xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision e5859141b9b6aec9e0a14dacedc9f02fe2f15844)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "system/kvm.h"
36 #include "system/dma.h"
37 #include "system/system.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42 
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48 
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_FL_LEVEL(pe) \
52     (4 + (((pe)->val[2] >> 2) & VTD_SM_PASID_ENTRY_FLPM))
53 #define VTD_PE_GET_SL_LEVEL(pe) \
54     (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
55 
56 /*
57  * PCI bus number (or SID) is not reliable since the device is usaully
58  * initialized before guest can configure the PCI bridge
59  * (SECONDARY_BUS_NUMBER).
60  */
61 struct vtd_as_key {
62     PCIBus *bus;
63     uint8_t devfn;
64     uint32_t pasid;
65 };
66 
67 /* bus/devfn is PCI device's real BDF not the aliased one */
68 struct vtd_hiod_key {
69     PCIBus *bus;
70     uint8_t devfn;
71 };
72 
73 struct vtd_as_raw_key {
74     uint16_t sid;
75     uint32_t pasid;
76 };
77 
78 struct vtd_iotlb_key {
79     uint64_t gfn;
80     uint32_t pasid;
81     uint16_t sid;
82     uint8_t level;
83 };
84 
85 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
86 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
87 
vtd_panic_require_caching_mode(void)88 static void vtd_panic_require_caching_mode(void)
89 {
90     error_report("We need to set caching-mode=on for intel-iommu to enable "
91                  "device assignment with IOMMU protection.");
92     exit(1);
93 }
94 
vtd_define_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val,uint64_t wmask,uint64_t w1cmask)95 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
96                             uint64_t wmask, uint64_t w1cmask)
97 {
98     stq_le_p(&s->csr[addr], val);
99     stq_le_p(&s->wmask[addr], wmask);
100     stq_le_p(&s->w1cmask[addr], w1cmask);
101 }
102 
vtd_define_quad_wo(IntelIOMMUState * s,hwaddr addr,uint64_t mask)103 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
104 {
105     stq_le_p(&s->womask[addr], mask);
106 }
107 
vtd_define_long(IntelIOMMUState * s,hwaddr addr,uint32_t val,uint32_t wmask,uint32_t w1cmask)108 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
109                             uint32_t wmask, uint32_t w1cmask)
110 {
111     stl_le_p(&s->csr[addr], val);
112     stl_le_p(&s->wmask[addr], wmask);
113     stl_le_p(&s->w1cmask[addr], w1cmask);
114 }
115 
vtd_define_long_wo(IntelIOMMUState * s,hwaddr addr,uint32_t mask)116 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
117 {
118     stl_le_p(&s->womask[addr], mask);
119 }
120 
121 /* "External" get/set operations */
vtd_set_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val)122 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
123 {
124     uint64_t oldval = ldq_le_p(&s->csr[addr]);
125     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
126     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
127     stq_le_p(&s->csr[addr],
128              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
129 }
130 
vtd_set_long(IntelIOMMUState * s,hwaddr addr,uint32_t val)131 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
132 {
133     uint32_t oldval = ldl_le_p(&s->csr[addr]);
134     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
135     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
136     stl_le_p(&s->csr[addr],
137              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
138 }
139 
vtd_get_quad(IntelIOMMUState * s,hwaddr addr)140 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
141 {
142     uint64_t val = ldq_le_p(&s->csr[addr]);
143     uint64_t womask = ldq_le_p(&s->womask[addr]);
144     return val & ~womask;
145 }
146 
vtd_get_long(IntelIOMMUState * s,hwaddr addr)147 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
148 {
149     uint32_t val = ldl_le_p(&s->csr[addr]);
150     uint32_t womask = ldl_le_p(&s->womask[addr]);
151     return val & ~womask;
152 }
153 
154 /* "Internal" get/set operations */
vtd_get_quad_raw(IntelIOMMUState * s,hwaddr addr)155 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
156 {
157     return ldq_le_p(&s->csr[addr]);
158 }
159 
vtd_get_long_raw(IntelIOMMUState * s,hwaddr addr)160 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
161 {
162     return ldl_le_p(&s->csr[addr]);
163 }
164 
vtd_set_quad_raw(IntelIOMMUState * s,hwaddr addr,uint64_t val)165 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
166 {
167     stq_le_p(&s->csr[addr], val);
168 }
169 
vtd_set_clear_mask_long(IntelIOMMUState * s,hwaddr addr,uint32_t clear,uint32_t mask)170 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
171                                         uint32_t clear, uint32_t mask)
172 {
173     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
174     stl_le_p(&s->csr[addr], new_val);
175     return new_val;
176 }
177 
vtd_set_clear_mask_quad(IntelIOMMUState * s,hwaddr addr,uint64_t clear,uint64_t mask)178 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
179                                         uint64_t clear, uint64_t mask)
180 {
181     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
182     stq_le_p(&s->csr[addr], new_val);
183     return new_val;
184 }
185 
vtd_iommu_lock(IntelIOMMUState * s)186 static inline void vtd_iommu_lock(IntelIOMMUState *s)
187 {
188     qemu_mutex_lock(&s->iommu_lock);
189 }
190 
vtd_iommu_unlock(IntelIOMMUState * s)191 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
192 {
193     qemu_mutex_unlock(&s->iommu_lock);
194 }
195 
vtd_update_scalable_state(IntelIOMMUState * s)196 static void vtd_update_scalable_state(IntelIOMMUState *s)
197 {
198     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
199 
200     if (s->scalable_mode) {
201         s->root_scalable = val & VTD_RTADDR_SMT;
202     }
203 }
204 
vtd_update_iq_dw(IntelIOMMUState * s)205 static void vtd_update_iq_dw(IntelIOMMUState *s)
206 {
207     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
208 
209     if (s->ecap & VTD_ECAP_SMTS &&
210         val & VTD_IQA_DW_MASK) {
211         s->iq_dw = true;
212     } else {
213         s->iq_dw = false;
214     }
215 }
216 
217 /* Whether the address space needs to notify new mappings */
vtd_as_has_map_notifier(VTDAddressSpace * as)218 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
219 {
220     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
221 }
222 
223 /* GHashTable functions */
vtd_iotlb_equal(gconstpointer v1,gconstpointer v2)224 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
225 {
226     const struct vtd_iotlb_key *key1 = v1;
227     const struct vtd_iotlb_key *key2 = v2;
228 
229     return key1->sid == key2->sid &&
230            key1->pasid == key2->pasid &&
231            key1->level == key2->level &&
232            key1->gfn == key2->gfn;
233 }
234 
vtd_iotlb_hash(gconstpointer v)235 static guint vtd_iotlb_hash(gconstpointer v)
236 {
237     const struct vtd_iotlb_key *key = v;
238     uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
239         (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
240         (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
241 
242     return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
243 }
244 
vtd_as_equal(gconstpointer v1,gconstpointer v2)245 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
246 {
247     const struct vtd_as_key *key1 = v1;
248     const struct vtd_as_key *key2 = v2;
249 
250     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
251            (key1->pasid == key2->pasid);
252 }
253 
254 /*
255  * Note that we use pointer to PCIBus as the key, so hashing/shifting
256  * based on the pointer value is intended. Note that we deal with
257  * collisions through vtd_as_equal().
258  */
vtd_as_hash(gconstpointer v)259 static guint vtd_as_hash(gconstpointer v)
260 {
261     const struct vtd_as_key *key = v;
262     guint value = (guint)(uintptr_t)key->bus;
263 
264     return (guint)(value << 8 | key->devfn);
265 }
266 
267 /* Same implementation as vtd_as_hash() */
vtd_hiod_hash(gconstpointer v)268 static guint vtd_hiod_hash(gconstpointer v)
269 {
270     return vtd_as_hash(v);
271 }
272 
vtd_hiod_equal(gconstpointer v1,gconstpointer v2)273 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
274 {
275     const struct vtd_hiod_key *key1 = v1;
276     const struct vtd_hiod_key *key2 = v2;
277 
278     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
279 }
280 
vtd_hiod_destroy(gpointer v)281 static void vtd_hiod_destroy(gpointer v)
282 {
283     object_unref(v);
284 }
285 
vtd_hash_remove_by_domain(gpointer key,gpointer value,gpointer user_data)286 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
287                                           gpointer user_data)
288 {
289     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
290     uint16_t domain_id = *(uint16_t *)user_data;
291     return entry->domain_id == domain_id;
292 }
293 
294 /* The shift of an addr for a certain level of paging structure */
vtd_pt_level_shift(uint32_t level)295 static inline uint32_t vtd_pt_level_shift(uint32_t level)
296 {
297     assert(level != 0);
298     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_LEVEL_BITS;
299 }
300 
vtd_pt_level_page_mask(uint32_t level)301 static inline uint64_t vtd_pt_level_page_mask(uint32_t level)
302 {
303     return ~((1ULL << vtd_pt_level_shift(level)) - 1);
304 }
305 
vtd_hash_remove_by_page(gpointer key,gpointer value,gpointer user_data)306 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
307                                         gpointer user_data)
308 {
309     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
310     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
311     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
312     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
313 
314     if (entry->domain_id != info->domain_id) {
315         return false;
316     }
317 
318     /*
319      * According to spec, IOTLB entries caching first-stage (PGTT=001b) or
320      * nested (PGTT=011b) mapping associated with specified domain-id are
321      * invalidated. Nested isn't supported yet, so only need to check 001b.
322      */
323     if (entry->pgtt == VTD_SM_PASID_ENTRY_FLT) {
324         return true;
325     }
326 
327     return (entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb;
328 }
329 
vtd_hash_remove_by_page_piotlb(gpointer key,gpointer value,gpointer user_data)330 static gboolean vtd_hash_remove_by_page_piotlb(gpointer key, gpointer value,
331                                                gpointer user_data)
332 {
333     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
334     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
335     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
336     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
337 
338     /*
339      * According to spec, PASID-based-IOTLB Invalidation in page granularity
340      * doesn't invalidate IOTLB entries caching second-stage (PGTT=010b)
341      * or pass-through (PGTT=100b) mappings. Nested isn't supported yet,
342      * so only need to check first-stage (PGTT=001b) mappings.
343      */
344     if (entry->pgtt != VTD_SM_PASID_ENTRY_FLT) {
345         return false;
346     }
347 
348     return entry->domain_id == info->domain_id && entry->pasid == info->pasid &&
349            ((entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb);
350 }
351 
352 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
353  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
354  */
vtd_reset_context_cache_locked(IntelIOMMUState * s)355 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
356 {
357     VTDAddressSpace *vtd_as;
358     GHashTableIter as_it;
359 
360     trace_vtd_context_cache_reset();
361 
362     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
363 
364     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
365         vtd_as->context_cache_entry.context_cache_gen = 0;
366     }
367     s->context_cache_gen = 1;
368 }
369 
370 /* Must be called with IOMMU lock held. */
vtd_reset_iotlb_locked(IntelIOMMUState * s)371 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
372 {
373     assert(s->iotlb);
374     g_hash_table_remove_all(s->iotlb);
375 }
376 
vtd_reset_iotlb(IntelIOMMUState * s)377 static void vtd_reset_iotlb(IntelIOMMUState *s)
378 {
379     vtd_iommu_lock(s);
380     vtd_reset_iotlb_locked(s);
381     vtd_iommu_unlock(s);
382 }
383 
vtd_reset_caches(IntelIOMMUState * s)384 static void vtd_reset_caches(IntelIOMMUState *s)
385 {
386     vtd_iommu_lock(s);
387     vtd_reset_iotlb_locked(s);
388     vtd_reset_context_cache_locked(s);
389     vtd_iommu_unlock(s);
390 }
391 
vtd_get_iotlb_gfn(hwaddr addr,uint32_t level)392 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
393 {
394     return (addr & vtd_pt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
395 }
396 
397 /* Must be called with IOMMU lock held */
vtd_lookup_iotlb(IntelIOMMUState * s,uint16_t source_id,uint32_t pasid,hwaddr addr)398 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
399                                        uint32_t pasid, hwaddr addr)
400 {
401     struct vtd_iotlb_key key;
402     VTDIOTLBEntry *entry;
403     unsigned level;
404 
405     for (level = VTD_PT_LEVEL; level < VTD_PML4_LEVEL; level++) {
406         key.gfn = vtd_get_iotlb_gfn(addr, level);
407         key.level = level;
408         key.sid = source_id;
409         key.pasid = pasid;
410         entry = g_hash_table_lookup(s->iotlb, &key);
411         if (entry) {
412             goto out;
413         }
414     }
415 
416 out:
417     return entry;
418 }
419 
420 /* Must be with IOMMU lock held */
vtd_update_iotlb(IntelIOMMUState * s,uint16_t source_id,uint16_t domain_id,hwaddr addr,uint64_t pte,uint8_t access_flags,uint32_t level,uint32_t pasid,uint8_t pgtt)421 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
422                              uint16_t domain_id, hwaddr addr, uint64_t pte,
423                              uint8_t access_flags, uint32_t level,
424                              uint32_t pasid, uint8_t pgtt)
425 {
426     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
427     struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
428     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
429 
430     trace_vtd_iotlb_page_update(source_id, addr, pte, domain_id);
431     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
432         trace_vtd_iotlb_reset("iotlb exceeds size limit");
433         vtd_reset_iotlb_locked(s);
434     }
435 
436     entry->gfn = gfn;
437     entry->domain_id = domain_id;
438     entry->pte = pte;
439     entry->access_flags = access_flags;
440     entry->mask = vtd_pt_level_page_mask(level);
441     entry->pasid = pasid;
442     entry->pgtt = pgtt;
443 
444     key->gfn = gfn;
445     key->sid = source_id;
446     key->level = level;
447     key->pasid = pasid;
448 
449     g_hash_table_replace(s->iotlb, key, entry);
450 }
451 
452 /* Given the reg addr of both the message data and address, generate an
453  * interrupt via MSI.
454  */
vtd_generate_interrupt(IntelIOMMUState * s,hwaddr mesg_addr_reg,hwaddr mesg_data_reg)455 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
456                                    hwaddr mesg_data_reg)
457 {
458     MSIMessage msi;
459 
460     assert(mesg_data_reg < DMAR_REG_SIZE);
461     assert(mesg_addr_reg < DMAR_REG_SIZE);
462 
463     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
464     msi.data = vtd_get_long_raw(s, mesg_data_reg);
465 
466     trace_vtd_irq_generate(msi.address, msi.data);
467 
468     apic_get_class(NULL)->send_msi(&msi);
469 }
470 
471 /* Generate a fault event to software via MSI if conditions are met.
472  * Notice that the value of FSTS_REG being passed to it should be the one
473  * before any update.
474  */
vtd_generate_fault_event(IntelIOMMUState * s,uint32_t pre_fsts)475 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
476 {
477     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
478         pre_fsts & VTD_FSTS_IQE) {
479         error_report_once("There are previous interrupt conditions "
480                           "to be serviced by software, fault event "
481                           "is not generated");
482         return;
483     }
484     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
485     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
486         error_report_once("Interrupt Mask set, irq is not generated");
487     } else {
488         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
489         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
490     }
491 }
492 
493 /* Check if the Fault (F) field of the Fault Recording Register referenced by
494  * @index is Set.
495  */
vtd_is_frcd_set(IntelIOMMUState * s,uint16_t index)496 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
497 {
498     /* Each reg is 128-bit */
499     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
500     addr += 8; /* Access the high 64-bit half */
501 
502     assert(index < DMAR_FRCD_REG_NR);
503 
504     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
505 }
506 
507 /* Update the PPF field of Fault Status Register.
508  * Should be called whenever change the F field of any fault recording
509  * registers.
510  */
vtd_update_fsts_ppf(IntelIOMMUState * s)511 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
512 {
513     uint32_t i;
514     uint32_t ppf_mask = 0;
515 
516     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517         if (vtd_is_frcd_set(s, i)) {
518             ppf_mask = VTD_FSTS_PPF;
519             break;
520         }
521     }
522     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
523     trace_vtd_fsts_ppf(!!ppf_mask);
524 }
525 
vtd_set_frcd_and_update_ppf(IntelIOMMUState * s,uint16_t index)526 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
527 {
528     /* Each reg is 128-bit */
529     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
530     addr += 8; /* Access the high 64-bit half */
531 
532     assert(index < DMAR_FRCD_REG_NR);
533 
534     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
535     vtd_update_fsts_ppf(s);
536 }
537 
538 /* Must not update F field now, should be done later */
vtd_record_frcd(IntelIOMMUState * s,uint16_t index,uint64_t hi,uint64_t lo)539 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
540                             uint64_t hi, uint64_t lo)
541 {
542     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
543 
544     assert(index < DMAR_FRCD_REG_NR);
545 
546     vtd_set_quad_raw(s, frcd_reg_addr, lo);
547     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
548 
549     trace_vtd_frr_new(index, hi, lo);
550 }
551 
552 /* Try to collapse multiple pending faults from the same requester */
vtd_try_collapse_fault(IntelIOMMUState * s,uint16_t source_id)553 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
554 {
555     uint32_t i;
556     uint64_t frcd_reg;
557     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
558 
559     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
560         frcd_reg = vtd_get_quad_raw(s, addr);
561         if ((frcd_reg & VTD_FRCD_F) &&
562             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
563             return true;
564         }
565         addr += 16; /* 128-bit for each */
566     }
567     return false;
568 }
569 
570 /* Log and report an DMAR (address translation) fault to software */
vtd_report_frcd_fault(IntelIOMMUState * s,uint64_t source_id,uint64_t hi,uint64_t lo)571 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
572                                   uint64_t hi, uint64_t lo)
573 {
574     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
575 
576     if (fsts_reg & VTD_FSTS_PFO) {
577         error_report_once("New fault is not recorded due to "
578                           "Primary Fault Overflow");
579         return;
580     }
581 
582     if (vtd_try_collapse_fault(s, source_id)) {
583         error_report_once("New fault is not recorded due to "
584                           "compression of faults");
585         return;
586     }
587 
588     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
589         error_report_once("Next Fault Recording Reg is used, "
590                           "new fault is not recorded, set PFO field");
591         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
592         return;
593     }
594 
595     vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
596 
597     if (fsts_reg & VTD_FSTS_PPF) {
598         error_report_once("There are pending faults already, "
599                           "fault event is not generated");
600         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
601         s->next_frcd_reg++;
602         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
603             s->next_frcd_reg = 0;
604         }
605     } else {
606         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
607                                 VTD_FSTS_FRI(s->next_frcd_reg));
608         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
609         s->next_frcd_reg++;
610         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
611             s->next_frcd_reg = 0;
612         }
613         /* This case actually cause the PPF to be Set.
614          * So generate fault event (interrupt).
615          */
616          vtd_generate_fault_event(s, fsts_reg);
617     }
618 }
619 
620 /* Log and report an DMAR (address translation) fault to software */
vtd_report_dmar_fault(IntelIOMMUState * s,uint16_t source_id,hwaddr addr,VTDFaultReason fault,bool is_write,bool is_pasid,uint32_t pasid)621 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
622                                   hwaddr addr, VTDFaultReason fault,
623                                   bool is_write, bool is_pasid,
624                                   uint32_t pasid)
625 {
626     uint64_t hi, lo;
627 
628     assert(fault < VTD_FR_MAX);
629 
630     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
631 
632     lo = VTD_FRCD_FI(addr);
633     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
634          VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
635     if (!is_write) {
636         hi |= VTD_FRCD_T;
637     }
638 
639     vtd_report_frcd_fault(s, source_id, hi, lo);
640 }
641 
642 
vtd_report_ir_fault(IntelIOMMUState * s,uint64_t source_id,VTDFaultReason fault,uint16_t index)643 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
644                                 VTDFaultReason fault, uint16_t index)
645 {
646     uint64_t hi, lo;
647 
648     lo = VTD_FRCD_IR_IDX(index);
649     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
650 
651     vtd_report_frcd_fault(s, source_id, hi, lo);
652 }
653 
654 /* Handle Invalidation Queue Errors of queued invalidation interface error
655  * conditions.
