1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 
36 #define DC_LOGGER_INIT(logger)
37 
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
39 			.min_refresh = 120,
40 			.max_refresh = 175,
41 			.res = {
42 				{.width = 3840, .height = 2160, },
43 				{.width = 3440, .height = 1440, },
44 				{.width = 2560, .height = 1440, }},
45 };
46 
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
48 	.gpuvm_enable = 0,
49 	.gpuvm_max_page_table_levels = 4,
50 	.hostvm_enable = 0,
51 	.rob_buffer_size_kbytes = 128,
52 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 	.config_return_buffer_size_in_kbytes = 1280,
54 	.compressed_buffer_segment_size_in_kbytes = 64,
55 	.meta_fifo_size_in_kentries = 22,
56 	.zero_size_buffer_entries = 512,
57 	.compbuf_reserved_space_64b = 256,
58 	.compbuf_reserved_space_zs = 64,
59 	.dpp_output_buffer_pixels = 2560,
60 	.opp_output_buffer_lines = 1,
61 	.pixel_chunk_size_kbytes = 8,
62 	.alpha_pixel_chunk_size_kbytes = 4,
63 	.min_pixel_chunk_size_bytes = 1024,
64 	.dcc_meta_buffer_size_bytes = 6272,
65 	.meta_chunk_size_kbytes = 2,
66 	.min_meta_chunk_size_bytes = 256,
67 	.writeback_chunk_size_kbytes = 8,
68 	.ptoi_supported = false,
69 	.num_dsc = 4,
70 	.maximum_dsc_bits_per_component = 12,
71 	.maximum_pixels_per_line_per_dsc_unit = 6016,
72 	.dsc422_native_support = true,
73 	.is_line_buffer_bpp_fixed = true,
74 	.line_buffer_fixed_bpp = 57,
75 	.line_buffer_size_bits = 1171920,
76 	.max_line_buffer_lines = 32,
77 	.writeback_interface_buffer_size_kbytes = 90,
78 	.max_num_dpp = 4,
79 	.max_num_otg = 4,
80 	.max_num_hdmi_frl_outputs = 1,
81 	.max_num_wb = 1,
82 	.max_dchub_pscl_bw_pix_per_clk = 4,
83 	.max_pscl_lb_bw_pix_per_clk = 2,
84 	.max_lb_vscl_bw_pix_per_clk = 4,
85 	.max_vscl_hscl_bw_pix_per_clk = 4,
86 	.max_hscl_ratio = 6,
87 	.max_vscl_ratio = 6,
88 	.max_hscl_taps = 8,
89 	.max_vscl_taps = 8,
90 	.dpte_buffer_size_in_pte_reqs_luma = 64,
91 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
92 	.dispclk_ramp_margin_percent = 1,
93 	.max_inter_dcn_tile_repeaters = 8,
94 	.cursor_buffer_size = 16,
95 	.cursor_chunk_size = 2,
96 	.writeback_line_buffer_buffer_size = 0,
97 	.writeback_min_hscl_ratio = 1,
98 	.writeback_min_vscl_ratio = 1,
99 	.writeback_max_hscl_ratio = 1,
100 	.writeback_max_vscl_ratio = 1,
101 	.writeback_max_hscl_taps = 1,
102 	.writeback_max_vscl_taps = 1,
103 	.dppclk_delay_subtotal = 47,
104 	.dppclk_delay_scl = 50,
105 	.dppclk_delay_scl_lb_only = 16,
106 	.dppclk_delay_cnvc_formatter = 28,
107 	.dppclk_delay_cnvc_cursor = 6,
108 	.dispclk_delay_subtotal = 125,
109 	.dynamic_metadata_vm_enabled = false,
110 	.odm_combine_4to1_supported = false,
111 	.dcc_supported = true,
112 	.max_num_dp2p0_outputs = 2,
113 	.max_num_dp2p0_streams = 4,
114 };
115 
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
117 	.clock_limits = {
118 		{
119 			.state = 0,
120 			.dcfclk_mhz = 1564.0,
121 			.fabricclk_mhz = 2500.0,
122 			.dispclk_mhz = 2150.0,
123 			.dppclk_mhz = 2150.0,
124 			.phyclk_mhz = 810.0,
125 			.phyclk_d18_mhz = 667.0,
126 			.phyclk_d32_mhz = 625.0,
127 			.socclk_mhz = 1200.0,
128 			.dscclk_mhz = 716.667,
129 			.dram_speed_mts = 18000.0,
130 			.dtbclk_mhz = 1564.0,
131 		},
132 	},
133 	.num_states = 1,
134 	.sr_exit_time_us = 42.97,
135 	.sr_enter_plus_exit_time_us = 49.94,
136 	.sr_exit_z8_time_us = 285.0,
137 	.sr_enter_plus_exit_z8_time_us = 320,
138 	.writeback_latency_us = 12.0,
139 	.round_trip_ping_latency_dcfclk_cycles = 263,
140 	.urgent_latency_pixel_data_only_us = 4.0,
141 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 	.urgent_latency_vm_data_only_us = 4.0,
143 	.fclk_change_latency_us = 25,
144 	.usr_retraining_latency_us = 2,
145 	.smn_latency_us = 2,
146 	.mall_allocated_for_dcn_mbytes = 64,
147 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 	.pct_ideal_sdp_bw_after_urgent = 90.0,
151 	.pct_ideal_fabric_bw_after_urgent = 67.0,
152 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 	.max_avg_sdp_bw_use_normal_percent = 80.0,
157 	.max_avg_fabric_bw_use_normal_percent = 60.0,
158 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 	.max_avg_dram_bw_use_normal_percent = 15.0,
160 	.num_chans = 24,
161 	.dram_channel_width_bytes = 2,
162 	.fabric_datapath_to_dcn_data_return_bytes = 64,
163 	.return_bus_width_bytes = 64,
164 	.downspread_percent = 0.38,
165 	.dcn_downspread_percent = 0.5,
166 	.dram_clock_change_latency_us = 400,
167 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
168 	.do_urgent_latency_adjustment = true,
169 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
171 };
172 
dcn32_build_wm_range_table_fpu(struct clk_mgr_internal * clk_mgr)173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
174 {
175 	/* defaults */
176 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 	/* For min clocks use as reported by PM FW and report those as min */
181 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
184 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
185 
186 	dc_assert_fp_enabled();
187 
188 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 	if (dcfclk_mhz_for_the_second_state)
190 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
191 	else
192 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 
194 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
196 
197 	/* Set A - Normal - default values */
198 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
208 
209 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
219 
220 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
241 	}
242 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
254 }
255 
256 /*
257  * Finds dummy_latency_index when MCLK switching using firmware based
258  * vblank stretch is enabled. This function will iterate through the
259  * table of dummy pstate latencies until the lowest value that allows
260  * dm_allow_self_refresh_and_mclk_switch to happen is found
261  */
dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 							    struct dc_state *context,
264 							    display_e2e_pipe_params_st *pipes,
265 							    int pipe_cnt,
266 							    int vlevel)
267 {
268 	const int max_latency_table_entries = 4;
269 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 	int dummy_latency_index = 0;
271 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
272 
273 	dc_assert_fp_enabled();
274 
275 	while (dummy_latency_index < max_latency_table_entries) {
276 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
281 
282 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 				dcn32_subvp_in_use(dc, context))
285 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
286 
287 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
289 			break;
290 
291 		dummy_latency_index++;
292 	}
293 
294 	if (dummy_latency_index == max_latency_table_entries) {
295 		ASSERT(dummy_latency_index != max_latency_table_entries);
296 		/* If the execution gets here, it means dummy p_states are
297 		 * not possible. This should never happen and would mean
298 		 * something is severely wrong.
299 		 * Here we reset dummy_latency_index to 3, because it is
300 		 * better to have underflows than system crashes.
301 		 */
302 		dummy_latency_index = max_latency_table_entries - 1;
303 	}
304 
305 	return dummy_latency_index;
306 }
307 
308 /**
309  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310  * and populate pipe_ctx with those params.
311  * @dc: [in] current dc state
312  * @context: [in] new dc state
313  * @pipes: [in] DML pipe params array
314  * @pipe_cnt: [in] DML pipe count
315  *
316  * This function must be called AFTER the phantom pipes are added to context
317  * and run through DML (so that the DLG params for the phantom pipes can be
318  * populated), and BEFORE we program the timing for the phantom pipes.
