1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // helpers.c -- Voltage/Current Regulator framework helper functions.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/regulator/driver.h>
16
17 #include "internal.h"
18
19 /**
20 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21 *
22 * @rdev: regulator to operate on
23 *
24 * Regulators that use regmap for their register I/O can set the
25 * enable_reg and enable_mask fields in their descriptor and then use
26 * this as their is_enabled operation, saving some code.
27 */
regulator_is_enabled_regmap(struct regulator_dev * rdev)28 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
29 {
30 unsigned int val;
31 int ret;
32
33 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
34 if (ret != 0)
35 return ret;
36
37 val &= rdev->desc->enable_mask;
38
39 if (rdev->desc->enable_is_inverted) {
40 if (rdev->desc->enable_val)
41 return val != rdev->desc->enable_val;
42 return val == 0;
43 } else {
44 if (rdev->desc->enable_val)
45 return val == rdev->desc->enable_val;
46 return val != 0;
47 }
48 }
49 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
50
51 /**
52 * regulator_enable_regmap - standard enable() for regmap users
53 *
54 * @rdev: regulator to operate on
55 *
56 * Regulators that use regmap for their register I/O can set the
57 * enable_reg and enable_mask fields in their descriptor and then use
58 * this as their enable() operation, saving some code.
59 */
regulator_enable_regmap(struct regulator_dev * rdev)60 int regulator_enable_regmap(struct regulator_dev *rdev)
61 {
62 unsigned int val;
63
64 if (rdev->desc->enable_is_inverted) {
65 val = rdev->desc->disable_val;
66 } else {
67 val = rdev->desc->enable_val;
68 if (!val)
69 val = rdev->desc->enable_mask;
70 }
71
72 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
73 rdev->desc->enable_mask, val);
74 }
75 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
76
77 /**
78 * regulator_disable_regmap - standard disable() for regmap users
79 *
80 * @rdev: regulator to operate on
81 *
82 * Regulators that use regmap for their register I/O can set the
83 * enable_reg and enable_mask fields in their descriptor and then use
84 * this as their disable() operation, saving some code.
85 */
regulator_disable_regmap(struct regulator_dev * rdev)86 int regulator_disable_regmap(struct regulator_dev *rdev)
87 {
88 unsigned int val;
89
90 if (rdev->desc->enable_is_inverted) {
91 val = rdev->desc->enable_val;
92 if (!val)
93 val = rdev->desc->enable_mask;
94 } else {
95 val = rdev->desc->disable_val;
96 }
97
98 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
99 rdev->desc->enable_mask, val);
100 }
101 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102
regulator_range_selector_to_index(struct regulator_dev * rdev,unsigned int rval)103 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
104 unsigned int rval)
105 {
106 int i;
107
108 if (!rdev->desc->linear_range_selectors_bitfield)
109 return -EINVAL;
110
111 rval &= rdev->desc->vsel_range_mask;
112 rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
113
114 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
115 if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
116 return i;
117 }
118 return -EINVAL;
119 }
120
121 /**
122 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
123 *
124 * @rdev: regulator to operate on
125 *
126 * Regulators that use regmap for their register I/O and use pickable
127 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
128 * fields in their descriptor and then use this as their get_voltage_vsel
129 * operation, saving some code.