656  */
vtd_handle_inv_queue_error(IntelIOMMUState * s)657 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
658 {
659     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
660 
661     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
662     vtd_generate_fault_event(s, fsts_reg);
663 }
664 
665 /* Set the IWC field and try to generate an invalidation completion interrupt */
vtd_generate_completion_event(IntelIOMMUState * s)666 static void vtd_generate_completion_event(IntelIOMMUState *s)
667 {
668     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
669         trace_vtd_inv_desc_wait_irq("One pending, skip current");
670         return;
671     }
672     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
673     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
674     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
675         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
676                                     "new event not generated");
677         return;
678     } else {
679         /* Generate the interrupt event */
680         trace_vtd_inv_desc_wait_irq("Generating complete event");
681         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
682         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
683     }
684 }
685 
vtd_root_entry_present(IntelIOMMUState * s,VTDRootEntry * re,uint8_t devfn)686 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
687                                           VTDRootEntry *re,
688                                           uint8_t devfn)
689 {
690     if (s->root_scalable && devfn > UINT8_MAX / 2) {
691         return re->hi & VTD_ROOT_ENTRY_P;
692     }
693 
694     return re->lo & VTD_ROOT_ENTRY_P;
695 }
696 
vtd_get_root_entry(IntelIOMMUState * s,uint8_t index,VTDRootEntry * re)697 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
698                               VTDRootEntry *re)
699 {
700     dma_addr_t addr;
701 
702     addr = s->root + index * sizeof(*re);
703     if (dma_memory_read(&address_space_memory, addr,
704                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
705         re->lo = 0;
706         return -VTD_FR_ROOT_TABLE_INV;
707     }
708     re->lo = le64_to_cpu(re->lo);
709     re->hi = le64_to_cpu(re->hi);
710     return 0;
711 }
712 
vtd_ce_present(VTDContextEntry * context)713 static inline bool vtd_ce_present(VTDContextEntry *context)
714 {
715     return context->lo & VTD_CONTEXT_ENTRY_P;
716 }
717 
vtd_get_context_entry_from_root(IntelIOMMUState * s,VTDRootEntry * re,uint8_t index,VTDContextEntry * ce)718 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
719                                            VTDRootEntry *re,
720                                            uint8_t index,
721                                            VTDContextEntry *ce)
722 {
723     dma_addr_t addr, ce_size;
724 
725     /* we have checked that root entry is present */
726     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
727               VTD_CTX_ENTRY_LEGACY_SIZE;
728 
729     if (s->root_scalable && index > UINT8_MAX / 2) {
730         index = index & (~VTD_DEVFN_CHECK_MASK);
731         addr = re->hi & VTD_ROOT_ENTRY_CTP;
732     } else {
733         addr = re->lo & VTD_ROOT_ENTRY_CTP;
734     }
735 
736     addr = addr + index * ce_size;
737     if (dma_memory_read(&address_space_memory, addr,
738                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
739         return -VTD_FR_CONTEXT_TABLE_INV;
740     }
741 
742     ce->lo = le64_to_cpu(ce->lo);
743     ce->hi = le64_to_cpu(ce->hi);
744     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
745         ce->val[2] = le64_to_cpu(ce->val[2]);
746         ce->val[3] = le64_to_cpu(ce->val[3]);
747     }
748     return 0;
749 }
750 
vtd_ce_get_slpt_base(VTDContextEntry * ce)751 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
752 {
753     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
754 }
755 
vtd_get_pte_addr(uint64_t pte,uint8_t aw)756 static inline uint64_t vtd_get_pte_addr(uint64_t pte, uint8_t aw)
757 {
758     return pte & VTD_PT_BASE_ADDR_MASK(aw);
759 }
760 
761 /* Whether the pte indicates the address of the page frame */
vtd_is_last_pte(uint64_t pte,uint32_t level)762 static inline bool vtd_is_last_pte(uint64_t pte, uint32_t level)
763 {
764     return level == VTD_PT_LEVEL || (pte & VTD_PT_PAGE_SIZE_MASK);
765 }
766 
767 /* Get the content of a pte located in @base_addr[@index] */
vtd_get_pte(dma_addr_t base_addr,uint32_t index)768 static uint64_t vtd_get_pte(dma_addr_t base_addr, uint32_t index)
769 {
770     uint64_t pte;
771 
772     assert(index < VTD_PT_ENTRY_NR);
773 
774     if (dma_memory_read(&address_space_memory,
775                         base_addr + index * sizeof(pte),
776                         &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) {
777         pte = (uint64_t)-1;
778         return pte;
779     }
780     pte = le64_to_cpu(pte);
781     return pte;
782 }
783 
784 /* Given an iova and the level of paging structure, return the offset
785  * of current level.
786  */
vtd_iova_level_offset(uint64_t iova,uint32_t level)787 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
788 {
789     return (iova >> vtd_pt_level_shift(level)) &
790             ((1ULL << VTD_LEVEL_BITS) - 1);
791 }
792 
793 /* Check Capability Register to see if the @level of page-table is supported */
vtd_is_sl_level_supported(IntelIOMMUState * s,uint32_t level)794 static inline bool vtd_is_sl_level_supported(IntelIOMMUState *s, uint32_t level)
795 {
796     return VTD_CAP_SAGAW_MASK & s->cap &
797            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
798 }
799 
vtd_is_fl_level_supported(IntelIOMMUState * s,uint32_t level)800 static inline bool vtd_is_fl_level_supported(IntelIOMMUState *s, uint32_t level)
801 {
802     return level == VTD_PML4_LEVEL;
803 }
804 
805 /* Return true if check passed, otherwise false */
vtd_pe_type_check(IntelIOMMUState * s,VTDPASIDEntry * pe)806 static inline bool vtd_pe_type_check(IntelIOMMUState *s, VTDPASIDEntry *pe)
807 {
808     switch (VTD_PE_GET_TYPE(pe)) {
809     case VTD_SM_PASID_ENTRY_FLT:
810         return !!(s->ecap & VTD_ECAP_FLTS);
811     case VTD_SM_PASID_ENTRY_SLT:
812         return !!(s->ecap & VTD_ECAP_SLTS);
813     case VTD_SM_PASID_ENTRY_NESTED:
814         /* Not support NESTED page table type yet */
815         return false;
816     case VTD_SM_PASID_ENTRY_PT:
817         return !!(s->ecap & VTD_ECAP_PT);
818     default:
819         /* Unknown type */
820         return false;
821     }
822 }
823 
vtd_pdire_present(VTDPASIDDirEntry * pdire)824 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
825 {
826     return pdire->val & 1;
827 }
828 
829 /**
830  * Caller of this function should check present bit if wants
831  * to use pdir entry for further usage except for fpd bit check.
832  */
vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDDirEntry * pdire)833 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
834                                          uint32_t pasid,
835                                          VTDPASIDDirEntry *pdire)
836 {
837     uint32_t index;
838     dma_addr_t addr, entry_size;
839 
840     index = VTD_PASID_DIR_INDEX(pasid);
841     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
842     addr = pasid_dir_base + index * entry_size;
843     if (dma_memory_read(&address_space_memory, addr,
844                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
845         return -VTD_FR_PASID_DIR_ACCESS_ERR;
846     }
847 
848     pdire->val = le64_to_cpu(pdire->val);
849 
850     return 0;
851 }
852 
vtd_pe_present(VTDPASIDEntry * pe)853 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
854 {
855     return pe->val[0] & VTD_PASID_ENTRY_P;
856 }
857 
vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState * s,uint32_t pasid,dma_addr_t addr,VTDPASIDEntry * pe)858 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
859                                           uint32_t pasid,
860                                           dma_addr_t addr,
861                                           VTDPASIDEntry *pe)
862 {
863     uint8_t pgtt;
864     uint32_t index;
865     dma_addr_t entry_size;
866 
867     index = VTD_PASID_TABLE_INDEX(pasid);
868     entry_size = VTD_PASID_ENTRY_SIZE;
869     addr = addr + index * entry_size;
870     if (dma_memory_read(&address_space_memory, addr,
871                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
872         return -VTD_FR_PASID_TABLE_ACCESS_ERR;
873     }
874     for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
875         pe->val[i] = le64_to_cpu(pe->val[i]);
876     }
877 
878     /* Do translation type check */
879     if (!vtd_pe_type_check(s, pe)) {
880         return -VTD_FR_PASID_TABLE_ENTRY_INV;
881     }
882 
883     pgtt = VTD_PE_GET_TYPE(pe);
884     if (pgtt == VTD_SM_PASID_ENTRY_SLT &&
885         !vtd_is_sl_level_supported(s, VTD_PE_GET_SL_LEVEL(pe))) {
886             return -VTD_FR_PASID_TABLE_ENTRY_INV;
887     }
888 
889     if (pgtt == VTD_SM_PASID_ENTRY_FLT &&
890         !vtd_is_fl_level_supported(s, VTD_PE_GET_FL_LEVEL(pe))) {
891             return -VTD_FR_PASID_TABLE_ENTRY_INV;
892     }
893 
894     return 0;
895 }
896 
897 /**
898  * Caller of this function should check present bit if wants
899  * to use pasid entry for further usage except for fpd bit check.
900  */
vtd_get_pe_from_pdire(IntelIOMMUState * s,uint32_t pasid,VTDPASIDDirEntry * pdire,VTDPASIDEntry * pe)901 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
902                                  uint32_t pasid,
903                                  VTDPASIDDirEntry *pdire,
904                                  VTDPASIDEntry *pe)
905 {
906     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
907 
908     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
909 }
910 
911 /**
912  * This function gets a pasid entry from a specified pasid
913  * table (includes dir and leaf table) with a specified pasid.
914  * Sanity check should be done to ensure return a present
915  * pasid entry to caller.
916  */
vtd_get_pe_from_pasid_table(IntelIOMMUState * s,dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDEntry * pe)917 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
918                                        dma_addr_t pasid_dir_base,
919                                        uint32_t pasid,
920                                        VTDPASIDEntry *pe)
921 {
922     int ret;
923     VTDPASIDDirEntry pdire;
924 
925     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
926                                         pasid, &pdire);
927     if (ret) {
928         return ret;
929     }
930 
931     if (!vtd_pdire_present(&pdire)) {
932         return -VTD_FR_PASID_DIR_ENTRY_P;
933     }
934 
935     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
936     if (ret) {
937         return ret;
938     }
939 
940     if (!vtd_pe_present(pe)) {
941         return -VTD_FR_PASID_ENTRY_P;
942     }
943 
944     return 0;
945 }
946 
vtd_ce_get_rid2pasid_entry(IntelIOMMUState * s,VTDContextEntry * ce,VTDPASIDEntry * pe,uint32_t pasid)947 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
948                                       VTDContextEntry *ce,
949                                       VTDPASIDEntry *pe,
950                                       uint32_t pasid)
951 {
952     dma_addr_t pasid_dir_base;
953     int ret = 0;
954 
955     if (pasid == PCI_NO_PASID) {
956         pasid = VTD_CE_GET_RID2PASID(ce);
957     }
958     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
959     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
960 
961     return ret;
962 }
963 
vtd_ce_get_pasid_fpd(IntelIOMMUState * s,VTDContextEntry * ce,bool * pe_fpd_set,uint32_t pasid)964 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
965                                 VTDContextEntry *ce,
966                                 bool *pe_fpd_set,
967                                 uint32_t pasid)
968 {
969     int ret;
970     dma_addr_t pasid_dir_base;
971     VTDPASIDDirEntry pdire;
972     VTDPASIDEntry pe;
973 
974     if (pasid == PCI_NO_PASID) {
975         pasid = VTD_CE_GET_RID2PASID(ce);
976     }
977     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
978 
979     /*
980      * No present bit check since fpd is meaningful even
981      * if the present bit is clear.
982      */
983     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
984     if (ret) {
985         return ret;
986     }
987 
988     if (pdire.val & VTD_PASID_DIR_FPD) {
989         *pe_fpd_set = true;
990         return 0;
991     }
992 
993     if (!vtd_pdire_present(&pdire)) {
994         return -VTD_FR_PASID_DIR_ENTRY_P;
995     }
996 
997     /*
998      * No present bit check since fpd is meaningful even
999      * if the present bit is clear.
1000      */
1001     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
1002     if (ret) {
1003         return ret;
1004     }
1005 
1006     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
1007         *pe_fpd_set = true;
1008     }
1009 
1010     return 0;
1011 }
1012 
1013 /* Get the page-table level that hardware should use for the second-level
1014  * page-table walk from the Address Width field of context-entry.
1015  */
vtd_ce_get_level(VTDContextEntry * ce)1016 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1017 {
1018     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
1019 }
1020 
vtd_get_iova_level(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1021 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
1022                                    VTDContextEntry *ce,
1023                                    uint32_t pasid)
1024 {
1025     VTDPASIDEntry pe;
1026 
1027     if (s->root_scalable) {
1028         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1029         if (s->flts) {
1030             return VTD_PE_GET_FL_LEVEL(&pe);
1031         } else {
1032             return VTD_PE_GET_SL_LEVEL(&pe);
1033         }
1034     }
1035 
1036     return vtd_ce_get_level(ce);
1037 }
1038 
vtd_ce_get_agaw(VTDContextEntry * ce)1039 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1040 {
1041     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
1042 }
1043 
vtd_get_iova_agaw(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1044 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
1045                                   VTDContextEntry *ce,
1046                                   uint32_t pasid)
1047 {
1048     VTDPASIDEntry pe;
1049 
1050     if (s->root_scalable) {
1051         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1052         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
1053     }
1054 
1055     return vtd_ce_get_agaw(ce);
1056 }
1057 
vtd_ce_get_type(VTDContextEntry * ce)1058 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1059 {
1060     return ce->lo & VTD_CONTEXT_ENTRY_TT;
1061 }
1062 
1063 /* Only for Legacy Mode. Return true if check passed, otherwise false */
vtd_ce_type_check(X86IOMMUState * x86_iommu,VTDContextEntry * ce)1064 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1065                                      VTDContextEntry *ce)
1066 {
1067     switch (vtd_ce_get_type(ce)) {
1068     case VTD_CONTEXT_TT_MULTI_LEVEL:
1069         /* Always supported */
1070         break;
1071     case VTD_CONTEXT_TT_DEV_IOTLB:
1072         if (!x86_iommu->dt_supported) {
1073             error_report_once("%s: DT specified but not supported", __func__);
1074             return false;
1075         }
1076         break;
1077     case VTD_CONTEXT_TT_PASS_THROUGH:
1078         if (!x86_iommu->pt_supported) {
1079             error_report_once("%s: PT specified but not supported", __func__);
1080             return false;
1081         }
1082         break;
1083     default:
1084         /* Unknown type */
1085         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1086                           vtd_ce_get_type(ce));
1087         return false;
1088     }
1089     return true;
1090 }
1091 
vtd_iova_limit(IntelIOMMUState * s,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1092 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1093                                       VTDContextEntry *ce, uint8_t aw,
1094                                       uint32_t pasid)
1095 {
1096     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1097     return 1ULL << MIN(ce_agaw, aw);
1098 }
1099 
1100 /* Return true if IOVA passes range check, otherwise false. */
vtd_iova_sl_range_check(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1101 static inline bool vtd_iova_sl_range_check(IntelIOMMUState *s,
1102                                            uint64_t iova, VTDContextEntry *ce,
1103                                            uint8_t aw, uint32_t pasid)
1104 {
1105     /*
1106      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1107      * in CAP_REG and AW in context-entry.
1108      */
1109     return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1110 }
1111 
vtd_get_iova_pgtbl_base(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1112 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1113                                           VTDContextEntry *ce,
1114                                           uint32_t pasid)
1115 {
1116     VTDPASIDEntry pe;
1117 
1118     if (s->root_scalable) {
1119         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1120         if (s->flts) {
1121             return pe.val[2] & VTD_SM_PASID_ENTRY_FLPTPTR;
1122         } else {
1123             return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1124         }
1125     }
1126 
1127     return vtd_ce_get_slpt_base(ce);
1128 }
1129 
1130 /*
1131  * Rsvd field masks for spte:
1132  *     vtd_spte_rsvd 4k pages
1133  *     vtd_spte_rsvd_large large pages
1134  *
1135  * We support only 3-level and 4-level page tables (see vtd_init() which
1136  * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1137  */
1138 #define VTD_SPTE_RSVD_LEN 5
1139 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1140 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1141 
vtd_slpte_nonzero_rsvd(uint64_t slpte,uint32_t level)1142 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1143 {
1144     uint64_t rsvd_mask;
1145 
1146     /*
1147      * We should have caught a guest-mis-programmed level earlier,
1148      * via vtd_is_sl_level_supported.
1149      */
1150     assert(level < VTD_SPTE_RSVD_LEN);
1151     /*
1152      * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1153      * checked by vtd_is_last_pte().
1154      */
1155     assert(level);
1156 
1157     if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1158         (slpte & VTD_PT_PAGE_SIZE_MASK)) {
1159         /* large page */
1160         rsvd_mask = vtd_spte_rsvd_large[level];
1161     } else {
1162         rsvd_mask = vtd_spte_rsvd[level];
1163     }
1164 
1165     return slpte & rsvd_mask;
1166 }
1167 
1168 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1169  * of the translation, can be used for deciding the size of large page.
1170  */
vtd_iova_to_slpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * slptep,uint32_t * slpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1171 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1172                              uint64_t iova, bool is_write,
1173                              uint64_t *slptep, uint32_t *slpte_level,
1174                              bool *reads, bool *writes, uint8_t aw_bits,
1175                              uint32_t pasid)
1176 {
1177     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1178     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1179     uint32_t offset;
1180     uint64_t slpte;
1181     uint64_t access_right_check;
1182 
1183     if (!vtd_iova_sl_range_check(s, iova, ce, aw_bits, pasid)) {
1184         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1185                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1186         return -VTD_FR_ADDR_BEYOND_MGAW;
1187     }
1188 
1189     /* FIXME: what is the Atomics request here? */
1190     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1191 
1192     while (true) {
1193         offset = vtd_iova_level_offset(iova, level);
1194         slpte = vtd_get_pte(addr, offset);
1195 
1196         if (slpte == (uint64_t)-1) {
1197             error_report_once("%s: detected read error on DMAR slpte "
1198                               "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1199                               __func__, iova, pasid);
1200             if (level == vtd_get_iova_level(s, ce, pasid)) {
1201                 /* Invalid programming of context-entry */
1202                 return -VTD_FR_CONTEXT_ENTRY_INV;
1203             } else {
1204                 return -VTD_FR_PAGING_ENTRY_INV;
1205             }
1206         }
1207         *reads = (*reads) && (slpte & VTD_SL_R);
1208         *writes = (*writes) && (slpte & VTD_SL_W);
1209         if (!(slpte & access_right_check)) {
1210             error_report_once("%s: detected slpte permission error "
1211                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1212                               "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1213                               PRIx32 ")", __func__, iova, level,
1214                               slpte, is_write, pasid);
1215             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1216         }
1217         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218             error_report_once("%s: detected splte reserve non-zero "
1219                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1220                               "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1221                               __func__, iova, level, slpte, pasid);
1222             return -VTD_FR_PAGING_ENTRY_RSVD;
1223         }
1224 
1225         if (vtd_is_last_pte(slpte, level)) {
1226             *slptep = slpte;
1227             *slpte_level = level;
1228             break;
1229         }
1230         addr = vtd_get_pte_addr(slpte, aw_bits);
1231         level--;
1232     }
1233 
1234     return 0;
1235 }
1236 
1237 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1238 
1239 /**
1240  * Constant information used during page walking
1241  *
1242  * @hook_fn: hook func to be called when detected page
1243  * @private: private data to be passed into hook func
1244  * @notify_unmap: whether we should notify invalid entries
1245  * @as: VT-d address space of the device
1246  * @aw: maximum address width
1247  * @domain: domain ID of the page walk
1248  */
1249 typedef struct {
1250     VTDAddressSpace *as;
1251     vtd_page_walk_hook hook_fn;
1252     void *private;
1253     bool notify_unmap;
1254     uint8_t aw;
1255     uint16_t domain_id;
1256 } vtd_page_walk_info;
1257 
vtd_page_walk_one(IOMMUTLBEvent * event,vtd_page_walk_info * info)1258 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1259 {
1260     VTDAddressSpace *as = info->as;
1261     vtd_page_walk_hook hook_fn = info->hook_fn;
1262     void *private = info->private;
1263     IOMMUTLBEntry *entry = &event->entry;
1264     DMAMap target = {
1265         .iova = entry->iova,
1266         .size = entry->addr_mask,
1267         .translated_addr = entry->translated_addr,
1268         .perm = entry->perm,
1269     };
1270     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1271 
1272     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1273         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1274         return 0;
1275     }
1276 
1277     assert(hook_fn);
1278 
1279     /* Update local IOVA mapped ranges */
1280     if (event->type == IOMMU_NOTIFIER_MAP) {
1281         if (mapped) {
1282             /* If it's exactly the same translation, skip */
1283             if (!memcmp(mapped, &target, sizeof(target))) {
1284                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1285                                                  entry->translated_addr);
1286                 return 0;
1287             } else {
1288                 /*
1289                  * Translation changed.  Normally this should not
1290                  * happen, but it can happen when with buggy guest
1291                  * OSes.  Note that there will be a small window that
1292                  * we don't have map at all.  But that's the best
1293                  * effort we can do.  The ideal way to emulate this is
1294                  * atomically modify the PTE to follow what has
1295                  * changed, but we can't.  One example is that vfio
1296                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1297                  * interface to modify a mapping (meanwhile it seems
1298                  * meaningless to even provide one).  Anyway, let's
1299                  * mark this as a TODO in case one day we'll have
1300                  * a better solution.