319  */
dcn32_helper_populate_phantom_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 					      struct dc_state *context,
322 					      display_e2e_pipe_params_st *pipes,
323 					      int pipe_cnt)
324 {
325 	uint32_t i, pipe_idx;
326 
327 	dc_assert_fp_enabled();
328 
329 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
331 
332 		if (!pipe->stream)
333 			continue;
334 
335 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 			pipes[pipe_idx].pipe.dest.vstartup_start =
337 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 			pipes[pipe_idx].pipe.dest.vupdate_offset =
339 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 			pipes[pipe_idx].pipe.dest.vupdate_width =
341 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 			pipes[pipe_idx].pipe.dest.vready_offset =
343 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
345 		}
346 		pipe_idx++;
347 	}
348 }
349 
350 /**
351  * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352  * @context: [in] New DC state to be programmed
353  * @pipe_e2e: [in] DML pipe end to end context
354  *
355  * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356  * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357  * determined by DPPClk requirements
358  *
359  * This function follows the same policy as DML:
360  * - Check for ODM combine requirements / policy first
361  * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
362  *   MPC is required
363  *
364  * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
365  */
dcn32_predict_pipe_split(struct dc_state * context,display_e2e_pipe_params_st * pipe_e2e)366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 				  display_e2e_pipe_params_st *pipe_e2e)
368 {
369 	double pscl_throughput;
370 	double pscl_throughput_chroma;
371 	double dpp_clk_single_dpp, clock;
372 	double clk_frequency = 0.0;
373 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 	bool total_available_pipes_support = false;
375 	uint32_t number_of_dpp = 0;
376 	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 	double req_dispclk_per_surface = 0;
378 	uint8_t num_splits = 0;
379 
380 	dc_assert_fp_enabled();
381 
382 	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 			pipe_e2e->pipe.dest.hactive,
384 			pipe_e2e->dout.output_format,
385 			pipe_e2e->dout.output_type,
386 			pipe_e2e->pipe.dest.odm_combine_policy,
387 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 			pipe_e2e->dout.dsc_enable != 0,
390 			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 			context->bw_ctx.dml.ip.max_num_dpp,
392 			pipe_e2e->pipe.dest.pixel_rate_mhz,
393 			context->bw_ctx.dml.soc.dcn_downspread_percent,
394 			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 			pipe_e2e->dout.dsc_slices,
397 			/* Output */
398 			&total_available_pipes_support,
399 			&number_of_dpp,
400 			&odm_mode,
401 			&req_dispclk_per_surface);
402 
403 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 			pipe_e2e->pipe.dest.pixel_rate_mhz,
410 			pipe_e2e->pipe.src.source_format,
411 			pipe_e2e->pipe.scale_taps.htaps,
412 			pipe_e2e->pipe.scale_taps.htaps_c,
413 			pipe_e2e->pipe.scale_taps.vtaps,
414 			pipe_e2e->pipe.scale_taps.vtaps_c,
415 			/* Output */
416 			&pscl_throughput, &pscl_throughput_chroma,
417 			&dpp_clk_single_dpp);
418 
419 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
420 
421 	if (clock > 0)
422 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
423 
424 	if (odm_mode == dm_odm_combine_mode_2to1)
425 		num_splits = 1;
426 	else if (odm_mode == dm_odm_combine_mode_4to1)
427 		num_splits = 3;
428 	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
429 		num_splits = 1;
430 
431 	return num_splits;
432 }
433 
calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st * entry)434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
435 {
436 	float memory_bw_kbytes_sec;
437 	float fabric_bw_kbytes_sec;
438 	float sdp_bw_kbytes_sec;
439 	float limiting_bw_kbytes_sec;
440 
441 	memory_bw_kbytes_sec = entry->dram_speed_mts *
442 				dcn3_2_soc.num_chans *
443 				dcn3_2_soc.dram_channel_width_bytes *
444 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
445 
446 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 				dcn3_2_soc.return_bus_width_bytes *
448 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
449 
450 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 				dcn3_2_soc.return_bus_width_bytes *
452 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
453 
454 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
455 
456 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
458 
459 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
461 
462 	return limiting_bw_kbytes_sec;
463 }
464 
get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st * entry)465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
466 {
467 	if (entry->dcfclk_mhz > 0) {
468 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
469 
470 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 	} else if (entry->fabricclk_mhz > 0) {
474 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
475 
476 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 	} else if (entry->dram_speed_mts > 0) {
480 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
482 
483 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
485 	}
486 }
487 
insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,struct _vcs_dpi_voltage_scaling_st * entry)488 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 				    unsigned int *num_entries,
490 				    struct _vcs_dpi_voltage_scaling_st *entry)
491 {
492 	int i = 0;
493 	int index = 0;
494 
495 	dc_assert_fp_enabled();
496 
497 	if (*num_entries == 0) {
498 		table[0] = *entry;
499 		(*num_entries)++;
500 	} else {
501 		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
502 			index++;
503 			if (index >= *num_entries)
504 				break;
505 		}
506 
507 		for (i = *num_entries; i > index; i--)
508 			table[i] = table[i - 1];
509 
510 		table[index] = *entry;
511 		(*num_entries)++;
512 	}
513 }
514 
515 /**
516  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
517  * @dc: current dc state
518  * @context: new dc state
519  * @ref_pipe: Main pipe for the phantom stream
520  * @phantom_stream: target phantom stream state
521  * @pipes: DML pipe params
522  * @pipe_cnt: number of DML pipes
523  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
524  *
525  * Set timing params of the phantom stream based on calculated output from DML.
526  * This function first gets the DML pipe index using the DC pipe index, then
527  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
528  * lines required for SubVP MCLK switching and assigns to the phantom stream
529  * accordingly.
530  *
531  * - The number of SubVP lines calculated in DML does not take into account
532  * FW processing delays and required pstate allow width, so we must include
533  * that separately.
534  *
535  * - Set phantom backporch = vstartup of main pipe
536  */
dcn32_set_phantom_stream_timing(struct dc * dc,struct dc_state * context,struct pipe_ctx * ref_pipe,struct dc_stream_state * phantom_stream,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)537 void dcn32_set_phantom_stream_timing(struct dc *dc,
538 				     struct dc_state *context,
539 				     struct pipe_ctx *ref_pipe,
540 				     struct dc_stream_state *phantom_stream,
541 				     display_e2e_pipe_params_st *pipes,
542 				     unsigned int pipe_cnt,
543 				     unsigned int dc_pipe_idx)
544 {
545 	unsigned int i, pipe_idx;
546 	struct pipe_ctx *pipe;
547 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
548 	unsigned int num_dpp;
549 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
550 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
551 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
552 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
553 	struct dc_stream_state *main_stream = ref_pipe->stream;
554 
555 	dc_assert_fp_enabled();
556 
557 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
558 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
559 		pipe = &context->res_ctx.pipe_ctx[i];
560 
561 		if (!pipe->stream)
562 			continue;
563 
564 		if (i == dc_pipe_idx)
565 			break;
566 
567 		pipe_idx++;
568 	}
569 
570 	// Calculate lines required for pstate allow width and FW processing delays
571 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
572 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
573 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
574 			(double)ref_pipe->stream->timing.h_total;
575 
576 	// Update clks_cfg for calling into recalculate
577 	pipes[0].clks_cfg.voltage = vlevel;
578 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
579 	pipes[0].clks_cfg.socclk_mhz = socclk;
580 
581 	// DML calculation for MALL region doesn't take into account FW delay
582 	// and required pstate allow width for multi-display cases
583 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
584 	 * to 2 swaths (i.e. 16 lines)
585 	 */
586 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
587 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
588 
589 	// W/A for DCC corruption with certain high resolution timings.
590 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
591 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
592 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
593 
594 	/* dc->debug.subvp_extra_lines 0 by default*/
595 	phantom_vactive += dc->debug.subvp_extra_lines;
596 
597 	// For backporch of phantom pipe, use vstartup of the main pipe
598 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
599 
600 	phantom_stream->dst.y = 0;
601 	phantom_stream->dst.height = phantom_vactive;
602 	/* When scaling, DML provides the end to end required number of lines for MALL.
603 	 * dst.height is always correct for this case, but src.height is not which causes a
604 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
605 	 * phantom for this case.
606 	 */
607 	phantom_stream->src.y = 0;
608 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
609 
610 	phantom_stream->timing.v_addressable = phantom_vactive;
611 	phantom_stream->timing.v_front_porch = 1;
612 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
613 						phantom_stream->timing.v_front_porch +
614 						phantom_stream->timing.v_sync_width +
615 						phantom_bp;
616 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
617 }
618 
619 /**
620  * dcn32_get_num_free_pipes - Calculate number of free pipes
621  * @dc: current dc state
622  * @context: new dc state
623  *
624  * This function assumes that a "used" pipe is a pipe that has
625  * both a stream and a plane assigned to it.
626  *
627  * Return: Number of free pipes available in the context
628  */
dcn32_get_num_free_pipes(struct dc * dc,struct dc_state * context)629 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
630 {
631 	unsigned int i;
632 	unsigned int free_pipes = 0;
633 	unsigned int num_pipes = 0;
634 
635 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
636 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
637 
638 		if (pipe->stream && !pipe->top_pipe) {
639 			while (pipe) {
640 				num_pipes++;
641 				pipe = pipe->bottom_pipe;
642 			}
643 		}
644 	}
645 
646 	free_pipes = dc->res_pool->pipe_count - num_pipes;
647 	return free_pipes;
648 }
649 
650 /**
651  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
652  * @dc: current dc state
653  * @context: new dc state
654  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
655  *
656  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
657  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
658  * we are forcing SubVP P-State switching on the current config.
659  *
660  * The number of pipes used for the chosen surface must be less than or equal to the
661  * number of free pipes available.
662  *
663  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
664  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
665  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
666  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
667  *
668  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
669  */
dcn32_assign_subvp_pipe(struct dc * dc,struct dc_state * context,unsigned int * index)670 static bool dcn32_assign_subvp_pipe(struct dc *dc,
671 				    struct dc_state *context,
672 				    unsigned int *index)
673 {
674 	unsigned int i, pipe_idx;
675 	unsigned int max_frame_time = 0;
676 	bool valid_assignment_found = false;
677 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
678 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
679 
680 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
681 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
682 		unsigned int num_pipes = 0;
683 		unsigned int refresh_rate = 0;
684 
685 		if (!pipe->stream)
686 			continue;
687 
688 		// Round up
689 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
690 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
691 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
692 		/* SubVP pipe candidate requirements:
693 		 * - Refresh rate < 120hz
694 		 * - Not able to switch in vactive naturally (switching in active means the
695 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
696 		 *   to combine this with SubVP can cause issues with the scheduling).
697 		 * - Not TMZ surface
698 		 */
699 		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
700 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
701 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
702 				pipe->stream->mall_stream_config.type == SUBVP_NONE &&
703 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
704 				!pipe->plane_state->address.tmz_surface &&
705 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
706 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
707 						dcn32_allow_subvp_with_active_margin(pipe)))) {
708 			while (pipe) {
709 				num_pipes++;
710 				pipe = pipe->bottom_pipe;
711 			}
712 
713 			pipe = &context->res_ctx.pipe_ctx[i];
714 			if (num_pipes <= free_pipes) {
715 				struct dc_stream_state *stream = pipe->stream;
716 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
717 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
718 				if (frame_us > max_frame_time) {
719 					*index = i;
720 					max_frame_time = frame_us;
721 					valid_assignment_found = true;
722 				}
723 			}
724 		}
725 		pipe_idx++;
726 	}
727 	return valid_assignment_found;
728 }
729 
730 /**
731  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
732  * @dc: current dc state
733  * @context: new dc state
734  *
735  * This function returns true if there are enough free pipes
736  * to create the required phantom pipes for any given stream
737  * (that does not already have phantom pipe assigned).
738  *
739  * e.g. For a 2 stream config where the first stream uses one
740  * pipe and the second stream uses 2 pipes (i.e. pipe split),
741  * this function will return true because there is 1 remaining
742  * pipe which can be used as the phantom pipe for the non pipe
743  * split pipe.
744  *
745  * Return:
746  * True if there are enough free pipes to assign phantom pipes to at least one
747  * stream that does not already have phantom pipes assigned. Otherwise false.
