1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2021, Microsoft Corporation.
4 *
5 * Authors:
6 * Beau Belgrave <beaub@linux.microsoft.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/cdev.h>
11 #include <linux/hashtable.h>
12 #include <linux/list.h>
13 #include <linux/io.h>
14 #include <linux/uio.h>
15 #include <linux/ioctl.h>
16 #include <linux/jhash.h>
17 #include <linux/refcount.h>
18 #include <linux/trace_events.h>
19 #include <linux/tracefs.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/user_events.h>
25 #include "trace_dynevent.h"
26 #include "trace_output.h"
27 #include "trace.h"
28
29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30
31 #define FIELD_DEPTH_TYPE 0
32 #define FIELD_DEPTH_NAME 1
33 #define FIELD_DEPTH_SIZE 2
34
35 /* Limit how long of an event name plus args within the subsystem. */
36 #define MAX_EVENT_DESC 512
37 #define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
38 #define MAX_FIELD_ARRAY_SIZE 1024
39
40 /*
41 * Internal bits (kernel side only) to keep track of connected probes:
42 * These are used when status is requested in text form about an event. These
43 * bits are compared against an internal byte on the event to determine which
44 * probes to print out to the user.
45 *
46 * These do not reflect the mapped bytes between the user and kernel space.
47 */
48 #define EVENT_STATUS_FTRACE BIT(0)
49 #define EVENT_STATUS_PERF BIT(1)
50 #define EVENT_STATUS_OTHER BIT(7)
51
52 /*
53 * Stores the system name, tables, and locks for a group of events. This
54 * allows isolation for events by various means.
55 */
56 struct user_event_group {
57 char *system_name;
58 struct hlist_node node;
59 struct mutex reg_mutex;
60 DECLARE_HASHTABLE(register_table, 8);
61 };
62
63 /* Group for init_user_ns mapping, top-most group */
64 static struct user_event_group *init_group;
65
66 /* Max allowed events for the whole system */
67 static unsigned int max_user_events = 32768;
68
69 /* Current number of events on the whole system */
70 static unsigned int current_user_events;
71
72 /*
73 * Stores per-event properties, as users register events
74 * within a file a user_event might be created if it does not
75 * already exist. These are globally used and their lifetime
76 * is tied to the refcnt member. These cannot go away until the
77 * refcnt reaches one.
78 */
79 struct user_event {
80 struct user_event_group *group;
81 struct tracepoint tracepoint;
82 struct trace_event_call call;
83 struct trace_event_class class;
84 struct dyn_event devent;
85 struct hlist_node node;
86 struct list_head fields;
87 struct list_head validators;
88 struct work_struct put_work;
89 refcount_t refcnt;
90 int min_size;
91 int reg_flags;
92 char status;
93 };
94
95 /*
96 * Stores per-mm/event properties that enable an address to be
97 * updated properly for each task. As tasks are forked, we use
98 * these to track enablement sites that are tied to an event.
99 */
100 struct user_event_enabler {
101 struct list_head mm_enablers_link;
102 struct user_event *event;
103 unsigned long addr;
104
105 /* Track enable bit, flags, etc. Aligned for bitops. */
106 unsigned long values;
107 };
108
109 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
110 #define ENABLE_VAL_BIT_MASK 0x3F
111
112 /* Bit 6 is for faulting status of enablement */
113 #define ENABLE_VAL_FAULTING_BIT 6
114
115 /* Bit 7 is for freeing status of enablement */
116 #define ENABLE_VAL_FREEING_BIT 7
117
118 /* Bit 8 is for marking 32-bit on 64-bit */
119 #define ENABLE_VAL_32_ON_64_BIT 8
120
121 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
122
123 /* Only duplicate the bit and compat values */
124 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
125
126 #define ENABLE_BITOPS(e) (&(e)->values)
127
128 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
129
130 /* Used for asynchronous faulting in of pages */
131 struct user_event_enabler_fault {
132 struct work_struct work;
133 struct user_event_mm *mm;
134 struct user_event_enabler *enabler;
135 int attempt;
136 };
137
138 static struct kmem_cache *fault_cache;
139
140 /* Global list of memory descriptors using user_events */
141 static LIST_HEAD(user_event_mms);
142 static DEFINE_SPINLOCK(user_event_mms_lock);
143
144 /*
145 * Stores per-file events references, as users register events
146 * within a file this structure is modified and freed via RCU.
147 * The lifetime of this struct is tied to the lifetime of the file.
148 * These are not shared and only accessible by the file that created it.
149 */
150 struct user_event_refs {
151 struct rcu_head rcu;
152 int count;
153 struct user_event *events[];
154 };
155
156 struct user_event_file_info {
157 struct user_event_group *group;
158 struct user_event_refs *refs;
159 };
160
161 #define VALIDATOR_ENSURE_NULL (1 << 0)
162 #define VALIDATOR_REL (1 << 1)
163
164 struct user_event_validator {
165 struct list_head user_event_link;
166 int offset;
167 int flags;
168 };
169
align_addr_bit(unsigned long * addr,int * bit,unsigned long * flags)170 static inline void align_addr_bit(unsigned long *addr, int *bit,
171 unsigned long *flags)
172 {
173 if (IS_ALIGNED(*addr, sizeof(long))) {
174 #ifdef __BIG_ENDIAN
175 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
176 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
177 *bit += 32;
178 #endif
179 return;
180 }
181
182 *addr = ALIGN_DOWN(*addr, sizeof(long));
183
184 /*
185 * We only support 32 and 64 bit values. The only time we need
186 * to align is a 32 bit value on a 64 bit kernel, which on LE
187 * is always 32 bits, and on BE requires no change when unaligned.
188 */
189 #ifdef __LITTLE_ENDIAN
190 *bit += 32;
191 #endif
192 }
193
194 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
195 void *tpdata, bool *faulted);
196
197 static int user_event_parse(struct user_event_group *group, char *name,
198 char *args, char *flags,
199 struct user_event **newuser, int reg_flags);
200
201 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
202 static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
203 static void user_event_mm_put(struct user_event_mm *mm);
204 static int destroy_user_event(struct user_event *user);
205 static bool user_fields_match(struct user_event *user, int argc,
206 const char **argv);
207
user_event_key(char * name)208 static u32 user_event_key(char *name)
209 {
210 return jhash(name, strlen(name), 0);
211 }
212
user_event_capable(u16 reg_flags)213 static bool user_event_capable(u16 reg_flags)
214 {
215 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
216 if (reg_flags & USER_EVENT_REG_PERSIST) {
217 if (!perfmon_capable())
218 return false;
219 }
220
221 return true;
222 }
223
user_event_get(struct user_event * user)224 static struct user_event *user_event_get(struct user_event *user)
225 {
226 refcount_inc(&user->refcnt);
227
228 return user;
229 }
230
delayed_destroy_user_event(struct work_struct * work)231 static void delayed_destroy_user_event(struct work_struct *work)
232 {
233 struct user_event *user = container_of(
234 work, struct user_event, put_work);
235
236 mutex_lock(&event_mutex);
237
238 if (!refcount_dec_and_test(&user->refcnt))
239 goto out;
240
241 if (destroy_user_event(user)) {
242 /*
243 * The only reason this would fail here is if we cannot
244 * update the visibility of the event. In this case the
245 * event stays in the hashtable, waiting for someone to
246 * attempt to delete it later.
247 */
248 pr_warn("user_events: Unable to delete event\n");
249 refcount_set(&user->refcnt, 1);
250 }
251 out:
252 mutex_unlock(&event_mutex);
253 }
254
user_event_put(struct user_event * user,bool locked)255 static void user_event_put(struct user_event *user, bool locked)
256 {
257 bool delete;
258
259 if (unlikely(!user))
260 return;
261
262 /*
263 * When the event is not enabled for auto-delete there will always
264 * be at least 1 reference to the event. During the event creation
265 * we initially set the refcnt to 2 to achieve this. In those cases
266 * the caller must acquire event_mutex and after decrement check if
267 * the refcnt is 1, meaning this is the last reference. When auto
268 * delete is enabled, there will only be 1 ref, IE: refcnt will be
269 * only set to 1 during creation to allow the below checks to go
270 * through upon the last put. The last put must always be done with
271 * the event mutex held.
272 */
273 if (!locked) {
274 lockdep_assert_not_held(&event_mutex);
275 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
276 } else {
277 lockdep_assert_held(&event_mutex);
278 delete = refcount_dec_and_test(&user->refcnt);
279 }
280
281 if (!delete)
282 return;
283
284 /*
285 * We now have the event_mutex in all cases, which ensures that
286 * no new references will be taken until event_mutex is released.
287 * New references come through find_user_event(), which requires
288 * the event_mutex to be held.