1301                  */
1302                 IOMMUAccessFlags cache_perm = entry->perm;
1303                 int ret;
1304 
1305                 /* Emulate an UNMAP */
1306                 event->type = IOMMU_NOTIFIER_UNMAP;
1307                 entry->perm = IOMMU_NONE;
1308                 trace_vtd_page_walk_one(info->domain_id,
1309                                         entry->iova,
1310                                         entry->translated_addr,
1311                                         entry->addr_mask,
1312                                         entry->perm);
1313                 ret = hook_fn(event, private);
1314                 if (ret) {
1315                     return ret;
1316                 }
1317                 /* Drop any existing mapping */
1318                 iova_tree_remove(as->iova_tree, target);
1319                 /* Recover the correct type */
1320                 event->type = IOMMU_NOTIFIER_MAP;
1321                 entry->perm = cache_perm;
1322             }
1323         }
1324         iova_tree_insert(as->iova_tree, &target);
1325     } else {
1326         if (!mapped) {
1327             /* Skip since we didn't map this range at all */
1328             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1329             return 0;
1330         }
1331         iova_tree_remove(as->iova_tree, target);
1332     }
1333 
1334     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1335                             entry->translated_addr, entry->addr_mask,
1336                             entry->perm);
1337     return hook_fn(event, private);
1338 }
1339 
1340 /**
1341  * vtd_page_walk_level - walk over specific level for IOVA range
1342  *
1343  * @addr: base GPA addr to start the walk
1344  * @start: IOVA range start address
1345  * @end: IOVA range end address (start <= addr < end)
1346  * @read: whether parent level has read permission
1347  * @write: whether parent level has write permission
1348  * @info: constant information for the page walk
1349  */
vtd_page_walk_level(dma_addr_t addr,uint64_t start,uint64_t end,uint32_t level,bool read,bool write,vtd_page_walk_info * info)1350 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1351                                uint64_t end, uint32_t level, bool read,
1352                                bool write, vtd_page_walk_info *info)
1353 {
1354     bool read_cur, write_cur, entry_valid;
1355     uint32_t offset;
1356     uint64_t slpte;
1357     uint64_t subpage_size, subpage_mask;
1358     IOMMUTLBEvent event;
1359     uint64_t iova = start;
1360     uint64_t iova_next;
1361     int ret = 0;
1362 
1363     trace_vtd_page_walk_level(addr, level, start, end);
1364 
1365     subpage_size = 1ULL << vtd_pt_level_shift(level);
1366     subpage_mask = vtd_pt_level_page_mask(level);
1367 
1368     while (iova < end) {
1369         iova_next = (iova & subpage_mask) + subpage_size;
1370 
1371         offset = vtd_iova_level_offset(iova, level);
1372         slpte = vtd_get_pte(addr, offset);
1373 
1374         if (slpte == (uint64_t)-1) {
1375             trace_vtd_page_walk_skip_read(iova, iova_next);
1376             goto next;
1377         }
1378 
1379         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1380             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1381             goto next;
1382         }
1383 
1384         /* Permissions are stacked with parents' */
1385         read_cur = read && (slpte & VTD_SL_R);
1386         write_cur = write && (slpte & VTD_SL_W);
1387 
1388         /*
1389          * As long as we have either read/write permission, this is a
1390          * valid entry. The rule works for both page entries and page
1391          * table entries.
1392          */
1393         entry_valid = read_cur | write_cur;
1394 
1395         if (!vtd_is_last_pte(slpte, level) && entry_valid) {
1396             /*
1397              * This is a valid PDE (or even bigger than PDE).  We need
1398              * to walk one further level.
1399              */
1400             ret = vtd_page_walk_level(vtd_get_pte_addr(slpte, info->aw),
1401                                       iova, MIN(iova_next, end), level - 1,
1402                                       read_cur, write_cur, info);
1403         } else {
1404             /*
1405              * This means we are either:
1406              *
1407              * (1) the real page entry (either 4K page, or huge page)
1408              * (2) the whole range is invalid
1409              *
1410              * In either case, we send an IOTLB notification down.
1411              */
1412             event.entry.target_as = &address_space_memory;
1413             event.entry.iova = iova & subpage_mask;
1414             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1415             event.entry.addr_mask = ~subpage_mask;
1416             /* NOTE: this is only meaningful if entry_valid == true */
1417             event.entry.translated_addr = vtd_get_pte_addr(slpte, info->aw);
1418             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1419                                             IOMMU_NOTIFIER_UNMAP;
1420             ret = vtd_page_walk_one(&event, info);
1421         }
1422 
1423         if (ret < 0) {
1424             return ret;
1425         }
1426 
1427 next:
1428         iova = iova_next;
1429     }
1430 
1431     return 0;
1432 }
1433 
1434 /**
1435  * vtd_page_walk - walk specific IOVA range, and call the hook
1436  *
1437  * @s: intel iommu state
1438  * @ce: context entry to walk upon
1439  * @start: IOVA address to start the walk
1440  * @end: IOVA range end address (start <= addr < end)
1441  * @info: page walking information struct
1442  */
vtd_page_walk(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t start,uint64_t end,vtd_page_walk_info * info,uint32_t pasid)1443 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1444                          uint64_t start, uint64_t end,
1445                          vtd_page_walk_info *info,
1446                          uint32_t pasid)
1447 {
1448     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1449     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1450 
1451     if (!vtd_iova_sl_range_check(s, start, ce, info->aw, pasid)) {
1452         return -VTD_FR_ADDR_BEYOND_MGAW;
1453     }
1454 
1455     if (!vtd_iova_sl_range_check(s, end, ce, info->aw, pasid)) {
1456         /* Fix end so that it reaches the maximum */
1457         end = vtd_iova_limit(s, ce, info->aw, pasid);
1458     }
1459 
1460     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1461 }
1462 
vtd_root_entry_rsvd_bits_check(IntelIOMMUState * s,VTDRootEntry * re)1463 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1464                                           VTDRootEntry *re)
1465 {
1466     /* Legacy Mode reserved bits check */
1467     if (!s->root_scalable &&
1468         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1469         goto rsvd_err;
1470 
1471     /* Scalable Mode reserved bits check */
1472     if (s->root_scalable &&
1473         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1474          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1475         goto rsvd_err;
1476 
1477     return 0;
1478 
1479 rsvd_err:
1480     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1481                       ", lo=0x%"PRIx64,
1482                       __func__, re->hi, re->lo);
1483     return -VTD_FR_ROOT_ENTRY_RSVD;
1484 }
1485 
vtd_context_entry_rsvd_bits_check(IntelIOMMUState * s,VTDContextEntry * ce)1486 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1487                                                     VTDContextEntry *ce)
1488 {
1489     if (!s->root_scalable &&
1490         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1491          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1492         error_report_once("%s: invalid context entry: hi=%"PRIx64
1493                           ", lo=%"PRIx64" (reserved nonzero)",
1494                           __func__, ce->hi, ce->lo);
1495         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1496     }
1497 
1498     if (s->root_scalable &&
1499         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1500          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1501          ce->val[2] ||
1502          ce->val[3])) {
1503         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1504                           ", val[2]=%"PRIx64
1505                           ", val[1]=%"PRIx64
1506                           ", val[0]=%"PRIx64" (reserved nonzero)",
1507                           __func__, ce->val[3], ce->val[2],
1508                           ce->val[1], ce->val[0]);
1509         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1510     }
1511 
1512     return 0;
1513 }
1514 
vtd_ce_rid2pasid_check(IntelIOMMUState * s,VTDContextEntry * ce)1515 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1516                                   VTDContextEntry *ce)
1517 {
1518     VTDPASIDEntry pe;
1519 
1520     /*
1521      * Make sure in Scalable Mode, a present context entry
1522      * has valid rid2pasid setting, which includes valid
1523      * rid2pasid field and corresponding pasid entry setting
1524      */
1525     return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1526 }
1527 
1528 /* Map a device to its corresponding domain (context-entry) */
vtd_dev_to_context_entry(IntelIOMMUState * s,uint8_t bus_num,uint8_t devfn,VTDContextEntry * ce)1529 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1530                                     uint8_t devfn, VTDContextEntry *ce)
1531 {
1532     VTDRootEntry re;
1533     int ret_fr;
1534     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1535 
1536     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1537     if (ret_fr) {
1538         return ret_fr;
1539     }
1540 
1541     if (!vtd_root_entry_present(s, &re, devfn)) {
1542         /* Not error - it's okay we don't have root entry. */
1543         trace_vtd_re_not_present(bus_num);
1544         return -VTD_FR_ROOT_ENTRY_P;
1545     }
1546 
1547     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1548     if (ret_fr) {
1549         return ret_fr;
1550     }
1551 
1552     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1553     if (ret_fr) {
1554         return ret_fr;
1555     }
1556 
1557     if (!vtd_ce_present(ce)) {
1558         /* Not error - it's okay we don't have context entry. */
1559         trace_vtd_ce_not_present(bus_num, devfn);
1560         return -VTD_FR_CONTEXT_ENTRY_P;
1561     }
1562 
1563     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1564     if (ret_fr) {
1565         return ret_fr;
1566     }
1567 
1568     /* Check if the programming of context-entry is valid */
1569     if (!s->root_scalable &&
1570         !vtd_is_sl_level_supported(s, vtd_ce_get_level(ce))) {
1571         error_report_once("%s: invalid context entry: hi=%"PRIx64
1572                           ", lo=%"PRIx64" (level %d not supported)",
1573                           __func__, ce->hi, ce->lo,
1574                           vtd_ce_get_level(ce));
1575         return -VTD_FR_CONTEXT_ENTRY_INV;
1576     }
1577 
1578     if (!s->root_scalable) {
1579         /* Do translation type check */
1580         if (!vtd_ce_type_check(x86_iommu, ce)) {
1581             /* Errors dumped in vtd_ce_type_check() */
1582             return -VTD_FR_CONTEXT_ENTRY_INV;
1583         }
1584     } else {
1585         /*
1586          * Check if the programming of context-entry.rid2pasid
1587          * and corresponding pasid setting is valid, and thus
1588          * avoids to check pasid entry fetching result in future
1589          * helper function calling.
1590          */
1591         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1592         if (ret_fr) {
1593             return ret_fr;
1594         }
1595     }
1596 
1597     return 0;
1598 }
1599 
vtd_sync_shadow_page_hook(const IOMMUTLBEvent * event,void * private)1600 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1601                                      void *private)
1602 {
1603     memory_region_notify_iommu(private, 0, *event);
1604     return 0;
1605 }
1606 
vtd_get_domain_id(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1607 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1608                                   VTDContextEntry *ce,
1609                                   uint32_t pasid)
1610 {
1611     VTDPASIDEntry pe;
1612 
1613     if (s->root_scalable) {
1614         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1615         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1616     }
1617 
1618     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1619 }
1620 
vtd_sync_shadow_page_table_range(VTDAddressSpace * vtd_as,VTDContextEntry * ce,hwaddr addr,hwaddr size)1621 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1622                                             VTDContextEntry *ce,
1623                                             hwaddr addr, hwaddr size)
1624 {
1625     IntelIOMMUState *s = vtd_as->iommu_state;
1626     vtd_page_walk_info info = {
1627         .hook_fn = vtd_sync_shadow_page_hook,
1628         .private = (void *)&vtd_as->iommu,
1629         .notify_unmap = true,
1630         .aw = s->aw_bits,
1631         .as = vtd_as,
1632         .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1633     };
1634 
1635     return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1636 }
1637 
vtd_address_space_sync(VTDAddressSpace * vtd_as)1638 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1639 {
1640     int ret;
1641     VTDContextEntry ce;
1642     IOMMUNotifier *n;
1643 
1644     /* If no MAP notifier registered, we simply invalidate all the cache */
1645     if (!vtd_as_has_map_notifier(vtd_as)) {
1646         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1647             memory_region_unmap_iommu_notifier_range(n);
1648         }
1649         return 0;
1650     }
1651 
1652     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1653                                    pci_bus_num(vtd_as->bus),
1654                                    vtd_as->devfn, &ce);
1655     if (ret) {
1656         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1657             /*
1658              * It's a valid scenario to have a context entry that is
1659              * not present.  For example, when a device is removed
1660              * from an existing domain then the context entry will be
1661              * zeroed by the guest before it was put into another
1662              * domain.  When this happens, instead of synchronizing
1663              * the shadow pages we should invalidate all existing
1664              * mappings and notify the backends.
1665              */
1666             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1667                 vtd_address_space_unmap(vtd_as, n);
1668             }
1669             ret = 0;
1670         }
1671         return ret;
1672     }
1673 
1674     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1675 }
1676 
1677 /*
1678  * Check if specific device is configured to bypass address
1679  * translation for DMA requests. In Scalable Mode, bypass
1680  * 1st-level translation or 2nd-level translation, it depends
1681  * on PGTT setting.
1682  */
vtd_dev_pt_enabled(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1683 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1684                                uint32_t pasid)
1685 {
1686     VTDPASIDEntry pe;
1687     int ret;
1688 
1689     if (s->root_scalable) {
1690         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1691         if (ret) {
1692             /*
1693              * This error is guest triggerable. We should assumt PT
1694              * not enabled for safety.
1695              */
1696             return false;
1697         }
1698         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1699     }
1700 
1701     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1702 
1703 }
1704 
vtd_as_pt_enabled(VTDAddressSpace * as)1705 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1706 {
1707     IntelIOMMUState *s;
1708     VTDContextEntry ce;
1709 
1710     assert(as);
1711 
1712     s = as->iommu_state;
1713     if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1714                                  &ce)) {
1715         /*
1716          * Possibly failed to parse the context entry for some reason
1717          * (e.g., during init, or any guest configuration errors on
1718          * context entries). We should assume PT not enabled for
1719          * safety.
1720          */
1721         return false;
1722     }
1723 
1724     return vtd_dev_pt_enabled(s, &ce, as->pasid);
1725 }
1726 
1727 /* Return whether the device is using IOMMU translation. */
vtd_switch_address_space(VTDAddressSpace * as)1728 static bool vtd_switch_address_space(VTDAddressSpace *as)
1729 {
1730     bool use_iommu, pt;
1731 
1732     assert(as);
1733 
1734     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1735     pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1736 
1737     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1738                                    VTD_PCI_SLOT(as->devfn),
1739                                    VTD_PCI_FUNC(as->devfn),
1740                                    use_iommu);
1741 
1742     /*
1743      * It's possible that we reach here without BQL, e.g., when called
1744      * from vtd_pt_enable_fast_path(). However the memory APIs need
1745      * it. We'd better make sure we have had it already, or, take it.
1746      */
1747     BQL_LOCK_GUARD();
1748 
1749     /* Turn off first then on the other */
1750     if (use_iommu) {
1751         memory_region_set_enabled(&as->nodmar, false);
1752         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1753         /*
1754          * vt-d spec v3.4 3.14:
1755          *
1756          * """
1757          * Requests-with-PASID with input address in range 0xFEEx_xxxx
1758          * are translated normally like any other request-with-PASID
1759          * through DMA-remapping hardware.
1760          * """
1761          *
1762          * Need to disable ir for as with PASID.
1763          */
1764         if (as->pasid != PCI_NO_PASID) {
1765             memory_region_set_enabled(&as->iommu_ir, false);
1766         } else {
1767             memory_region_set_enabled(&as->iommu_ir, true);
1768         }
1769     } else {
1770         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1771         memory_region_set_enabled(&as->nodmar, true);
1772     }
1773 
1774     /*
1775      * vtd-spec v3.4 3.14:
1776      *
1777      * """
1778      * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1779      * translated normally like any other request-with-PASID through
1780      * DMA-remapping hardware. However, if such a request is processed
1781      * using pass-through translation, it will be blocked as described
1782      * in the paragraph below.
1783      *
1784      * Software must not program paging-structure entries to remap any
1785      * address to the interrupt address range. Untranslated requests
1786      * and translation requests that result in an address in the
1787      * interrupt range will be blocked with condition code LGN.4 or
1788      * SGN.8.
1789      * """
1790      *
1791      * We enable per as memory region (iommu_ir_fault) for catching
1792      * the translation for interrupt range through PASID + PT.
1793      */
1794     if (pt && as->pasid != PCI_NO_PASID) {
1795         memory_region_set_enabled(&as->iommu_ir_fault, true);
1796     } else {
1797         memory_region_set_enabled(&as->iommu_ir_fault, false);
1798     }
1799 
1800     return use_iommu;
1801 }
1802 
vtd_switch_address_space_all(IntelIOMMUState * s)1803 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1804 {
1805     VTDAddressSpace *vtd_as;
1806     GHashTableIter iter;
1807 
1808     g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1809     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1810         vtd_switch_address_space(vtd_as);
1811     }
1812 }
1813 
1814 static const bool vtd_qualified_faults[] = {
1815     [VTD_FR_RESERVED] = false,
1816     [VTD_FR_ROOT_ENTRY_P] = false,
1817     [VTD_FR_CONTEXT_ENTRY_P] = true,
1818     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1819     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1820     [VTD_FR_WRITE] = true,
1821     [VTD_FR_READ] = true,
1822     [VTD_FR_PAGING_ENTRY_INV] = true,
1823     [VTD_FR_ROOT_TABLE_INV] = false,
1824     [VTD_FR_CONTEXT_TABLE_INV] = false,
1825     [VTD_FR_INTERRUPT_ADDR] = true,
1826     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1827     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1828     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1829     [VTD_FR_PASID_DIR_ACCESS_ERR] = false,
1830     [VTD_FR_PASID_DIR_ENTRY_P] = true,
1831     [VTD_FR_PASID_TABLE_ACCESS_ERR] = false,
1832     [VTD_FR_PASID_ENTRY_P] = true,
1833     [VTD_FR_PASID_TABLE_ENTRY_INV] = true,
1834     [VTD_FR_FS_PAGING_ENTRY_INV] = true,
1835     [VTD_FR_FS_PAGING_ENTRY_P] = true,
1836     [VTD_FR_FS_PAGING_ENTRY_RSVD] = true,
1837     [VTD_FR_PASID_ENTRY_FSPTPTR_INV] = true,
1838     [VTD_FR_FS_NON_CANONICAL] = true,
1839     [VTD_FR_FS_PAGING_ENTRY_US] = true,
1840     [VTD_FR_SM_WRITE] = true,
1841     [VTD_FR_SM_INTERRUPT_ADDR] = true,
1842     [VTD_FR_FS_BIT_UPDATE_FAILED] = true,
1843     [VTD_FR_MAX] = false,
1844 };
1845 
1846 /* To see if a fault condition is "qualified", which is reported to software
1847  * only if the FPD field in the context-entry used to process the faulting
1848  * request is 0.
1849  */
vtd_is_qualified_fault(VTDFaultReason fault)1850 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1851 {
1852     return vtd_qualified_faults[fault];
1853 }
1854 
vtd_is_interrupt_addr(hwaddr addr)1855 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1856 {
1857     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1858 }
1859 
vtd_find_as_by_sid_and_pasid(gpointer key,gpointer value,gpointer user_data)1860 static gboolean vtd_find_as_by_sid_and_pasid(gpointer key, gpointer value,
1861                                              gpointer user_data)
1862 {
1863     struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1864     struct vtd_as_raw_key *target = (struct vtd_as_raw_key *)user_data;
1865     uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1866 
1867     return (as_key->pasid == target->pasid) && (sid == target->sid);
1868 }
1869 
vtd_get_as_by_sid_and_pasid(IntelIOMMUState * s,uint16_t sid,uint32_t pasid)1870 static VTDAddressSpace *vtd_get_as_by_sid_and_pasid(IntelIOMMUState *s,
1871                                                     uint16_t sid,
1872                                                     uint32_t pasid)
1873 {
1874     struct vtd_as_raw_key key = {
1875         .sid = sid,
1876         .pasid = pasid
1877     };
1878 
1879     return g_hash_table_find(s->vtd_address_spaces,
1880                              vtd_find_as_by_sid_and_pasid, &key);
1881 }
1882 
vtd_get_as_by_sid(IntelIOMMUState * s,uint16_t sid)1883 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1884 {
1885     return vtd_get_as_by_sid_and_pasid(s, sid, PCI_NO_PASID);
1886 }
1887 
vtd_pt_enable_fast_path(IntelIOMMUState * s,uint16_t source_id)1888 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1889 {
1890     VTDAddressSpace *vtd_as;
1891     bool success = false;
1892 
1893     vtd_as = vtd_get_as_by_sid(s, source_id);
1894     if (!vtd_as) {
1895         goto out;
1896     }
1897 
1898     if (vtd_switch_address_space(vtd_as) == false) {
1899         /* We switched off IOMMU region successfully. */
1900         success = true;
1901     }
1902 
1903 out:
1904     trace_vtd_pt_enable_fast_path(source_id, success);
1905 }
1906 
1907 /*
1908  * Rsvd field masks for fpte:
1909  *     vtd_fpte_rsvd 4k pages
1910  *     vtd_fpte_rsvd_large large pages
1911  *
1912  * We support only 4-level page tables.