748  */
dcn32_enough_pipes_for_subvp(struct dc * dc,struct dc_state * context)749 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
750 {
751 	unsigned int i, split_cnt, free_pipes;
752 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
753 	bool subvp_possible = false;
754 
755 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
756 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
757 
758 		// Find the minimum pipe split count for non SubVP pipes
759 		if (resource_is_pipe_type(pipe, OPP_HEAD) &&
760 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
761 			split_cnt = 0;
762 			while (pipe) {
763 				split_cnt++;
764 				pipe = pipe->bottom_pipe;
765 			}
766 
767 			if (split_cnt < min_pipe_split)
768 				min_pipe_split = split_cnt;
769 		}
770 	}
771 
772 	free_pipes = dcn32_get_num_free_pipes(dc, context);
773 
774 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
775 	// should not equal to the pipe_count)
776 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
777 		subvp_possible = true;
778 
779 	return subvp_possible;
780 }
781 
782 /**
783  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
784  * @dc: current dc state
785  * @context: new dc state
786  *
787  * High level algorithm:
788  * 1. Find longest microschedule length (in us) between the two SubVP pipes
789  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
790  * pipes still allows for the maximum microschedule to fit in the active
791  * region for both pipes.
792  *
793  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
794  */
subvp_subvp_schedulable(struct dc * dc,struct dc_state * context)795 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
796 {
797 	struct pipe_ctx *subvp_pipes[2];
798 	struct dc_stream_state *phantom = NULL;
799 	uint32_t microschedule_lines = 0;
800 	uint32_t index = 0;
801 	uint32_t i;
802 	uint32_t max_microschedule_us = 0;
803 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
804 
805 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
806 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
807 		uint32_t time_us = 0;
808 
809 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
810 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
811 		 */
812 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
813 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
814 			phantom = pipe->stream->mall_stream_config.paired_stream;
815 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
816 					phantom->timing.v_addressable;
817 
818 			// Round up when calculating microschedule time (+ 1 at the end)
819 			time_us = (microschedule_lines * phantom->timing.h_total) /
820 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
821 						dc->caps.subvp_prefetch_end_to_mall_start_us +
822 						dc->caps.subvp_fw_processing_delay_us + 1;
823 			if (time_us > max_microschedule_us)
824 				max_microschedule_us = time_us;
825 
826 			subvp_pipes[index] = pipe;
827 			index++;
828 
829 			// Maximum 2 SubVP pipes
830 			if (index == 2)
831 				break;
832 		}
833 	}
834 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
835 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
836 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
837 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
838 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
839 			subvp_pipes[0]->stream->timing.h_total) /
840 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
841 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
842 			subvp_pipes[1]->stream->timing.h_total) /
843 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
844 
845 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
846 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
847 		return true;
848 
849 	return false;
850 }
851 
852 /**
853  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
854  * @dc: current dc state
855  * @context: new dc state
856  *
857  * High level algorithm:
858  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
859  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
860  * (the margin is equal to the MALL region + DRR margin (500us))
861  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
862  * then report the configuration as supported
863  *
864  * Return: True if the SubVP + DRR config is schedulable, false otherwise
865  */
subvp_drr_schedulable(struct dc * dc,struct dc_state * context)866 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
867 {
868 	bool schedulable = false;
869 	uint32_t i;
870 	struct pipe_ctx *pipe = NULL;
871 	struct pipe_ctx *drr_pipe = NULL;
872 	struct dc_crtc_timing *main_timing = NULL;
873 	struct dc_crtc_timing *phantom_timing = NULL;
874 	struct dc_crtc_timing *drr_timing = NULL;
875 	int16_t prefetch_us = 0;
876 	int16_t mall_region_us = 0;
877 	int16_t drr_frame_us = 0;	// nominal frame time
878 	int16_t subvp_active_us = 0;
879 	int16_t stretched_drr_us = 0;
880 	int16_t drr_stretched_vblank_us = 0;
881 	int16_t max_vblank_mallregion = 0;
882 
883 	// Find SubVP pipe
884 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
885 		pipe = &context->res_ctx.pipe_ctx[i];
886 
887 		// We check for master pipe, but it shouldn't matter since we only need
888 		// the pipe for timing info (stream should be same for any pipe splits)
889 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
890 				!resource_is_pipe_type(pipe, DPP_PIPE))
891 			continue;
892 
893 		// Find the SubVP pipe
894 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
895 			break;
896 	}
897 
898 	// Find the DRR pipe
899 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
900 		drr_pipe = &context->res_ctx.pipe_ctx[i];
901 
902 		// We check for master pipe only
903 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
904 				!resource_is_pipe_type(pipe, DPP_PIPE))
905 			continue;
906 
907 		if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
908 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
909 			break;
910 	}
911 
912 	main_timing = &pipe->stream->timing;
913 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
914 	drr_timing = &drr_pipe->stream->timing;
915 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
916 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
917 			dc->caps.subvp_prefetch_end_to_mall_start_us;
918 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
919 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
920 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
921 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
922 	// P-State allow width and FW delays already included phantom_timing->v_addressable
923 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
924 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
925 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
926 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
927 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
928 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
929 
930 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
931 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
932 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
933 	 * and the max of (VBLANK blanking time, MALL region)).
934 	 */
935 	if (drr_timing &&
936 	    stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
937 	    subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
938 		schedulable = true;
939 
940 	return schedulable;
941 }
942 
943 
944 /**
945  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
946  * @dc: current dc state
947  * @context: new dc state
948  *
949  * High level algorithm:
950  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
951  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
952  * then report the configuration as supported
953  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
954  *
955  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
956  */
subvp_vblank_schedulable(struct dc * dc,struct dc_state * context)957 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
958 {
959 	struct pipe_ctx *pipe = NULL;
960 	struct pipe_ctx *subvp_pipe = NULL;
961 	bool found = false;
962 	bool schedulable = false;
963 	uint32_t i = 0;
964 	uint8_t vblank_index = 0;
965 	uint16_t prefetch_us = 0;
966 	uint16_t mall_region_us = 0;
967 	uint16_t vblank_frame_us = 0;
968 	uint16_t subvp_active_us = 0;
969 	uint16_t vblank_blank_us = 0;
970 	uint16_t max_vblank_mallregion = 0;
971 	struct dc_crtc_timing *main_timing = NULL;
972 	struct dc_crtc_timing *phantom_timing = NULL;
973 	struct dc_crtc_timing *vblank_timing = NULL;
974 
975 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
976 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
977 	 * is supported, it is either a single VBLANK case or two VBLANK
978 	 * displays which are synchronized (in which case they have identical
979 	 * timings).
980 	 */
981 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
982 		pipe = &context->res_ctx.pipe_ctx[i];
983 
984 		// We check for master pipe, but it shouldn't matter since we only need
985 		// the pipe for timing info (stream should be same for any pipe splits)
986 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
987 				!resource_is_pipe_type(pipe, DPP_PIPE))
988 			continue;
989 
990 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
991 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
992 			vblank_index = i;
993 			found = true;
994 		}
995 
996 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
997 			subvp_pipe = pipe;
998 	}
999 	if (found && subvp_pipe) {
1000 		main_timing = &subvp_pipe->stream->timing;
1001 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
1002 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
1003 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1004 		// Also include the prefetch end to mallstart delay time
1005 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1006 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1007 				dc->caps.subvp_prefetch_end_to_mall_start_us;
1008 		// P-State allow width and FW delays already included phantom_timing->v_addressable
1009 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1010 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1011 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1012 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1013 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1014 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1015 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1016 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
1017 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1018 
1019 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1020 		// and the max of (VBLANK blanking time, MALL region)
1021 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1022 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1023 			schedulable = true;
1024 	}
1025 	return schedulable;
1026 }
1027 
1028 /**
1029  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
1030  *
1031  * @dc: Current DC state
1032  * @context: New DC state to be programmed
1033  *
1034  * SubVP + SubVP is admissible under the following conditions:
1035  * - All SubVP pipes are < 120Hz OR
1036  * - All SubVP pipes are >= 120hz
1037  *
1038  * Return: True if admissible, false otherwise
1039  */
subvp_subvp_admissable(struct dc * dc,struct dc_state * context)1040 static bool subvp_subvp_admissable(struct dc *dc,
1041 				struct dc_state *context)
1042 {
1043 	bool result = false;
1044 	uint32_t i;
1045 	uint8_t subvp_count = 0;
1046 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
1047 	uint64_t refresh_rate = 0;
1048 
1049 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1050 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1051 
1052 		if (!pipe->stream)
1053 			continue;
1054 
1055 		if (pipe->plane_state && !pipe->top_pipe &&
1056 				pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
1057 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1058 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
1059 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1060 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1061 
1062 			if ((uint32_t)refresh_rate < min_refresh)
1063 				min_refresh = (uint32_t)refresh_rate;
1064 			if ((uint32_t)refresh_rate > max_refresh)
1065 				max_refresh = (uint32_t)refresh_rate;
1066 			subvp_count++;
1067 		}
1068 	}
1069 
1070 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1071 		(min_refresh >= subvp_high_refresh_list.min_refresh &&
1072 				max_refresh <= subvp_high_refresh_list.max_refresh)))
1073 		result = true;
1074 
1075 	return result;
1076 }
1077 
1078 /**
1079  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1080  * and handle static analysis based on the case.