130 */
regulator_get_voltage_sel_pickable_regmap(struct regulator_dev * rdev)131 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
132 {
133 unsigned int r_val;
134 int range;
135 unsigned int val;
136 int ret;
137 unsigned int voltages = 0;
138 const struct linear_range *r = rdev->desc->linear_ranges;
139
140 if (!r)
141 return -EINVAL;
142
143 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
144 if (ret != 0)
145 return ret;
146
147 ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
148 if (ret != 0)
149 return ret;
150
151 val &= rdev->desc->vsel_mask;
152 val >>= ffs(rdev->desc->vsel_mask) - 1;
153
154 range = regulator_range_selector_to_index(rdev, r_val);
155 if (range < 0)
156 return -EINVAL;
157
158 voltages = linear_range_values_in_range_array(r, range);
159
160 return val + voltages;
161 }
162 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163
write_separate_vsel_and_range(struct regulator_dev * rdev,unsigned int sel,unsigned int range)164 static int write_separate_vsel_and_range(struct regulator_dev *rdev,
165 unsigned int sel, unsigned int range)
166 {
167 bool range_updated;
168 int ret;
169
170 ret = regmap_update_bits_base(rdev->regmap, rdev->desc->vsel_range_reg,
171 rdev->desc->vsel_range_mask,
172 range, &range_updated, false, false);
173 if (ret)
174 return ret;
175
176 /*
177 * Some PMICs treat the vsel_reg same as apply-bit. Force it to be
178 * written if the range changed, even if the old selector was same as
179 * the new one
180 */
181 if (rdev->desc->range_applied_by_vsel && range_updated)
182 return regmap_write_bits(rdev->regmap,
183 rdev->desc->vsel_reg,
184 rdev->desc->vsel_mask, sel);
185
186 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
187 rdev->desc->vsel_mask, sel);
188 }
189
190 /**
191 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
192 *
193 * @rdev: regulator to operate on
194 * @sel: Selector to set
195 *
196 * Regulators that use regmap for their register I/O and use pickable
197 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
198 * fields in their descriptor and then use this as their set_voltage_vsel
199 * operation, saving some code.
200 */
regulator_set_voltage_sel_pickable_regmap(struct regulator_dev * rdev,unsigned int sel)201 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
202 unsigned int sel)
203 {
204 unsigned int range;
205 int ret, i;
206 unsigned int voltages_in_range = 0;
207
208 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
209 const struct linear_range *r;
210
211 r = &rdev->desc->linear_ranges[i];
212 voltages_in_range = linear_range_values_in_range(r);
213
214 if (sel < voltages_in_range)
215 break;
216 sel -= voltages_in_range;
217 }
218
219 if (i == rdev->desc->n_linear_ranges)
220 return -EINVAL;
221
222 sel <<= ffs(rdev->desc->vsel_mask) - 1;
223 sel += rdev->desc->linear_ranges[i].min_sel;
224
225 range = rdev->desc->linear_range_selectors_bitfield[i];
226 range <<= ffs(rdev->desc->vsel_range_mask) - 1;
227
228 if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg)
229 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
230 rdev->desc->vsel_range_mask |
231 rdev->desc->vsel_mask, sel | range);
232 else
233 ret = write_separate_vsel_and_range(rdev, sel, range);
234
235 if (ret)
236 return ret;
237
238 if (rdev->desc->apply_bit)
239 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
240 rdev->desc->apply_bit,
241 rdev->desc->apply_bit);
242 return ret;
243 }
244 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
245
246 /**
247 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
248 *
249 * @rdev: regulator to operate on
250 *
251 * Regulators that use regmap for their register I/O can set the
252 * vsel_reg and vsel_mask fields in their descriptor and then use this
253 * as their get_voltage_vsel operation, saving some code.
254 */
regulator_get_voltage_sel_regmap(struct regulator_dev * rdev)255 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
256 {
257 unsigned int val;
258 int ret;
259
260 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
261 if (ret != 0)
262 return ret;
263
264 val &= rdev->desc->vsel_mask;
265 val >>= ffs(rdev->desc->vsel_mask) - 1;
266
267 return val;
268 }
269 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
270
271 /**
272 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
273 *
274 * @rdev: regulator to operate on
275 * @sel: Selector to set
276 *
277 * Regulators that use regmap for their register I/O can set the
278 * vsel_reg and vsel_mask fields in their descriptor and then use this
279 * as their set_voltage_vsel operation, saving some code.
280 */
regulator_set_voltage_sel_regmap(struct regulator_dev * rdev,unsigned sel)281 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
282 {
283 int ret;
284
285 sel <<= ffs(rdev->desc->vsel_mask) - 1;
286
287 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
288 rdev->desc->vsel_mask, sel);
289 if (ret)
290 return ret;
291
292 if (rdev->desc->apply_bit)
293 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
294 rdev->desc->apply_bit,
295 rdev->desc->apply_bit);
296 return ret;
297 }
298 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
299
300 /**
301 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
302 *
303 * @rdev: Regulator to operate on
304 * @min_uV: Lower bound for voltage
305 * @max_uV: Upper bound for voltage
306 *
307 * Drivers implementing set_voltage_sel() and list_voltage() can use
308 * this as their map_voltage() operation. It will find a suitable
309 * voltage by calling list_voltage() until it gets something in bounds
310 * for the requested voltages.
