xref: /openbmc/linux/arch/ia64/mm/tlb.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * TLB support routines.
4   *
5   * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
6   *	David Mosberger-Tang <davidm@hpl.hp.com>
7   *
8   * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
9   *		Modified RID allocation for SMP
10   *          Goutham Rao <goutham.rao@intel.com>
11   *              IPI based ptc implementation and A-step IPI implementation.
12   * Rohit Seth <rohit.seth@intel.com>
13   * Ken Chen <kenneth.w.chen@intel.com>
14   * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
15   * Copyright (C) 2007 Intel Corp
16   *	Fenghua Yu <fenghua.yu@intel.com>
17   *	Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18   */
19  #include <linux/module.h>
20  #include <linux/init.h>
21  #include <linux/kernel.h>
22  #include <linux/sched.h>
23  #include <linux/smp.h>
24  #include <linux/mm.h>
25  #include <linux/memblock.h>
26  #include <linux/slab.h>
27  
28  #include <asm/delay.h>
29  #include <asm/mmu_context.h>
30  #include <asm/pal.h>
31  #include <asm/tlbflush.h>
32  #include <asm/dma.h>
33  #include <asm/processor.h>
34  #include <asm/sal.h>
35  #include <asm/tlb.h>
36  
37  static struct {
38  	u64 mask;		/* mask of supported purge page-sizes */
39  	unsigned long max_bits;	/* log2 of largest supported purge page-size */
40  } purge;
41  
42  struct ia64_ctx ia64_ctx = {
43  	.lock =	__SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
44  	.next =	1,
45  	.max_ctx = ~0U
46  };
47  
48  DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
49  DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
50  DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
51  
52  struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
53  
54  /*
55   * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
56   * Called after cpu_init() has setup ia64_ctx.max_ctx based on
57   * maximum RID that is supported by boot CPU.
58   */
59  void __init
mmu_context_init(void)60  mmu_context_init (void)
61  {
62  	ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
63  					 SMP_CACHE_BYTES);
64  	if (!ia64_ctx.bitmap)
65  		panic("%s: Failed to allocate %u bytes\n", __func__,
66  		      (ia64_ctx.max_ctx + 1) >> 3);
67  	ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
68  					   SMP_CACHE_BYTES);
69  	if (!ia64_ctx.flushmap)
70  		panic("%s: Failed to allocate %u bytes\n", __func__,
71  		      (ia64_ctx.max_ctx + 1) >> 3);
72  }
73  
74  /*
75   * Acquire the ia64_ctx.lock before calling this function!
76   */
77  void
wrap_mmu_context(struct mm_struct * mm)78  wrap_mmu_context (struct mm_struct *mm)
79  {
80  	int i, cpu;
81  	unsigned long flush_bit;
82  
83  	for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
84  		flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
85  		ia64_ctx.bitmap[i] ^= flush_bit;
86  	}
87  
88  	/* use offset at 300 to skip daemons */
89  	ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
90  				ia64_ctx.max_ctx, 300);
91  	ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
92  				ia64_ctx.max_ctx, ia64_ctx.next);
93  
94  	/*
95  	 * can't call flush_tlb_all() here because of race condition
96  	 * with O(1) scheduler [EF]
97  	 */
98  	cpu = get_cpu(); /* prevent preemption/migration */
99  	for_each_online_cpu(i)
100  		if (i != cpu)
101  			per_cpu(ia64_need_tlb_flush, i) = 1;
102  	put_cpu();
103  	local_flush_tlb_all();
104  }
105  
106  /*
107   * Implement "spinaphores" ... like counting semaphores, but they
108   * spin instead of sleeping.  If there are ever any other users for
109   * this primitive it can be moved up to a spinaphore.h header.
110   */
111  struct spinaphore {
112  	unsigned long	ticket;
113  	unsigned long	serve;
114  };
115  
spinaphore_init(struct spinaphore * ss,int val)116  static inline void spinaphore_init(struct spinaphore *ss, int val)
117  {
118  	ss->ticket = 0;
119  	ss->serve = val;
120  }
121  
down_spin(struct spinaphore * ss)122  static inline void down_spin(struct spinaphore *ss)
123  {
124  	unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
125  
126  	if (time_before(t, ss->serve))
127  		return;
128  
129  	ia64_invala();
130  
131  	for (;;) {
132  		asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
133  		if (time_before(t, serve))
134  			return;
135  		cpu_relax();
136  	}
137  }
138  
up_spin(struct spinaphore * ss)139  static inline void up_spin(struct spinaphore *ss)
140  {
141  	ia64_fetchadd(1, &ss->serve, rel);
142  }
143  
144  static struct spinaphore ptcg_sem;
145  static u16 nptcg = 1;
146  static int need_ptcg_sem = 1;
147  static int toolatetochangeptcgsem = 0;
148  
149  /*
150   * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
151   * purges which is reported from either PAL or SAL PALO.