1913  */
1914 #define VTD_FPTE_RSVD_LEN 5
1915 static uint64_t vtd_fpte_rsvd[VTD_FPTE_RSVD_LEN];
1916 static uint64_t vtd_fpte_rsvd_large[VTD_FPTE_RSVD_LEN];
1917 
vtd_flpte_nonzero_rsvd(uint64_t flpte,uint32_t level)1918 static bool vtd_flpte_nonzero_rsvd(uint64_t flpte, uint32_t level)
1919 {
1920     uint64_t rsvd_mask;
1921 
1922     /*
1923      * We should have caught a guest-mis-programmed level earlier,
1924      * via vtd_is_fl_level_supported.
1925      */
1926     assert(level < VTD_FPTE_RSVD_LEN);
1927     /*
1928      * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1929      * checked by vtd_is_last_pte().
1930      */
1931     assert(level);
1932 
1933     if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1934         (flpte & VTD_PT_PAGE_SIZE_MASK)) {
1935         /* large page */
1936         rsvd_mask = vtd_fpte_rsvd_large[level];
1937     } else {
1938         rsvd_mask = vtd_fpte_rsvd[level];
1939     }
1940 
1941     return flpte & rsvd_mask;
1942 }
1943 
vtd_flpte_present(uint64_t flpte)1944 static inline bool vtd_flpte_present(uint64_t flpte)
1945 {
1946     return !!(flpte & VTD_FL_P);
1947 }
1948 
1949 /* Return true if IOVA is canonical, otherwise false. */
vtd_iova_fl_check_canonical(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint32_t pasid)1950 static bool vtd_iova_fl_check_canonical(IntelIOMMUState *s, uint64_t iova,
1951                                         VTDContextEntry *ce, uint32_t pasid)
1952 {
1953     uint64_t iova_limit = vtd_iova_limit(s, ce, s->aw_bits, pasid);
1954     uint64_t upper_bits_mask = ~(iova_limit - 1);
1955     uint64_t upper_bits = iova & upper_bits_mask;
1956     bool msb = ((iova & (iova_limit >> 1)) != 0);
1957 
1958     if (msb) {
1959         return upper_bits == upper_bits_mask;
1960     } else {
1961         return !upper_bits;
1962     }
1963 }
1964 
vtd_set_flag_in_pte(dma_addr_t base_addr,uint32_t index,uint64_t pte,uint64_t flag)1965 static MemTxResult vtd_set_flag_in_pte(dma_addr_t base_addr, uint32_t index,
1966                                        uint64_t pte, uint64_t flag)
1967 {
1968     if (pte & flag) {
1969         return MEMTX_OK;
1970     }
1971     pte |= flag;
1972     pte = cpu_to_le64(pte);
1973     return dma_memory_write(&address_space_memory,
1974                             base_addr + index * sizeof(pte),
1975                             &pte, sizeof(pte),
1976                             MEMTXATTRS_UNSPECIFIED);
1977 }
1978 
1979 /*
1980  * Given the @iova, get relevant @flptep. @flpte_level will be the last level
1981  * of the translation, can be used for deciding the size of large page.
1982  */
vtd_iova_to_flpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * flptep,uint32_t * flpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1983 static int vtd_iova_to_flpte(IntelIOMMUState *s, VTDContextEntry *ce,
1984                              uint64_t iova, bool is_write,
1985                              uint64_t *flptep, uint32_t *flpte_level,
1986                              bool *reads, bool *writes, uint8_t aw_bits,
1987                              uint32_t pasid)
1988 {
1989     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1990     uint32_t offset;
1991     uint64_t flpte, flag_ad = VTD_FL_A;
1992     *flpte_level = vtd_get_iova_level(s, ce, pasid);
1993 
1994     if (!vtd_iova_fl_check_canonical(s, iova, ce, pasid)) {
1995         error_report_once("%s: detected non canonical IOVA (iova=0x%" PRIx64 ","
1996                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1997         return -VTD_FR_FS_NON_CANONICAL;
1998     }
1999 
2000     while (true) {
2001         offset = vtd_iova_level_offset(iova, *flpte_level);
2002         flpte = vtd_get_pte(addr, offset);
2003 
2004         if (flpte == (uint64_t)-1) {
2005             if (*flpte_level == vtd_get_iova_level(s, ce, pasid)) {
2006                 /* Invalid programming of pasid-entry */
2007                 return -VTD_FR_PASID_ENTRY_FSPTPTR_INV;
2008             } else {
2009                 return -VTD_FR_FS_PAGING_ENTRY_INV;
2010             }
2011         }
2012 
2013         if (!vtd_flpte_present(flpte)) {
2014             *reads = false;
2015             *writes = false;
2016             return -VTD_FR_FS_PAGING_ENTRY_P;
2017         }
2018 
2019         /* No emulated device supports supervisor privilege request yet */
2020         if (!(flpte & VTD_FL_US)) {
2021             *reads = false;
2022             *writes = false;
2023             return -VTD_FR_FS_PAGING_ENTRY_US;
2024         }
2025 
2026         *reads = true;
2027         *writes = (*writes) && (flpte & VTD_FL_RW);
2028         if (is_write && !(flpte & VTD_FL_RW)) {
2029             return -VTD_FR_SM_WRITE;
2030         }
2031         if (vtd_flpte_nonzero_rsvd(flpte, *flpte_level)) {
2032             error_report_once("%s: detected flpte reserved non-zero "
2033                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
2034                               "flpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
2035                               __func__, iova, *flpte_level, flpte, pasid);
2036             return -VTD_FR_FS_PAGING_ENTRY_RSVD;
2037         }
2038 
2039         if (vtd_is_last_pte(flpte, *flpte_level) && is_write) {
2040             flag_ad |= VTD_FL_D;
2041         }
2042 
2043         if (vtd_set_flag_in_pte(addr, offset, flpte, flag_ad) != MEMTX_OK) {
2044             return -VTD_FR_FS_BIT_UPDATE_FAILED;
2045         }
2046 
2047         if (vtd_is_last_pte(flpte, *flpte_level)) {
2048             *flptep = flpte;
2049             return 0;
2050         }
2051 
2052         addr = vtd_get_pte_addr(flpte, aw_bits);
2053         (*flpte_level)--;
2054     }
2055 }
2056 
vtd_report_fault(IntelIOMMUState * s,int err,bool is_fpd_set,uint16_t source_id,hwaddr addr,bool is_write,bool is_pasid,uint32_t pasid)2057 static void vtd_report_fault(IntelIOMMUState *s,
2058                              int err, bool is_fpd_set,
2059                              uint16_t source_id,
2060                              hwaddr addr,
2061                              bool is_write,
2062                              bool is_pasid,
2063                              uint32_t pasid)
2064 {
2065     if (is_fpd_set && vtd_is_qualified_fault(err)) {
2066         trace_vtd_fault_disabled();
2067     } else {
2068         vtd_report_dmar_fault(s, source_id, addr, err, is_write,
2069                               is_pasid, pasid);
2070     }
2071 }
2072 
2073 /* Map dev to context-entry then do a paging-structures walk to do a iommu
2074  * translation.
2075  *
2076  * Called from RCU critical section.
2077  *
2078  * @bus_num: The bus number
2079  * @devfn: The devfn, which is the  combined of device and function number
2080  * @is_write: The access is a write operation
2081  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
2082  *
2083  * Returns true if translation is successful, otherwise false.
2084  */
vtd_do_iommu_translate(VTDAddressSpace * vtd_as,PCIBus * bus,uint8_t devfn,hwaddr addr,bool is_write,IOMMUTLBEntry * entry)2085 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
2086                                    uint8_t devfn, hwaddr addr, bool is_write,
2087                                    IOMMUTLBEntry *entry)
2088 {
2089     IntelIOMMUState *s = vtd_as->iommu_state;
2090     VTDContextEntry ce;
2091     uint8_t bus_num = pci_bus_num(bus);
2092     VTDContextCacheEntry *cc_entry;
2093     uint64_t pte, page_mask;
2094     uint32_t level = UINT32_MAX;
2095     uint32_t pasid = vtd_as->pasid;
2096     uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
2097     int ret_fr;
2098     bool is_fpd_set = false;
2099     bool reads = true;
2100     bool writes = true;
2101     uint8_t access_flags, pgtt;
2102     bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
2103     VTDIOTLBEntry *iotlb_entry;
2104     uint64_t xlat, size;
2105 
2106     /*
2107      * We have standalone memory region for interrupt addresses, we
2108      * should never receive translation requests in this region.
2109      */
2110     assert(!vtd_is_interrupt_addr(addr));
2111 
2112     vtd_iommu_lock(s);
2113 
2114     cc_entry = &vtd_as->context_cache_entry;
2115 
2116     /* Try to fetch pte from IOTLB, we don't need RID2PASID logic */
2117     if (!rid2pasid) {
2118         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2119         if (iotlb_entry) {
2120             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2121                                      iotlb_entry->domain_id);
2122             pte = iotlb_entry->pte;
2123             access_flags = iotlb_entry->access_flags;
2124             page_mask = iotlb_entry->mask;
2125             goto out;
2126         }
2127     }
2128 
2129     /* Try to fetch context-entry from cache first */
2130     if (cc_entry->context_cache_gen == s->context_cache_gen) {
2131         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
2132                                cc_entry->context_entry.lo,
2133                                cc_entry->context_cache_gen);
2134         ce = cc_entry->context_entry;
2135         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2136         if (!is_fpd_set && s->root_scalable) {
2137             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2138             if (ret_fr) {
2139                 vtd_report_fault(s, -ret_fr, is_fpd_set,
2140                                  source_id, addr, is_write,
2141                                  false, 0);
2142                 goto error;
2143             }
2144         }
2145     } else {
2146         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
2147         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2148         if (!ret_fr && !is_fpd_set && s->root_scalable) {
2149             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2150         }
2151         if (ret_fr) {
2152             vtd_report_fault(s, -ret_fr, is_fpd_set,
2153                              source_id, addr, is_write,
2154                              false, 0);
2155             goto error;
2156         }
2157         /* Update context-cache */
2158         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
2159                                   cc_entry->context_cache_gen,
2160                                   s->context_cache_gen);
2161         cc_entry->context_entry = ce;
2162         cc_entry->context_cache_gen = s->context_cache_gen;
2163     }
2164 
2165     if (rid2pasid) {
2166         pasid = VTD_CE_GET_RID2PASID(&ce);
2167     }
2168 
2169     /*
2170      * We don't need to translate for pass-through context entries.
2171      * Also, let's ignore IOTLB caching as well for PT devices.
2172      */
2173     if (vtd_dev_pt_enabled(s, &ce, pasid)) {
2174         entry->iova = addr & VTD_PAGE_MASK_4K;
2175         entry->translated_addr = entry->iova;
2176         entry->addr_mask = ~VTD_PAGE_MASK_4K;
2177         entry->perm = IOMMU_RW;
2178         trace_vtd_translate_pt(source_id, entry->iova);
2179 
2180         /*
2181          * When this happens, it means firstly caching-mode is not
2182          * enabled, and this is the first passthrough translation for
2183          * the device. Let's enable the fast path for passthrough.
2184          *
2185          * When passthrough is disabled again for the device, we can
2186          * capture it via the context entry invalidation, then the
2187          * IOMMU region can be swapped back.
2188          */
2189         vtd_pt_enable_fast_path(s, source_id);
2190         vtd_iommu_unlock(s);
2191         return true;
2192     }
2193 
2194     /* Try to fetch pte from IOTLB for RID2PASID slow path */
2195     if (rid2pasid) {
2196         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2197         if (iotlb_entry) {
2198             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2199                                      iotlb_entry->domain_id);
2200             pte = iotlb_entry->pte;
2201             access_flags = iotlb_entry->access_flags;
2202             page_mask = iotlb_entry->mask;
2203             goto out;
2204         }
2205     }
2206 
2207     if (s->flts && s->root_scalable) {
2208         ret_fr = vtd_iova_to_flpte(s, &ce, addr, is_write, &pte, &level,
2209                                    &reads, &writes, s->aw_bits, pasid);
2210         pgtt = VTD_SM_PASID_ENTRY_FLT;
2211     } else {
2212         ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &pte, &level,
2213                                    &reads, &writes, s->aw_bits, pasid);
2214         pgtt = VTD_SM_PASID_ENTRY_SLT;
2215     }
2216     if (!ret_fr) {
2217         xlat = vtd_get_pte_addr(pte, s->aw_bits);
2218         size = ~vtd_pt_level_page_mask(level) + 1;
2219 
2220         /*
2221          * Per VT-d spec 4.1 section 3.15: Untranslated requests and translation
2222          * requests that result in an address in the interrupt range will be
2223          * blocked with condition code LGN.4 or SGN.8.
2224          */
2225         if ((xlat <= VTD_INTERRUPT_ADDR_LAST &&
2226              xlat + size - 1 >= VTD_INTERRUPT_ADDR_FIRST)) {
2227             error_report_once("%s: xlat address is in interrupt range "
2228                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
2229                               "pte=0x%" PRIx64 ", write=%d, "
2230                               "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
2231                               "pasid=0x%" PRIx32 ")",
2232                               __func__, addr, level, pte, is_write,
2233                               xlat, size, pasid);
2234             ret_fr = s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
2235                                         -VTD_FR_INTERRUPT_ADDR;
2236         }
2237     }
2238 
2239     if (ret_fr) {
2240         vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2241                          addr, is_write, pasid != PCI_NO_PASID, pasid);
2242         goto error;
2243     }
2244 
2245     page_mask = vtd_pt_level_page_mask(level);
2246     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2247     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2248                      addr, pte, access_flags, level, pasid, pgtt);
2249 out:
2250     vtd_iommu_unlock(s);
2251     entry->iova = addr & page_mask;
2252     entry->translated_addr = vtd_get_pte_addr(pte, s->aw_bits) & page_mask;
2253     entry->addr_mask = ~page_mask;
2254     entry->perm = (is_write ? access_flags : (access_flags & (~IOMMU_WO)));
2255     return true;
2256 
2257 error:
2258     vtd_iommu_unlock(s);
2259     entry->iova = 0;
2260     entry->translated_addr = 0;
2261     /*
2262      * Set the mask for ATS (the range must be present even when the
2263      * translation fails : PCIe rev 5 10.2.3.5)
2264      */
2265     entry->addr_mask = (level != UINT32_MAX) ?
2266                        (~vtd_pt_level_page_mask(level)) : (~VTD_PAGE_MASK_4K);
2267     entry->perm = IOMMU_NONE;
2268     return false;
2269 }
2270 
vtd_root_table_setup(IntelIOMMUState * s)2271 static void vtd_root_table_setup(IntelIOMMUState *s)
2272 {
2273     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2274     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2275 
2276     vtd_update_scalable_state(s);
2277 
2278     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2279 }
2280 
vtd_iec_notify_all(IntelIOMMUState * s,bool global,uint32_t index,uint32_t mask)2281 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2282                                uint32_t index, uint32_t mask)
2283 {
2284     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2285 }
2286 
vtd_interrupt_remap_table_setup(IntelIOMMUState * s)2287 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2288 {
2289     uint64_t value = 0;
2290     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2291     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2292     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2293     s->intr_eime = value & VTD_IRTA_EIME;
2294 
2295     /* Notify global invalidation */
2296     vtd_iec_notify_all(s, true, 0, 0);
2297 
2298     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2299 }
2300 
vtd_iommu_replay_all(IntelIOMMUState * s)2301 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2302 {
2303     VTDAddressSpace *vtd_as;
2304 
2305     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2306         vtd_address_space_sync(vtd_as);
2307     }
2308 }
2309 
vtd_context_global_invalidate(IntelIOMMUState * s)2310 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2311 {
2312     trace_vtd_inv_desc_cc_global();
2313     /* Protects context cache */
2314     vtd_iommu_lock(s);
2315     s->context_cache_gen++;
2316     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2317         vtd_reset_context_cache_locked(s);
2318     }
2319     vtd_iommu_unlock(s);
2320     vtd_address_space_refresh_all(s);
2321     /*
2322      * From VT-d spec 6.5.2.1, a global context entry invalidation
2323      * should be followed by a IOTLB global invalidation, so we should
2324      * be safe even without this. Hoewever, let's replay the region as
2325      * well to be safer, and go back here when we need finer tunes for
2326      * VT-d emulation codes.
2327      */
2328     vtd_iommu_replay_all(s);
2329 }
2330 
2331 /* Do a context-cache device-selective invalidation.
2332  * @func_mask: FM field after shifting
2333  */
vtd_context_device_invalidate(IntelIOMMUState * s,uint16_t source_id,uint16_t func_mask)2334 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2335                                           uint16_t source_id,
2336                                           uint16_t func_mask)
2337 {
2338     GHashTableIter as_it;
2339     uint16_t mask;
2340     VTDAddressSpace *vtd_as;
2341     uint8_t bus_n, devfn;
2342 
2343     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2344 
2345     switch (func_mask & 3) {
2346     case 0:
2347         mask = 0;   /* No bits in the SID field masked */
2348         break;
2349     case 1:
2350         mask = 4;   /* Mask bit 2 in the SID field */
2351         break;
2352     case 2:
2353         mask = 6;   /* Mask bit 2:1 in the SID field */
2354         break;
2355     case 3:
2356         mask = 7;   /* Mask bit 2:0 in the SID field */
2357         break;
2358     default:
2359         g_assert_not_reached();
2360     }
2361     mask = ~mask;
2362 
2363     bus_n = VTD_SID_TO_BUS(source_id);
2364     devfn = VTD_SID_TO_DEVFN(source_id);
2365 
2366     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2367     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2368         if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2369             (vtd_as->devfn & mask) == (devfn & mask)) {
2370             trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2371                                          VTD_PCI_FUNC(vtd_as->devfn));
2372             vtd_iommu_lock(s);
2373             vtd_as->context_cache_entry.context_cache_gen = 0;
2374             vtd_iommu_unlock(s);
2375             /*
2376              * Do switch address space when needed, in case if the
2377              * device passthrough bit is switched.
2378              */
2379             vtd_switch_address_space(vtd_as);
2380             /*
2381              * So a device is moving out of (or moving into) a
2382              * domain, resync the shadow page table.
2383              * This won't bring bad even if we have no such
2384              * notifier registered - the IOMMU notification
2385              * framework will skip MAP notifications if that
2386              * happened.
2387              */
2388             vtd_address_space_sync(vtd_as);
2389         }
2390     }
2391 }
2392 
2393 /* Context-cache invalidation
2394  * Returns the Context Actual Invalidation Granularity.
2395  * @val: the content of the CCMD_REG
2396  */
vtd_context_cache_invalidate(IntelIOMMUState * s,uint64_t val)2397 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2398 {
2399     uint64_t caig;
2400     uint64_t type = val & VTD_CCMD_CIRG_MASK;
2401 
2402     switch (type) {
2403     case VTD_CCMD_DOMAIN_INVL:
2404         /* Fall through */
2405     case VTD_CCMD_GLOBAL_INVL:
2406         caig = VTD_CCMD_GLOBAL_INVL_A;
2407         vtd_context_global_invalidate(s);
2408         break;
2409 
2410     case VTD_CCMD_DEVICE_INVL:
2411         caig = VTD_CCMD_DEVICE_INVL_A;
2412         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2413         break;
2414 
2415     default:
2416         error_report_once("%s: invalid context: 0x%" PRIx64,
2417                           __func__, val);
2418         caig = 0;
2419     }
2420     return caig;
2421 }
2422 
vtd_iotlb_global_invalidate(IntelIOMMUState * s)2423 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2424 {
2425     trace_vtd_inv_desc_iotlb_global();
2426     vtd_reset_iotlb(s);
2427     vtd_iommu_replay_all(s);
2428 }
2429 
vtd_iotlb_domain_invalidate(IntelIOMMUState * s,uint16_t domain_id)2430 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2431 {
2432     VTDContextEntry ce;
2433     VTDAddressSpace *vtd_as;
2434 
2435     trace_vtd_inv_desc_iotlb_domain(domain_id);
2436 
2437     vtd_iommu_lock(s);
2438     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2439                                 &domain_id);
2440     vtd_iommu_unlock(s);
2441 
2442     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2443         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2444                                       vtd_as->devfn, &ce) &&
2445             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2446             vtd_address_space_sync(vtd_as);
2447         }
2448     }
2449 }
2450 
2451 /*
2452  * There is no pasid field in iotlb invalidation descriptor, so PCI_NO_PASID
2453  * is passed as parameter. Piotlb invalidation supports pasid, pasid in its
2454  * descriptor is passed which should not be PCI_NO_PASID.