311 */
regulator_map_voltage_iterate(struct regulator_dev * rdev,int min_uV,int max_uV)312 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
313 int min_uV, int max_uV)
314 {
315 int best_val = INT_MAX;
316 int selector = 0;
317 int i, ret;
318
319 /* Find the smallest voltage that falls within the specified
320 * range.
321 */
322 for (i = 0; i < rdev->desc->n_voltages; i++) {
323 ret = rdev->desc->ops->list_voltage(rdev, i);
324 if (ret < 0)
325 continue;
326
327 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
328 best_val = ret;
329 selector = i;
330 }
331 }
332
333 if (best_val != INT_MAX)
334 return selector;
335 else
336 return -EINVAL;
337 }
338 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
339
340 /**
341 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
342 *
343 * @rdev: Regulator to operate on
344 * @min_uV: Lower bound for voltage
345 * @max_uV: Upper bound for voltage
346 *
347 * Drivers that have ascendant voltage list can use this as their
348 * map_voltage() operation.
349 */
regulator_map_voltage_ascend(struct regulator_dev * rdev,int min_uV,int max_uV)350 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
351 int min_uV, int max_uV)
352 {
353 int i, ret;
354
355 for (i = 0; i < rdev->desc->n_voltages; i++) {
356 ret = rdev->desc->ops->list_voltage(rdev, i);
357 if (ret < 0)
358 continue;
359
360 if (ret > max_uV)
361 break;
362
363 if (ret >= min_uV && ret <= max_uV)
364 return i;
365 }
366
367 return -EINVAL;
368 }
369 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
370
371 /**
372 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
373 *
374 * @rdev: Regulator to operate on
375 * @min_uV: Lower bound for voltage
376 * @max_uV: Upper bound for voltage
377 *
378 * Drivers providing min_uV and uV_step in their regulator_desc can
379 * use this as their map_voltage() operation.
380 */
regulator_map_voltage_linear(struct regulator_dev * rdev,int min_uV,int max_uV)381 int regulator_map_voltage_linear(struct regulator_dev *rdev,
382 int min_uV, int max_uV)
383 {
384 int ret, voltage;
385
386 /* Allow uV_step to be 0 for fixed voltage */
387 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
388 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
389 return 0;
390 else
391 return -EINVAL;
392 }
393
394 if (!rdev->desc->uV_step) {
395 BUG_ON(!rdev->desc->uV_step);
396 return -EINVAL;
397 }
398
399 if (min_uV < rdev->desc->min_uV)
400 min_uV = rdev->desc->min_uV;
401
402 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
403 if (ret < 0)
404 return ret;
405
406 ret += rdev->desc->linear_min_sel;
407
408 /* Map back into a voltage to verify we're still in bounds */
409 voltage = rdev->desc->ops->list_voltage(rdev, ret);
410 if (voltage < min_uV || voltage > max_uV)
411 return -EINVAL;
412
413 return ret;
414 }
415 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
416
417 /**
418 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
419 *
420 * @rdev: Regulator to operate on
421 * @min_uV: Lower bound for voltage
422 * @max_uV: Upper bound for voltage
423 *
424 * Drivers providing linear_ranges in their descriptor can use this as
425 * their map_voltage() callback.
426 */
regulator_map_voltage_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)427 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
428 int min_uV, int max_uV)
429 {
430 const struct linear_range *range;
431 int ret = -EINVAL;
432 unsigned int sel;
433 bool found;
434 int voltage, i;
435
436 if (!rdev->desc->n_linear_ranges) {
437 BUG_ON(!rdev->desc->n_linear_ranges);
438 return -EINVAL;
439 }
440
441 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
442 range = &rdev->desc->linear_ranges[i];
443
444 ret = linear_range_get_selector_high(range, min_uV, &sel,
445 &found);
446 if (ret)
447 continue;
448 ret = sel;
449
450 /*
451 * Map back into a voltage to verify we're still in bounds.