289 */
290
291 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
292 /* We should not get here when persist flag is set */
293 pr_alert("BUG: Auto-delete engaged on persistent event\n");
294 goto out;
295 }
296
297 /*
298 * Unfortunately we have to attempt the actual destroy in a work
299 * queue. This is because not all cases handle a trace_event_call
300 * being removed within the class->reg() operation for unregister.
301 */
302 INIT_WORK(&user->put_work, delayed_destroy_user_event);
303
304 /*
305 * Since the event is still in the hashtable, we have to re-inc
306 * the ref count to 1. This count will be decremented and checked
307 * in the work queue to ensure it's still the last ref. This is
308 * needed because a user-process could register the same event in
309 * between the time of event_mutex release and the work queue
310 * running the delayed destroy. If we removed the item now from
311 * the hashtable, this would result in a timing window where a
312 * user process would fail a register because the trace_event_call
313 * register would fail in the tracing layers.
314 */
315 refcount_set(&user->refcnt, 1);
316
317 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
318 /*
319 * If we fail we must wait for an admin to attempt delete or
320 * another register/close of the event, whichever is first.
321 */
322 pr_warn("user_events: Unable to queue delayed destroy\n");
323 }
324 out:
325 /* Ensure if we didn't have event_mutex before we unlock it */
326 if (!locked)
327 mutex_unlock(&event_mutex);
328 }
329
user_event_group_destroy(struct user_event_group * group)330 static void user_event_group_destroy(struct user_event_group *group)
331 {
332 kfree(group->system_name);
333 kfree(group);
334 }
335
user_event_group_system_name(void)336 static char *user_event_group_system_name(void)
337 {
338 char *system_name;
339 int len = sizeof(USER_EVENTS_SYSTEM) + 1;
340
341 system_name = kmalloc(len, GFP_KERNEL);
342
343 if (!system_name)
344 return NULL;
345
346 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
347
348 return system_name;
349 }
350
current_user_event_group(void)351 static struct user_event_group *current_user_event_group(void)
352 {
353 return init_group;
354 }
355
user_event_group_create(void)356 static struct user_event_group *user_event_group_create(void)
357 {
358 struct user_event_group *group;
359
360 group = kzalloc(sizeof(*group), GFP_KERNEL);
361
362 if (!group)
363 return NULL;
364
365 group->system_name = user_event_group_system_name();
366
367 if (!group->system_name)
368 goto error;
369
370 mutex_init(&group->reg_mutex);
371 hash_init(group->register_table);
372
373 return group;
374 error:
375 if (group)
376 user_event_group_destroy(group);
377
378 return NULL;
379 };
380
user_event_enabler_destroy(struct user_event_enabler * enabler,bool locked)381 static void user_event_enabler_destroy(struct user_event_enabler *enabler,
382 bool locked)
383 {
384 list_del_rcu(&enabler->mm_enablers_link);
385
386 /* No longer tracking the event via the enabler */
387 user_event_put(enabler->event, locked);
388
389 kfree(enabler);
390 }
391
user_event_mm_fault_in(struct user_event_mm * mm,unsigned long uaddr,int attempt)392 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
393 int attempt)
394 {
395 bool unlocked;
396 int ret;
397
398 /*
399 * Normally this is low, ensure that it cannot be taken advantage of by
400 * bad user processes to cause excessive looping.
401 */
402 if (attempt > 10)
403 return -EFAULT;
404
405 mmap_read_lock(mm->mm);
406
407 /* Ensure MM has tasks, cannot use after exit_mm() */
408 if (refcount_read(&mm->tasks) == 0) {
409 ret = -ENOENT;
410 goto out;
411 }
412
413 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
414 &unlocked);
415 out:
416 mmap_read_unlock(mm->mm);
417
418 return ret;
419 }
420
421 static int user_event_enabler_write(struct user_event_mm *mm,
422 struct user_event_enabler *enabler,
423 bool fixup_fault, int *attempt);
424
user_event_enabler_fault_fixup(struct work_struct * work)425 static void user_event_enabler_fault_fixup(struct work_struct *work)
426 {
427 struct user_event_enabler_fault *fault = container_of(
428 work, struct user_event_enabler_fault, work);
429 struct user_event_enabler *enabler = fault->enabler;
430 struct user_event_mm *mm = fault->mm;
431 unsigned long uaddr = enabler->addr;
432 int attempt = fault->attempt;
433 int ret;
434
435 ret = user_event_mm_fault_in(mm, uaddr, attempt);
436
437 if (ret && ret != -ENOENT) {
438 struct user_event *user = enabler->event;
439
440 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
441 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
442 }
443
444 /* Prevent state changes from racing */
445 mutex_lock(&event_mutex);
446
447 /* User asked for enabler to be removed during fault */
448 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
449 user_event_enabler_destroy(enabler, true);
450 goto out;
451 }
452
453 /*
454 * If we managed to get the page, re-issue the write. We do not
455 * want to get into a possible infinite loop, which is why we only
456 * attempt again directly if the page came in. If we couldn't get
457 * the page here, then we will try again the next time the event is
458 * enabled/disabled.
459 */
460 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
461
462 if (!ret) {
463 mmap_read_lock(mm->mm);
464 user_event_enabler_write(mm, enabler, true, &attempt);
465 mmap_read_unlock(mm->mm);
466 }
467 out:
468 mutex_unlock(&event_mutex);
469
470 /* In all cases we no longer need the mm or fault */
471 user_event_mm_put(mm);
472 kmem_cache_free(fault_cache, fault);
473 }
474
user_event_enabler_queue_fault(struct user_event_mm * mm,struct user_event_enabler * enabler,int attempt)475 static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
476 struct user_event_enabler *enabler,
477 int attempt)
478 {
479 struct user_event_enabler_fault *fault;
480
481 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
482
483 if (!fault)
484 return false;
485
486 INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
487 fault->mm = user_event_mm_get(mm);
488 fault->enabler = enabler;
489 fault->attempt = attempt;
490
491 /* Don't try to queue in again while we have a pending fault */
492 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
493
494 if (!schedule_work(&fault->work)) {
495 /* Allow another attempt later */
496 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
497
498 user_event_mm_put(mm);
499 kmem_cache_free(fault_cache, fault);
500
501 return false;
502 }
503
504 return true;
505 }
506
user_event_enabler_write(struct user_event_mm * mm,struct user_event_enabler * enabler,bool fixup_fault,int * attempt)507 static int user_event_enabler_write(struct user_event_mm *mm,
508 struct user_event_enabler *enabler,
509 bool fixup_fault, int *attempt)
510 {
511 unsigned long uaddr = enabler->addr;
512 unsigned long *ptr;
513 struct page *page;
514 void *kaddr;
515 int bit = ENABLE_BIT(enabler);
516 int ret;
517
518 lockdep_assert_held(&event_mutex);
519 mmap_assert_locked(mm->mm);
520
521 *attempt += 1;
522
523 /* Ensure MM has tasks, cannot use after exit_mm() */
524 if (refcount_read(&mm->tasks) == 0)
525 return -ENOENT;
526
527 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
528 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
529 return -EBUSY;
530
531 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
532
533 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
534 &page, NULL);
535
536 if (unlikely(ret <= 0)) {
537 if (!fixup_fault)
538 return -EFAULT;
539
540 if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
541 pr_warn("user_events: Unable to queue fault handler\n");
542
543 return -EFAULT;
544 }
545
546 kaddr = kmap_local_page(page);
547 ptr = kaddr + (uaddr & ~PAGE_MASK);
548
549 /* Update bit atomically, user tracers must be atomic as well */
550 if (enabler->event && enabler->event->status)
551 set_bit(bit, ptr);
552 else
553 clear_bit(bit, ptr);
554
555 kunmap_local(kaddr);
556 unpin_user_pages_dirty_lock(&page, 1, true);
557
558 return 0;
559 }
560
user_event_enabler_exists(struct user_event_mm * mm,unsigned long uaddr,unsigned char bit)561 static bool user_event_enabler_exists(struct user_event_mm *mm,
562 unsigned long uaddr, unsigned char bit)
563 {
564 struct user_event_enabler *enabler;
565
566 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
567 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
568 return true;
569 }
570
571 return false;
572 }
573
user_event_enabler_update(struct user_event * user)574 static void user_event_enabler_update(struct user_event *user)
575 {
576 struct user_event_enabler *enabler;
577 struct user_event_mm *next;
578 struct user_event_mm *mm;
579 int attempt;
580
581 lockdep_assert_held(&event_mutex);
582
583 /*
584 * We need to build a one-shot list of all the mms that have an
585 * enabler for the user_event passed in. This list is only valid
586 * while holding the event_mutex. The only reason for this is due
587 * to the global mm list being RCU protected and we use methods
588 * which can wait (mmap_read_lock and pin_user_pages_remote).