2455  */
vtd_iotlb_page_invalidate_notify(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am,uint32_t pasid)2456 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2457                                              uint16_t domain_id, hwaddr addr,
2458                                              uint8_t am, uint32_t pasid)
2459 {
2460     VTDAddressSpace *vtd_as;
2461     VTDContextEntry ce;
2462     int ret;
2463     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2464 
2465     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2466         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2467                                        vtd_as->devfn, &ce);
2468         if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2469             uint32_t rid2pasid = PCI_NO_PASID;
2470 
2471             if (s->root_scalable) {
2472                 rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2473             }
2474 
2475             /*
2476              * In legacy mode, vtd_as->pasid == pasid is always true.
2477              * In scalable mode, for vtd address space backing a PCI
2478              * device without pasid, needs to compare pasid with
2479              * rid2pasid of this device.
2480              */
2481             if (!(vtd_as->pasid == pasid ||
2482                   (vtd_as->pasid == PCI_NO_PASID && pasid == rid2pasid))) {
2483                 continue;
2484             }
2485 
2486             if (vtd_as_has_map_notifier(vtd_as)) {
2487                 /*
2488                  * When stage-1 translation is off, as long as we have MAP
2489                  * notifications registered in any of our IOMMU notifiers,
2490                  * we need to sync the shadow page table. Otherwise VFIO
2491                  * device attaches to nested page table instead of shadow
2492                  * page table, so no need to sync.
2493                  */
2494                 if (!s->flts || !s->root_scalable) {
2495                     vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2496                 }
2497             } else {
2498                 /*
2499                  * For UNMAP-only notifiers, we don't need to walk the
2500                  * page tables.  We just deliver the PSI down to
2501                  * invalidate caches.
2502                  */
2503                 const IOMMUTLBEvent event = {
2504                     .type = IOMMU_NOTIFIER_UNMAP,
2505                     .entry = {
2506                         .target_as = &address_space_memory,
2507                         .iova = addr,
2508                         .translated_addr = 0,
2509                         .addr_mask = size - 1,
2510                         .perm = IOMMU_NONE,
2511                         .pasid = vtd_as->pasid,
2512                     },
2513                 };
2514                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2515             }
2516         }
2517     }
2518 }
2519 
vtd_iotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am)2520 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2521                                       hwaddr addr, uint8_t am)
2522 {
2523     VTDIOTLBPageInvInfo info;
2524 
2525     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2526 
2527     assert(am <= VTD_MAMV);
2528     info.domain_id = domain_id;
2529     info.addr = addr;
2530     info.mask = ~((1 << am) - 1);
2531     vtd_iommu_lock(s);
2532     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2533     vtd_iommu_unlock(s);
2534     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2535 }
2536 
2537 /* Flush IOTLB
2538  * Returns the IOTLB Actual Invalidation Granularity.
2539  * @val: the content of the IOTLB_REG
2540  */
vtd_iotlb_flush(IntelIOMMUState * s,uint64_t val)2541 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2542 {
2543     uint64_t iaig;
2544     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2545     uint16_t domain_id;
2546     hwaddr addr;
2547     uint8_t am;
2548 
2549     switch (type) {
2550     case VTD_TLB_GLOBAL_FLUSH:
2551         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2552         vtd_iotlb_global_invalidate(s);
2553         break;
2554 
2555     case VTD_TLB_DSI_FLUSH:
2556         domain_id = VTD_TLB_DID(val);
2557         iaig = VTD_TLB_DSI_FLUSH_A;
2558         vtd_iotlb_domain_invalidate(s, domain_id);
2559         break;
2560 
2561     case VTD_TLB_PSI_FLUSH:
2562         domain_id = VTD_TLB_DID(val);
2563         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2564         am = VTD_IVA_AM(addr);
2565         addr = VTD_IVA_ADDR(addr);
2566         if (am > VTD_MAMV) {
2567             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2568                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2569             iaig = 0;
2570             break;
2571         }
2572         iaig = VTD_TLB_PSI_FLUSH_A;
2573         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2574         break;
2575 
2576     default:
2577         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2578                           __func__, val);
2579         iaig = 0;
2580     }
2581     return iaig;
2582 }
2583 
2584 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2585 
vtd_queued_inv_disable_check(IntelIOMMUState * s)2586 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2587 {
2588     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2589            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2590 }
2591 
vtd_handle_gcmd_qie(IntelIOMMUState * s,bool en)2592 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2593 {
2594     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2595 
2596     trace_vtd_inv_qi_enable(en);
2597 
2598     if (en) {
2599         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2600         /* 2^(x+8) entries */
2601         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2602         s->qi_enabled = true;
2603         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2604         /* Ok - report back to driver */
2605         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2606 
2607         if (s->iq_tail != 0) {
2608             /*
2609              * This is a spec violation but Windows guests are known to set up
2610              * Queued Invalidation this way so we allow the write and process
2611              * Invalidation Descriptors right away.
2612              */
2613             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2614             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2615                 vtd_fetch_inv_desc(s);
2616             }
2617         }
2618     } else {
2619         if (vtd_queued_inv_disable_check(s)) {
2620             /* disable Queued Invalidation */
2621             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2622             s->iq_head = 0;
2623             s->qi_enabled = false;
2624             /* Ok - report back to driver */
2625             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2626         } else {
2627             error_report_once("%s: detected improper state when disable QI "
2628                               "(head=0x%x, tail=0x%x, last_type=%d)",
2629                               __func__,
2630                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2631         }
2632     }
2633 }
2634 
2635 /* Set Root Table Pointer */
vtd_handle_gcmd_srtp(IntelIOMMUState * s)2636 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2637 {
2638     vtd_root_table_setup(s);
2639     /* Ok - report back to driver */
2640     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2641     vtd_reset_caches(s);
2642     vtd_address_space_refresh_all(s);
2643 }
2644 
2645 /* Set Interrupt Remap Table Pointer */
vtd_handle_gcmd_sirtp(IntelIOMMUState * s)2646 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2647 {
2648     vtd_interrupt_remap_table_setup(s);
2649     /* Ok - report back to driver */
2650     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2651 }
2652 
2653 /* Handle Translation Enable/Disable */
vtd_handle_gcmd_te(IntelIOMMUState * s,bool en)2654 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2655 {
2656     if (s->dmar_enabled == en) {
2657         return;
2658     }
2659 
2660     trace_vtd_dmar_enable(en);
2661 
2662     if (en) {
2663         s->dmar_enabled = true;
2664         /* Ok - report back to driver */
2665         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2666     } else {
2667         s->dmar_enabled = false;
2668 
2669         /* Clear the index of Fault Recording Register */
2670         s->next_frcd_reg = 0;
2671         /* Ok - report back to driver */
2672         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2673     }
2674 
2675     vtd_reset_caches(s);
2676     vtd_address_space_refresh_all(s);
2677 }
2678 
2679 /* Handle Interrupt Remap Enable/Disable */
vtd_handle_gcmd_ire(IntelIOMMUState * s,bool en)2680 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2681 {
2682     trace_vtd_ir_enable(en);
2683 
2684     if (en) {
2685         s->intr_enabled = true;
2686         /* Ok - report back to driver */
2687         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2688     } else {
2689         s->intr_enabled = false;
2690         /* Ok - report back to driver */
2691         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2692     }
2693 }
2694 
2695 /* Handle write to Global Command Register */
vtd_handle_gcmd_write(IntelIOMMUState * s)2696 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2697 {
2698     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2699     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2700     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2701     uint32_t changed = status ^ val;
2702 
2703     trace_vtd_reg_write_gcmd(status, val);
2704     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2705         /* Translation enable/disable */
2706         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2707     }
2708     if (val & VTD_GCMD_SRTP) {
2709         /* Set/update the root-table pointer */
2710         vtd_handle_gcmd_srtp(s);
2711     }
2712     if (changed & VTD_GCMD_QIE) {
2713         /* Queued Invalidation Enable */
2714         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2715     }
2716     if (val & VTD_GCMD_SIRTP) {
2717         /* Set/update the interrupt remapping root-table pointer */
2718         vtd_handle_gcmd_sirtp(s);
2719     }
2720     if ((changed & VTD_GCMD_IRE) &&
2721         x86_iommu_ir_supported(x86_iommu)) {
2722         /* Interrupt remap enable/disable */
2723         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2724     }
2725 }
2726 
2727 /* Handle write to Context Command Register */
vtd_handle_ccmd_write(IntelIOMMUState * s)2728 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2729 {
2730     uint64_t ret;
2731     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2732 
2733     /* Context-cache invalidation request */
2734     if (val & VTD_CCMD_ICC) {
2735         if (s->qi_enabled) {
2736             error_report_once("Queued Invalidation enabled, "
2737                               "should not use register-based invalidation");
2738             return;
2739         }
2740         ret = vtd_context_cache_invalidate(s, val);
2741         /* Invalidation completed. Change something to show */
2742         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2743         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2744                                       ret);
2745     }
2746 }
2747 
2748 /* Handle write to IOTLB Invalidation Register */
vtd_handle_iotlb_write(IntelIOMMUState * s)2749 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2750 {
2751     uint64_t ret;
2752     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2753 
2754     /* IOTLB invalidation request */
2755     if (val & VTD_TLB_IVT) {
2756         if (s->qi_enabled) {
2757             error_report_once("Queued Invalidation enabled, "
2758                               "should not use register-based invalidation");
2759             return;
2760         }
2761         ret = vtd_iotlb_flush(s, val);
2762         /* Invalidation completed. Change something to show */
2763         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2764         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2765                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2766     }
2767 }
2768 
2769 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
vtd_get_inv_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2770 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2771                              VTDInvDesc *inv_desc)
2772 {
2773     dma_addr_t base_addr = s->iq;
2774     uint32_t offset = s->iq_head;
2775     uint32_t dw = s->iq_dw ? 32 : 16;
2776     dma_addr_t addr = base_addr + offset * dw;
2777 
2778     if (dma_memory_read(&address_space_memory, addr,
2779                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2780         error_report_once("Read INV DESC failed.");
2781         return false;
2782     }
2783     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2784     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2785     if (dw == 32) {
2786         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2787         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2788     }
2789     return true;
2790 }
2791 
vtd_inv_desc_reserved_check(IntelIOMMUState * s,VTDInvDesc * inv_desc,uint64_t mask[4],bool dw,const char * func_name,const char * desc_type)2792 static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s,
2793                                         VTDInvDesc *inv_desc,
2794                                         uint64_t mask[4], bool dw,
2795                                         const char *func_name,
2796                                         const char *desc_type)
2797 {
2798     if (s->iq_dw) {
2799         if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] ||
2800             inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) {
2801             error_report("%s: invalid %s desc val[3]: 0x%"PRIx64
2802                          " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64
2803                          " val[0]=0x%"PRIx64" (reserved nonzero)",
2804                          func_name, desc_type, inv_desc->val[3],
2805                          inv_desc->val[2], inv_desc->val[1],
2806                          inv_desc->val[0]);
2807             return false;
2808         }
2809     } else {
2810         if (dw) {
2811             error_report("%s: 256-bit %s desc in 128-bit invalidation queue",
2812                          func_name, desc_type);
2813             return false;
2814         }
2815 
2816         if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) {
2817             error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64
2818                          " (reserved nonzero)", func_name, desc_type,
2819                          inv_desc->hi, inv_desc->lo);
2820             return false;
2821         }
2822     }
2823 
2824     return true;
2825 }
2826 
vtd_process_wait_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2827 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2828 {
2829     uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI,
2830                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2831     bool ret = true;
2832 
2833     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2834                                      __func__, "wait")) {
2835         return false;
2836     }
2837 
2838     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2839         /* Status Write */
2840         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2841                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2842 
2843         /* FIXME: need to be masked with HAW? */
2844         dma_addr_t status_addr = inv_desc->hi;
2845         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2846         status_data = cpu_to_le32(status_data);
2847         if (dma_memory_write(&address_space_memory, status_addr,
2848                              &status_data, sizeof(status_data),
2849                              MEMTXATTRS_UNSPECIFIED)) {
2850             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2851             ret = false;
2852         }
2853     }
2854 
2855     if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2856         /* Interrupt flag */
2857         vtd_generate_completion_event(s);
2858     }
2859 
2860     if (!(inv_desc->lo & (VTD_INV_DESC_WAIT_IF | VTD_INV_DESC_WAIT_SW))) {
2861         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2862                           " (unknown type)", __func__, inv_desc->hi,
2863                           inv_desc->lo);
2864         return false;
2865     }
2866     return ret;
2867 }
2868 
vtd_process_context_cache_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2869 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2870                                            VTDInvDesc *inv_desc)
2871 {
2872     uint16_t sid, fmask;
2873     uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE,
2874                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2875 
2876     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2877                                      __func__, "cc inv")) {
2878         return false;
2879     }
2880 
2881     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2882     case VTD_INV_DESC_CC_DOMAIN:
2883         trace_vtd_inv_desc_cc_domain(
2884             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2885         /* Fall through */
2886     case VTD_INV_DESC_CC_GLOBAL:
2887         vtd_context_global_invalidate(s);
2888         break;
2889 
2890     case VTD_INV_DESC_CC_DEVICE:
2891         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2892         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2893         vtd_context_device_invalidate(s, sid, fmask);
2894         break;
2895 
2896     default:
2897         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2898                           " (invalid type)", __func__, inv_desc->hi,
2899                           inv_desc->lo);
2900         return false;
2901     }
2902     return true;
2903 }
2904 
vtd_process_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2905 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2906 {
2907     uint16_t domain_id;
2908     uint8_t am;
2909     hwaddr addr;
2910     uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI,
2911                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2912 
2913     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2914                                      __func__, "iotlb inv")) {
2915         return false;
2916     }
2917 
2918     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2919     case VTD_INV_DESC_IOTLB_GLOBAL:
2920         vtd_iotlb_global_invalidate(s);
2921         break;
2922 
2923     case VTD_INV_DESC_IOTLB_DOMAIN:
2924         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2925         vtd_iotlb_domain_invalidate(s, domain_id);
2926         break;
2927 
2928     case VTD_INV_DESC_IOTLB_PAGE:
2929         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2930         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2931         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2932         if (am > VTD_MAMV) {
2933             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2934                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2935                               __func__, inv_desc->hi, inv_desc->lo,
2936                               am, (unsigned)VTD_MAMV);
2937             return false;
2938         }
2939         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2940         break;
2941 
2942     default:
2943         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2944                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2945                           __func__, inv_desc->hi, inv_desc->lo,
2946                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2947         return false;
2948     }
2949     return true;
2950 }
2951 
vtd_hash_remove_by_pasid(gpointer key,gpointer value,gpointer user_data)2952 static gboolean vtd_hash_remove_by_pasid(gpointer key, gpointer value,
2953                                          gpointer user_data)
2954 {
2955     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
2956     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
2957 
2958     return ((entry->domain_id == info->domain_id) &&
2959             (entry->pasid == info->pasid));
2960 }
2961 
vtd_piotlb_pasid_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid)2962 static void vtd_piotlb_pasid_invalidate(IntelIOMMUState *s,
2963                                         uint16_t domain_id, uint32_t pasid)
2964 {
2965     VTDIOTLBPageInvInfo info;
2966     VTDAddressSpace *vtd_as;
2967     VTDContextEntry ce;
2968 
2969     info.domain_id = domain_id;
2970     info.pasid = pasid;
2971 
2972     vtd_iommu_lock(s);
2973     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_pasid,
2974                                 &info);
2975     vtd_iommu_unlock(s);
2976 
2977     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2978         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2979                                       vtd_as->devfn, &ce) &&
2980             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2981             uint32_t rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2982 
2983             if ((vtd_as->pasid != PCI_NO_PASID || pasid != rid2pasid) &&
2984                 vtd_as->pasid != pasid) {
2985                 continue;
2986             }
2987 
2988             if (!s->flts || !vtd_as_has_map_notifier(vtd_as)) {
2989                 vtd_address_space_sync(vtd_as);
2990             }
2991         }
2992     }
2993 }
2994 
vtd_piotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid,hwaddr addr,uint8_t am)2995 static void vtd_piotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2996                                        uint32_t pasid, hwaddr addr, uint8_t am)
2997 {
2998     VTDIOTLBPageInvInfo info;
2999 
3000     info.domain_id = domain_id;
3001     info.pasid = pasid;
3002     info.addr = addr;
3003     info.mask = ~((1 << am) - 1);
3004 
3005     vtd_iommu_lock(s);
3006     g_hash_table_foreach_remove(s->iotlb,
3007                                 vtd_hash_remove_by_page_piotlb, &info);
3008     vtd_iommu_unlock(s);
3009 
3010     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, pasid);
3011 }
3012 
vtd_process_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3013 static bool vtd_process_piotlb_desc(IntelIOMMUState *s,
3014                                     VTDInvDesc *inv_desc)
3015 {
3016     uint16_t domain_id;
3017     uint32_t pasid;
3018     hwaddr addr;
3019     uint8_t am;
3020     uint64_t mask[4] = {VTD_INV_DESC_PIOTLB_RSVD_VAL0,
3021                         VTD_INV_DESC_PIOTLB_RSVD_VAL1,
3022                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3023 
3024     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3025                                      __func__, "piotlb inv")) {
3026         return false;
3027     }
3028 
3029     domain_id = VTD_INV_DESC_PIOTLB_DID(inv_desc->val[0]);
3030     pasid = VTD_INV_DESC_PIOTLB_PASID(inv_desc->val[0]);
3031     switch (inv_desc->val[0] & VTD_INV_DESC_PIOTLB_G) {
3032     case VTD_INV_DESC_PIOTLB_ALL_IN_PASID:
3033         vtd_piotlb_pasid_invalidate(s, domain_id, pasid);
3034         break;
3035 
3036     case VTD_INV_DESC_PIOTLB_PSI_IN_PASID:
3037         am = VTD_INV_DESC_PIOTLB_AM(inv_desc->val[1]);
3038         addr = (hwaddr) VTD_INV_DESC_PIOTLB_ADDR(inv_desc->val[1]);
3039         vtd_piotlb_page_invalidate(s, domain_id, pasid, addr, am);
3040         break;
3041 
3042     default:
3043         error_report_once("%s: invalid piotlb inv desc: hi=0x%"PRIx64
3044                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
3045                           __func__, inv_desc->val[1], inv_desc->val[0],
3046                           inv_desc->val[0] & VTD_INV_DESC_IOTLB_G);
3047         return false;
3048     }
3049     return true;
3050 }
3051 
vtd_process_inv_iec_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3052 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
3053                                      VTDInvDesc *inv_desc)
3054 {
3055     uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE,
3056                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3057 
3058     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3059                                      __func__, "iec inv")) {
3060         return false;
3061     }
3062 
3063     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
3064                            inv_desc->iec.index,
3065                            inv_desc->iec.index_mask);
3066 
3067     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
3068                        inv_desc->iec.index,
3069                        inv_desc->iec.index_mask);
3070     return true;
3071 }
3072 
do_invalidate_device_tlb(VTDAddressSpace * vtd_dev_as,bool size,hwaddr addr)3073 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
3074                                      bool size, hwaddr addr)
3075 {
3076     /*
3077      * According to ATS spec table 2.4:
3078      * S = 0, bits 15:12 = xxxx     range size: 4K
3079      * S = 1, bits 15:12 = xxx0     range size: 8K
3080      * S = 1, bits 15:12 = xx01     range size: 16K
3081      * S = 1, bits 15:12 = x011     range size: 32K
3082      * S = 1, bits 15:12 = 0111     range size: 64K
3083      * ...
3084      */
3085 
3086     IOMMUTLBEvent event;
3087     uint64_t sz;
3088 
3089     if (size) {
3090         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
3091         addr &= ~(sz - 1);
3092     } else {
3093         sz = VTD_PAGE_SIZE;
3094     }
3095 
3096     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
3097     event.entry.target_as = &vtd_dev_as->as;
3098     event.entry.addr_mask = sz - 1;
3099     event.entry.iova = addr;
3100     event.entry.perm = IOMMU_NONE;
3101     event.entry.translated_addr = 0;
3102     event.entry.pasid = vtd_dev_as->pasid;
3103     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
3104 }
3105 
vtd_process_device_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3106 static bool vtd_process_device_piotlb_desc(IntelIOMMUState *s,
3107                                            VTDInvDesc *inv_desc)
3108 {
3109     uint16_t sid;
3110     VTDAddressSpace *vtd_dev_as;
3111     bool size;
3112     bool global;
3113     hwaddr addr;
3114     uint32_t pasid;
3115     uint64_t mask[4] = {VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL0,
3116                         VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL1,
3117                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3118 
3119     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3120                                      __func__, "device piotlb inv")) {
3121         return false;
3122     }
3123 
3124     global = VTD_INV_DESC_PASID_DEVICE_IOTLB_GLOBAL(inv_desc->hi);
3125     size = VTD_INV_DESC_PASID_DEVICE_IOTLB_SIZE(inv_desc->hi);
3126     addr = VTD_INV_DESC_PASID_DEVICE_IOTLB_ADDR(inv_desc->hi);
3127     sid = VTD_INV_DESC_PASID_DEVICE_IOTLB_SID(inv_desc->lo);
3128     if (global) {
3129         QLIST_FOREACH(vtd_dev_as, &s->vtd_as_with_notifiers, next) {
3130             if ((vtd_dev_as->pasid != PCI_NO_PASID) &&
3131                 (PCI_BUILD_BDF(pci_bus_num(vtd_dev_as->bus),
3132                                            vtd_dev_as->devfn) == sid)) {
3133                 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3134             }
3135         }
3136     } else {
3137         pasid = VTD_INV_DESC_PASID_DEVICE_IOTLB_PASID(inv_desc->lo);
3138         vtd_dev_as = vtd_get_as_by_sid_and_pasid(s, sid, pasid);
3139         if (!vtd_dev_as) {
3140             return true;
3141         }
3142 
3143         do_invalidate_device_tlb(vtd_dev_as, size, addr);
3144     }
3145 
3146     return true;
3147 }
3148 
vtd_process_device_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3149 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
3150                                           VTDInvDesc *inv_desc)
3151 {
3152     VTDAddressSpace *vtd_dev_as;
3153     hwaddr addr;
3154     uint16_t sid;
3155     bool size;
3156     uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO,
3157                         VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI,
3158                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3159 
3160     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3161                                      __func__, "dev-iotlb inv")) {
3162         return false;
3163     }
3164 
3165     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
3166     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
3167     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
3168 
3169     /*
3170      * Using sid is OK since the guest should have finished the
3171      * initialization of both the bus and device.