452 * If we are not, then continue checking rest of the ranges.
453 */
454 voltage = rdev->desc->ops->list_voltage(rdev, sel);
455 if (voltage >= min_uV && voltage <= max_uV)
456 break;
457 }
458
459 if (i == rdev->desc->n_linear_ranges)
460 return -EINVAL;
461
462 return ret;
463 }
464 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
465
466 /**
467 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
468 *
469 * @rdev: Regulator to operate on
470 * @min_uV: Lower bound for voltage
471 * @max_uV: Upper bound for voltage
472 *
473 * Drivers providing pickable linear_ranges in their descriptor can use
474 * this as their map_voltage() callback.
475 */
regulator_map_voltage_pickable_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)476 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
477 int min_uV, int max_uV)
478 {
479 const struct linear_range *range;
480 int ret = -EINVAL;
481 int voltage, i;
482 unsigned int selector = 0;
483
484 if (!rdev->desc->n_linear_ranges) {
485 BUG_ON(!rdev->desc->n_linear_ranges);
486 return -EINVAL;
487 }
488
489 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
490 int linear_max_uV;
491 bool found;
492 unsigned int sel;
493
494 range = &rdev->desc->linear_ranges[i];
495 linear_max_uV = linear_range_get_max_value(range);
496
497 if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
498 selector += linear_range_values_in_range(range);
499 continue;
500 }
501
502 ret = linear_range_get_selector_high(range, min_uV, &sel,
503 &found);
504 if (ret) {
505 selector += linear_range_values_in_range(range);
506 continue;
507 }
508
509 ret = selector + sel - range->min_sel;
510
511 voltage = rdev->desc->ops->list_voltage(rdev, ret);
512
513 /*
514 * Map back into a voltage to verify we're still in bounds.
515 * We may have overlapping voltage ranges. Hence we don't
516 * exit but retry until we have checked all ranges.
517 */
518 if (voltage < min_uV || voltage > max_uV)
519 selector += linear_range_values_in_range(range);
520 else
521 break;
522 }
523
524 if (i == rdev->desc->n_linear_ranges)
525 return -EINVAL;
526
527 return ret;
528 }
529 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
530
531 /**
532 * regulator_desc_list_voltage_linear - List voltages with simple calculation
533 *
534 * @desc: Regulator desc for regulator which volatges are to be listed
535 * @selector: Selector to convert into a voltage
536 *
537 * Regulators with a simple linear mapping between voltages and
538 * selectors can set min_uV and uV_step in the regulator descriptor
539 * and then use this function prior regulator registration to list
540 * the voltages. This is useful when voltages need to be listed during
541 * device-tree parsing.
542 */
regulator_desc_list_voltage_linear(const struct regulator_desc * desc,unsigned int selector)543 int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
544 unsigned int selector)
545 {
546 if (selector >= desc->n_voltages)
547 return -EINVAL;
548
549 if (selector < desc->linear_min_sel)
550 return 0;
551
552 selector -= desc->linear_min_sel;
553
554 return desc->min_uV + (desc->uV_step * selector);
555 }
556 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
557
558 /**
559 * regulator_list_voltage_linear - List voltages with simple calculation
560 *
561 * @rdev: Regulator device
562 * @selector: Selector to convert into a voltage
563 *
564 * Regulators with a simple linear mapping between voltages and
565 * selectors can set min_uV and uV_step in the regulator descriptor
566 * and then use this function as their list_voltage() operation,
567 */
regulator_list_voltage_linear(struct regulator_dev * rdev,unsigned int selector)568 int regulator_list_voltage_linear(struct regulator_dev *rdev,
569 unsigned int selector)
570 {
571 return regulator_desc_list_voltage_linear(rdev->desc, selector);
572 }
573 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
574
575 /**
576 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
577 *
578 * @rdev: Regulator device
579 * @selector: Selector to convert into a voltage
580 *
581 * list_voltage() operation, intended to be used by drivers utilizing pickable
582 * ranges helpers.