589 *
590 * NOTE: user_event_mm_get_all() increments the ref count of each
591 * mm that is added to the list to prevent removal timing windows.
592 * We must always put each mm after they are used, which may wait.
593 */
594 mm = user_event_mm_get_all(user);
595
596 while (mm) {
597 next = mm->next;
598 mmap_read_lock(mm->mm);
599
600 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
601 if (enabler->event == user) {
602 attempt = 0;
603 user_event_enabler_write(mm, enabler, true, &attempt);
604 }
605 }
606
607 mmap_read_unlock(mm->mm);
608 user_event_mm_put(mm);
609 mm = next;
610 }
611 }
612
user_event_enabler_dup(struct user_event_enabler * orig,struct user_event_mm * mm)613 static bool user_event_enabler_dup(struct user_event_enabler *orig,
614 struct user_event_mm *mm)
615 {
616 struct user_event_enabler *enabler;
617
618 /* Skip pending frees */
619 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
620 return true;
621
622 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
623
624 if (!enabler)
625 return false;
626
627 enabler->event = user_event_get(orig->event);
628 enabler->addr = orig->addr;
629
630 /* Only dup part of value (ignore future flags, etc) */
631 enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
632
633 /* Enablers not exposed yet, RCU not required */
634 list_add(&enabler->mm_enablers_link, &mm->enablers);
635
636 return true;
637 }
638
user_event_mm_get(struct user_event_mm * mm)639 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
640 {
641 refcount_inc(&mm->refcnt);
642
643 return mm;
644 }
645
user_event_mm_get_all(struct user_event * user)646 static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
647 {
648 struct user_event_mm *found = NULL;
649 struct user_event_enabler *enabler;
650 struct user_event_mm *mm;
651
652 /*
653 * We use the mm->next field to build a one-shot list from the global
654 * RCU protected list. To build this list the event_mutex must be held.
655 * This lets us build a list without requiring allocs that could fail
656 * when user based events are most wanted for diagnostics.
657 */
658 lockdep_assert_held(&event_mutex);
659
660 /*
661 * We do not want to block fork/exec while enablements are being
662 * updated, so we use RCU to walk the current tasks that have used
663 * user_events ABI for 1 or more events. Each enabler found in each
664 * task that matches the event being updated has a write to reflect
665 * the kernel state back into the process. Waits/faults must not occur
666 * during this. So we scan the list under RCU for all the mm that have
667 * the event within it. This is needed because mm_read_lock() can wait.
668 * Each user mm returned has a ref inc to handle remove RCU races.
669 */
670 rcu_read_lock();
671
672 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
673 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
674 if (enabler->event == user) {
675 mm->next = found;
676 found = user_event_mm_get(mm);
677 break;
678 }
679 }
680 }
681
682 rcu_read_unlock();
683
684 return found;
685 }
686
user_event_mm_alloc(struct task_struct * t)687 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
688 {
689 struct user_event_mm *user_mm;
690
691 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
692
693 if (!user_mm)
694 return NULL;
695
696 user_mm->mm = t->mm;
697 INIT_LIST_HEAD(&user_mm->enablers);
698 refcount_set(&user_mm->refcnt, 1);
699 refcount_set(&user_mm->tasks, 1);
700
701 /*
702 * The lifetime of the memory descriptor can slightly outlast
703 * the task lifetime if a ref to the user_event_mm is taken
704 * between list_del_rcu() and call_rcu(). Therefore we need
705 * to take a reference to it to ensure it can live this long
706 * under this corner case. This can also occur in clones that
707 * outlast the parent.
708 */
709 mmgrab(user_mm->mm);
710
711 return user_mm;
712 }
713
user_event_mm_attach(struct user_event_mm * user_mm,struct task_struct * t)714 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
715 {
716 unsigned long flags;
717
718 spin_lock_irqsave(&user_event_mms_lock, flags);
719 list_add_rcu(&user_mm->mms_link, &user_event_mms);
720 spin_unlock_irqrestore(&user_event_mms_lock, flags);
721
722 t->user_event_mm = user_mm;
723 }
724
current_user_event_mm(void)725 static struct user_event_mm *current_user_event_mm(void)
726 {
727 struct user_event_mm *user_mm = current->user_event_mm;
728
729 if (user_mm)
730 goto inc;
731
732 user_mm = user_event_mm_alloc(current);
733
734 if (!user_mm)
735 goto error;
736
737 user_event_mm_attach(user_mm, current);
738 inc:
739 refcount_inc(&user_mm->refcnt);
740 error:
741 return user_mm;
742 }
743
user_event_mm_destroy(struct user_event_mm * mm)744 static void user_event_mm_destroy(struct user_event_mm *mm)
745 {
746 struct user_event_enabler *enabler, *next;
747
748 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
749 user_event_enabler_destroy(enabler, false);
750
751 mmdrop(mm->mm);
752 kfree(mm);
753 }
754
user_event_mm_put(struct user_event_mm * mm)755 static void user_event_mm_put(struct user_event_mm *mm)
756 {
757 if (mm && refcount_dec_and_test(&mm->refcnt))
758 user_event_mm_destroy(mm);
759 }
760
delayed_user_event_mm_put(struct work_struct * work)761 static void delayed_user_event_mm_put(struct work_struct *work)
762 {
763 struct user_event_mm *mm;
764
765 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
766 user_event_mm_put(mm);
767 }
768
user_event_mm_remove(struct task_struct * t)769 void user_event_mm_remove(struct task_struct *t)
770 {
771 struct user_event_mm *mm;
772 unsigned long flags;
773
774 might_sleep();
775
776 mm = t->user_event_mm;
777 t->user_event_mm = NULL;
778
779 /* Clone will increment the tasks, only remove if last clone */
780 if (!refcount_dec_and_test(&mm->tasks))
781 return;
782
783 /* Remove the mm from the list, so it can no longer be enabled */
784 spin_lock_irqsave(&user_event_mms_lock, flags);
785 list_del_rcu(&mm->mms_link);
786 spin_unlock_irqrestore(&user_event_mms_lock, flags);
787
788 /*
789 * We need to wait for currently occurring writes to stop within
790 * the mm. This is required since exit_mm() snaps the current rss
791 * stats and clears them. On the final mmdrop(), check_mm() will
792 * report a bug if these increment.
793 *
794 * All writes/pins are done under mmap_read lock, take the write
795 * lock to ensure in-progress faults have completed. Faults that
796 * are pending but yet to run will check the task count and skip
797 * the fault since the mm is going away.
798 */
799 mmap_write_lock(mm->mm);
800 mmap_write_unlock(mm->mm);
801
802 /*
803 * Put for mm must be done after RCU delay to handle new refs in
804 * between the list_del_rcu() and now. This ensures any get refs
805 * during rcu_read_lock() are accounted for during list removal.
806 *
807 * CPU A | CPU B
808 * ---------------------------------------------------------------
809 * user_event_mm_remove() | rcu_read_lock();
810 * list_del_rcu() | list_for_each_entry_rcu();
811 * call_rcu() | refcount_inc();
812 * . | rcu_read_unlock();
813 * schedule_work() | .
814 * user_event_mm_put() | .
815 *
816 * mmdrop() cannot be called in the softirq context of call_rcu()
817 * so we use a work queue after call_rcu() to run within.
818 */
819 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
820 queue_rcu_work(system_wq, &mm->put_rwork);
821 }
822
user_event_mm_dup(struct task_struct * t,struct user_event_mm * old_mm)823 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
824 {
825 struct user_event_mm *mm = user_event_mm_alloc(t);
826 struct user_event_enabler *enabler;
827
828 if (!mm)
829 return;
830
831 rcu_read_lock();
832
833 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
834 if (!user_event_enabler_dup(enabler, mm))
835 goto error;
836 }
837
838 rcu_read_unlock();
839
840 user_event_mm_attach(mm, t);
841 return;
842 error:
843 rcu_read_unlock();
844 user_event_mm_destroy(mm);
845 }
846
current_user_event_enabler_exists(unsigned long uaddr,unsigned char bit)847 static bool current_user_event_enabler_exists(unsigned long uaddr,
848 unsigned char bit)
849 {
850 struct user_event_mm *user_mm = current_user_event_mm();
851 bool exists;
852
853 if (!user_mm)
854 return false;
855
856 exists = user_event_enabler_exists(user_mm, uaddr, bit);
857
858 user_event_mm_put(user_mm);
859
860 return exists;
861 }
862
863 static struct user_event_enabler
user_event_enabler_create(struct user_reg * reg,struct user_event * user,int * write_result)864 *user_event_enabler_create(struct user_reg *reg, struct user_event *user,
865 int *write_result)
866 {
867 struct user_event_enabler *enabler;
868 struct user_event_mm *user_mm;
869 unsigned long uaddr = (unsigned long)reg->enable_addr;
870 int attempt = 0;
871
872 user_mm = current_user_event_mm();
873
874 if (!user_mm)
875 return NULL;
876
877 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
878
879 if (!enabler)
880 goto out;
881
882 enabler->event = user;
883 enabler->addr = uaddr;
884 enabler->values = reg->enable_bit;
885
886 #if BITS_PER_LONG >= 64
887 if (reg->enable_size == 4)
888 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
889 #endif
890
891 retry:
892 /* Prevents state changes from racing with new enablers */
893 mutex_lock(&event_mutex);
894
895 /* Attempt to reflect the current state within the process */
896 mmap_read_lock(user_mm->mm);
897 *write_result = user_event_enabler_write(user_mm, enabler, false,
898 &attempt);
899 mmap_read_unlock(user_mm->mm);
900
901 /*
902 * If the write works, then we will track the enabler. A ref to the
903 * underlying user_event is held by the enabler to prevent it going
904 * away while the enabler is still in use by a process. The ref is
905 * removed when the enabler is destroyed. This means a event cannot
906 * be forcefully deleted from the system until all tasks using it
907 * exit or run exec(), which includes forks and clones.