1081  * @dc: current dc state
1082  * @context: new dc state
1083  * @vlevel: Voltage level calculated by DML
1084  *
1085  * Three cases:
1086  * 1. SubVP + SubVP
1087  * 2. SubVP + VBLANK (DRR checked internally)
1088  * 3. SubVP + VACTIVE (currently unsupported)
1089  *
1090  * Return: True if statically schedulable, false otherwise
1091  */
subvp_validate_static_schedulability(struct dc * dc,struct dc_state * context,int vlevel)1092 static bool subvp_validate_static_schedulability(struct dc *dc,
1093 				struct dc_state *context,
1094 				int vlevel)
1095 {
1096 	bool schedulable = false;
1097 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1098 	uint32_t i, pipe_idx;
1099 	uint8_t subvp_count = 0;
1100 	uint8_t vactive_count = 0;
1101 	uint8_t non_subvp_pipes = 0;
1102 
1103 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1104 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1105 
1106 		if (!pipe->stream)
1107 			continue;
1108 
1109 		if (pipe->plane_state && !pipe->top_pipe) {
1110 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1111 				subvp_count++;
1112 			if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1113 				non_subvp_pipes++;
1114 			}
1115 		}
1116 
1117 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1118 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1119 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1120 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1121 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1122 			vactive_count++;
1123 		}
1124 		pipe_idx++;
1125 	}
1126 
1127 	if (subvp_count == 2) {
1128 		// Static schedulability check for SubVP + SubVP case
1129 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1130 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1131 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1132 		schedulable = true;
1133 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1134 		if (dcn32_subvp_drr_admissable(dc, context))
1135 			schedulable = subvp_drr_schedulable(dc, context);
1136 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1137 			schedulable = subvp_vblank_schedulable(dc, context);
1138 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1139 			vactive_count > 0) {
1140 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1141 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1142 		// SubVP + VACTIVE currently unsupported
1143 		schedulable = false;
1144 	}
1145 	return schedulable;
1146 }
1147 
dcn32_full_validate_bw_helper(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * vlevel,int * split,bool * merge,int * pipe_cnt)1148 static void dcn32_full_validate_bw_helper(struct dc *dc,
1149 				   struct dc_state *context,
1150 				   display_e2e_pipe_params_st *pipes,
1151 				   int *vlevel,
1152 				   int *split,
1153 				   bool *merge,
1154 				   int *pipe_cnt)
1155 {
1156 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1157 	unsigned int dc_pipe_idx = 0;
1158 	int i = 0;
1159 	bool found_supported_config = false;
1160 
1161 	dc_assert_fp_enabled();
1162 
1163 	/*
1164 	 * DML favors voltage over p-state, but we're more interested in
1165 	 * supporting p-state over voltage. We can't support p-state in
1166 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1167 	 * Override present for testing.
1168 	 */
1169 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1170 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1171 			dm_prefetch_support_uclk_fclk_and_stutter;
1172 	else
1173 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1174 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1175 
1176 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1177 	/* This may adjust vlevel and maxMpcComb */
1178 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1179 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1180 		vba->VoltageLevel = *vlevel;
1181 	}
1182 
1183 	/* Conditions for setting up phantom pipes for SubVP:
1184 	 * 1. Not force disable SubVP
1185 	 * 2. Full update (i.e. !fast_validate)
1186 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1187 	 * 4. Display configuration passes validation
1188 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1189 	 */
1190 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1191 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1192 		(*vlevel == context->bw_ctx.dml.soc.num_states ||
1193 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1194 	    dc->debug.force_subvp_mclk_switch)) {
1195 
1196 		dcn32_merge_pipes_for_subvp(dc, context);
1197 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1198 
1199 		/* to re-initialize viewport after the pipe merge */
1200 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1201 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1202 
1203 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1204 				continue;
1205 
1206 			resource_build_scaling_params(pipe_ctx);
1207 		}
1208 
1209 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1210 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1211 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1212 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1213 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1214 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1215 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1216 			 * enough to support MCLK switching.
1217 			 */
1218 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1219 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1220 					dm_prefetch_support_uclk_fclk_and_stutter) {
1221 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1222 								dm_prefetch_support_fclk_and_stutter;
1223 				/* There are params (such as FabricClock) that need to be recalculated
1224 				 * after validation fails (otherwise it will be 0). Calculation for
1225 				 * phantom vactive requires call into DML, so we must ensure all the
1226 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1227 				 */
1228 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1229 			}
1230 
1231 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1232 
1233 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1234 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1235 			// so the phantom pipe DLG params can be assigned correctly.
1236 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1237 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1238 
1239 			/* Check that vlevel requested supports pstate or not
1240 			 * if not, select the lowest vlevel that supports it
1241 			 */
1242 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1243 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1244 					*vlevel = i;
1245 					break;
1246 				}
1247 			}
1248 
1249 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1250 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1251 				found_supported_config = true;
1252 			if (found_supported_config) {
1253 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1254 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1255 					/* find lowest vlevel that supports the config */
1256 					for (i = *vlevel; i >= 0; i--) {
1257 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1258 							*vlevel = i;
1259 						} else {
1260 							break;
1261 						}
1262 					}
1263 				}
1264 			}
1265 		}
1266 
1267 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1268 		// remove phantom pipes and repopulate dml pipes
1269 		if (!found_supported_config) {
1270 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1271 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1272 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1273 
1274 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1275 			/* This may adjust vlevel and maxMpcComb */
1276 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1277 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1278 				vba->VoltageLevel = *vlevel;
1279 			}
1280 		} else {
1281 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1282 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1283 
1284 			/* Call validate_apply_pipe_split flags after calling DML getters for
1285 			 * phantom dlg params, or some of the VBA params indicating pipe split
1286 			 * can be overwritten by the getters.
1287 			 *
1288 			 * When setting up SubVP config, all pipes are merged before attempting to
1289 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1290 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1291 			 */
1292 			memset(split, 0, MAX_PIPES * sizeof(int));
1293 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1294 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1295 			vba->VoltageLevel = *vlevel;
1296 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1297 			// until driver has acquired the DMCUB lock to do it safely.
1298 		}
1299 	}
1300 }
1301 
is_dtbclk_required(struct dc * dc,struct dc_state * context)1302 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1303 {
1304 	int i;
1305 
1306 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1307 		if (!context->res_ctx.pipe_ctx[i].stream)
1308 			continue;
1309 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1310 			return true;
1311 	}
1312 	return false;
1313 }
1314 
dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing * dc_crtc_timing,int * vstartup_start)1315 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1316 {
1317 	struct dc_crtc_timing patched_crtc_timing;
1318 	uint32_t asic_blank_end   = 0;
1319 	uint32_t asic_blank_start = 0;
1320 	uint32_t newVstartup	  = 0;
1321 
1322 	patched_crtc_timing = *dc_crtc_timing;
1323 
1324 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1325 		if (patched_crtc_timing.v_front_porch < 2)
1326 			patched_crtc_timing.v_front_porch = 2;
1327 	} else {
1328 		if (patched_crtc_timing.v_front_porch < 1)
1329 			patched_crtc_timing.v_front_porch = 1;
1330 	}
1331 
1332 	/* blank_start = frame end - front porch */
1333 	asic_blank_start = patched_crtc_timing.v_total -
1334 					patched_crtc_timing.v_front_porch;
1335 
1336 	/* blank_end = blank_start - active */
1337 	asic_blank_end = asic_blank_start -
1338 					patched_crtc_timing.v_border_bottom -
1339 					patched_crtc_timing.v_addressable -
1340 					patched_crtc_timing.v_border_top;
1341 
1342 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1343 
1344 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1345 }
1346 
dcn32_calculate_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1347 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1348 				       display_e2e_pipe_params_st *pipes,
1349 				       int pipe_cnt, int vlevel)
1350 {
1351 	int i, pipe_idx, active_hubp_count = 0;
1352 	bool usr_retraining_support = false;
1353 	bool unbounded_req_enabled = false;
1354 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1355 
1356 	dc_assert_fp_enabled();
1357 
1358 	/* Writeback MCIF_WB arbitration parameters */
1359 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1360 
1361 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1362 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1363 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1364 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1365 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1366 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1367 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1368 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1369 					!= dm_dram_clock_change_unsupported;
1370 
1371 	/* Pstate change might not be supported by hardware, but it might be
1372 	 * possible with firmware driven vertical blank stretching.
1373 	 */
1374 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1375 
1376 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1377 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1378 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1379 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1380 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1381 	else
1382 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1383 
1384 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1385 	ASSERT(usr_retraining_support);
1386 
1387 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1388 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1389 
1390 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1391 
1392 	if (unbounded_req_enabled && pipe_cnt > 1) {
1393 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1394 		ASSERT(false);
1395 		unbounded_req_enabled = false;
1396 	}
1397 
1398 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1399 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1400 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1401 
1402 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1403 		if (!context->res_ctx.pipe_ctx[i].stream)
1404 			continue;
1405 		if (context->res_ctx.pipe_ctx[i].plane_state)
1406 			active_hubp_count++;
1407 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1408 				pipe_idx);
1409 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1410 				pipe_idx);
1411 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1412 				pipe_idx);
1413 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1414 				pipe_idx);
1415 
1416 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1417 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1418 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1419 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1420 		} else {
1421 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1422 							pipe_idx);
1423 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1424 		}
1425 
1426 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1427 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1428 		if (context->res_ctx.pipe_ctx[i].plane_state)
1429 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1430 		else
1431 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1432 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1433 
1434 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1435 
1436 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1437 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1438 		else
1439 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1440 
1441 		/* MALL Allocation Sizes */
1442 		/* count from active, top pipes per plane only */
1443 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1444 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1445 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1446 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1447 			/* SS: all active surfaces stored in MALL */
1448 			if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1449 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1450 
1451 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1452 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1453 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1454 				}
1455 			} else {
1456 				/* SUBVP: phantom surfaces only stored in MALL */
1457 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1458 			}
1459 		}
1460 
1461 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1462 			dcn20_adjust_freesync_v_startup(
1463 				&context->res_ctx.pipe_ctx[i].stream->timing,
1464 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1465 
1466 		pipe_idx++;
1467 	}
1468 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1469 	if (!active_hubp_count) {