152   *
153   * We don't have sanity checking for nptcg value. It's the user's responsibility
154   * for valid nptcg value on the platform. Otherwise, kernel may hang in some
155   * cases.
156   */
157  static int __init
set_nptcg(char * str)158  set_nptcg(char *str)
159  {
160  	int value = 0;
161  
162  	get_option(&str, &value);
163  	setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
164  
165  	return 1;
166  }
167  
168  __setup("nptcg=", set_nptcg);
169  
170  /*
171   * Maximum number of simultaneous ptc.g purges in the system can
172   * be defined by PAL_VM_SUMMARY (in which case we should take
173   * the smallest value for any cpu in the system) or by the PAL
174   * override table (in which case we should ignore the value from
175   * PAL_VM_SUMMARY).
176   *
177   * Kernel parameter "nptcg=" overrides maximum number of simultaneous ptc.g
178   * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
179   * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
180   *
181   * Complicating the logic here is the fact that num_possible_cpus()
182   * isn't fully setup until we start bringing cpus online.
183   */
184  void
setup_ptcg_sem(int max_purges,int nptcg_from)185  setup_ptcg_sem(int max_purges, int nptcg_from)
186  {
187  	static int kp_override;
188  	static int palo_override;
189  	static int firstcpu = 1;
190  
191  	if (toolatetochangeptcgsem) {
192  		if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
193  			BUG_ON(1 < nptcg);
194  		else
195  			BUG_ON(max_purges < nptcg);
196  		return;
197  	}
198  
199  	if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
200  		kp_override = 1;
201  		nptcg = max_purges;
202  		goto resetsema;
203  	}
204  	if (kp_override) {
205  		need_ptcg_sem = num_possible_cpus() > nptcg;
206  		return;
207  	}
208  
209  	if (nptcg_from == NPTCG_FROM_PALO) {
210  		palo_override = 1;
211  
212  		/* In PALO max_purges == 0 really means it! */
213  		if (max_purges == 0)
214  			panic("Whoa! Platform does not support global TLB purges.\n");
215  		nptcg = max_purges;
216  		if (nptcg == PALO_MAX_TLB_PURGES) {
217  			need_ptcg_sem = 0;
218  			return;
219  		}
220  		goto resetsema;
221  	}
222  	if (palo_override) {
223  		if (nptcg != PALO_MAX_TLB_PURGES)
224  			need_ptcg_sem = (num_possible_cpus() > nptcg);
225  		return;
226  	}
227  
228  	/* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
229  	if (max_purges == 0) max_purges = 1;
230  
231  	if (firstcpu) {
232  		nptcg = max_purges;
233  		firstcpu = 0;
234  	}
235  	if (max_purges < nptcg)
236  		nptcg = max_purges;
237  	if (nptcg == PAL_MAX_PURGES) {
238  		need_ptcg_sem = 0;
239  		return;
240  	} else
241  		need_ptcg_sem = (num_possible_cpus() > nptcg);
242  
243  resetsema:
244  	spinaphore_init(&ptcg_sem, max_purges);
245  }
246  
247  #ifdef CONFIG_SMP
248  static void
ia64_global_tlb_purge(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long nbits)249  ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
250  		       unsigned long end, unsigned long nbits)
251  {
252  	struct mm_struct *active_mm = current->active_mm;
253  
254  	toolatetochangeptcgsem = 1;
255  
256  	if (mm != active_mm) {
257  		/* Restore region IDs for mm */
258  		if (mm && active_mm) {
259  			activate_context(mm);
260  		} else {
261  			flush_tlb_all();
262  			return;
263  		}
264  	}
265  
266  	if (need_ptcg_sem)
267  		down_spin(&ptcg_sem);
268  
269  	do {
270  		/*
271  		 * Flush ALAT entries also.