908 */
909 if (!*write_result) {
910 user_event_get(user);
911 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
912 }
913
914 mutex_unlock(&event_mutex);
915
916 if (*write_result) {
917 /* Attempt to fault-in and retry if it worked */
918 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
919 goto retry;
920
921 kfree(enabler);
922 enabler = NULL;
923 }
924 out:
925 user_event_mm_put(user_mm);
926
927 return enabler;
928 }
929
930 static __always_inline __must_check
user_event_last_ref(struct user_event * user)931 bool user_event_last_ref(struct user_event *user)
932 {
933 int last = 0;
934
935 if (user->reg_flags & USER_EVENT_REG_PERSIST)
936 last = 1;
937
938 return refcount_read(&user->refcnt) == last;
939 }
940
941 static __always_inline __must_check
copy_nofault(void * addr,size_t bytes,struct iov_iter * i)942 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
943 {
944 size_t ret;
945
946 pagefault_disable();
947
948 ret = copy_from_iter_nocache(addr, bytes, i);
949
950 pagefault_enable();
951
952 return ret;
953 }
954
user_event_get_fields(struct trace_event_call * call)955 static struct list_head *user_event_get_fields(struct trace_event_call *call)
956 {
957 struct user_event *user = (struct user_event *)call->data;
958
959 return &user->fields;
960 }
961
962 /*
963 * Parses a register command for user_events
964 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
965 *
966 * Example event named 'test' with a 20 char 'msg' field with an unsigned int
967 * 'id' field after:
968 * test char[20] msg;unsigned int id
969 *
970 * NOTE: Offsets are from the user data perspective, they are not from the
971 * trace_entry/buffer perspective. We automatically add the common properties
972 * sizes to the offset for the user.
973 *
974 * Upon success user_event has its ref count increased by 1.
975 */
user_event_parse_cmd(struct user_event_group * group,char * raw_command,struct user_event ** newuser,int reg_flags)976 static int user_event_parse_cmd(struct user_event_group *group,
977 char *raw_command, struct user_event **newuser,
978 int reg_flags)
979 {
980 char *name = raw_command;
981 char *args = strpbrk(name, " ");
982 char *flags;
983
984 if (args)
985 *args++ = '\0';
986
987 flags = strpbrk(name, ":");
988
989 if (flags)
990 *flags++ = '\0';
991
992 return user_event_parse(group, name, args, flags, newuser, reg_flags);
993 }
994
user_field_array_size(const char * type)995 static int user_field_array_size(const char *type)
996 {
997 const char *start = strchr(type, '[');
998 char val[8];
999 char *bracket;
1000 int size = 0;
1001
1002 if (start == NULL)
1003 return -EINVAL;
1004
1005 if (strscpy(val, start + 1, sizeof(val)) <= 0)
1006 return -EINVAL;
1007
1008 bracket = strchr(val, ']');
1009
1010 if (!bracket)
1011 return -EINVAL;
1012
1013 *bracket = '\0';
1014
1015 if (kstrtouint(val, 0, &size))
1016 return -EINVAL;
1017
1018 if (size > MAX_FIELD_ARRAY_SIZE)
1019 return -EINVAL;
1020
1021 return size;
1022 }
1023
user_field_size(const char * type)1024 static int user_field_size(const char *type)
1025 {
1026 /* long is not allowed from a user, since it's ambigious in size */
1027 if (strcmp(type, "s64") == 0)
1028 return sizeof(s64);
1029 if (strcmp(type, "u64") == 0)
1030 return sizeof(u64);
1031 if (strcmp(type, "s32") == 0)
1032 return sizeof(s32);
1033 if (strcmp(type, "u32") == 0)
1034 return sizeof(u32);
1035 if (strcmp(type, "int") == 0)
1036 return sizeof(int);
1037 if (strcmp(type, "unsigned int") == 0)
1038 return sizeof(unsigned int);
1039 if (strcmp(type, "s16") == 0)
1040 return sizeof(s16);
1041 if (strcmp(type, "u16") == 0)
1042 return sizeof(u16);
1043 if (strcmp(type, "short") == 0)
1044 return sizeof(short);
1045 if (strcmp(type, "unsigned short") == 0)
1046 return sizeof(unsigned short);
1047 if (strcmp(type, "s8") == 0)
1048 return sizeof(s8);
1049 if (strcmp(type, "u8") == 0)
1050 return sizeof(u8);
1051 if (strcmp(type, "char") == 0)
1052 return sizeof(char);
1053 if (strcmp(type, "unsigned char") == 0)
1054 return sizeof(unsigned char);
1055 if (str_has_prefix(type, "char["))
1056 return user_field_array_size(type);
1057 if (str_has_prefix(type, "unsigned char["))
1058 return user_field_array_size(type);
1059 if (str_has_prefix(type, "__data_loc "))
1060 return sizeof(u32);
1061 if (str_has_prefix(type, "__rel_loc "))
1062 return sizeof(u32);
1063
1064 /* Uknown basic type, error */
1065 return -EINVAL;
1066 }
1067
user_event_destroy_validators(struct user_event * user)1068 static void user_event_destroy_validators(struct user_event *user)
1069 {
1070 struct user_event_validator *validator, *next;
1071 struct list_head *head = &user->validators;
1072
1073 list_for_each_entry_safe(validator, next, head, user_event_link) {
1074 list_del(&validator->user_event_link);
1075 kfree(validator);
1076 }
1077 }
1078
user_event_destroy_fields(struct user_event * user)1079 static void user_event_destroy_fields(struct user_event *user)
1080 {
1081 struct ftrace_event_field *field, *next;
1082 struct list_head *head = &user->fields;
1083
1084 list_for_each_entry_safe(field, next, head, link) {
1085 list_del(&field->link);
1086 kfree(field);
1087 }
1088 }
1089
user_event_add_field(struct user_event * user,const char * type,const char * name,int offset,int size,int is_signed,int filter_type)1090 static int user_event_add_field(struct user_event *user, const char *type,
1091 const char *name, int offset, int size,
1092 int is_signed, int filter_type)
1093 {
1094 struct user_event_validator *validator;
1095 struct ftrace_event_field *field;
1096 int validator_flags = 0;
1097
1098 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
1099
1100 if (!field)
1101 return -ENOMEM;
1102
1103 if (str_has_prefix(type, "__data_loc "))
1104 goto add_validator;
1105
1106 if (str_has_prefix(type, "__rel_loc ")) {
1107 validator_flags |= VALIDATOR_REL;
1108 goto add_validator;
1109 }
1110
1111 goto add_field;
1112
1113 add_validator:
1114 if (strstr(type, "char") != NULL)
1115 validator_flags |= VALIDATOR_ENSURE_NULL;
1116
1117 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
1118
1119 if (!validator) {
1120 kfree(field);
1121 return -ENOMEM;
1122 }
1123
1124 validator->flags = validator_flags;
1125 validator->offset = offset;
1126
1127 /* Want sequential access when validating */
1128 list_add_tail(&validator->user_event_link, &user->validators);
1129
1130 add_field:
1131 field->type = type;
1132 field->name = name;
1133 field->offset = offset;
1134 field->size = size;
1135 field->is_signed = is_signed;
1136 field->filter_type = filter_type;
1137
1138 if (filter_type == FILTER_OTHER)
1139 field->filter_type = filter_assign_type(type);
1140
1141 list_add(&field->link, &user->fields);
1142
1143 /*
1144 * Min size from user writes that are required, this does not include
1145 * the size of trace_entry (common fields).