1470 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1471 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1472 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1473 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1474 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1475 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1476 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1477 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1478 	}
1479 	/*save a original dppclock copy*/
1480 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1481 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1482 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1483 			* 1000;
1484 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1485 			* 1000;
1486 
1487 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1488 
1489 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1490 
1491 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1492 		if (context->res_ctx.pipe_ctx[i].stream)
1493 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1494 	}
1495 
1496 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1497 
1498 		if (!context->res_ctx.pipe_ctx[i].stream)
1499 			continue;
1500 
1501 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1502 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1503 				pipe_cnt, pipe_idx);
1504 
1505 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1506 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1507 		pipe_idx++;
1508 	}
1509 }
1510 
dcn32_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1511 static struct pipe_ctx *dcn32_find_split_pipe(
1512 		struct dc *dc,
1513 		struct dc_state *context,
1514 		int old_index)
1515 {
1516 	struct pipe_ctx *pipe = NULL;
1517 	int i;
1518 
1519 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1520 		pipe = &context->res_ctx.pipe_ctx[old_index];
1521 		pipe->pipe_idx = old_index;
1522 	}
1523 
1524 	if (!pipe)
1525 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1526 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1527 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1528 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1529 					pipe = &context->res_ctx.pipe_ctx[i];
1530 					pipe->pipe_idx = i;
1531 					break;
1532 				}
1533 			}
1534 		}
1535 
1536 	/*
1537 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1538 	 * Add for debugging transient underflow during topology updates:
1539 	 * ASSERT(pipe);
1540 	 */
1541 	if (!pipe)
1542 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1543 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1544 				pipe = &context->res_ctx.pipe_ctx[i];
1545 				pipe->pipe_idx = i;
1546 				break;
1547 			}
1548 		}
1549 
1550 	return pipe;
1551 }
1552 
dcn32_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1553 static bool dcn32_split_stream_for_mpc_or_odm(
1554 		const struct dc *dc,
1555 		struct resource_context *res_ctx,
1556 		struct pipe_ctx *pri_pipe,
1557 		struct pipe_ctx *sec_pipe,
1558 		bool odm)
1559 {
1560 	int pipe_idx = sec_pipe->pipe_idx;
1561 	const struct resource_pool *pool = dc->res_pool;
1562 
1563 	DC_LOGGER_INIT(dc->ctx->logger);
1564 
1565 	if (odm && pri_pipe->plane_state) {
1566 		/* ODM + window MPO, where MPO window is on left half only */
1567 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1568 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1569 
1570 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1571 					__func__,
1572 					pri_pipe->pipe_idx);
1573 			return true;
1574 		}
1575 
1576 		/* ODM + window MPO, where MPO window is on right half only */
1577 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1578 
1579 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1580 					__func__,
1581 					pri_pipe->pipe_idx);
1582 			return true;
1583 		}
1584 	}
1585 
1586 	*sec_pipe = *pri_pipe;
1587 
1588 	sec_pipe->pipe_idx = pipe_idx;
1589 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1590 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1591 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1592 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1593 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1594 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1595 	sec_pipe->stream_res.dsc = NULL;
1596 	if (odm) {
1597 		if (pri_pipe->next_odm_pipe) {
1598 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1599 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1600 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1601 		}
1602 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1603 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1604 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1605 		}
1606 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1607 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1608 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1609 		}
1610 		pri_pipe->next_odm_pipe = sec_pipe;
1611 		sec_pipe->prev_odm_pipe = pri_pipe;
1612 		ASSERT(sec_pipe->top_pipe == NULL);
1613 
1614 		if (!sec_pipe->top_pipe)
1615 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1616 		else
1617 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1618 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1619 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1620 			ASSERT(sec_pipe->stream_res.dsc);
1621 			if (sec_pipe->stream_res.dsc == NULL)
1622 				return false;
1623 		}
1624 	} else {
1625 		if (pri_pipe->bottom_pipe) {
1626 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1627 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1628 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1629 		}
1630 		pri_pipe->bottom_pipe = sec_pipe;
1631 		sec_pipe->top_pipe = pri_pipe;
1632 
1633 		ASSERT(pri_pipe->plane_state);
1634 	}
1635 
1636 	return true;
1637 }
1638 
dcn32_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)1639 bool dcn32_internal_validate_bw(struct dc *dc,
1640 				struct dc_state *context,
1641 				display_e2e_pipe_params_st *pipes,
1642 				int *pipe_cnt_out,
1643 				int *vlevel_out,
1644 				bool fast_validate)
1645 {
1646 	bool out = false;
1647 	bool repopulate_pipes = false;
1648 	int split[MAX_PIPES] = { 0 };
1649 	bool merge[MAX_PIPES] = { false };
1650 	bool newly_split[MAX_PIPES] = { false };
1651 	int pipe_cnt, i, pipe_idx;
1652 	int vlevel = context->bw_ctx.dml.soc.num_states;
1653 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1654 
1655 	dc_assert_fp_enabled();
1656 
1657 	ASSERT(pipes);
1658 	if (!pipes)
1659 		return false;
1660 
1661 	// For each full update, remove all existing phantom pipes first
1662 	dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1663 
1664 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1665 
1666 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1667 
1668 	if (!pipe_cnt) {
1669 		out = true;
1670 		goto validate_out;
1671 	}
1672 
1673 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1674 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1675 
1676 	if (!fast_validate)
1677 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1678 
1679 	if (fast_validate ||
1680 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1681 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1682 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1683 		/*
1684 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1685 		 * tried alternate prefetch modes during full validation.
1686 		 *
1687 		 * If mode is unsupported or there is no p-state support, then
1688 		 * fall back to favouring voltage.
1689 		 *
1690 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1691 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1692 		 */
1693 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1694 			dm_prefetch_support_none;
1695 
1696 		context->bw_ctx.dml.validate_max_state = fast_validate;
1697 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1698 
1699 		context->bw_ctx.dml.validate_max_state = false;
1700 
1701 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1702 			memset(split, 0, sizeof(split));
1703 			memset(merge, 0, sizeof(merge));
1704 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1705 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1706 			vba->VoltageLevel = vlevel;
1707 		}
1708 	}
1709 
1710 	dml_log_mode_support_params(&context->bw_ctx.dml);
1711 
1712 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1713 		goto validate_fail;
1714 
1715 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1716 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1717 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1718 
1719 		if (!pipe->stream)
1720 			continue;
1721 
1722 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1723 				&& !dc->config.enable_windowed_mpo_odm
1724 				&& pipe->plane_state && mpo_pipe
1725 				&& memcmp(&mpo_pipe->plane_state->clip_rect,
1726 						&pipe->stream->src,
1727 						sizeof(struct rect)) != 0) {
1728 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1729 			goto validate_fail;
1730 		}
1731 		pipe_idx++;
1732 	}
1733 
1734 	/* merge pipes if necessary */
1735 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1736 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1737 
1738 		/*skip pipes that don't need merging*/
1739 		if (!merge[i])
1740 			continue;
1741 
1742 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1743 		if (pipe->prev_odm_pipe) {
1744 			/*split off odm pipe*/
1745 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1746 			if (pipe->next_odm_pipe)
1747 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1748 
1749 			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1750 			if (pipe->bottom_pipe) {
1751 				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1752 					/*MPC split rules will handle this case*/
1753 					pipe->bottom_pipe->top_pipe = NULL;
1754 				} else {
1755 					/* when merging an ODM pipes, the bottom MPC pipe must now point to
1756 					 * the previous ODM pipe and its associated stream assets
1757 					 */
1758 					if (pipe->prev_odm_pipe->bottom_pipe) {
1759 						/* 3 plane MPO*/
1760 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1761 						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1762 					} else {
1763 						/* 2 plane MPO*/
1764 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1765 						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1766 					}
1767 
1768 					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1769 				}
1770 			}
1771 
1772 			if (pipe->top_pipe) {
1773 				pipe->top_pipe->bottom_pipe = NULL;
1774 			}
1775 
1776 			pipe->bottom_pipe = NULL;
1777 			pipe->next_odm_pipe = NULL;
1778 			pipe->plane_state = NULL;
1779 			pipe->stream = NULL;
1780 			pipe->top_pipe = NULL;
1781 			pipe->prev_odm_pipe = NULL;
1782 			if (pipe->stream_res.dsc)
1783 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1784 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1785 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1786 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1787 			repopulate_pipes = true;
1788 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1789 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1790 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1791 
1792 			top_pipe->bottom_pipe = bottom_pipe;
1793 			if (bottom_pipe)
1794 				bottom_pipe->top_pipe = top_pipe;
1795 
1796 			pipe->top_pipe = NULL;
1797 			pipe->bottom_pipe = NULL;
1798 			pipe->plane_state = NULL;
1799 			pipe->stream = NULL;
1800 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1801 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1802 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1803 			repopulate_pipes = true;
1804 		} else
1805 			ASSERT(0); /* Should never try to merge master pipe */
1806 
1807 	}
1808 
1809 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1810 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1811 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1812 		struct pipe_ctx *hsplit_pipe = NULL;
1813 		bool odm;
1814 		int old_index = -1;
1815 
1816 		if (!pipe->stream || newly_split[i])
1817 			continue;
1818 
1819 		pipe_idx++;
1820 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1821 
1822 		if (!pipe->plane_state && !odm)
1823 			continue;
1824 
1825 		if (split[i]) {
1826 			if (odm) {
1827 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1828 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1829 				else if (old_pipe->next_odm_pipe)
1830 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1831 			} else {
1832 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1833 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1834 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1835 				else if (old_pipe->bottom_pipe &&
1836 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1837 					old_index = old_pipe->bottom_pipe->pipe_idx;
1838 			}
1839 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1840 			ASSERT(hsplit_pipe);
1841 			if (!hsplit_pipe)
1842 				goto validate_fail;
1843 
1844 			if (!dcn32_split_stream_for_mpc_or_odm(
1845 					dc, &context->res_ctx,
1846 					pipe, hsplit_pipe, odm))
1847 				goto validate_fail;
1848 
1849 			newly_split[hsplit_pipe->pipe_idx] = true;
1850 			repopulate_pipes = true;
1851 		}
1852 		if (split[i] == 4) {
1853 			struct pipe_ctx *pipe_4to1;
1854 
1855 			if (odm && old_pipe->next_odm_pipe)
1856 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1857 			else if (!odm && old_pipe->bottom_pipe &&
1858 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1859 				old_index = old_pipe->bottom_pipe->pipe_idx;
1860 			else
1861 				old_index = -1;
1862 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1863 			ASSERT(pipe_4to1);
1864 			if (!pipe_4to1)
1865 				goto validate_fail;
1866 			if (!dcn32_split_stream_for_mpc_or_odm(
1867 					dc, &context->res_ctx,
1868 					pipe, pipe_4to1, odm))
1869 				goto validate_fail;
1870 			newly_split[pipe_4to1->pipe_idx] = true;
1871 
1872 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1873 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1874 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1875 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1876 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1877 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1878 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1879 			else
1880 				old_index = -1;
1881 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1882 			ASSERT(pipe_4to1);
1883 			if (!pipe_4to1)
1884 				goto validate_fail;
1885 			if (!dcn32_split_stream_for_mpc_or_odm(
1886 					dc, &context->res_ctx,
1887 					hsplit_pipe, pipe_4to1, odm))
1888 				goto validate_fail;
1889 			newly_split[pipe_4to1->pipe_idx] = true;
1890 		}
1891 		if (odm)
1892 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1893 	}
1894 
1895 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1896 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1897 
1898 		if (pipe->plane_state) {
1899 			if (!resource_build_scaling_params(pipe))
1900 				goto validate_fail;
1901 		}
1902 	}
1903 
1904 	/* Actual dsc count per stream dsc validation*/
1905 	if (!dcn20_validate_dsc(dc, context)) {
1906 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1907 		goto validate_fail;
1908 	}
1909 
1910 	if (repopulate_pipes) {
1911 		int flag_max_mpc_comb = vba->maxMpcComb;
1912 		int flag_vlevel = vlevel;
1913 		int i;
1914 
1915 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1916 
1917 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1918 		 * we have to re-calculate the DET allocation and run through DML once more to
1919 		 * ensure all the params are calculated correctly. We do not need to run the
1920 		 * pipe split check again after this call (pipes are already split / merged).