272  		 */
273  		ia64_ptcga(start, (nbits << 2));
274  		ia64_srlz_i();
275  		start += (1UL << nbits);
276  	} while (start < end);
277  
278  	if (need_ptcg_sem)
279  		up_spin(&ptcg_sem);
280  
281          if (mm != active_mm) {
282                  activate_context(active_mm);
283          }
284  }
285  #endif /* CONFIG_SMP */
286  
287  void
local_flush_tlb_all(void)288  local_flush_tlb_all (void)
289  {
290  	unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
291  
292  	addr    = local_cpu_data->ptce_base;
293  	count0  = local_cpu_data->ptce_count[0];
294  	count1  = local_cpu_data->ptce_count[1];
295  	stride0 = local_cpu_data->ptce_stride[0];
296  	stride1 = local_cpu_data->ptce_stride[1];
297  
298  	local_irq_save(flags);
299  	for (i = 0; i < count0; ++i) {
300  		for (j = 0; j < count1; ++j) {
301  			ia64_ptce(addr);
302  			addr += stride1;
303  		}
304  		addr += stride0;
305  	}
306  	local_irq_restore(flags);
307  	ia64_srlz_i();			/* srlz.i implies srlz.d */
308  }
309  
310  static void
__flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)311  __flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
312  		 unsigned long end)
313  {
314  	struct mm_struct *mm = vma->vm_mm;
315  	unsigned long size = end - start;
316  	unsigned long nbits;
317  
318  #ifndef CONFIG_SMP
319  	if (mm != current->active_mm) {
320  		mm->context = 0;
321  		return;
322  	}
323  #endif
324  
325  	nbits = ia64_fls(size + 0xfff);
326  	while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
327  			(nbits < purge.max_bits))
328  		++nbits;
329  	if (nbits > purge.max_bits)
330  		nbits = purge.max_bits;
331  	start &= ~((1UL << nbits) - 1);
332  
333  	preempt_disable();
334  #ifdef CONFIG_SMP
335  	if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
336  		ia64_global_tlb_purge(mm, start, end, nbits);
337  		preempt_enable();
338  		return;
339  	}
340  #endif
341  	do {
342  		ia64_ptcl(start, (nbits<<2));
343  		start += (1UL << nbits);
344  	} while (start < end);
345  	preempt_enable();
346  	ia64_srlz_i();			/* srlz.i implies srlz.d */
347  }
348  
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)349  void flush_tlb_range(struct vm_area_struct *vma,
350  		unsigned long start, unsigned long end)
351  {
352  	if (unlikely(end - start >= 1024*1024*1024*1024UL
353  			|| REGION_NUMBER(start) != REGION_NUMBER(end - 1))) {
354  		/*
355  		 * If we flush more than a tera-byte or across regions, we're
356  		 * probably better off just flushing the entire TLB(s).  This
357  		 * should be very rare and is not worth optimizing for.
358  		 */
359  		flush_tlb_all();
360  	} else {
361  		/* flush the address range from the tlb */
362  		__flush_tlb_range(vma, start, end);
363  		/* flush the virt. page-table area mapping the addr range */
364  		__flush_tlb_range(vma, ia64_thash(start), ia64_thash(end));
365  	}
366  }
367  EXPORT_SYMBOL(flush_tlb_range);
368  
ia64_tlb_init(void)369  void ia64_tlb_init(void)
370  {
371  	ia64_ptce_info_t ptce_info;
372  	u64 tr_pgbits;
373  	long status;
374  	pal_vm_info_1_u_t vm_info_1;
375  	pal_vm_info_2_u_t vm_info_2;
376  	int cpu = smp_processor_id();
377  
378  	if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
379  		printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
380  		       "defaulting to architected purge page-sizes.\n", status);
381  		purge.mask = 0x115557000UL;
382  	}
383  	purge.max_bits = ia64_fls(purge.mask);
384  
385  	ia64_get_ptce(&ptce_info);
386  	local_cpu_data->ptce_base = ptce_info.base;
387  	local_cpu_data->ptce_count[0] = ptce_info.count[0];
388  	local_cpu_data->ptce_count[1] = ptce_info.count[1];
389  	local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
390  	local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
391  
392  	local_flush_tlb_all();	/* nuke left overs from bootstrapping... */
393  	status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
394  
395  	if (status) {
396  		printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
397  		per_cpu(ia64_tr_num, cpu) = 8;
398  		return;
399  	}
400  	per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
401  	if (per_cpu(ia64_tr_num, cpu) >
402  				(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
403  		per_cpu(ia64_tr_num, cpu) =
404  				vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
405  	if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
406  		static int justonce = 1;
407  		per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
408  		if (justonce) {
409  			justonce = 0;
410  			printk(KERN_DEBUG "TR register number exceeds "
411  			       "IA64_TR_ALLOC_MAX!\n");
412  		}
413  	}
414  }
415  
416  /*
417   * is_tr_overlap
418   *
419   * Check overlap with inserted TRs.
420   */
is_tr_overlap(struct ia64_tr_entry * p,u64 va,u64 log_size)421  static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
422  {
423  	u64 tr_log_size;
424  	u64 tr_end;
425  	u64 va_rr = ia64_get_rr(va);
426  	u64 va_rid = RR_TO_RID(va_rr);
427  	u64 va_end = va + (1<<log_size) - 1;
428  
429  	if (va_rid != RR_TO_RID(p->rr))
430  		return 0;
431  	tr_log_size = (p->itir & 0xff) >> 2;
432  	tr_end = p->ifa + (1<<tr_log_size) - 1;
433  
434  	if (va > tr_end || p->ifa > va_end)
435  		return 0;
436  	return 1;
437  
438  }
439  
440  /*
441   * ia64_insert_tr in virtual mode. Allocate a TR slot
442   *
443   * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
444   *
445   * va 	: virtual address.