3172      */
3173     vtd_dev_as = vtd_get_as_by_sid(s, sid);
3174     if (!vtd_dev_as) {
3175         goto done;
3176     }
3177 
3178     do_invalidate_device_tlb(vtd_dev_as, size, addr);
3179 
3180 done:
3181     return true;
3182 }
3183 
vtd_process_inv_desc(IntelIOMMUState * s)3184 static bool vtd_process_inv_desc(IntelIOMMUState *s)
3185 {
3186     VTDInvDesc inv_desc;
3187     uint8_t desc_type;
3188 
3189     trace_vtd_inv_qi_head(s->iq_head);
3190     if (!vtd_get_inv_desc(s, &inv_desc)) {
3191         s->iq_last_desc_type = VTD_INV_DESC_NONE;
3192         return false;
3193     }
3194 
3195     desc_type = VTD_INV_DESC_TYPE(inv_desc.lo);
3196     /* FIXME: should update at first or at last? */
3197     s->iq_last_desc_type = desc_type;
3198 
3199     switch (desc_type) {
3200     case VTD_INV_DESC_CC:
3201         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
3202         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
3203             return false;
3204         }
3205         break;
3206 
3207     case VTD_INV_DESC_IOTLB:
3208         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
3209         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
3210             return false;
3211         }
3212         break;
3213 
3214     case VTD_INV_DESC_PIOTLB:
3215         trace_vtd_inv_desc("p-iotlb", inv_desc.val[1], inv_desc.val[0]);
3216         if (!vtd_process_piotlb_desc(s, &inv_desc)) {
3217             return false;
3218         }
3219         break;
3220 
3221     case VTD_INV_DESC_WAIT:
3222         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
3223         if (!vtd_process_wait_desc(s, &inv_desc)) {
3224             return false;
3225         }
3226         break;
3227 
3228     case VTD_INV_DESC_IEC:
3229         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
3230         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
3231             return false;
3232         }
3233         break;
3234 
3235     case VTD_INV_DESC_DEV_PIOTLB:
3236         trace_vtd_inv_desc("device-piotlb", inv_desc.hi, inv_desc.lo);
3237         if (!vtd_process_device_piotlb_desc(s, &inv_desc)) {
3238             return false;
3239         }
3240         break;
3241 
3242     case VTD_INV_DESC_DEVICE:
3243         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
3244         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
3245             return false;
3246         }
3247         break;
3248 
3249     /*
3250      * TODO: the entity of below two cases will be implemented in future series.
3251      * To make guest (which integrates scalable mode support patch set in
3252      * iommu driver) work, just return true is enough so far.
3253      */
3254     case VTD_INV_DESC_PC:
3255         if (s->scalable_mode) {
3256             break;
3257         }
3258     /* fallthrough */
3259     default:
3260         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
3261                           " (unknown type)", __func__, inv_desc.hi,
3262                           inv_desc.lo);
3263         return false;
3264     }
3265     s->iq_head++;
3266     if (s->iq_head == s->iq_size) {
3267         s->iq_head = 0;
3268     }
3269     return true;
3270 }
3271 
3272 /* Try to fetch and process more Invalidation Descriptors */
vtd_fetch_inv_desc(IntelIOMMUState * s)3273 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
3274 {
3275     int qi_shift;
3276 
3277     /* Refer to 10.4.23 of VT-d spec 3.0 */
3278     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
3279 
3280     trace_vtd_inv_qi_fetch();
3281 
3282     if (s->iq_tail >= s->iq_size) {
3283         /* Detects an invalid Tail pointer */
3284         error_report_once("%s: detected invalid QI tail "
3285                           "(tail=0x%x, size=0x%x)",
3286                           __func__, s->iq_tail, s->iq_size);
3287         vtd_handle_inv_queue_error(s);
3288         return;
3289     }
3290     while (s->iq_head != s->iq_tail) {
3291         if (!vtd_process_inv_desc(s)) {
3292             /* Invalidation Queue Errors */
3293             vtd_handle_inv_queue_error(s);
3294             break;
3295         }
3296         /* Must update the IQH_REG in time */
3297         vtd_set_quad_raw(s, DMAR_IQH_REG,
3298                          (((uint64_t)(s->iq_head)) << qi_shift) &
3299                          VTD_IQH_QH_MASK);
3300     }
3301 }
3302 
3303 /* Handle write to Invalidation Queue Tail Register */
vtd_handle_iqt_write(IntelIOMMUState * s)3304 static void vtd_handle_iqt_write(IntelIOMMUState *s)
3305 {
3306     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
3307 
3308     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
3309         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
3310                           __func__, val);
3311         vtd_handle_inv_queue_error(s);
3312         return;
3313     }
3314     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
3315     trace_vtd_inv_qi_tail(s->iq_tail);
3316 
3317     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
3318         /* Process Invalidation Queue here */
3319         vtd_fetch_inv_desc(s);
3320     }
3321 }
3322 
vtd_handle_fsts_write(IntelIOMMUState * s)3323 static void vtd_handle_fsts_write(IntelIOMMUState *s)
3324 {
3325     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
3326     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3327     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
3328 
3329     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
3330         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3331         trace_vtd_fsts_clear_ip();
3332     }
3333     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
3334      * Descriptors if there are any when Queued Invalidation is enabled?
3335      */
3336 }
3337 
vtd_handle_fectl_write(IntelIOMMUState * s)3338 static void vtd_handle_fectl_write(IntelIOMMUState *s)
3339 {
3340     uint32_t fectl_reg;
3341     /* FIXME: when software clears the IM field, check the IP field. But do we
3342      * need to compare the old value and the new value to conclude that
3343      * software clears the IM field? Or just check if the IM field is zero?
3344      */
3345     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3346 
3347     trace_vtd_reg_write_fectl(fectl_reg);
3348 
3349     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
3350         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
3351         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3352     }
3353 }
3354 
vtd_handle_ics_write(IntelIOMMUState * s)3355 static void vtd_handle_ics_write(IntelIOMMUState *s)
3356 {
3357     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
3358     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3359 
3360     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
3361         trace_vtd_reg_ics_clear_ip();
3362         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3363     }
3364 }
3365 
vtd_handle_iectl_write(IntelIOMMUState * s)3366 static void vtd_handle_iectl_write(IntelIOMMUState *s)
3367 {
3368     uint32_t iectl_reg;
3369     /* FIXME: when software clears the IM field, check the IP field. But do we
3370      * need to compare the old value and the new value to conclude that
3371      * software clears the IM field? Or just check if the IM field is zero?
3372      */
3373     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3374 
3375     trace_vtd_reg_write_iectl(iectl_reg);
3376 
3377     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
3378         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
3379         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3380     }
3381 }
3382 
vtd_mem_read(void * opaque,hwaddr addr,unsigned size)3383 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
3384 {
3385     IntelIOMMUState *s = opaque;
3386     uint64_t val;
3387 
3388     trace_vtd_reg_read(addr, size);
3389 
3390     if (addr + size > DMAR_REG_SIZE) {
3391         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3392                           " size=0x%x", __func__, addr, size);
3393         return (uint64_t)-1;
3394     }
3395 
3396     switch (addr) {
3397     /* Root Table Address Register, 64-bit */
3398     case DMAR_RTADDR_REG:
3399         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
3400         if (size == 4) {
3401             val = val & ((1ULL << 32) - 1);
3402         }
3403         break;
3404 
3405     case DMAR_RTADDR_REG_HI:
3406         assert(size == 4);
3407         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
3408         break;
3409 
3410     /* Invalidation Queue Address Register, 64-bit */
3411     case DMAR_IQA_REG:
3412         val = s->iq |
3413               (vtd_get_quad(s, DMAR_IQA_REG) &
3414               (VTD_IQA_QS | VTD_IQA_DW_MASK));
3415         if (size == 4) {
3416             val = val & ((1ULL << 32) - 1);
3417         }
3418         break;
3419 
3420     case DMAR_IQA_REG_HI:
3421         assert(size == 4);
3422         val = s->iq >> 32;
3423         break;
3424 
3425     default:
3426         if (size == 4) {
3427             val = vtd_get_long(s, addr);
3428         } else {
3429             val = vtd_get_quad(s, addr);
3430         }
3431     }
3432 
3433     return val;
3434 }
3435 
vtd_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3436 static void vtd_mem_write(void *opaque, hwaddr addr,
3437                           uint64_t val, unsigned size)
3438 {
3439     IntelIOMMUState *s = opaque;
3440 
3441     trace_vtd_reg_write(addr, size, val);
3442 
3443     if (addr + size > DMAR_REG_SIZE) {
3444         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3445                           " size=0x%x", __func__, addr, size);
3446         return;
3447     }
3448 
3449     switch (addr) {
3450     /* Global Command Register, 32-bit */
3451     case DMAR_GCMD_REG:
3452         vtd_set_long(s, addr, val);
3453         vtd_handle_gcmd_write(s);
3454         break;
3455 
3456     /* Context Command Register, 64-bit */
3457     case DMAR_CCMD_REG:
3458         if (size == 4) {
3459             vtd_set_long(s, addr, val);
3460         } else {
3461             vtd_set_quad(s, addr, val);
3462             vtd_handle_ccmd_write(s);
3463         }
3464         break;
3465 
3466     case DMAR_CCMD_REG_HI:
3467         assert(size == 4);
3468         vtd_set_long(s, addr, val);
3469         vtd_handle_ccmd_write(s);
3470         break;
3471 
3472     /* IOTLB Invalidation Register, 64-bit */
3473     case DMAR_IOTLB_REG:
3474         if (size == 4) {
3475             vtd_set_long(s, addr, val);
3476         } else {
3477             vtd_set_quad(s, addr, val);
3478             vtd_handle_iotlb_write(s);
3479         }
3480         break;
3481 
3482     case DMAR_IOTLB_REG_HI:
3483         assert(size == 4);
3484         vtd_set_long(s, addr, val);
3485         vtd_handle_iotlb_write(s);
3486         break;
3487 
3488     /* Invalidate Address Register, 64-bit */
3489     case DMAR_IVA_REG:
3490         if (size == 4) {
3491             vtd_set_long(s, addr, val);
3492         } else {
3493             vtd_set_quad(s, addr, val);
3494         }
3495         break;
3496 
3497     case DMAR_IVA_REG_HI:
3498         assert(size == 4);
3499         vtd_set_long(s, addr, val);
3500         break;
3501 
3502     /* Fault Status Register, 32-bit */
3503     case DMAR_FSTS_REG:
3504         assert(size == 4);
3505         vtd_set_long(s, addr, val);
3506         vtd_handle_fsts_write(s);
3507         break;
3508 
3509     /* Fault Event Control Register, 32-bit */
3510     case DMAR_FECTL_REG:
3511         assert(size == 4);
3512         vtd_set_long(s, addr, val);
3513         vtd_handle_fectl_write(s);
3514         break;
3515 
3516     /* Fault Event Data Register, 32-bit */
3517     case DMAR_FEDATA_REG:
3518         assert(size == 4);
3519         vtd_set_long(s, addr, val);
3520         break;
3521 
3522     /* Fault Event Address Register, 32-bit */
3523     case DMAR_FEADDR_REG:
3524         if (size == 4) {
3525             vtd_set_long(s, addr, val);
3526         } else {
3527             /*
3528              * While the register is 32-bit only, some guests (Xen...) write to
3529              * it with 64-bit.
3530              */
3531             vtd_set_quad(s, addr, val);
3532         }
3533         break;
3534 
3535     /* Fault Event Upper Address Register, 32-bit */
3536     case DMAR_FEUADDR_REG:
3537         assert(size == 4);
3538         vtd_set_long(s, addr, val);
3539         break;
3540 
3541     /* Protected Memory Enable Register, 32-bit */
3542     case DMAR_PMEN_REG:
3543         assert(size == 4);
3544         vtd_set_long(s, addr, val);
3545         break;
3546 
3547     /* Root Table Address Register, 64-bit */
3548     case DMAR_RTADDR_REG:
3549         if (size == 4) {
3550             vtd_set_long(s, addr, val);
3551         } else {
3552             vtd_set_quad(s, addr, val);
3553         }
3554         break;
3555 
3556     case DMAR_RTADDR_REG_HI:
3557         assert(size == 4);
3558         vtd_set_long(s, addr, val);
3559         break;
3560 
3561     /* Invalidation Queue Tail Register, 64-bit */
3562     case DMAR_IQT_REG:
3563         if (size == 4) {
3564             vtd_set_long(s, addr, val);
3565         } else {
3566             vtd_set_quad(s, addr, val);
3567         }
3568         vtd_handle_iqt_write(s);
3569         break;
3570 
3571     case DMAR_IQT_REG_HI:
3572         assert(size == 4);
3573         vtd_set_long(s, addr, val);
3574         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3575         break;
3576 
3577     /* Invalidation Queue Address Register, 64-bit */
3578     case DMAR_IQA_REG:
3579         if (size == 4) {
3580             vtd_set_long(s, addr, val);
3581         } else {
3582             vtd_set_quad(s, addr, val);
3583         }
3584         vtd_update_iq_dw(s);
3585         break;
3586 
3587     case DMAR_IQA_REG_HI:
3588         assert(size == 4);
3589         vtd_set_long(s, addr, val);
3590         break;
3591 
3592     /* Invalidation Completion Status Register, 32-bit */
3593     case DMAR_ICS_REG:
3594         assert(size == 4);
3595         vtd_set_long(s, addr, val);
3596         vtd_handle_ics_write(s);
3597         break;
3598 
3599     /* Invalidation Event Control Register, 32-bit */
3600     case DMAR_IECTL_REG:
3601         assert(size == 4);
3602         vtd_set_long(s, addr, val);
3603         vtd_handle_iectl_write(s);
3604         break;
3605 
3606     /* Invalidation Event Data Register, 32-bit */
3607     case DMAR_IEDATA_REG:
3608         assert(size == 4);
3609         vtd_set_long(s, addr, val);
3610         break;
3611 
3612     /* Invalidation Event Address Register, 32-bit */
3613     case DMAR_IEADDR_REG:
3614         assert(size == 4);
3615         vtd_set_long(s, addr, val);
3616         break;
3617 
3618     /* Invalidation Event Upper Address Register, 32-bit */
3619     case DMAR_IEUADDR_REG:
3620         assert(size == 4);
3621         vtd_set_long(s, addr, val);
3622         break;
3623 
3624     /* Fault Recording Registers, 128-bit */
3625     case DMAR_FRCD_REG_0_0:
3626         if (size == 4) {
3627             vtd_set_long(s, addr, val);
3628         } else {
3629             vtd_set_quad(s, addr, val);
3630         }
3631         break;
3632 
3633     case DMAR_FRCD_REG_0_1:
3634         assert(size == 4);
3635         vtd_set_long(s, addr, val);
3636         break;
3637 
3638     case DMAR_FRCD_REG_0_2:
3639         if (size == 4) {
3640             vtd_set_long(s, addr, val);
3641         } else {
3642             vtd_set_quad(s, addr, val);
3643             /* May clear bit 127 (Fault), update PPF */
3644             vtd_update_fsts_ppf(s);
3645         }
3646         break;
3647 
3648     case DMAR_FRCD_REG_0_3:
3649         assert(size == 4);
3650         vtd_set_long(s, addr, val);
3651         /* May clear bit 127 (Fault), update PPF */
3652         vtd_update_fsts_ppf(s);
3653         break;
3654 
3655     case DMAR_IRTA_REG:
3656         if (size == 4) {
3657             vtd_set_long(s, addr, val);
3658         } else {
3659             vtd_set_quad(s, addr, val);
3660         }
3661         break;
3662 
3663     case DMAR_IRTA_REG_HI:
3664         assert(size == 4);
3665         vtd_set_long(s, addr, val);
3666         break;
3667 
3668     default:
3669         if (size == 4) {
3670             vtd_set_long(s, addr, val);
3671         } else {
3672             vtd_set_quad(s, addr, val);
3673         }
3674     }
3675 }
3676 
vtd_iommu_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)3677 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3678                                          IOMMUAccessFlags flag, int iommu_idx)
3679 {
3680     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3681     IntelIOMMUState *s = vtd_as->iommu_state;
3682     IOMMUTLBEntry iotlb = {
3683         /* We'll fill in the rest later. */
3684         .target_as = &address_space_memory,
3685         .pasid = vtd_as->pasid,
3686     };
3687     bool success;
3688 
3689     if (likely(s->dmar_enabled)) {
3690         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3691                                          addr, flag & IOMMU_WO, &iotlb);
3692     } else {
3693         /* DMAR disabled, passthrough, use 4k-page*/
3694         iotlb.iova = addr & VTD_PAGE_MASK_4K;
3695         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3696         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3697         iotlb.perm = IOMMU_RW;
3698         success = true;
3699     }
3700 
3701     if (likely(success)) {
3702         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3703                                  VTD_PCI_SLOT(vtd_as->devfn),
3704                                  VTD_PCI_FUNC(vtd_as->devfn),
3705                                  iotlb.iova, iotlb.translated_addr,
3706                                  iotlb.addr_mask);
3707     } else {
3708         error_report_once("%s: detected translation failure "
3709                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3710                           __func__, pci_bus_num(vtd_as->bus),
3711                           VTD_PCI_SLOT(vtd_as->devfn),
3712                           VTD_PCI_FUNC(vtd_as->devfn),
3713                           addr);
3714     }
3715 
3716     return iotlb;
3717 }
3718 
vtd_iommu_notify_flag_changed(IOMMUMemoryRegion * iommu,IOMMUNotifierFlag old,IOMMUNotifierFlag new,Error ** errp)3719 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3720                                          IOMMUNotifierFlag old,
3721                                          IOMMUNotifierFlag new,
3722                                          Error **errp)
3723 {
3724     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3725     IntelIOMMUState *s = vtd_as->iommu_state;
3726     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3727 
3728     /* TODO: add support for VFIO and vhost users */
3729     if (s->snoop_control) {
3730         error_setg_errno(errp, ENOTSUP,
3731                          "Snoop Control with vhost or VFIO is not supported");
3732         return -ENOTSUP;
3733     }
3734     if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3735         error_setg_errno(errp, ENOTSUP,
3736                          "device %02x.%02x.%x requires caching mode",
3737                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3738                          PCI_FUNC(vtd_as->devfn));
3739         return -ENOTSUP;
3740     }
3741     if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3742         error_setg_errno(errp, ENOTSUP,
3743                          "device %02x.%02x.%x requires device IOTLB mode",
3744                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3745                          PCI_FUNC(vtd_as->devfn));
3746         return -ENOTSUP;
3747     }
3748 
3749     /* Update per-address-space notifier flags */
3750     vtd_as->notifier_flags = new;
3751 
3752     if (old == IOMMU_NOTIFIER_NONE) {
3753         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3754     } else if (new == IOMMU_NOTIFIER_NONE) {
3755         QLIST_REMOVE(vtd_as, next);
3756     }
3757     return 0;
3758 }
3759 
vtd_post_load(void * opaque,int version_id)3760 static int vtd_post_load(void *opaque, int version_id)
3761 {
3762     IntelIOMMUState *iommu = opaque;
3763 
3764     /*
3765      * We don't need to migrate the root_scalable because we can
3766      * simply do the calculation after the loading is complete.  We
3767      * can actually do similar things with root, dmar_enabled, etc.
3768      * however since we've had them already so we'd better keep them
3769      * for compatibility of migration.