1921 		 * */
1922 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1923 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1924 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1925 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1926 			/* failed after DET size changes */
1927 			goto validate_fail;
1928 		} else if (flag_max_mpc_comb == 0 &&
1929 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1930 			/* check the context constructed with pipe split flags is still valid*/
1931 			bool flags_valid = false;
1932 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1933 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1934 					vba->maxMpcComb = flag_max_mpc_comb;
1935 					vba->VoltageLevel = i;
1936 					vlevel = i;
1937 					flags_valid = true;
1938 				}
1939 			}
1940 
1941 			/* this should never happen */
1942 			if (!flags_valid)
1943 				goto validate_fail;
1944 		}
1945 	}
1946 	*vlevel_out = vlevel;
1947 	*pipe_cnt_out = pipe_cnt;
1948 
1949 	out = true;
1950 	goto validate_out;
1951 
1952 validate_fail:
1953 	out = false;
1954 
1955 validate_out:
1956 	return out;
1957 }
1958 
1959 
dcn32_calculate_wm_and_dlg_fpu(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1960 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1961 				display_e2e_pipe_params_st *pipes,
1962 				int pipe_cnt,
1963 				int vlevel)
1964 {
1965 	int i, pipe_idx, vlevel_temp = 0;
1966 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1967 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1968 	double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
1969 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1970 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1971 			dm_dram_clock_change_unsupported;
1972 	unsigned int dummy_latency_index = 0;
1973 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1974 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1975 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1976 	unsigned int min_dram_speed_mts_margin;
1977 	bool need_fclk_lat_as_dummy = false;
1978 	bool is_subvp_p_drr = false;
1979 	struct dc_stream_state *fpo_candidate_stream = NULL;
1980 
1981 	dc_assert_fp_enabled();
1982 
1983 	/* need to find dummy latency index for subvp */
1984 	if (subvp_in_use) {
1985 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1986 		if (!pstate_en) {
1987 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1988 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1989 			pstate_en = true;
1990 			is_subvp_p_drr = true;
1991 		}
1992 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1993 						context, pipes, pipe_cnt, vlevel);
1994 
1995 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1996 		 * scheduled correctly to account for dummy pstate.
1997 		 */
1998 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1999 			need_fclk_lat_as_dummy = true;
2000 			context->bw_ctx.dml.soc.fclk_change_latency_us =
2001 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2002 		}
2003 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2004 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2005 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2006 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2007 		if (is_subvp_p_drr) {
2008 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2009 		}
2010 	}
2011 
2012 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2013 	for (i = 0; i < context->stream_count; i++) {
2014 		if (context->streams[i])
2015 			context->streams[i]->fpo_in_use = false;
2016 	}
2017 
2018 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2019 			pstate_en && vlevel != 0)) {
2020 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2021 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2022 		if (fpo_candidate_stream) {
2023 			fpo_candidate_stream->fpo_in_use = true;
2024 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2025 		}
2026 
2027 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2028 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2029 				context, pipes, pipe_cnt, vlevel);
2030 
2031 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2032 			 * we reinstate the original dram_clock_change_latency_us on the context
2033 			 * and all variables that may have changed up to this point, except the
2034 			 * newly found dummy_latency_index
2035 			 */
2036 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2037 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2038 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2039 			 * prefetch is scheduled correctly to account for dummy pstate.
2040 			 */
2041 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2042 				need_fclk_lat_as_dummy = true;
2043 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2044 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2045 			}
2046 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2047 			if (vlevel_temp < vlevel) {
2048 				vlevel = vlevel_temp;
2049 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2050 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2051 				pstate_en = true;
2052 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2053 			} else {
2054 				/* Restore FCLK latency and re-run validation to go back to original validation
2055 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2056 				 * voltage level)
2057 				 */
2058 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2059 				for (i = 0; i < context->stream_count; i++) {
2060 					if (context->streams[i])
2061 						context->streams[i]->fpo_in_use = false;
2062 				}
2063 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2064 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2065 			}
2066 		}
2067 	}
2068 
2069 	/* Set B:
2070 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2071 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2072 	 * calculations to cover bootup clocks.
2073 	 * DCFCLK: soc.clock_limits[2] when available
2074 	 * UCLK: soc.clock_limits[2] when available
2075 	 */
2076 	if (dcn3_2_soc.num_states > 2) {
2077 		vlevel_temp = 2;
2078 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2079 	} else
2080 		dcfclk = 615; //DCFCLK Vmin_lv
2081 
2082 	pipes[0].clks_cfg.voltage = vlevel_temp;
2083 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2084 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2085 
2086 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2087 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2088 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2089 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2090 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2091 	}
2092 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2093 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2094 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2095 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2098 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2099 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2100 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2101 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2102 
2103 	/* Set D:
2104 	 * All clocks min.
2105 	 * DCFCLK: Min, as reported by PM FW when available
2106 	 * UCLK  : Min, as reported by PM FW when available
2107 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2108 	 */
2109 
2110 	/*
2111 	if (dcn3_2_soc.num_states > 2) {
2112 		vlevel_temp = 0;
2113 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2114 	} else
2115 		dcfclk = 615; //DCFCLK Vmin_lv
2116 
2117 	pipes[0].clks_cfg.voltage = vlevel_temp;
2118 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2119 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2120 
2121 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2122 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2123 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2124 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2125 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2126 	}
2127 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2128 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2129 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2130 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2131 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2132 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2133 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2134 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2135 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2136 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2137 	*/
2138 
2139 	/* Set C, for Dummy P-State:
2140 	 * All clocks min.
2141 	 * DCFCLK: Min, as reported by PM FW, when available
2142 	 * UCLK  : Min,  as reported by PM FW, when available
2143 	 * pstate latency as per UCLK state dummy pstate latency
2144 	 */
2145 
2146 	// For Set A and Set C use values from validation
2147 	pipes[0].clks_cfg.voltage = vlevel;
2148 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2149 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2150 
2151 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2152 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2153 	}
2154 
2155 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2156 		min_dram_speed_mts = dram_speed_from_validation;
2157 		min_dram_speed_mts_margin = 160;
2158 
2159 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2160 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2161 
2162 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2163 			dm_dram_clock_change_unsupported) {
2164 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2165 
2166 			min_dram_speed_mts =
2167 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2168 		}
2169 
2170 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2171 			/* find largest table entry that is lower than dram speed,
2172 			 * but lower than DPM0 still uses DPM0
2173 			 */
2174 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2175 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2176 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2177 					break;
2178 		}
2179 
2180 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2181 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2182 
2183 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2184 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2185 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2186 	}
2187 
2188 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2189 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2190 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2191 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2192 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2193 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2194 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2195 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2196 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2197 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2198 	 * value.
2199 	 */
2200 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2201 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2202 
2203 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2204 		/* The only difference between A and C is p-state latency, if p-state is not supported
2205 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2206 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2207 		 */
2208 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2209 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2210 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2211 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2212 		 */
2213 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2214 	} else {
2215 		/* Set A:
2216 		 * All clocks min.
2217 		 * DCFCLK: Min, as reported by PM FW, when available
2218 		 * UCLK: Min, as reported by PM FW, when available
2219 		 */
2220 
2221 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2222 		 */
2223 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2224 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2225 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2226 
2227 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2228 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2229 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2230 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2234 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2236 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2237 	}
2238 
2239 	/* Make set D = set A since we do not optimized watermarks for MALL */
2240 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2241 
2242 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2243 		if (!context->res_ctx.pipe_ctx[i].stream)
2244 			continue;
2245 
2246 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2247 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2248 
2249 		if (dc->config.forced_clocks) {
2250 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2251 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2252 		}
2253 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2254 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2255 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2256 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2257 
2258 		pipe_idx++;
2259 	}
2260 
2261 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2262 
2263 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2264 	if (need_fclk_lat_as_dummy)
2265 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2266 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2267 
2268 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2269 
2270 	if (!pstate_en)
2271 		/* Restore full p-state latency */
2272 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2273 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2274 
2275 	/* revert fclk lat changes if required */
2276 	if (need_fclk_lat_as_dummy)
2277 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2278 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2279 }
2280 
dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2281 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2282 		unsigned int *optimal_dcfclk,
2283 		unsigned int *optimal_fclk)
2284 {
2285 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2286 
2287 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2288 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2289 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2290 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2291 
2292 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2293 
2294 	if (optimal_fclk)
2295 		*optimal_fclk = bw_from_dram /
2296 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2297 
2298 	if (optimal_dcfclk)
2299 		*optimal_dcfclk =  bw_from_dram /
2300 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2301 }
2302 
remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,unsigned int index)2303 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2304 		unsigned int index)
2305 {
2306 	int i;
2307 
2308 	if (*num_entries == 0)
2309 		return;
2310 
2311 	for (i = index; i < *num_entries - 1; i++) {
2312 		table[i] = table[i + 1];
2313 	}
2314 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2315 }
2316 
dcn32_patch_dpm_table(struct clk_bw_params * bw_params)2317 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2318 {
2319 	int i;
2320 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2321 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2322 
2323 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2324 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2325 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2326 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2327 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2328 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2329 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2330 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2331 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2332 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2333 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2334 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2335 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2336 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2337 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2338 	}
2339 
2340 	/* Scan through clock values we currently have and if they are 0,
2341 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2342 	 *
2343 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2344 	 *  0, will cause it to skip building the clock table.