1146 */
1147 user->min_size = (offset + size) - sizeof(struct trace_entry);
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Parses the values of a field within the description
1154 * Format: type name [size]
1155 */
user_event_parse_field(char * field,struct user_event * user,u32 * offset)1156 static int user_event_parse_field(char *field, struct user_event *user,
1157 u32 *offset)
1158 {
1159 char *part, *type, *name;
1160 u32 depth = 0, saved_offset = *offset;
1161 int len, size = -EINVAL;
1162 bool is_struct = false;
1163
1164 field = skip_spaces(field);
1165
1166 if (*field == '\0')
1167 return 0;
1168
1169 /* Handle types that have a space within */
1170 len = str_has_prefix(field, "unsigned ");
1171 if (len)
1172 goto skip_next;
1173
1174 len = str_has_prefix(field, "struct ");
1175 if (len) {
1176 is_struct = true;
1177 goto skip_next;
1178 }
1179
1180 len = str_has_prefix(field, "__data_loc unsigned ");
1181 if (len)
1182 goto skip_next;
1183
1184 len = str_has_prefix(field, "__data_loc ");
1185 if (len)
1186 goto skip_next;
1187
1188 len = str_has_prefix(field, "__rel_loc unsigned ");
1189 if (len)
1190 goto skip_next;
1191
1192 len = str_has_prefix(field, "__rel_loc ");
1193 if (len)
1194 goto skip_next;
1195
1196 goto parse;
1197 skip_next:
1198 type = field;
1199 field = strpbrk(field + len, " ");
1200
1201 if (field == NULL)
1202 return -EINVAL;
1203
1204 *field++ = '\0';
1205 depth++;
1206 parse:
1207 name = NULL;
1208
1209 while ((part = strsep(&field, " ")) != NULL) {
1210 switch (depth++) {
1211 case FIELD_DEPTH_TYPE:
1212 type = part;
1213 break;
1214 case FIELD_DEPTH_NAME:
1215 name = part;
1216 break;
1217 case FIELD_DEPTH_SIZE:
1218 if (!is_struct)
1219 return -EINVAL;
1220
1221 if (kstrtou32(part, 10, &size))
1222 return -EINVAL;
1223 break;
1224 default:
1225 return -EINVAL;
1226 }
1227 }
1228
1229 if (depth < FIELD_DEPTH_SIZE || !name)
1230 return -EINVAL;
1231
1232 if (depth == FIELD_DEPTH_SIZE)
1233 size = user_field_size(type);
1234
1235 if (size == 0)
1236 return -EINVAL;
1237
1238 if (size < 0)
1239 return size;
1240
1241 *offset = saved_offset + size;
1242
1243 return user_event_add_field(user, type, name, saved_offset, size,
1244 type[0] != 'u', FILTER_OTHER);
1245 }
1246
user_event_parse_fields(struct user_event * user,char * args)1247 static int user_event_parse_fields(struct user_event *user, char *args)
1248 {
1249 char *field;
1250 u32 offset = sizeof(struct trace_entry);
1251 int ret = -EINVAL;
1252
1253 if (args == NULL)
1254 return 0;
1255
1256 while ((field = strsep(&args, ";")) != NULL) {
1257 ret = user_event_parse_field(field, user, &offset);
1258
1259 if (ret)
1260 break;
1261 }
1262
1263 return ret;
1264 }
1265
1266 static struct trace_event_fields user_event_fields_array[1];
1267
user_field_format(const char * type)1268 static const char *user_field_format(const char *type)
1269 {
1270 if (strcmp(type, "s64") == 0)
1271 return "%lld";
1272 if (strcmp(type, "u64") == 0)
1273 return "%llu";
1274 if (strcmp(type, "s32") == 0)
1275 return "%d";
1276 if (strcmp(type, "u32") == 0)
1277 return "%u";
1278 if (strcmp(type, "int") == 0)
1279 return "%d";
1280 if (strcmp(type, "unsigned int") == 0)
1281 return "%u";
1282 if (strcmp(type, "s16") == 0)
1283 return "%d";
1284 if (strcmp(type, "u16") == 0)
1285 return "%u";
1286 if (strcmp(type, "short") == 0)
1287 return "%d";
1288 if (strcmp(type, "unsigned short") == 0)
1289 return "%u";
1290 if (strcmp(type, "s8") == 0)
1291 return "%d";
1292 if (strcmp(type, "u8") == 0)
1293 return "%u";
1294 if (strcmp(type, "char") == 0)
1295 return "%d";
1296 if (strcmp(type, "unsigned char") == 0)
1297 return "%u";
1298 if (strstr(type, "char[") != NULL)
1299 return "%s";
1300
1301 /* Unknown, likely struct, allowed treat as 64-bit */
1302 return "%llu";
1303 }
1304
user_field_is_dyn_string(const char * type,const char ** str_func)1305 static bool user_field_is_dyn_string(const char *type, const char **str_func)
1306 {
1307 if (str_has_prefix(type, "__data_loc ")) {
1308 *str_func = "__get_str";
1309 goto check;
1310 }
1311
1312 if (str_has_prefix(type, "__rel_loc ")) {
1313 *str_func = "__get_rel_str";
1314 goto check;
1315 }
1316
1317 return false;
1318 check:
1319 return strstr(type, "char") != NULL;
1320 }
1321
1322 #define LEN_OR_ZERO (len ? len - pos : 0)
user_dyn_field_set_string(int argc,const char ** argv,int * iout,char * buf,int len,bool * colon)1323 static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1324 char *buf, int len, bool *colon)
1325 {
1326 int pos = 0, i = *iout;
1327
1328 *colon = false;
1329
1330 for (; i < argc; ++i) {
1331 if (i != *iout)
1332 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1333
1334 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1335
1336 if (strchr(argv[i], ';')) {
1337 ++i;
1338 *colon = true;
1339 break;
1340 }
1341 }
1342
1343 /* Actual set, advance i */
1344 if (len != 0)
1345 *iout = i;
1346
1347 return pos + 1;
1348 }
1349
user_field_set_string(struct ftrace_event_field * field,char * buf,int len,bool colon)1350 static int user_field_set_string(struct ftrace_event_field *field,
1351 char *buf, int len, bool colon)
1352 {
1353 int pos = 0;
1354
1355 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1356 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1357 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1358
1359 if (str_has_prefix(field->type, "struct "))
1360 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1361
1362 if (colon)
1363 pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1364
1365 return pos + 1;
1366 }
1367
user_event_set_print_fmt(struct user_event * user,char * buf,int len)1368 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1369 {
1370 struct ftrace_event_field *field;
1371 struct list_head *head = &user->fields;
1372 int pos = 0, depth = 0;
1373 const char *str_func;
1374
1375 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1376
1377 list_for_each_entry_reverse(field, head, link) {
1378 if (depth != 0)
1379 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1380
1381 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1382 field->name, user_field_format(field->type));
1383
1384 depth++;
1385 }
1386
1387 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1388
1389 list_for_each_entry_reverse(field, head, link) {
1390 if (user_field_is_dyn_string(field->type, &str_func))
1391 pos += snprintf(buf + pos, LEN_OR_ZERO,
1392 ", %s(%s)", str_func, field->name);
1393 else
1394 pos += snprintf(buf + pos, LEN_OR_ZERO,
1395 ", REC->%s", field->name);
1396 }
1397
1398 return pos + 1;
1399 }
1400 #undef LEN_OR_ZERO
1401
user_event_create_print_fmt(struct user_event * user)1402 static int user_event_create_print_fmt(struct user_event *user)
1403 {
1404 char *print_fmt;
1405 int len;
1406
1407 len = user_event_set_print_fmt(user, NULL, 0);
1408
1409 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
1410
1411 if (!print_fmt)
1412 return -ENOMEM;
1413
1414 user_event_set_print_fmt(user, print_fmt, len);
1415
1416 user->call.print_fmt = print_fmt;
1417
1418 return 0;
1419 }
1420
user_event_print_trace(struct trace_iterator * iter,int flags,struct trace_event * event)1421 static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1422 int flags,
1423 struct trace_event *event)
1424 {
1425 return print_event_fields(iter, event);
1426 }
1427
1428 static struct trace_event_functions user_event_funcs = {
1429 .trace = user_event_print_trace,
1430 };
1431
user_event_set_call_visible(struct user_event * user,bool visible)1432 static int user_event_set_call_visible(struct user_event *user, bool visible)
1433 {
1434 int ret;
1435 const struct cred *old_cred;
1436 struct cred *cred;
1437
1438 cred = prepare_creds();
1439
1440 if (!cred)
1441 return -ENOMEM;
1442
1443 /*
1444 * While by default tracefs is locked down, systems can be configured
1445 * to allow user_event files to be less locked down. The extreme case
1446 * being "other" has read/write access to user_events_data/status.