583 */
regulator_list_voltage_pickable_linear_range(struct regulator_dev * rdev,unsigned int selector)584 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
585 unsigned int selector)
586 {
587 const struct linear_range *range;
588 int i;
589 unsigned int all_sels = 0;
590
591 if (!rdev->desc->n_linear_ranges) {
592 BUG_ON(!rdev->desc->n_linear_ranges);
593 return -EINVAL;
594 }
595
596 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
597 unsigned int sel_indexes;
598
599 range = &rdev->desc->linear_ranges[i];
600
601 sel_indexes = linear_range_values_in_range(range) - 1;
602
603 if (all_sels + sel_indexes >= selector) {
604 selector -= all_sels;
605 /*
606 * As we see here, pickable ranges work only as
607 * long as the first selector for each pickable
608 * range is 0, and the each subsequent range for
609 * this 'pick' follow immediately at next unused
610 * selector (Eg. there is no gaps between ranges).
611 * I think this is fine but it probably should be
612 * documented. OTOH, whole pickable range stuff
613 * might benefit from some documentation
614 */
615 return range->min + (range->step * selector);
616 }
617
618 all_sels += (sel_indexes + 1);
619 }
620
621 return -EINVAL;
622 }
623 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
624
625 /**
626 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
627 *
628 * @desc: Regulator desc for regulator which volatges are to be listed
629 * @selector: Selector to convert into a voltage
630 *
631 * Regulators with a series of simple linear mappings between voltages
632 * and selectors who have set linear_ranges in the regulator descriptor
633 * can use this function prior regulator registration to list voltages.
634 * This is useful when voltages need to be listed during device-tree
635 * parsing.
636 */
regulator_desc_list_voltage_linear_range(const struct regulator_desc * desc,unsigned int selector)637 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
638 unsigned int selector)
639 {
640 unsigned int val;
641 int ret;
642
643 BUG_ON(!desc->n_linear_ranges);
644
645 ret = linear_range_get_value_array(desc->linear_ranges,
646 desc->n_linear_ranges, selector,
647 &val);
648 if (ret)
649 return ret;
650
651 return val;
652 }
653 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
654
655 /**
656 * regulator_list_voltage_linear_range - List voltages for linear ranges
657 *
658 * @rdev: Regulator device
659 * @selector: Selector to convert into a voltage
660 *
661 * Regulators with a series of simple linear mappings between voltages
662 * and selectors can set linear_ranges in the regulator descriptor and
663 * then use this function as their list_voltage() operation,
664 */
regulator_list_voltage_linear_range(struct regulator_dev * rdev,unsigned int selector)665 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
666 unsigned int selector)
667 {
668 return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
669 }
670 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
671
672 /**
673 * regulator_list_voltage_table - List voltages with table based mapping
674 *
675 * @rdev: Regulator device
676 * @selector: Selector to convert into a voltage
677 *
678 * Regulators with table based mapping between voltages and
679 * selectors can set volt_table in the regulator descriptor
680 * and then use this function as their list_voltage() operation.
681 */
regulator_list_voltage_table(struct regulator_dev * rdev,unsigned int selector)682 int regulator_list_voltage_table(struct regulator_dev *rdev,
683 unsigned int selector)
684 {
685 if (!rdev->desc->volt_table) {
686 BUG_ON(!rdev->desc->volt_table);
687 return -EINVAL;
688 }
689
690 if (selector >= rdev->desc->n_voltages)
691 return -EINVAL;
692 if (selector < rdev->desc->linear_min_sel)
693 return 0;
694
695 return rdev->desc->volt_table[selector];
696 }
697 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
698
699 /**
700 * regulator_set_bypass_regmap - Default set_bypass() using regmap
701 *
702 * @rdev: device to operate on.
703 * @enable: state to set.
704 */
regulator_set_bypass_regmap(struct regulator_dev * rdev,bool enable)705 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
706 {
707 unsigned int val;
708
709 if (enable) {
710 val = rdev->desc->bypass_val_on;
711 if (!val)
712 val = rdev->desc->bypass_mask;
713 } else {
714 val = rdev->desc->bypass_val_off;
715 }
716
717 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
718 rdev->desc->bypass_mask, val);
719 }
720 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
721
722 /**
723 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
724 *
725 * @rdev: device to operate on.