2345 	 */
2346 	if (max_dcfclk_mhz == 0)
2347 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2348 	if (max_dispclk_mhz == 0)
2349 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2350 	if (max_dtbclk_mhz == 0)
2351 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2352 	if (max_uclk_mhz == 0)
2353 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2354 }
2355 
swap_table_entries(struct _vcs_dpi_voltage_scaling_st * first_entry,struct _vcs_dpi_voltage_scaling_st * second_entry)2356 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2357 		struct _vcs_dpi_voltage_scaling_st *second_entry)
2358 {
2359 	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2360 	*first_entry = *second_entry;
2361 	*second_entry = temp_entry;
2362 }
2363 
2364 /*
2365  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2366  */
sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2367 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2368 {
2369 	unsigned int start_index = 0;
2370 	unsigned int end_index = 0;
2371 	unsigned int current_bw = 0;
2372 
2373 	for (int i = 0; i < (*num_entries - 1); i++) {
2374 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2375 			current_bw = table[i].net_bw_in_kbytes_sec;
2376 			start_index = i;
2377 			end_index = ++i;
2378 
2379 			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2380 				end_index = ++i;
2381 		}
2382 
2383 		if (start_index != end_index) {
2384 			for (int j = start_index; j < end_index; j++) {
2385 				for (int k = start_index; k < end_index; k++) {
2386 					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2387 						swap_table_entries(&table[k], &table[k+1]);
2388 				}
2389 			}
2390 		}
2391 
2392 		start_index = 0;
2393 		end_index = 0;
2394 
2395 	}
2396 }
2397 
2398 /*
2399  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2400  *                               and remove entries that do not
2401  */
remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2402 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2403 {
2404 	for (int i = 0; i < (*num_entries - 1); i++) {
2405 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2406 			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2407 				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2408 				remove_entry_from_table_at_index(table, num_entries, i);
2409 		}
2410 	}
2411 }
2412 
2413 /*
2414  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2415  * Input:
2416  *	max_clk_limit - struct containing the desired clock timings
2417  * Output:
2418  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2419  * Return: 0 upon success, non-zero for failure
2420  */
override_max_clk_values(struct clk_limit_table_entry * max_clk_limit,struct clk_limit_table_entry * curr_clk_limit)2421 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2422 		struct clk_limit_table_entry *curr_clk_limit)
2423 {
2424 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2425 		return -1; //invalid parameters
2426 
2427 	//only overwrite if desired max clock frequency is initialized
2428 	if (max_clk_limit->dcfclk_mhz != 0)
2429 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2430 
2431 	if (max_clk_limit->fclk_mhz != 0)
2432 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2433 
2434 	if (max_clk_limit->memclk_mhz != 0)
2435 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2436 
2437 	if (max_clk_limit->socclk_mhz != 0)
2438 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2439 
2440 	if (max_clk_limit->dtbclk_mhz != 0)
2441 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2442 
2443 	if (max_clk_limit->dispclk_mhz != 0)
2444 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2445 
2446 	return 0;
2447 }
2448 
build_synthetic_soc_states(bool disable_dc_mode_overwrite,struct clk_bw_params * bw_params,struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2449 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2450 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2451 {
2452 	int i, j;
2453 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2454 	struct clk_limit_table_entry max_clk_data = {0};
2455 
2456 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2457 
2458 	static const unsigned int num_dcfclk_stas = 5;
2459 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2460 
2461 	unsigned int num_uclk_dpms = 0;
2462 	unsigned int num_fclk_dpms = 0;
2463 	unsigned int num_dcfclk_dpms = 0;
2464 
2465 	unsigned int num_dc_uclk_dpms = 0;
2466 	unsigned int num_dc_fclk_dpms = 0;
2467 	unsigned int num_dc_dcfclk_dpms = 0;
2468 
2469 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2470 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2471 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2472 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2473 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2474 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2475 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2476 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2477 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2478 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2479 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2480 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2481 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2482 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2483 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2484 
2485 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2486 			num_uclk_dpms++;
2487 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2488 				num_dc_uclk_dpms++;
2489 		}
2490 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2491 			num_fclk_dpms++;
2492 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2493 				num_dc_fclk_dpms++;
2494 		}
2495 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2496 			num_dcfclk_dpms++;
2497 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2498 				num_dc_dcfclk_dpms++;
2499 		}
2500 	}
2501 
2502 	if (!disable_dc_mode_overwrite) {
2503 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2504 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2505 		num_uclk_dpms = num_dc_uclk_dpms;
2506 		num_fclk_dpms = num_dc_fclk_dpms;
2507 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2508 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2509 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2510 	}
2511 
2512 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2513 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2514 
2515 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2516 		return -1;
2517 
2518 	if (max_clk_data.dppclk_mhz == 0)
2519 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2520 
2521 	if (max_clk_data.fclk_mhz == 0)
2522 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2523 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2524 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2525 
2526 	if (max_clk_data.phyclk_mhz == 0)
2527 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2528 
2529 	*num_entries = 0;
2530 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2531 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2532 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2533 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2534 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2535 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2536 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2537 
2538 	// Insert all the DCFCLK STAs
2539 	for (i = 0; i < num_dcfclk_stas; i++) {
2540 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2541 		entry.fabricclk_mhz = 0;
2542 		entry.dram_speed_mts = 0;
2543 
2544 		get_optimal_ntuple(&entry);
2545 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2546 		insert_entry_into_table_sorted(table, num_entries, &entry);
2547 	}
2548 
2549 	// Insert the max DCFCLK
2550 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2551 	entry.fabricclk_mhz = 0;
2552 	entry.dram_speed_mts = 0;
2553 
2554 	get_optimal_ntuple(&entry);
2555 	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2556 	insert_entry_into_table_sorted(table, num_entries, &entry);
2557 
2558 	// Insert the UCLK DPMS
2559 	for (i = 0; i < num_uclk_dpms; i++) {
2560 		entry.dcfclk_mhz = 0;
2561 		entry.fabricclk_mhz = 0;
2562 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2563 
2564 		get_optimal_ntuple(&entry);
2565 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2566 		insert_entry_into_table_sorted(table, num_entries, &entry);
2567 	}
2568 
2569 	// If FCLK is coarse grained, insert individual DPMs.
2570 	if (num_fclk_dpms > 2) {
2571 		for (i = 0; i < num_fclk_dpms; i++) {
2572 			entry.dcfclk_mhz = 0;
2573 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2574 			entry.dram_speed_mts = 0;
2575 
2576 			get_optimal_ntuple(&entry);
2577 			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2578 			insert_entry_into_table_sorted(table, num_entries, &entry);
2579 		}
2580 	}
2581 	// If FCLK fine grained, only insert max
2582 	else {
2583 		entry.dcfclk_mhz = 0;
2584 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2585 		entry.dram_speed_mts = 0;
2586 
2587 		get_optimal_ntuple(&entry);
2588 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2589 		insert_entry_into_table_sorted(table, num_entries, &entry);
2590 	}
2591 
2592 	// At this point, the table contains all "points of interest" based on
2593 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2594 	// ratios (by derate, are exact).
2595 
2596 	// Remove states that require higher clocks than are supported
2597 	for (i = *num_entries - 1; i >= 0 ; i--) {
2598 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2599 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2600 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2601 			remove_entry_from_table_at_index(table, num_entries, i);
2602 	}
2603 
2604 	// Insert entry with all max dc limits without bandwidth matching
2605 	if (!disable_dc_mode_overwrite) {
2606 		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2607 
2608 		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2609 		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2610 		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2611 
2612 		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2613 		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2614 
2615 		sort_entries_with_same_bw(table, num_entries);
2616 		remove_inconsistent_entries(table, num_entries);
2617 	}
2618 
2619 	// At this point, the table only contains supported points of interest
2620 	// it could be used as is, but some states may be redundant due to
2621 	// coarse grained nature of some clocks, so we want to round up to
2622 	// coarse grained DPMs and remove duplicates.
2623 
2624 	// Round up UCLKs
2625 	for (i = *num_entries - 1; i >= 0 ; i--) {
2626 		for (j = 0; j < num_uclk_dpms; j++) {
2627 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2628 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2629 				break;
2630 			}
2631 		}
2632 	}
2633 
2634 	// If FCLK is coarse grained, round up to next DPMs
2635 	if (num_fclk_dpms > 2) {
2636 		for (i = *num_entries - 1; i >= 0 ; i--) {
2637 			for (j = 0; j < num_fclk_dpms; j++) {
2638 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2639 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2640 					break;
2641 				}
2642 			}
2643 		}
2644 	}
2645 	// Otherwise, round up to minimum.