1447 *
1448 * When not locked down, processes may not have permissions to
1449 * add/remove calls themselves to tracefs. We need to temporarily
1450 * switch to root file permission to allow for this scenario.
1451 */
1452 cred->fsuid = GLOBAL_ROOT_UID;
1453
1454 old_cred = override_creds(cred);
1455
1456 if (visible)
1457 ret = trace_add_event_call(&user->call);
1458 else
1459 ret = trace_remove_event_call(&user->call);
1460
1461 revert_creds(old_cred);
1462 put_cred(cred);
1463
1464 return ret;
1465 }
1466
destroy_user_event(struct user_event * user)1467 static int destroy_user_event(struct user_event *user)
1468 {
1469 int ret = 0;
1470
1471 lockdep_assert_held(&event_mutex);
1472
1473 /* Must destroy fields before call removal */
1474 user_event_destroy_fields(user);
1475
1476 ret = user_event_set_call_visible(user, false);
1477
1478 if (ret)
1479 return ret;
1480
1481 dyn_event_remove(&user->devent);
1482 hash_del(&user->node);
1483
1484 user_event_destroy_validators(user);
1485 kfree(user->call.print_fmt);
1486 kfree(EVENT_NAME(user));
1487 kfree(user);
1488
1489 if (current_user_events > 0)
1490 current_user_events--;
1491 else
1492 pr_alert("BUG: Bad current_user_events\n");
1493
1494 return ret;
1495 }
1496
find_user_event(struct user_event_group * group,char * name,int argc,const char ** argv,u32 flags,u32 * outkey)1497 static struct user_event *find_user_event(struct user_event_group *group,
1498 char *name, int argc, const char **argv,
1499 u32 flags, u32 *outkey)
1500 {
1501 struct user_event *user;
1502 u32 key = user_event_key(name);
1503
1504 *outkey = key;
1505
1506 hash_for_each_possible(group->register_table, user, node, key) {
1507 if (strcmp(EVENT_NAME(user), name))
1508 continue;
1509
1510 if (user_fields_match(user, argc, argv))
1511 return user_event_get(user);
1512
1513 return ERR_PTR(-EADDRINUSE);
1514 }
1515
1516 return NULL;
1517 }
1518
user_event_validate(struct user_event * user,void * data,int len)1519 static int user_event_validate(struct user_event *user, void *data, int len)
1520 {
1521 struct list_head *head = &user->validators;
1522 struct user_event_validator *validator;
1523 void *pos, *end = data + len;
1524 u32 loc, offset, size;
1525
1526 list_for_each_entry(validator, head, user_event_link) {
1527 pos = data + validator->offset;
1528
1529 /* Already done min_size check, no bounds check here */
1530 loc = *(u32 *)pos;
1531 offset = loc & 0xffff;
1532 size = loc >> 16;
1533
1534 if (likely(validator->flags & VALIDATOR_REL))
1535 pos += offset + sizeof(loc);
1536 else
1537 pos = data + offset;
1538
1539 pos += size;
1540
1541 if (unlikely(pos > end))
1542 return -EFAULT;
1543
1544 if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1545 if (unlikely(*(char *)(pos - 1) != '\0'))
1546 return -EFAULT;
1547 }
1548
1549 return 0;
1550 }
1551
1552 /*
1553 * Writes the user supplied payload out to a trace file.
1554 */
user_event_ftrace(struct user_event * user,struct iov_iter * i,void * tpdata,bool * faulted)1555 static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1556 void *tpdata, bool *faulted)
1557 {
1558 struct trace_event_file *file;
1559 struct trace_entry *entry;
1560 struct trace_event_buffer event_buffer;
1561 size_t size = sizeof(*entry) + i->count;
1562
1563 file = (struct trace_event_file *)tpdata;
1564
1565 if (!file ||
1566 !(file->flags & EVENT_FILE_FL_ENABLED) ||
1567 trace_trigger_soft_disabled(file))
1568 return;
1569
1570 /* Allocates and fills trace_entry, + 1 of this is data payload */
1571 entry = trace_event_buffer_reserve(&event_buffer, file, size);
1572
1573 if (unlikely(!entry))
1574 return;
1575
1576 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
1577 goto discard;
1578
1579 if (!list_empty(&user->validators) &&
1580 unlikely(user_event_validate(user, entry, size)))
1581 goto discard;
1582
1583 trace_event_buffer_commit(&event_buffer);
1584
1585 return;
1586 discard:
1587 *faulted = true;
1588 __trace_event_discard_commit(event_buffer.buffer,
1589 event_buffer.event);
1590 }
1591
1592 #ifdef CONFIG_PERF_EVENTS
1593 /*
1594 * Writes the user supplied payload out to perf ring buffer.
1595 */
user_event_perf(struct user_event * user,struct iov_iter * i,void * tpdata,bool * faulted)1596 static void user_event_perf(struct user_event *user, struct iov_iter *i,
1597 void *tpdata, bool *faulted)
1598 {
1599 struct hlist_head *perf_head;
1600
1601 perf_head = this_cpu_ptr(user->call.perf_events);
1602
1603 if (perf_head && !hlist_empty(perf_head)) {
1604 struct trace_entry *perf_entry;
1605 struct pt_regs *regs;
1606 size_t size = sizeof(*perf_entry) + i->count;
1607 int context;
1608
1609 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1610 ®s, &context);
1611
1612 if (unlikely(!perf_entry))
1613 return;
1614
1615 perf_fetch_caller_regs(regs);
1616
1617 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
1618 goto discard;
1619
1620 if (!list_empty(&user->validators) &&
1621 unlikely(user_event_validate(user, perf_entry, size)))
1622 goto discard;
1623
1624 perf_trace_buf_submit(perf_entry, size, context,
1625 user->call.event.type, 1, regs,
1626 perf_head, NULL);
1627
1628 return;
1629 discard:
1630 *faulted = true;
1631 perf_swevent_put_recursion_context(context);
1632 }
1633 }
1634 #endif
1635
1636 /*
1637 * Update the enabled bit among all user processes.
1638 */
update_enable_bit_for(struct user_event * user)1639 static void update_enable_bit_for(struct user_event *user)
1640 {
1641 struct tracepoint *tp = &user->tracepoint;
1642 char status = 0;
1643
1644 if (atomic_read(&tp->key.enabled) > 0) {
1645 struct tracepoint_func *probe_func_ptr;
1646 user_event_func_t probe_func;
1647
1648 rcu_read_lock_sched();
1649
1650 probe_func_ptr = rcu_dereference_sched(tp->funcs);
1651
1652 if (probe_func_ptr) {
1653 do {
1654 probe_func = probe_func_ptr->func;
1655
1656 if (probe_func == user_event_ftrace)
1657 status |= EVENT_STATUS_FTRACE;
1658 #ifdef CONFIG_PERF_EVENTS
1659 else if (probe_func == user_event_perf)
1660 status |= EVENT_STATUS_PERF;
1661 #endif
1662 else
1663 status |= EVENT_STATUS_OTHER;
1664 } while ((++probe_func_ptr)->func);
1665 }
1666
1667 rcu_read_unlock_sched();
1668 }
1669
1670 user->status = status;
1671
1672 user_event_enabler_update(user);
1673 }
1674
1675 /*
1676 * Register callback for our events from tracing sub-systems.