726 */
regulator_set_soft_start_regmap(struct regulator_dev * rdev)727 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
728 {
729 unsigned int val;
730
731 val = rdev->desc->soft_start_val_on;
732 if (!val)
733 val = rdev->desc->soft_start_mask;
734
735 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
736 rdev->desc->soft_start_mask, val);
737 }
738 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
739
740 /**
741 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
742 *
743 * @rdev: device to operate on.
744 */
regulator_set_pull_down_regmap(struct regulator_dev * rdev)745 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
746 {
747 unsigned int val;
748
749 val = rdev->desc->pull_down_val_on;
750 if (!val)
751 val = rdev->desc->pull_down_mask;
752
753 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
754 rdev->desc->pull_down_mask, val);
755 }
756 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
757
758 /**
759 * regulator_get_bypass_regmap - Default get_bypass() using regmap
760 *
761 * @rdev: device to operate on.
762 * @enable: current state.
763 */
regulator_get_bypass_regmap(struct regulator_dev * rdev,bool * enable)764 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
765 {
766 unsigned int val;
767 unsigned int val_on = rdev->desc->bypass_val_on;
768 int ret;
769
770 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
771 if (ret != 0)
772 return ret;
773
774 if (!val_on)
775 val_on = rdev->desc->bypass_mask;
776
777 *enable = (val & rdev->desc->bypass_mask) == val_on;
778
779 return 0;
780 }
781 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
782
783 /**
784 * regulator_set_active_discharge_regmap - Default set_active_discharge()
785 * using regmap
786 *
787 * @rdev: device to operate on.
788 * @enable: state to set, 0 to disable and 1 to enable.
789 */
regulator_set_active_discharge_regmap(struct regulator_dev * rdev,bool enable)790 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
791 bool enable)
792 {
793 unsigned int val;
794
795 if (enable)
796 val = rdev->desc->active_discharge_on;
797 else
798 val = rdev->desc->active_discharge_off;
799
800 return regmap_update_bits(rdev->regmap,
801 rdev->desc->active_discharge_reg,
802 rdev->desc->active_discharge_mask, val);
803 }
804 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
805
806 /**
807 * regulator_set_current_limit_regmap - set_current_limit for regmap users
808 *
809 * @rdev: regulator to operate on
810 * @min_uA: Lower bound for current limit
811 * @max_uA: Upper bound for current limit
812 *
813 * Regulators that use regmap for their register I/O can set curr_table,
814 * csel_reg and csel_mask fields in their descriptor and then use this
815 * as their set_current_limit operation, saving some code.
816 */
regulator_set_current_limit_regmap(struct regulator_dev * rdev,int min_uA,int max_uA)817 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
818 int min_uA, int max_uA)
819 {
820 unsigned int n_currents = rdev->desc->n_current_limits;
821 int i, sel = -1;
822
823 if (n_currents == 0)
824 return -EINVAL;
825
826 if (rdev->desc->curr_table) {
827 const unsigned int *curr_table = rdev->desc->curr_table;
828 bool ascend = curr_table[n_currents - 1] > curr_table[0];
829
830 /* search for closest to maximum */
831 if (ascend) {
832 for (i = n_currents - 1; i >= 0; i--) {
833 if (min_uA <= curr_table[i] &&
834 curr_table[i] <= max_uA) {
835 sel = i;
836 break;
837 }
838 }
839 } else {
840 for (i = 0; i < n_currents; i++) {
841 if (min_uA <= curr_table[i] &&
842 curr_table[i] <= max_uA) {
843 sel = i;
844 break;
845 }
846 }
847 }
848 }
849
850 if (sel < 0)
851 return -EINVAL;
852
853 sel <<= ffs(rdev->desc->csel_mask) - 1;
854
855 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
856 rdev->desc->csel_mask, sel);
857 }
858 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
859
860 /**
861 * regulator_get_current_limit_regmap - get_current_limit for regmap users
862 *
863 * @rdev: regulator to operate on
864 *
865 * Regulators that use regmap for their register I/O can set the
866 * csel_reg and csel_mask fields in their descriptor and then use this
867 * as their get_current_limit operation, saving some code.