3770      */
3771     vtd_update_scalable_state(iommu);
3772 
3773     vtd_update_iq_dw(iommu);
3774 
3775     /*
3776      * Memory regions are dynamically turned on/off depending on
3777      * context entry configurations from the guest. After migration,
3778      * we need to make sure the memory regions are still correct.
3779      */
3780     vtd_switch_address_space_all(iommu);
3781 
3782     return 0;
3783 }
3784 
3785 static const VMStateDescription vtd_vmstate = {
3786     .name = "iommu-intel",
3787     .version_id = 1,
3788     .minimum_version_id = 1,
3789     .priority = MIG_PRI_IOMMU,
3790     .post_load = vtd_post_load,
3791     .fields = (const VMStateField[]) {
3792         VMSTATE_UINT64(root, IntelIOMMUState),
3793         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3794         VMSTATE_UINT64(iq, IntelIOMMUState),
3795         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3796         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3797         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3798         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3799         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3800         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3801         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3802         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3803         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3804         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3805         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3806         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3807         VMSTATE_END_OF_LIST()
3808     }
3809 };
3810 
3811 static const MemoryRegionOps vtd_mem_ops = {
3812     .read = vtd_mem_read,
3813     .write = vtd_mem_write,
3814     .endianness = DEVICE_LITTLE_ENDIAN,
3815     .impl = {
3816         .min_access_size = 4,
3817         .max_access_size = 8,
3818     },
3819     .valid = {
3820         .min_access_size = 4,
3821         .max_access_size = 8,
3822     },
3823 };
3824 
3825 static const Property vtd_properties[] = {
3826     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3827     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3828                             ON_OFF_AUTO_AUTO),
3829     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3830     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3831                       VTD_HOST_ADDRESS_WIDTH),
3832     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3833     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3834     DEFINE_PROP_BOOL("x-flts", IntelIOMMUState, flts, FALSE),
3835     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3836     DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3837     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3838     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3839     DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false),
3840     DEFINE_PROP_BOOL("fs1gp", IntelIOMMUState, fs1gp, true),
3841 };
3842 
3843 /* Read IRTE entry with specific index */
vtd_irte_get(IntelIOMMUState * iommu,uint16_t index,VTD_IR_TableEntry * entry,uint16_t sid,bool do_fault)3844 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3845                          VTD_IR_TableEntry *entry, uint16_t sid,
3846                          bool do_fault)
3847 {
3848     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3849         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3850     dma_addr_t addr = 0x00;
3851     uint16_t mask, source_id;
3852     uint8_t bus, bus_max, bus_min;
3853 
3854     if (index >= iommu->intr_size) {
3855         error_report_once("%s: index too large: ind=0x%x",
3856                           __func__, index);
3857         if (do_fault) {
3858             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3859         }
3860         return false;
3861     }
3862 
3863     addr = iommu->intr_root + index * sizeof(*entry);
3864     if (dma_memory_read(&address_space_memory, addr,
3865                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3866         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3867                           __func__, index, addr);
3868         if (do_fault) {
3869             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3870         }
3871         return false;
3872     }
3873 
3874     entry->data[0] = le64_to_cpu(entry->data[0]);
3875     entry->data[1] = le64_to_cpu(entry->data[1]);
3876 
3877     trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3878 
3879     /*
3880      * The remaining potential fault conditions are "qualified" by the
3881      * Fault Processing Disable bit in the IRTE. Even "not present".
3882      * So just clear the do_fault flag if PFD is set, which will
3883      * prevent faults being raised.
3884      */
3885     if (entry->irte.fault_disable) {
3886         do_fault = false;
3887     }
3888 
3889     if (!entry->irte.present) {
3890         error_report_once("%s: detected non-present IRTE "
3891                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3892                           __func__, index, entry->data[1], entry->data[0]);
3893         if (do_fault) {
3894             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3895         }
3896         return false;
3897     }
3898 
3899     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3900         entry->irte.__reserved_2) {
3901         error_report_once("%s: detected non-zero reserved IRTE "
3902                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3903                           __func__, index, entry->data[1], entry->data[0]);
3904         if (do_fault) {
3905             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3906         }
3907         return false;
3908     }
3909 
3910     if (sid != X86_IOMMU_SID_INVALID) {
3911         /* Validate IRTE SID */
3912         source_id = entry->irte.source_id;
3913         switch (entry->irte.sid_vtype) {
3914         case VTD_SVT_NONE:
3915             break;
3916 
3917         case VTD_SVT_ALL:
3918             mask = vtd_svt_mask[entry->irte.sid_q];
3919             if ((source_id & mask) != (sid & mask)) {
3920                 error_report_once("%s: invalid IRTE SID "
3921                                   "(index=%u, sid=%u, source_id=%u)",
3922                                   __func__, index, sid, source_id);
3923                 if (do_fault) {
3924                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3925                 }
3926                 return false;
3927             }
3928             break;
3929 
3930         case VTD_SVT_BUS:
3931             bus_max = source_id >> 8;
3932             bus_min = source_id & 0xff;
3933             bus = sid >> 8;
3934             if (bus > bus_max || bus < bus_min) {
3935                 error_report_once("%s: invalid SVT_BUS "
3936                                   "(index=%u, bus=%u, min=%u, max=%u)",
3937                                   __func__, index, bus, bus_min, bus_max);
3938                 if (do_fault) {
3939                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3940                 }
3941                 return false;
3942             }
3943             break;
3944 
3945         default:
3946             error_report_once("%s: detected invalid IRTE SVT "
3947                               "(index=%u, type=%d)", __func__,
3948                               index, entry->irte.sid_vtype);
3949             /* Take this as verification failure. */
3950             if (do_fault) {
3951                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3952             }
3953             return false;
3954         }
3955     }
3956 
3957     return true;
3958 }
3959 
3960 /* Fetch IRQ information of specific IR index */
vtd_remap_irq_get(IntelIOMMUState * iommu,uint16_t index,X86IOMMUIrq * irq,uint16_t sid,bool do_fault)3961 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3962                               X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3963 {
3964     VTD_IR_TableEntry irte = {};
3965 
3966     if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3967         return false;
3968     }
3969 
3970     irq->trigger_mode = irte.irte.trigger_mode;
3971     irq->vector = irte.irte.vector;
3972     irq->delivery_mode = irte.irte.delivery_mode;
3973     irq->dest = irte.irte.dest_id;
3974     if (!iommu->intr_eime) {
3975 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3976 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3977         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3978             VTD_IR_APIC_DEST_SHIFT;
3979     }
3980     irq->dest_mode = irte.irte.dest_mode;
3981     irq->redir_hint = irte.irte.redir_hint;
3982 
3983     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3984                        irq->delivery_mode, irq->dest, irq->dest_mode);
3985 
3986     return true;
3987 }
3988 
3989 /* Interrupt remapping for MSI/MSI-X entry */
vtd_interrupt_remap_msi(IntelIOMMUState * iommu,MSIMessage * origin,MSIMessage * translated,uint16_t sid,bool do_fault)3990 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3991                                    MSIMessage *origin,
3992                                    MSIMessage *translated,
3993                                    uint16_t sid, bool do_fault)
3994 {
3995     VTD_IR_MSIAddress addr;
3996     uint16_t index;
3997     X86IOMMUIrq irq = {};
3998 
3999     assert(origin && translated);
4000 
4001     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
4002 
4003     if (!iommu || !iommu->intr_enabled) {
4004         memcpy(translated, origin, sizeof(*origin));
4005         goto out;
4006     }
4007 
4008     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
4009         error_report_once("%s: MSI address high 32 bits non-zero detected: "
4010                           "address=0x%" PRIx64, __func__, origin->address);
4011         if (do_fault) {
4012             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4013         }
4014         return -EINVAL;
4015     }
4016 
4017     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
4018     if (addr.addr.__head != 0xfee) {
4019         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
4020                           __func__, addr.data);
4021         if (do_fault) {
4022             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4023         }
4024         return -EINVAL;
4025     }
4026 
4027     /* This is compatible mode. */
4028     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
4029         memcpy(translated, origin, sizeof(*origin));
4030         goto out;
4031     }
4032 
4033     index = addr.addr.index_h << 15 | addr.addr.index_l;
4034 
4035 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
4036 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
4037 
4038     if (addr.addr.sub_valid) {
4039         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
4040         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
4041     }
4042 
4043     if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
4044         return -EINVAL;
4045     }
4046 
4047     if (addr.addr.sub_valid) {
4048         trace_vtd_ir_remap_type("MSI");
4049         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
4050             error_report_once("%s: invalid IR MSI "
4051                               "(sid=%u, address=0x%" PRIx64
4052                               ", data=0x%" PRIx32 ")",
4053                               __func__, sid, origin->address, origin->data);
4054             if (do_fault) {
4055                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4056             }
4057             return -EINVAL;
4058         }
4059     } else {
4060         uint8_t vector = origin->data & 0xff;
4061         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
4062 
4063         trace_vtd_ir_remap_type("IOAPIC");
4064         /* IOAPIC entry vector should be aligned with IRTE vector
4065          * (see vt-d spec 5.1.5.1). */
4066         if (vector != irq.vector) {
4067             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
4068         }
4069 
4070         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
4071          * (see vt-d spec 5.1.5.1). */
4072         if (trigger_mode != irq.trigger_mode) {
4073             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
4074                                       irq.trigger_mode);
4075         }
4076     }
4077 
4078     /*
4079      * We'd better keep the last two bits, assuming that guest OS
4080      * might modify it. Keep it does not hurt after all.
4081      */
4082     irq.msi_addr_last_bits = addr.addr.__not_care;
4083 
4084     /* Translate X86IOMMUIrq to MSI message */
4085     x86_iommu_irq_to_msi_message(&irq, translated);
4086 
4087 out:
4088     trace_vtd_ir_remap_msi(origin->address, origin->data,
4089                            translated->address, translated->data);
4090     return 0;
4091 }
4092 
vtd_int_remap(X86IOMMUState * iommu,MSIMessage * src,MSIMessage * dst,uint16_t sid)4093 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
4094                          MSIMessage *dst, uint16_t sid)
4095 {
4096     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
4097                                    src, dst, sid, false);
4098 }
4099 
vtd_mem_ir_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4100 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
4101                                    uint64_t *data, unsigned size,
4102                                    MemTxAttrs attrs)
4103 {
4104     return MEMTX_OK;
4105 }
4106 
vtd_mem_ir_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4107 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
4108                                     uint64_t value, unsigned size,
4109                                     MemTxAttrs attrs)
4110 {
4111     int ret = 0;
4112     MSIMessage from = {}, to = {};
4113     uint16_t sid = X86_IOMMU_SID_INVALID;
4114 
4115     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
4116     from.data = (uint32_t) value;
4117 
4118     if (!attrs.unspecified) {
4119         /* We have explicit Source ID */
4120         sid = attrs.requester_id;
4121     }
4122 
4123     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
4124     if (ret) {
4125         /* Drop this interrupt */
4126         return MEMTX_ERROR;
4127     }
4128 
4129     apic_get_class(NULL)->send_msi(&to);
4130 
4131     return MEMTX_OK;
4132 }
4133 
4134 static const MemoryRegionOps vtd_mem_ir_ops = {
4135     .read_with_attrs = vtd_mem_ir_read,
4136     .write_with_attrs = vtd_mem_ir_write,
4137     .endianness = DEVICE_LITTLE_ENDIAN,
4138     .impl = {
4139         .min_access_size = 4,
4140         .max_access_size = 4,
4141     },
4142     .valid = {
4143         .min_access_size = 4,
4144         .max_access_size = 4,
4145     },
4146 };
4147 
vtd_report_ir_illegal_access(VTDAddressSpace * vtd_as,hwaddr addr,bool is_write)4148 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
4149                                          hwaddr addr, bool is_write)
4150 {
4151     IntelIOMMUState *s = vtd_as->iommu_state;
4152     uint8_t bus_n = pci_bus_num(vtd_as->bus);
4153     uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
4154     bool is_fpd_set = false;
4155     VTDContextEntry ce;
4156 
4157     assert(vtd_as->pasid != PCI_NO_PASID);
4158 
4159     /* Try out best to fetch FPD, we can't do anything more */
4160     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4161         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
4162         if (!is_fpd_set && s->root_scalable) {
4163             vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
4164         }
4165     }
4166 
4167     vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
4168                      is_fpd_set, sid, addr, is_write,
4169                      true, vtd_as->pasid);
4170 }
4171 
vtd_mem_ir_fault_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4172 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
4173                                          uint64_t *data, unsigned size,
4174                                          MemTxAttrs attrs)
4175 {
4176     vtd_report_ir_illegal_access(opaque, addr, false);
4177 
4178     return MEMTX_ERROR;
4179 }
4180 
vtd_mem_ir_fault_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4181 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
4182                                           uint64_t value, unsigned size,
4183                                           MemTxAttrs attrs)
4184 {
4185     vtd_report_ir_illegal_access(opaque, addr, true);
4186 
4187     return MEMTX_ERROR;
4188 }
4189 
4190 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
4191     .read_with_attrs = vtd_mem_ir_fault_read,
4192     .write_with_attrs = vtd_mem_ir_fault_write,
4193     .endianness = DEVICE_LITTLE_ENDIAN,
4194     .impl = {
4195         .min_access_size = 1,
4196         .max_access_size = 8,
4197     },
4198     .valid = {
4199         .min_access_size = 1,
4200         .max_access_size = 8,
4201     },
4202 };
4203 
vtd_find_add_as(IntelIOMMUState * s,PCIBus * bus,int devfn,unsigned int pasid)4204 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
4205                                  int devfn, unsigned int pasid)
4206 {
4207     /*
4208      * We can't simply use sid here since the bus number might not be
4209      * initialized by the guest.
4210      */
4211     struct vtd_as_key key = {
4212         .bus = bus,
4213         .devfn = devfn,
4214         .pasid = pasid,
4215     };
4216     VTDAddressSpace *vtd_dev_as;
4217     char name[128];
4218 
4219     vtd_iommu_lock(s);
4220     vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4221     vtd_iommu_unlock(s);
4222 
4223     if (!vtd_dev_as) {
4224         struct vtd_as_key *new_key;
4225         /* Slow path */
4226 
4227         /*
4228          * memory_region_add_subregion_overlap requires the bql,
4229          * make sure we own it.
4230          */
4231         BQL_LOCK_GUARD();
4232         vtd_iommu_lock(s);
4233 
4234         /* Check again as we released the lock for a moment */
4235         vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4236         if (vtd_dev_as) {
4237             vtd_iommu_unlock(s);
4238             return vtd_dev_as;
4239         }
4240 
4241         /* Still nothing, allocate a new address space */
4242         new_key = g_malloc(sizeof(*new_key));
4243 
4244         new_key->bus = bus;
4245         new_key->devfn = devfn;
4246         new_key->pasid = pasid;
4247 
4248         if (pasid == PCI_NO_PASID) {
4249             snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
4250                      PCI_FUNC(devfn));
4251         } else {
4252             snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
4253                      PCI_FUNC(devfn), pasid);
4254         }
4255 
4256         vtd_dev_as = g_new0(VTDAddressSpace, 1);
4257 
4258         vtd_dev_as->bus = bus;
4259         vtd_dev_as->devfn = (uint8_t)devfn;
4260         vtd_dev_as->pasid = pasid;
4261         vtd_dev_as->iommu_state = s;
4262         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
4263         vtd_dev_as->iova_tree = iova_tree_new();
4264 
4265         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
4266         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
4267 
4268         /*
4269          * Build the DMAR-disabled container with aliases to the
4270          * shared MRs.  Note that aliasing to a shared memory region
4271          * could help the memory API to detect same FlatViews so we
4272          * can have devices to share the same FlatView when DMAR is
4273          * disabled (either by not providing "intel_iommu=on" or with
4274          * "iommu=pt").  It will greatly reduce the total number of
4275          * FlatViews of the system hence VM runs faster.
4276          */
4277         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
4278                                  "vtd-nodmar", &s->mr_nodmar, 0,
4279                                  memory_region_size(&s->mr_nodmar));
4280 
4281         /*
4282          * Build the per-device DMAR-enabled container.
4283          *
4284          * TODO: currently we have per-device IOMMU memory region only
4285          * because we have per-device IOMMU notifiers for devices.  If
4286          * one day we can abstract the IOMMU notifiers out of the
4287          * memory regions then we can also share the same memory
4288          * region here just like what we've done above with the nodmar
4289          * region.
4290          */
4291         strcat(name, "-dmar");
4292         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
4293                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
4294                                  name, UINT64_MAX);
4295         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
4296                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
4297         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
4298                                             VTD_INTERRUPT_ADDR_FIRST,
4299                                             &vtd_dev_as->iommu_ir, 1);
4300 
4301         /*
4302          * This region is used for catching fault to access interrupt
4303          * range via passthrough + PASID. See also
4304          * vtd_switch_address_space(). We can't use alias since we
4305          * need to know the sid which is valid for MSI who uses
4306          * bus_master_as (see msi_send_message()).
4307          */
4308         memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
4309                               &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
4310                               VTD_INTERRUPT_ADDR_SIZE);
4311         /*
4312          * Hook to root since when PT is enabled vtd_dev_as->iommu
4313          * will be disabled.
4314          */
4315         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
4316                                             VTD_INTERRUPT_ADDR_FIRST,
4317                                             &vtd_dev_as->iommu_ir_fault, 2);
4318 
4319         /*
4320          * Hook both the containers under the root container, we
4321          * switch between DMAR & noDMAR by enable/disable
4322          * corresponding sub-containers
4323          */
4324         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4325                                             MEMORY_REGION(&vtd_dev_as->iommu),
4326                                             0);
4327         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4328                                             &vtd_dev_as->nodmar, 0);
4329 
4330         vtd_switch_address_space(vtd_dev_as);
4331 
4332         g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
4333 
4334         vtd_iommu_unlock(s);
4335     }
4336     return vtd_dev_as;
4337 }
4338 
vtd_check_hiod(IntelIOMMUState * s,HostIOMMUDevice * hiod,Error ** errp)4339 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
4340                            Error **errp)
4341 {
4342     HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
4343     int ret;
4344 
4345     if (!hiodc->get_cap) {
4346         error_setg(errp, ".get_cap() not implemented");
4347         return false;
4348     }
4349 
4350     /* Common checks */
4351     ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
4352     if (ret < 0) {
4353         return false;
4354     }
4355     if (s->aw_bits > ret) {
4356         error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
4357         return false;
4358     }
4359 
4360     if (!s->flts) {
4361         /* All checks requested by VTD stage-2 translation pass */
4362         return true;
4363     }
4364 
4365     error_setg(errp, "host device is uncompatible with stage-1 translation");
4366     return false;
4367 }
4368 
vtd_dev_set_iommu_device(PCIBus * bus,void * opaque,int devfn,HostIOMMUDevice * hiod,Error ** errp)4369 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
4370                                      HostIOMMUDevice *hiod, Error **errp)
4371 {
4372     IntelIOMMUState *s = opaque;
4373     struct vtd_as_key key = {
4374         .bus = bus,
4375         .devfn = devfn,
4376     };
4377     struct vtd_as_key *new_key;
4378 
4379     assert(hiod);
4380 
4381     vtd_iommu_lock(s);
4382 
4383     if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4384         error_setg(errp, "Host IOMMU device already exist");
4385         vtd_iommu_unlock(s);
4386         return false;
4387     }
4388 
4389     if (!vtd_check_hiod(s, hiod, errp)) {
4390         vtd_iommu_unlock(s);
4391         return false;
4392     }
4393 
4394     new_key = g_malloc(sizeof(*new_key));
4395     new_key->bus = bus;
4396     new_key->devfn = devfn;
4397 
4398     object_ref(hiod);
4399     g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
4400 
4401     vtd_iommu_unlock(s);
4402 
4403     return true;
4404 }
4405 
vtd_dev_unset_iommu_device(PCIBus * bus,void * opaque,int devfn)4406 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
4407 {
4408     IntelIOMMUState *s = opaque;
4409     struct vtd_as_key key = {
4410         .bus = bus,
4411         .devfn = devfn,
4412     };
4413 
4414     vtd_iommu_lock(s);
4415 
4416     if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4417         vtd_iommu_unlock(s);
4418         return;
4419     }
4420 
4421     g_hash_table_remove(s->vtd_host_iommu_dev, &key);
4422 
4423     vtd_iommu_unlock(s);
4424 }
4425 
4426 /* Unmap the whole range in the notifier's scope. */
vtd_address_space_unmap(VTDAddressSpace * as,IOMMUNotifier * n)4427 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
4428 {
4429     hwaddr total, remain;
4430     hwaddr start = n->start;
4431     hwaddr end = n->end;
4432     IntelIOMMUState *s = as->iommu_state;
4433     DMAMap map;
4434 
4435     /*
4436      * Note: all the codes in this function has a assumption that IOVA
4437      * bits are no more than VTD_MGAW bits (which is restricted by
4438      * VT-d spec), otherwise we need to consider overflow of 64 bits.