1677 */
user_event_reg(struct trace_event_call * call,enum trace_reg type,void * data)1678 static int user_event_reg(struct trace_event_call *call,
1679 enum trace_reg type,
1680 void *data)
1681 {
1682 struct user_event *user = (struct user_event *)call->data;
1683 int ret = 0;
1684
1685 if (!user)
1686 return -ENOENT;
1687
1688 switch (type) {
1689 case TRACE_REG_REGISTER:
1690 ret = tracepoint_probe_register(call->tp,
1691 call->class->probe,
1692 data);
1693 if (!ret)
1694 goto inc;
1695 break;
1696
1697 case TRACE_REG_UNREGISTER:
1698 tracepoint_probe_unregister(call->tp,
1699 call->class->probe,
1700 data);
1701 goto dec;
1702
1703 #ifdef CONFIG_PERF_EVENTS
1704 case TRACE_REG_PERF_REGISTER:
1705 ret = tracepoint_probe_register(call->tp,
1706 call->class->perf_probe,
1707 data);
1708 if (!ret)
1709 goto inc;
1710 break;
1711
1712 case TRACE_REG_PERF_UNREGISTER:
1713 tracepoint_probe_unregister(call->tp,
1714 call->class->perf_probe,
1715 data);
1716 goto dec;
1717
1718 case TRACE_REG_PERF_OPEN:
1719 case TRACE_REG_PERF_CLOSE:
1720 case TRACE_REG_PERF_ADD:
1721 case TRACE_REG_PERF_DEL:
1722 break;
1723 #endif
1724 }
1725
1726 return ret;
1727 inc:
1728 user_event_get(user);
1729 update_enable_bit_for(user);
1730 return 0;
1731 dec:
1732 update_enable_bit_for(user);
1733 user_event_put(user, true);
1734 return 0;
1735 }
1736
user_event_create(const char * raw_command)1737 static int user_event_create(const char *raw_command)
1738 {
1739 struct user_event_group *group;
1740 struct user_event *user;
1741 char *name;
1742 int ret;
1743
1744 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1745 return -ECANCELED;
1746
1747 raw_command += USER_EVENTS_PREFIX_LEN;
1748 raw_command = skip_spaces(raw_command);
1749
1750 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
1751
1752 if (!name)
1753 return -ENOMEM;
1754
1755 group = current_user_event_group();
1756
1757 if (!group) {
1758 kfree(name);
1759 return -ENOENT;
1760 }
1761
1762 mutex_lock(&group->reg_mutex);
1763
1764 /* Dyn events persist, otherwise they would cleanup immediately */
1765 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
1766
1767 if (!ret)
1768 user_event_put(user, false);
1769
1770 mutex_unlock(&group->reg_mutex);
1771
1772 if (ret)
1773 kfree(name);
1774
1775 return ret;
1776 }
1777
user_event_show(struct seq_file * m,struct dyn_event * ev)1778 static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1779 {
1780 struct user_event *user = container_of(ev, struct user_event, devent);
1781 struct ftrace_event_field *field;
1782 struct list_head *head;
1783 int depth = 0;
1784
1785 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1786
1787 head = trace_get_fields(&user->call);
1788
1789 list_for_each_entry_reverse(field, head, link) {
1790 if (depth == 0)
1791 seq_puts(m, " ");
1792 else
1793 seq_puts(m, "; ");
1794
1795 seq_printf(m, "%s %s", field->type, field->name);
1796
1797 if (str_has_prefix(field->type, "struct "))
1798 seq_printf(m, " %d", field->size);
1799
1800 depth++;
1801 }
1802
1803 seq_puts(m, "\n");
1804
1805 return 0;
1806 }
1807
user_event_is_busy(struct dyn_event * ev)1808 static bool user_event_is_busy(struct dyn_event *ev)
1809 {
1810 struct user_event *user = container_of(ev, struct user_event, devent);
1811
1812 return !user_event_last_ref(user);
1813 }
1814
user_event_free(struct dyn_event * ev)1815 static int user_event_free(struct dyn_event *ev)
1816 {
1817 struct user_event *user = container_of(ev, struct user_event, devent);
1818
1819 if (!user_event_last_ref(user))
1820 return -EBUSY;
1821
1822 if (!user_event_capable(user->reg_flags))
1823 return -EPERM;
1824
1825 return destroy_user_event(user);
1826 }
1827
user_field_match(struct ftrace_event_field * field,int argc,const char ** argv,int * iout)1828 static bool user_field_match(struct ftrace_event_field *field, int argc,
1829 const char **argv, int *iout)
1830 {
1831 char *field_name = NULL, *dyn_field_name = NULL;
1832 bool colon = false, match = false;
1833 int dyn_len, len;
1834
1835 if (*iout >= argc)
1836 return false;
1837
1838 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1839 0, &colon);
1840
1841 len = user_field_set_string(field, field_name, 0, colon);
1842
1843 if (dyn_len != len)
1844 return false;
1845
1846 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1847 field_name = kmalloc(len, GFP_KERNEL);
1848
1849 if (!dyn_field_name || !field_name)
1850 goto out;
1851
1852 user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1853 dyn_len, &colon);
1854
1855 user_field_set_string(field, field_name, len, colon);
1856
1857 match = strcmp(dyn_field_name, field_name) == 0;
1858 out:
1859 kfree(dyn_field_name);
1860 kfree(field_name);
1861
1862 return match;
1863 }
1864
user_fields_match(struct user_event * user,int argc,const char ** argv)1865 static bool user_fields_match(struct user_event *user, int argc,
1866 const char **argv)
1867 {
1868 struct ftrace_event_field *field;
1869 struct list_head *head = &user->fields;
1870 int i = 0;
1871
1872 if (argc == 0)
1873 return list_empty(head);
1874
1875 list_for_each_entry_reverse(field, head, link) {
1876 if (!user_field_match(field, argc, argv, &i))
1877 return false;
1878 }
1879
1880 if (i != argc)
1881 return false;
1882
1883 return true;
1884 }
1885
user_event_match(const char * system,const char * event,int argc,const char ** argv,struct dyn_event * ev)1886 static bool user_event_match(const char *system, const char *event,
1887 int argc, const char **argv, struct dyn_event *ev)
1888 {
1889 struct user_event *user = container_of(ev, struct user_event, devent);
1890 bool match;
1891
1892 match = strcmp(EVENT_NAME(user), event) == 0 &&
1893 (!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
1894
1895 if (match)
1896 match = user_fields_match(user, argc, argv);
1897
1898 return match;
1899 }
1900
1901 static struct dyn_event_operations user_event_dops = {
1902 .create = user_event_create,
1903 .show = user_event_show,
1904 .is_busy = user_event_is_busy,
1905 .free = user_event_free,
1906 .match = user_event_match,
1907 };
1908
user_event_trace_register(struct user_event * user)1909 static int user_event_trace_register(struct user_event *user)
1910 {
1911 int ret;
1912
1913 ret = register_trace_event(&user->call.event);
1914
1915 if (!ret)
1916 return -ENODEV;
1917
1918 ret = user_event_set_call_visible(user, true);
1919
1920 if (ret)
1921 unregister_trace_event(&user->call.event);
1922
1923 return ret;
1924 }
1925
1926 /*
1927 * Counts how many ';' without a trailing space are in the args.
1928 */
count_semis_no_space(char * args)1929 static int count_semis_no_space(char *args)
1930 {
1931 int count = 0;
1932
1933 while ((args = strchr(args, ';'))) {
1934 args++;
1935
1936 if (!isspace(*args))
1937 count++;
1938 }
1939
1940 return count;
1941 }
1942
1943 /*
1944 * Copies the arguments while ensuring all ';' have a trailing space.
1945 */
insert_space_after_semis(char * args,int count)1946 static char *insert_space_after_semis(char *args, int count)
1947 {
1948 char *fixed, *pos;
1949 int len;
1950
1951 len = strlen(args) + count;
1952 fixed = kmalloc(len + 1, GFP_KERNEL);
1953
1954 if (!fixed)
1955 return NULL;
1956
1957 pos = fixed;
1958
1959 /* Insert a space after ';' if there is no trailing space. */
1960 while (*args) {
1961 *pos = *args++;
1962
1963 if (*pos++ == ';' && !isspace(*args))
1964 *pos++ = ' ';
1965 }
1966
1967 *pos = '\0';
1968
1969 return fixed;
1970 }
1971
user_event_argv_split(char * args,int * argc)1972 static char **user_event_argv_split(char *args, int *argc)
1973 {
1974 char **split;
1975 char *fixed;
1976 int count;
1977
1978 /* Count how many ';' without a trailing space */
1979 count = count_semis_no_space(args);
1980
1981 /* No fixup is required */
1982 if (!count)
1983 return argv_split(GFP_KERNEL, args, argc);
1984
1985 /* We must fixup 'field;field' to 'field; field' */
1986 fixed = insert_space_after_semis(args, count);
1987
1988 if (!fixed)
1989 return NULL;
1990
1991 /* We do a normal split afterwards */
1992 split = argv_split(GFP_KERNEL, fixed, argc);
1993
1994 /* We can free since argv_split makes a copy */
1995 kfree(fixed);
1996
1997 return split;
1998 }
1999
2000 /*
2001 * Parses the event name, arguments and flags then registers if successful.
2002 * The name buffer lifetime is owned by this method for success cases only.
2003 * Upon success the returned user_event has its ref count increased by 1.
2004 */
user_event_parse(struct user_event_group * group,char * name,char * args,char * flags,struct user_event ** newuser,int reg_flags)2005 static int user_event_parse(struct user_event_group *group, char *name,
2006 char *args, char *flags,
2007 struct user_event **newuser, int reg_flags)
2008 {
2009 struct user_event *user;
2010 char **argv = NULL;
2011 int argc = 0;
2012 int ret;
2013 u32 key;
2014
2015 /* Currently don't support any text based flags */
2016 if (flags != NULL)
2017 return -EINVAL;
2018
2019 if (!user_event_capable(reg_flags))
2020 return -EPERM;
2021
2022 if (args) {
2023 argv = user_event_argv_split(args, &argc);
2024
2025 if (!argv)
2026 return -ENOMEM;
2027 }
2028
2029 /* Prevent dyn_event from racing */
2030 mutex_lock(&event_mutex);
2031 user = find_user_event(group, name, argc, (const char **)argv,
2032 reg_flags, &key);
2033 mutex_unlock(&event_mutex);
2034
2035 if (argv)
2036 argv_free(argv);
2037
2038 if (IS_ERR(user))
2039 return PTR_ERR(user);
2040
2041 if (user) {
2042 *newuser = user;
2043 /*
2044 * Name is allocated by caller, free it since it already exists.
