc_device.class);
633 	unregister_chrdev_region(coproc_device.devt, 1);
634 }
635