4439      */
4440 
4441     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
4442         /*
4443          * Don't need to unmap regions that is bigger than the whole
4444          * VT-d supported address space size
4445          */
4446         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
4447     }
4448 
4449     assert(start <= end);
4450     total = remain = end - start + 1;
4451 
4452     while (remain >= VTD_PAGE_SIZE) {
4453         IOMMUTLBEvent event;
4454         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
4455         uint64_t size = mask + 1;
4456 
4457         assert(size);
4458 
4459         event.type = IOMMU_NOTIFIER_UNMAP;
4460         event.entry.iova = start;
4461         event.entry.addr_mask = mask;
4462         event.entry.target_as = &address_space_memory;
4463         event.entry.perm = IOMMU_NONE;
4464         /* This field is meaningless for unmap */
4465         event.entry.translated_addr = 0;
4466 
4467         memory_region_notify_iommu_one(n, &event);
4468 
4469         start += size;
4470         remain -= size;
4471     }
4472 
4473     assert(!remain);
4474 
4475     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
4476                              VTD_PCI_SLOT(as->devfn),
4477                              VTD_PCI_FUNC(as->devfn),
4478                              n->start, total);
4479 
4480     map.iova = n->start;
4481     map.size = total - 1; /* Inclusive */
4482     iova_tree_remove(as->iova_tree, map);
4483 }
4484 
vtd_address_space_unmap_all(IntelIOMMUState * s)4485 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
4486 {
4487     VTDAddressSpace *vtd_as;
4488     IOMMUNotifier *n;
4489 
4490     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
4491         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
4492             vtd_address_space_unmap(vtd_as, n);
4493         }
4494     }
4495 }
4496 
vtd_address_space_refresh_all(IntelIOMMUState * s)4497 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4498 {
4499     vtd_address_space_unmap_all(s);
4500     vtd_switch_address_space_all(s);
4501 }
4502 
vtd_replay_hook(const IOMMUTLBEvent * event,void * private)4503 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4504 {
4505     memory_region_notify_iommu_one(private, event);
4506     return 0;
4507 }
4508 
vtd_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)4509 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4510 {
4511     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4512     IntelIOMMUState *s = vtd_as->iommu_state;
4513     uint8_t bus_n = pci_bus_num(vtd_as->bus);
4514     VTDContextEntry ce;
4515     DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4516 
4517     /* replay is protected by BQL, page walk will re-setup it safely */
4518     iova_tree_remove(vtd_as->iova_tree, map);
4519 
4520     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4521         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4522                                   "legacy mode",
4523                                   bus_n, PCI_SLOT(vtd_as->devfn),
4524                                   PCI_FUNC(vtd_as->devfn),
4525                                   vtd_get_domain_id(s, &ce, vtd_as->pasid),
4526                                   ce.hi, ce.lo);
4527         if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4528             /* This is required only for MAP typed notifiers */
4529             vtd_page_walk_info info = {
4530                 .hook_fn = vtd_replay_hook,
4531                 .private = (void *)n,
4532                 .notify_unmap = false,
4533                 .aw = s->aw_bits,
4534                 .as = vtd_as,
4535                 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4536             };
4537 
4538             vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4539         }
4540     } else {
4541         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4542                                     PCI_FUNC(vtd_as->devfn));
4543     }
4544 }
4545 
vtd_cap_init(IntelIOMMUState * s)4546 static void vtd_cap_init(IntelIOMMUState *s)
4547 {
4548     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4549 
4550     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4551              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4552              VTD_CAP_MGAW(s->aw_bits);
4553     if (s->dma_drain) {
4554         s->cap |= VTD_CAP_DRAIN;
4555     }
4556     if (s->dma_translation) {
4557             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4558                     s->cap |= VTD_CAP_SAGAW_39bit;
4559             }
4560             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4561                     s->cap |= VTD_CAP_SAGAW_48bit;
4562             }
4563     }
4564     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4565 
4566     if (x86_iommu_ir_supported(x86_iommu)) {
4567         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4568         if (s->intr_eim == ON_OFF_AUTO_ON) {
4569             s->ecap |= VTD_ECAP_EIM;
4570         }
4571         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4572     }
4573 
4574     if (x86_iommu->dt_supported) {
4575         s->ecap |= VTD_ECAP_DT;
4576     }
4577 
4578     if (x86_iommu->pt_supported) {
4579         s->ecap |= VTD_ECAP_PT;
4580     }
4581 
4582     if (s->caching_mode) {
4583         s->cap |= VTD_CAP_CM;
4584     }
4585 
4586     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4587     if (s->flts) {
4588         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_FLTS;
4589         if (s->fs1gp) {
4590             s->cap |= VTD_CAP_FS1GP;
4591         }
4592     } else if (s->scalable_mode) {
4593         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4594     }
4595 
4596     if (s->snoop_control) {
4597         s->ecap |= VTD_ECAP_SC;
4598     }
4599 
4600     if (s->pasid) {
4601         s->ecap |= VTD_ECAP_PASID | VTD_ECAP_PSS;
4602     }
4603 }
4604 
4605 /*
4606  * Do the initialization. It will also be called when reset, so pay
4607  * attention when adding new initialization stuff.
4608  */
vtd_init(IntelIOMMUState * s)4609 static void vtd_init(IntelIOMMUState *s)
4610 {
4611     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4612 
4613     memset(s->csr, 0, DMAR_REG_SIZE);
4614     memset(s->wmask, 0, DMAR_REG_SIZE);
4615     memset(s->w1cmask, 0, DMAR_REG_SIZE);
4616     memset(s->womask, 0, DMAR_REG_SIZE);
4617 
4618     s->root = 0;
4619     s->root_scalable = false;
4620     s->dmar_enabled = false;
4621     s->intr_enabled = false;
4622     s->iq_head = 0;
4623     s->iq_tail = 0;
4624     s->iq = 0;
4625     s->iq_size = 0;
4626     s->qi_enabled = false;
4627     s->iq_last_desc_type = VTD_INV_DESC_NONE;
4628     s->iq_dw = false;
4629     s->next_frcd_reg = 0;
4630 
4631     vtd_cap_init(s);
4632 
4633     /*
4634      * Rsvd field masks for spte
4635      */
4636     vtd_spte_rsvd[0] = ~0ULL;
4637     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4638                                         x86_iommu->dt_supported && s->stale_tm);
4639     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4640     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4641     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4642 
4643     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4644                                         x86_iommu->dt_supported && s->stale_tm);
4645     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4646                                         x86_iommu->dt_supported && s->stale_tm);
4647 
4648     /*
4649      * Rsvd field masks for fpte
4650      */
4651     vtd_fpte_rsvd[0] = ~0ULL;
4652     vtd_fpte_rsvd[1] = VTD_FPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
4653     vtd_fpte_rsvd[2] = VTD_FPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4654     vtd_fpte_rsvd[3] = VTD_FPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4655     vtd_fpte_rsvd[4] = VTD_FPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4656 
4657     vtd_fpte_rsvd_large[2] = VTD_FPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
4658     vtd_fpte_rsvd_large[3] = VTD_FPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
4659 
4660     if (s->scalable_mode || s->snoop_control) {
4661         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4662         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4663         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4664     }
4665 
4666     vtd_reset_caches(s);
4667 
4668     /* Define registers with default values and bit semantics */
4669     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4670     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4671     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4672     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4673     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4674     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4675     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4676     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4677     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4678 
4679     /* Advanced Fault Logging not supported */
4680     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4681     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4682     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4683     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4684 
4685     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4686      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4687      */
4688     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4689 
4690     /* Treated as RO for implementations that PLMR and PHMR fields reported
4691      * as Clear in the CAP_REG.
4692      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4693      */
4694     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4695 
4696     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4697     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4698     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4699     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4700     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4701     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4702     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4703     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4704     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4705 
4706     /* IOTLB registers */
4707     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4708     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4709     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4710 
4711     /* Fault Recording Registers, 128-bit */
4712     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4713     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4714 
4715     /*
4716      * Interrupt remapping registers.
4717      */
4718     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4719 }
4720 
4721 /* Should not reset address_spaces when reset because devices will still use
4722  * the address space they got at first (won't ask the bus again).
4723  */
vtd_reset_exit(Object * obj,ResetType type)4724 static void vtd_reset_exit(Object *obj, ResetType type)
4725 {
4726     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(obj);
4727 
4728     trace_vtd_reset_exit();
4729     vtd_init(s);
4730     vtd_address_space_refresh_all(s);
4731 }
4732 
vtd_host_dma_iommu(PCIBus * bus,void * opaque,int devfn)4733 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4734 {
4735     IntelIOMMUState *s = opaque;
4736     VTDAddressSpace *vtd_as;
4737 
4738     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4739 
4740     vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4741     return &vtd_as->as;
4742 }
4743 
vtd_iommu_ats_do_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flags)4744 static IOMMUTLBEntry vtd_iommu_ats_do_translate(IOMMUMemoryRegion *iommu,
4745                                                 hwaddr addr,
4746                                                 IOMMUAccessFlags flags)
4747 {
4748     IOMMUTLBEntry entry;
4749     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
4750 
4751     if (vtd_is_interrupt_addr(addr)) {
4752         vtd_report_ir_illegal_access(vtd_as, addr, flags & IOMMU_WO);
4753         entry.target_as = &address_space_memory;
4754         entry.iova = 0;
4755         entry.translated_addr = 0;
4756         entry.addr_mask = ~VTD_PAGE_MASK_4K;
4757         entry.perm = IOMMU_NONE;
4758         entry.pasid = PCI_NO_PASID;
4759     } else {
4760         entry = vtd_iommu_translate(iommu, addr, flags, 0);
4761     }
4762 
4763     return entry;
4764 }
4765 
vtd_ats_request_translation(PCIBus * bus,void * opaque,int devfn,uint32_t pasid,bool priv_req,bool exec_req,hwaddr addr,size_t length,bool no_write,IOMMUTLBEntry * result,size_t result_length,uint32_t * err_count)4766 static ssize_t vtd_ats_request_translation(PCIBus *bus, void *opaque,
4767                                            int devfn, uint32_t pasid,
4768                                            bool priv_req, bool exec_req,
4769                                            hwaddr addr, size_t length,
4770                                            bool no_write, IOMMUTLBEntry *result,
4771                                            size_t result_length,
4772                                            uint32_t *err_count)
4773 {
4774     IntelIOMMUState *s = opaque;
4775     VTDAddressSpace *vtd_as;
4776     IOMMUAccessFlags flags = IOMMU_ACCESS_FLAG_FULL(true, !no_write, exec_req,
4777                                                     priv_req, false, false);
4778     ssize_t res_index = 0;
4779     hwaddr target_address = addr + length;
4780     IOMMUTLBEntry entry;
4781 
4782     vtd_as = vtd_find_add_as(s, bus, devfn, pasid);
4783     *err_count = 0;
4784 
4785     while ((addr < target_address) && (res_index < result_length)) {
4786         entry = vtd_iommu_ats_do_translate(&vtd_as->iommu, addr, flags);
4787         entry.perm &= ~IOMMU_GLOBAL; /* Spec 4.1.2: Global Mapping never set */
4788 
4789         if ((entry.perm & flags) != flags) {
4790             *err_count += 1; /* Less than expected */
4791         }
4792 
4793         result[res_index] = entry;
4794         res_index += 1;
4795         addr = (addr & (~entry.addr_mask)) + (entry.addr_mask + 1);
4796     }
4797 
4798     /* Buffer too small */
4799     if (addr < target_address) {
4800         return -ENOMEM;
4801     }
4802 
4803     return res_index;
4804 }
4805 
vtd_init_iotlb_notifier(PCIBus * bus,void * opaque,int devfn,IOMMUNotifier * n,IOMMUNotify fn,void * user_opaque)4806 static void vtd_init_iotlb_notifier(PCIBus *bus, void *opaque, int devfn,
4807                                     IOMMUNotifier *n, IOMMUNotify fn,
4808                                     void *user_opaque)
4809 {
4810     n->opaque = user_opaque;
4811     iommu_notifier_init(n, fn, IOMMU_NOTIFIER_DEVIOTLB_EVENTS, 0,
4812                         HWADDR_MAX, 0);
4813 }
4814 
vtd_get_iotlb_info(void * opaque,uint8_t * addr_width,uint32_t * min_page_size)4815 static void vtd_get_iotlb_info(void *opaque, uint8_t *addr_width,
4816                                uint32_t *min_page_size)
4817 {
4818     IntelIOMMUState *s = opaque;
4819 
4820     *addr_width = s->aw_bits;
4821     *min_page_size = VTD_PAGE_SIZE;
4822 }
4823 
vtd_register_iotlb_notifier(PCIBus * bus,void * opaque,int devfn,uint32_t pasid,IOMMUNotifier * n)4824 static void vtd_register_iotlb_notifier(PCIBus *bus, void *opaque,
4825                                         int devfn, uint32_t pasid,
4826                                         IOMMUNotifier *n)
4827 {
4828     IntelIOMMUState *s = opaque;
4829     VTDAddressSpace *vtd_as;
4830 
4831     vtd_as = vtd_find_add_as(s, bus, devfn, pasid);
4832     memory_region_register_iommu_notifier(MEMORY_REGION(&vtd_as->iommu), n,
4833                                           &error_fatal);
4834 }
4835 
vtd_unregister_iotlb_notifier(PCIBus * bus,void * opaque,int devfn,uint32_t pasid,IOMMUNotifier * n)4836 static void vtd_unregister_iotlb_notifier(PCIBus *bus, void *opaque,
4837                                           int devfn, uint32_t pasid,
4838                                           IOMMUNotifier *n)
4839 {
4840     IntelIOMMUState *s = opaque;
4841     VTDAddressSpace *vtd_as;
4842 
4843     vtd_as = vtd_find_add_as(s, bus, devfn, pasid);
4844     memory_region_unregister_iommu_notifier(MEMORY_REGION(&vtd_as->iommu), n);
4845 }
4846 
4847 static PCIIOMMUOps vtd_iommu_ops = {
4848     .get_address_space = vtd_host_dma_iommu,
4849     .set_iommu_device = vtd_dev_set_iommu_device,
4850     .unset_iommu_device = vtd_dev_unset_iommu_device,
4851     .get_iotlb_info = vtd_get_iotlb_info,
4852     .init_iotlb_notifier = vtd_init_iotlb_notifier,
4853     .register_iotlb_notifier = vtd_register_iotlb_notifier,
4854     .unregister_iotlb_notifier = vtd_unregister_iotlb_notifier,
4855     .ats_request_translation = vtd_ats_request_translation,
4856 };
4857 
vtd_decide_config(IntelIOMMUState * s,Error ** errp)4858 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4859 {
4860     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4861 
4862     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4863         error_setg(errp, "eim=on cannot be selected without intremap=on");
4864         return false;
4865     }
4866 
4867     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4868         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4869                       && x86_iommu_ir_supported(x86_iommu) ?
4870                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4871     }
4872     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4873         if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4874             error_setg(errp, "eim=on requires support on the KVM side"
4875                              "(X2APIC_API, first shipped in v4.7)");
4876             return false;
4877         }
4878     }
4879 
4880     if (!s->scalable_mode && s->flts) {
4881         error_setg(errp, "x-flts is only available in scalable mode");
4882         return false;
4883     }
4884 
4885     if (!s->flts && s->aw_bits != VTD_HOST_AW_39BIT &&
4886         s->aw_bits != VTD_HOST_AW_48BIT) {
4887         error_setg(errp, "%s: supported values for aw-bits are: %d, %d",
4888                    s->scalable_mode ? "Scalable mode(flts=off)" : "Legacy mode",
4889                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4890         return false;
4891     }
4892 
4893     if (s->flts && s->aw_bits != VTD_HOST_AW_48BIT) {
4894         error_setg(errp,
4895                    "Scalable mode(flts=on): supported value for aw-bits is: %d",
4896                    VTD_HOST_AW_48BIT);
4897         return false;
4898     }
4899 
4900     if (s->scalable_mode && !s->dma_drain) {
4901         error_setg(errp, "Need to set dma_drain for scalable mode");
4902         return false;
4903     }
4904 
4905     if (s->pasid && !s->scalable_mode) {
4906         error_setg(errp, "Need to set scalable mode for PASID");
4907         return false;
4908     }
4909 
4910     return true;
4911 }
4912 
vtd_machine_done_notify_one(Object * child,void * unused)4913 static int vtd_machine_done_notify_one(Object *child, void *unused)
4914 {
4915     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4916 
4917     /*
4918      * We hard-coded here because vfio-pci is the only special case
4919      * here.  Let's be more elegant in the future when we can, but so
4920      * far there seems to be no better way.
4921      */
4922     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4923         vtd_panic_require_caching_mode();
4924     }
4925 
4926     return 0;
4927 }
4928 
vtd_machine_done_hook(Notifier * notifier,void * unused)4929 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4930 {
4931     object_child_foreach_recursive(object_get_root(),
4932                                    vtd_machine_done_notify_one, NULL);
4933 }
4934 
4935 static Notifier vtd_machine_done_notify = {
4936     .notify = vtd_machine_done_hook,
4937 };
4938 
vtd_realize(DeviceState * dev,Error ** errp)4939 static void vtd_realize(DeviceState *dev, Error **errp)
4940 {
4941     MachineState *ms = MACHINE(qdev_get_machine());
4942     PCMachineState *pcms = PC_MACHINE(ms);
4943     X86MachineState *x86ms = X86_MACHINE(ms);
4944     PCIBus *bus = pcms->pcibus;
4945     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4946     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4947 
4948     if (s->pasid && x86_iommu->dt_supported) {
4949         /*
4950          * PASID-based-Device-TLB Invalidate Descriptor is not
4951          * implemented and it requires support from vhost layer which
4952          * needs to be implemented in the future.
4953          */
4954         error_setg(errp, "PASID based device IOTLB is not supported");
4955         return;
4956     }
4957 
4958     if (!vtd_decide_config(s, errp)) {
4959         return;
4960     }
4961 
4962     QLIST_INIT(&s->vtd_as_with_notifiers);
4963     qemu_mutex_init(&s->iommu_lock);
4964     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4965                           "intel_iommu", DMAR_REG_SIZE);
4966     memory_region_add_subregion(get_system_memory(),
4967                                 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4968 
4969     /* Create the shared memory regions by all devices */
4970     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4971                        UINT64_MAX);
4972     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4973                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4974     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4975                              "vtd-sys-alias", get_system_memory(), 0,
4976                              memory_region_size(get_system_memory()));
4977     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4978                                         &s->mr_sys_alias, 0);
4979     memory_region_add_subregion_overlap(&s->mr_nodmar,
4980                                         VTD_INTERRUPT_ADDR_FIRST,
4981                                         &s->mr_ir, 1);
4982     /* No corresponding destroy */
4983     s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4984                                      g_free, g_free);
4985     s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4986                                       g_free, g_free);
4987     s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4988                                                   g_free, vtd_hiod_destroy);
4989     vtd_init(s);
4990     pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4991     /* Pseudo address space under root PCI bus. */
4992     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4993     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4994 }
4995 
vtd_class_init(ObjectClass * klass,const void * data)4996 static void vtd_class_init(ObjectClass *klass, const void *data)
4997 {
4998     DeviceClass *dc = DEVICE_CLASS(klass);
4999     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
5000     ResettableClass *rc = RESETTABLE_CLASS(klass);
5001 
5002     /*
5003      * Use 'exit' reset phase to make sure all DMA requests
5004      * have been quiesced during 'enter' or 'hold' phase
5005      */
5006     rc->phases.exit = vtd_reset_exit;
5007     dc->vmsd = &vtd_vmstate;
5008     device_class_set_props(dc, vtd_properties);
5009     dc->hotpluggable = false;
5010     x86_class->realize = vtd_realize;
5011     x86_class->int_remap = vtd_int_remap;
5012     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
5013     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
5014 }
5015 
5016 static const TypeInfo vtd_info = {
5017     .name          = TYPE_INTEL_IOMMU_DEVICE,
5018     .parent        = TYPE_X86_IOMMU_DEVICE,
5019     .instance_size = sizeof(IntelIOMMUState),
5020     .class_init    = vtd_class_init,
5021 };
5022 
vtd_iommu_memory_region_class_init(ObjectClass * klass,const void * data)5023 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
5024                                                const void *data)
5025 {
5026     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
5027 
5028     imrc->translate = vtd_iommu_translate;
5029     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
5030     imrc->replay = vtd_iommu_replay;
5031 }
5032 
5033 static const TypeInfo vtd_iommu_memory_region_info = {
5034     .parent = TYPE_IOMMU_MEMORY_REGION,
5035     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
5036     .class_init = vtd_iommu_memory_region_class_init,
5037 };
5038 
vtd_register_types(void)5039 static void vtd_register_types(void)
5040 {
5041     type_register_static(&vtd_info);
5042     type_register_static(&vtd_iommu_memory_region_info);
5043 }
5044 
5045 type_init(vtd_register_types)
5046