446   * pte 	: pte entries inserted.
447   * log_size: range to be covered.
448   *
449   * Return value:  <0 :  error No.
450   *
451   *		  >=0 : slot number allocated for TR.
452   * Must be called with preemption disabled.
453   */
ia64_itr_entry(u64 target_mask,u64 va,u64 pte,u64 log_size)454  int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
455  {
456  	int i, r;
457  	unsigned long psr;
458  	struct ia64_tr_entry *p;
459  	int cpu = smp_processor_id();
460  
461  	if (!ia64_idtrs[cpu]) {
462  		ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX,
463  						sizeof(struct ia64_tr_entry),
464  						GFP_KERNEL);
465  		if (!ia64_idtrs[cpu])
466  			return -ENOMEM;
467  	}
468  	r = -EINVAL;
469  	/*Check overlap with existing TR entries*/
470  	if (target_mask & 0x1) {
471  		p = ia64_idtrs[cpu];
472  		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
473  								i++, p++) {
474  			if (p->pte & 0x1)
475  				if (is_tr_overlap(p, va, log_size)) {
476  					printk(KERN_DEBUG "Overlapped Entry"
477  						"Inserted for TR Register!!\n");
478  					goto out;
479  			}
480  		}
481  	}
482  	if (target_mask & 0x2) {
483  		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
484  		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
485  								i++, p++) {
486  			if (p->pte & 0x1)
487  				if (is_tr_overlap(p, va, log_size)) {
488  					printk(KERN_DEBUG "Overlapped Entry"
489  						"Inserted for TR Register!!\n");
490  					goto out;
491  				}
492  		}
493  	}
494  
495  	for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
496  		switch (target_mask & 0x3) {
497  		case 1:
498  			if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
499  				goto found;
500  			continue;
501  		case 2:
502  			if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
503  				goto found;
504  			continue;
505  		case 3:
506  			if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
507  			    !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
508  				goto found;
509  			continue;
510  		default:
511  			r = -EINVAL;
512  			goto out;
513  		}
514  	}
515  found:
516  	if (i >= per_cpu(ia64_tr_num, cpu))
517  		return -EBUSY;
518  
519  	/*Record tr info for mca handler use!*/
520  	if (i > per_cpu(ia64_tr_used, cpu))
521  		per_cpu(ia64_tr_used, cpu) = i;
522  
523  	psr = ia64_clear_ic();
524  	if (target_mask & 0x1) {
525  		ia64_itr(0x1, i, va, pte, log_size);
526  		ia64_srlz_i();
527  		p = ia64_idtrs[cpu] + i;
528  		p->ifa = va;
529  		p->pte = pte;
530  		p->itir = log_size << 2;
531  		p->rr = ia64_get_rr(va);
532  	}
533  	if (target_mask & 0x2) {
534  		ia64_itr(0x2, i, va, pte, log_size);
535  		ia64_srlz_i();
536  		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
537  		p->ifa = va;
538  		p->pte = pte;
539  		p->itir = log_size << 2;
540  		p->rr = ia64_get_rr(va);
541  	}
542  	ia64_set_psr(psr);
543  	r = i;
544  out:
545  	return r;
546  }
547  EXPORT_SYMBOL_GPL(ia64_itr_entry);
548  
549  /*
550   * ia64_purge_tr
551   *
552   * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
553   * slot: slot number to be freed.
554   *
555   * Must be called with preemption disabled.
556   */
ia64_ptr_entry(u64 target_mask,int slot)557  void ia64_ptr_entry(u64 target_mask, int slot)
558  {
559  	int cpu = smp_processor_id();
560  	int i;
561  	struct ia64_tr_entry *p;
562  
563  	if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
564  		return;
565  
566  	if (target_mask & 0x1) {
567  		p = ia64_idtrs[cpu] + slot;
568  		if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
569  			p->pte = 0;
570  			ia64_ptr(0x1, p->ifa, p->itir>>2);
571  			ia64_srlz_i();
572  		}
573  	}
574  
575  	if (target_mask & 0x2) {
576  		p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
577  		if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
578  			p->pte = 0;
579  			ia64_ptr(0x2, p->ifa, p->itir>>2);
580  			ia64_srlz_i();
581  		}
582  	}
583  
584  	for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
585  		if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
586  		    ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
587  			break;
588  	}
589  	per_cpu(ia64_tr_used, cpu) = i;
590  }
591  EXPORT_SYMBOL_GPL(ia64_ptr_entry);
592