868 */
regulator_get_current_limit_regmap(struct regulator_dev * rdev)869 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
870 {
871 unsigned int val;
872 int ret;
873
874 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
875 if (ret != 0)
876 return ret;
877
878 val &= rdev->desc->csel_mask;
879 val >>= ffs(rdev->desc->csel_mask) - 1;
880
881 if (rdev->desc->curr_table) {
882 if (val >= rdev->desc->n_current_limits)
883 return -EINVAL;
884
885 return rdev->desc->curr_table[val];
886 }
887
888 return -EINVAL;
889 }
890 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
891
892 /**
893 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
894 * of regulator_bulk_data structs
895 *
896 * @consumers: array of regulator_bulk_data entries to initialize
897 * @supply_names: array of supply name strings
898 * @num_supplies: number of supply names to initialize
899 *
900 * Note: the 'consumers' array must be the size of 'num_supplies'.
901 */
regulator_bulk_set_supply_names(struct regulator_bulk_data * consumers,const char * const * supply_names,unsigned int num_supplies)902 void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
903 const char *const *supply_names,
904 unsigned int num_supplies)
905 {
906 unsigned int i;
907
908 for (i = 0; i < num_supplies; i++)
909 consumers[i].supply = supply_names[i];
910 }
911 EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
912
913 /**
914 * regulator_is_equal - test whether two regulators are the same
915 *
916 * @reg1: first regulator to operate on
917 * @reg2: second regulator to operate on
918 */
regulator_is_equal(struct regulator * reg1,struct regulator * reg2)919 bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
920 {
921 return reg1->rdev == reg2->rdev;
922 }
923 EXPORT_SYMBOL_GPL(regulator_is_equal);
924
925 /**
926 * regulator_find_closest_bigger - helper to find offset in ramp delay table
927 *
928 * @target: targeted ramp_delay
929 * @table: table with supported ramp delays
930 * @num_sel: number of entries in the table
931 * @sel: Pointer to store table offset
932 *
933 * This is the internal helper used by regulator_set_ramp_delay_regmap to
934 * map ramp delay to register value. It should only be used directly if
935 * regulator_set_ramp_delay_regmap cannot handle a specific device setup
936 * (e.g. because the value is split over multiple registers).
937 */
regulator_find_closest_bigger(unsigned int target,const unsigned int * table,unsigned int num_sel,unsigned int * sel)938 int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
939 unsigned int num_sel, unsigned int *sel)
940 {
941 unsigned int s, tmp, max, maxsel = 0;
942 bool found = false;
943
944 max = table[0];
945
946 for (s = 0; s < num_sel; s++) {
947 if (table[s] > max) {
948 max = table[s];
949 maxsel = s;
950 }
951 if (table[s] >= target) {
952 if (!found || table[s] - target < tmp - target) {
953 tmp = table[s];
954 *sel = s;
955 found = true;
956 if (tmp == target)
957 break;
958 }
959 }
960 }
961
962 if (!found) {
963 *sel = maxsel;
964 return -EINVAL;
965 }
966
967 return 0;
968 }
969 EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
970
971 /**
972 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
973 *
974 * @rdev: regulator to operate on
975 * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
976 *
977 * Regulators that use regmap for their register I/O can set the ramp_reg
978 * and ramp_mask fields in their descriptor and then use this as their
979 * set_ramp_delay operation, saving some code.
980 */
regulator_set_ramp_delay_regmap(struct regulator_dev * rdev,int ramp_delay)981 int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
982 {
983 int ret;
984 unsigned int sel;
985
986 if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
987 return -EINVAL;
988
989 ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
990 rdev->desc->n_ramp_values, &sel);
991
992 if (ret) {
993 dev_warn(rdev_get_dev(rdev),
994 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
995 rdev->desc->ramp_delay_table[sel]);
996 }
997
998 sel <<= ffs(rdev->desc->ramp_mask) - 1;
999
1000 return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
1001 rdev->desc->ramp_mask, sel);
1002 }
1003 EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
1004