2646 	else {
2647 		for (i = *num_entries - 1; i >= 0 ; i--) {
2648 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2649 				table[i].fabricclk_mhz = min_fclk_mhz;
2650 			}
2651 		}
2652 	}
2653 
2654 	// Round DCFCLKs up to minimum
2655 	for (i = *num_entries - 1; i >= 0 ; i--) {
2656 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2657 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2658 		}
2659 	}
2660 
2661 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2662 	i = 0;
2663 	while (i < *num_entries - 1) {
2664 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2665 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2666 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2667 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2668 		else
2669 			i++;
2670 	}
2671 
2672 	// Fix up the state indicies
2673 	for (i = *num_entries - 1; i >= 0 ; i--) {
2674 		table[i].state = i;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 /*
2681  * dcn32_update_bw_bounding_box
2682  *
2683  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2684  * spreadsheet with actual values as per dGPU SKU:
2685  * - with passed few options from dc->config
2686  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2687  *   need to get it from PM FW)
2688  * - with passed latency values (passed in ns units) in dc-> bb override for
2689  *   debugging purposes
2690  * - with passed latencies from VBIOS (in 100_ns units) if available for
2691  *   certain dGPU SKU
2692  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2693  *   of the same ASIC)
2694  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2695  *   FW for different clocks (which might differ for certain dGPU SKU of the
2696  *   same ASIC)
2697  */
dcn32_update_bw_bounding_box_fpu(struct dc * dc,struct clk_bw_params * bw_params)2698 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2699 {
2700 	dc_assert_fp_enabled();
2701 
2702 	/* Overrides from dc->config options */
2703 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2704 
2705 	/* Override from passed dc->bb_overrides if available*/
2706 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2707 			&& dc->bb_overrides.sr_exit_time_ns) {
2708 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2709 	}
2710 
2711 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2712 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2713 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2714 		dcn3_2_soc.sr_enter_plus_exit_time_us =
2715 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2716 	}
2717 
2718 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2719 		&& dc->bb_overrides.urgent_latency_ns) {
2720 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2721 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2722 	}
2723 
2724 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2725 			!= dc->bb_overrides.dram_clock_change_latency_ns
2726 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
2727 		dcn3_2_soc.dram_clock_change_latency_us =
2728 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2729 	}
2730 
2731 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2732 			!= dc->bb_overrides.fclk_clock_change_latency_ns
2733 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
2734 		dcn3_2_soc.fclk_change_latency_us =
2735 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2736 	}
2737 
2738 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2739 			!= dc->bb_overrides.dummy_clock_change_latency_ns
2740 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2741 		dcn3_2_soc.dummy_pstate_latency_us =
2742 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2743 	}
2744 
2745 	/* Override from VBIOS if VBIOS bb_info available */
2746 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2747 		struct bp_soc_bb_info bb_info = {0};
2748 
2749 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2750 			if (bb_info.dram_clock_change_latency_100ns > 0)
2751 				dcn3_2_soc.dram_clock_change_latency_us =
2752 					bb_info.dram_clock_change_latency_100ns * 10;
2753 
2754 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2755 				dcn3_2_soc.sr_enter_plus_exit_time_us =
2756 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
2757 
2758 			if (bb_info.dram_sr_exit_latency_100ns > 0)
2759 				dcn3_2_soc.sr_exit_time_us =
2760 					bb_info.dram_sr_exit_latency_100ns * 10;
2761 		}
2762 	}
2763 
2764 	/* Override from VBIOS for num_chan */
2765 	if (dc->ctx->dc_bios->vram_info.num_chans) {
2766 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2767 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2768 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2769 	}
2770 
2771 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2772 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2773 
2774 	/* DML DSC delay factor workaround */
2775 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2776 
2777 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2778 
2779 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2780 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2781 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2782 
2783 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2784 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2785 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2786 			unsigned int i = 0, j = 0, num_states = 0;
2787 
2788 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2789 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2790 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2791 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2792 			unsigned int min_dcfclk = UINT_MAX;
2793 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2794 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2795 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2796 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2797 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2798 
2799 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2800 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2801 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2802 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2803 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2804 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2805 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2806 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2807 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2808 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2809 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2810 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2811 			}
2812 			if (min_dcfclk > dcfclk_sta_targets[0])
2813 				dcfclk_sta_targets[0] = min_dcfclk;
2814 			if (!max_dcfclk_mhz)
2815 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2816 			if (!max_dispclk_mhz)
2817 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2818 			if (!max_dppclk_mhz)
2819 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2820 			if (!max_phyclk_mhz)
2821 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2822 
2823 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2824 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2825 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2826 				num_dcfclk_sta_targets++;
2827 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2828 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2829 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2830 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2831 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2832 						break;
2833 					}
2834 				}
2835 				// Update size of array since we "removed" duplicates
2836 				num_dcfclk_sta_targets = i + 1;
2837 			}
2838 
2839 			num_uclk_states = bw_params->clk_table.num_entries;
2840 
2841 			// Calculate optimal dcfclk for each uclk
2842 			for (i = 0; i < num_uclk_states; i++) {
2843 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2844 						&optimal_dcfclk_for_uclk[i], NULL);
2845 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2846 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2847 				}
2848 			}
2849 
2850 			// Calculate optimal uclk for each dcfclk sta target
2851 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2852 				for (j = 0; j < num_uclk_states; j++) {
2853 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2854 						optimal_uclk_for_dcfclk_sta_targets[i] =
2855 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2856 						break;
2857 					}
2858 				}
2859 			}
2860 
2861 			i = 0;
2862 			j = 0;
2863 			// create the final dcfclk and uclk table
2864 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2865 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2866 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2867 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2868 				} else {
2869 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2870 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2871 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2872 					} else {
2873 						j = num_uclk_states;
2874 					}
2875 				}
2876 			}
2877 
2878 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2879 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2880 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2881 			}
2882 
2883 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2884 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2885 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2886 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2887 			}
2888 
2889 			/* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
2890 			 * MAX_NUM_DPM_LVL is 8.
2891 			 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
2892 			 * DC__VOLTAGE_STATES is 40.
2893 			 */
2894 			if (num_states > MAX_NUM_DPM_LVL) {
2895 				ASSERT(0);
2896 				return;
2897 			}
2898 
2899 			dcn3_2_soc.num_states = num_states;
2900 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2901 				dcn3_2_soc.clock_limits[i].state = i;
2902 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2903 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2904 
2905 				/* Fill all states with max values of all these clocks */
2906 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2907 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2908 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2909 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2910 
2911 				/* Populate from bw_params for DTBCLK, SOCCLK */
2912 				if (i > 0) {
2913 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2914 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2915 					} else {
2916 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2917 					}
2918 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2919 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2920 				}
2921 
2922 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2923 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2924 				else
2925 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2926 
2927 				if (!dram_speed_mts[i] && i > 0)
2928 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2929 				else
2930 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2931 
2932 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2933 				/* PHYCLK_D18, PHYCLK_D32 */
2934 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2935 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2936 			}
2937 		} else {
2938 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
2939 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2940 		}
2941 
2942 		/* Re-init DML with updated bb */
2943 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2944 		if (dc->current_state)
2945 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2946 	}
2947 }
2948 
dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st * pipes,int pipe_cnt)2949 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2950 				  int pipe_cnt)
2951 {
2952 	dc_assert_fp_enabled();
2953 
2954 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2955 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2956 }
2957 
dcn32_allow_subvp_with_active_margin(struct pipe_ctx * pipe)2958 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2959 {
2960 	bool allow = false;
2961 	uint32_t refresh_rate = 0;
2962 
2963 	/* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2964 	 * only for now. There must be no scaling as well.
2965 	 *
2966 	 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2967 	 * for p-state switching.
2968 	 */
2969 	if (pipe->stream && pipe->plane_state) {
2970 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2971 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2972 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2973 		if (pipe->stream->timing.v_addressable == 1440 &&
2974 				pipe->stream->timing.h_addressable == 2560 &&
2975 				refresh_rate >= 55 && refresh_rate <= 65 &&
2976 				pipe->plane_state->src_rect.height == 1440 &&
2977 				pipe->plane_state->src_rect.width == 2560 &&
2978 				pipe->plane_state->dst_rect.height == 1440 &&
2979 				pipe->plane_state->dst_rect.width == 2560)
2980 			allow = true;
2981 	}
2982 	return allow;
2983 }
2984 
2985 /**
2986  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2987  *
2988  * @dc: Current DC state
2989  * @context: New DC state to be programmed
2990  * @pipe: Pipe to be considered for use in subvp
2991  *
2992  * On high refresh rate display configs, we will allow subvp under the following conditions:
2993  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2994  * 2. Refresh rate is between 120hz - 165hz
2995  * 3. No scaling
2996  * 4. Freesync is inactive
2997  * 5. For single display cases, freesync must be disabled
2998  *
2999  * Return: True if pipe can be used for subvp, false otherwise
3000  */
dcn32_allow_subvp_high_refresh_rate(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe)3001 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3002 {
3003 	bool allow = false;
3004 	uint32_t refresh_rate = 0;
3005 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3006 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3007 	uint32_t min_refresh = subvp_max_refresh;
3008 	uint32_t i;
3009 
3010 	/* Only allow SubVP on high refresh displays if all connected displays
3011 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3012 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3013 	 */
3014 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3015 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3016 
3017 		if (!pipe_ctx->stream)
3018 			continue;
3019 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3020 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3021 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3022 
3023 		if (refresh_rate < min_refresh)
3024 			min_refresh = refresh_rate;
3025 	}
3026 
3027 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3028 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3029 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3030 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3031 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3032 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3033 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3034 				uint32_t width = subvp_high_refresh_list.res[i].width;
3035 				uint32_t height = subvp_high_refresh_list.res[i].height;
3036 
3037 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3038 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3039 						allow = true;
3040 						break;
3041 					}
3042 				}
3043 			}
3044 		}
3045 	}
3046 	return allow;
3047 }
3048 
3049 /**
3050  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3051  *
3052  * @dc: Current DC state
3053  * @context: New DC state to be programmed
3054  *
3055  * Return: Max vratio for prefetch
3056  */
dcn32_determine_max_vratio_prefetch(struct dc * dc,struct dc_state * context)3057 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3058 {
3059 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3060 	int i;
3061 
3062 	/* For single display MPO configs, allow the max vratio to be 8
3063 	 * if any plane is YUV420 format
3064 	 */
3065 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3066 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
3067 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3068 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3069 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3070 			}
3071 		}
3072 	}
3073 	return max_vratio_pre;
3074 }
3075 
3076 /**
3077  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3078  *
3079  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3080  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3081  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3082  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3083  *
3084  *
3085  * @dc: current dc state
3086  * @context: new dc state
3087  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3088  *
3089  * Return: void
3090  */
dcn32_assign_fpo_vactive_candidate(struct dc * dc,const struct dc_state * context,struct dc_stream_state ** fpo_candidate_stream)3091 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3092 {
3093 	unsigned int i, pipe_idx;
3094 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3095 
3096 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3097 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3098 
3099 		if (!pipe->stream)
3100 			continue;
3101 
3102 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3103 			*fpo_candidate_stream = pipe->stream;
3104 			break;
3105 		}
3106 		pipe_idx++;
3107 	}
3108 }
3109 
3110 /**
3111  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3112  *
3113  * @dc: current dc state
3114  * @context: new dc state
3115  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3116  *
3117  * Return: True if VACTIVE display is found, false otherwise
3118  */
dcn32_find_vactive_pipe(struct dc * dc,const struct dc_state * context,uint32_t vactive_margin_req_us)3119 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3120 {
3121 	unsigned int i, pipe_idx;
3122 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3123 	bool vactive_found = false;
3124 	unsigned int blank_us = 0;
3125 
3126 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3127 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3128 
3129 		if (!pipe->stream)
3130 			continue;
3131 
3132 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3133 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3134 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3135 				!(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3136 			vactive_found = true;
3137 			break;
3138 		}
3139 		pipe_idx++;
3140 	}
3141 	return vactive_found;
3142 }
3143 
dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st * soc_bb)3144 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3145 {
3146 	dc_assert_fp_enabled();
3147 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3148 }
3149 
dcn32_override_min_req_memclk(struct dc * dc,struct dc_state * context)3150 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3151 {
3152 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3153 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3154 			dc->dml.soc.num_chans <= 8) {
3155 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3156 
3157 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3158 				num_mclk_levels > 1) {
3159 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3160 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3161 		}
3162 	}
3163 }
3164