2045 * Caller only worries about failure cases for freeing.
2046 */
2047 kfree(name);
2048
2049 return 0;
2050 }
2051
2052 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
2053
2054 if (!user)
2055 return -ENOMEM;
2056
2057 INIT_LIST_HEAD(&user->class.fields);
2058 INIT_LIST_HEAD(&user->fields);
2059 INIT_LIST_HEAD(&user->validators);
2060
2061 user->group = group;
2062 user->tracepoint.name = name;
2063
2064 ret = user_event_parse_fields(user, args);
2065
2066 if (ret)
2067 goto put_user;
2068
2069 ret = user_event_create_print_fmt(user);
2070
2071 if (ret)
2072 goto put_user;
2073
2074 user->call.data = user;
2075 user->call.class = &user->class;
2076 user->call.name = name;
2077 user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2078 user->call.tp = &user->tracepoint;
2079 user->call.event.funcs = &user_event_funcs;
2080 user->class.system = group->system_name;
2081
2082 user->class.fields_array = user_event_fields_array;
2083 user->class.get_fields = user_event_get_fields;
2084 user->class.reg = user_event_reg;
2085 user->class.probe = user_event_ftrace;
2086 #ifdef CONFIG_PERF_EVENTS
2087 user->class.perf_probe = user_event_perf;
2088 #endif
2089
2090 mutex_lock(&event_mutex);
2091
2092 if (current_user_events >= max_user_events) {
2093 ret = -EMFILE;
2094 goto put_user_lock;
2095 }
2096
2097 ret = user_event_trace_register(user);
2098
2099 if (ret)
2100 goto put_user_lock;
2101
2102 user->reg_flags = reg_flags;
2103
2104 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2105 /* Ensure we track self ref and caller ref (2) */
2106 refcount_set(&user->refcnt, 2);
2107 } else {
2108 /* Ensure we track only caller ref (1) */
2109 refcount_set(&user->refcnt, 1);
2110 }
2111
2112 dyn_event_init(&user->devent, &user_event_dops);
2113 dyn_event_add(&user->devent, &user->call);
2114 hash_add(group->register_table, &user->node, key);
2115 current_user_events++;
2116
2117 mutex_unlock(&event_mutex);
2118
2119 *newuser = user;
2120 return 0;
2121 put_user_lock:
2122 mutex_unlock(&event_mutex);
2123 put_user:
2124 user_event_destroy_fields(user);
2125 user_event_destroy_validators(user);
2126 kfree(user->call.print_fmt);
2127 kfree(user);
2128 return ret;
2129 }
2130
2131 /*
2132 * Deletes previously created events if they are no longer being used.
2133 */
delete_user_event(struct user_event_group * group,char * name)2134 static int delete_user_event(struct user_event_group *group, char *name)
2135 {
2136 struct user_event *user;
2137 struct hlist_node *tmp;
2138 u32 key = user_event_key(name);
2139 int ret = -ENOENT;
2140
2141 /* Attempt to delete all event(s) with the name passed in */
2142 hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
2143 if (strcmp(EVENT_NAME(user), name))
2144 continue;
2145
2146 if (!user_event_last_ref(user))
2147 return -EBUSY;
2148
2149 if (!user_event_capable(user->reg_flags))
2150 return -EPERM;
2151
2152 ret = destroy_user_event(user);
2153
2154 if (ret)
2155 goto out;
2156 }
2157 out:
2158 return ret;
2159 }
2160
2161 /*
2162 * Validates the user payload and writes via iterator.
2163 */
user_events_write_core(struct file * file,struct iov_iter * i)2164 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2165 {
2166 struct user_event_file_info *info = file->private_data;
2167 struct user_event_refs *refs;
2168 struct user_event *user = NULL;
2169 struct tracepoint *tp;
2170 ssize_t ret = i->count;
2171 int idx;
2172
2173 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2174 return -EFAULT;
2175
2176 if (idx < 0)
2177 return -EINVAL;
2178
2179 rcu_read_lock_sched();
2180
2181 refs = rcu_dereference_sched(info->refs);
2182
2183 /*
2184 * The refs->events array is protected by RCU, and new items may be
2185 * added. But the user retrieved from indexing into the events array
2186 * shall be immutable while the file is opened.
2187 */
2188 if (likely(refs && idx < refs->count))
2189 user = refs->events[idx];
2190
2191 rcu_read_unlock_sched();
2192
2193 if (unlikely(user == NULL))
2194 return -ENOENT;
2195
2196 if (unlikely(i->count < user->min_size))
2197 return -EINVAL;
2198
2199 tp = &user->tracepoint;
2200
2201 /*
2202 * It's possible key.enabled disables after this check, however
2203 * we don't mind if a few events are included in this condition.
2204 */
2205 if (likely(atomic_read(&tp->key.enabled) > 0)) {
2206 struct tracepoint_func *probe_func_ptr;
2207 user_event_func_t probe_func;
2208 struct iov_iter copy;
2209 void *tpdata;
2210 bool faulted;
2211
2212 if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2213 return -EFAULT;
2214
2215 faulted = false;
2216
2217 rcu_read_lock_sched();
2218
2219 probe_func_ptr = rcu_dereference_sched(tp->funcs);
2220
2221 if (probe_func_ptr) {
2222 do {
2223 copy = *i;
2224 probe_func = probe_func_ptr->func;
2225 tpdata = probe_func_ptr->data;
2226 probe_func(user, ©, tpdata, &faulted);
2227 } while ((++probe_func_ptr)->func);
2228 }
2229
2230 rcu_read_unlock_sched();
2231
2232 if (unlikely(faulted))
2233 return -EFAULT;
2234 } else
2235 return -EBADF;
2236
2237 return ret;
2238 }
2239
user_events_open(struct inode * node,struct file * file)2240 static int user_events_open(struct inode *node, struct file *file)
2241 {
2242 struct user_event_group *group;
2243 struct user_event_file_info *info;
2244
2245 group = current_user_event_group();
2246
2247 if (!group)
2248 return -ENOENT;
2249
2250 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
2251
2252 if (!info)
2253 return -ENOMEM;
2254
2255 info->group = group;
2256
2257 file->private_data = info;
2258
2259 return 0;
2260 }
2261
user_events_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)2262 static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2263 size_t count, loff_t *ppos)
2264 {
2265 struct iovec iov;
2266 struct iov_iter i;
2267
2268 if (unlikely(*ppos != 0))
2269 return -EFAULT;
2270
2271 if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
2272 count, &iov, &i)))
2273 return -EFAULT;
2274
2275 return user_events_write_core(file, &i);
2276 }
2277
user_events_write_iter(struct kiocb * kp,struct iov_iter * i)2278 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2279 {
2280 return user_events_write_core(kp->ki_filp, i);
2281 }
2282
user_events_ref_add(struct user_event_file_info * info,struct user_event * user)2283 static int user_events_ref_add(struct user_event_file_info *info,
2284 struct user_event *user)
2285 {
2286 struct user_event_group *group = info->group;
2287 struct user_event_refs *refs, *new_refs;
2288 int i, size, count = 0;
2289
2290 refs = rcu_dereference_protected(info->refs,
2291 lockdep_is_held(&group->reg_mutex));
2292
2293 if (refs) {
2294 count = refs->count;
2295
2296 for (i = 0; i < count; ++i)
2297 if (refs->events[i] == user)
2298 return i;
2299 }
2300
2301 size = struct_size(refs, events, count + 1);
2302
2303 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2304
2305 if (!new_refs)
2306 return -ENOMEM;
2307
2308 new_refs->count = count + 1;
2309
2310 for (i = 0; i < count; ++i)
2311 new_refs->events[i] = refs->events[i];
2312
2313 new_refs->events[i] = user_event_get(user);
2314
2315 rcu_assign_pointer(info->refs, new_refs);
2316
2317 if (refs)
2318 kfree_rcu(refs, rcu);
2319
2320 return i;
2321 }
2322
user_reg_get(struct user_reg __user * ureg,struct user_reg * kreg)2323 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2324 {
2325 u32 size;
2326 long ret;
2327
2328 ret = get_user(size, &ureg->size);
2329
2330 if (ret)
2331 return ret;
2332
2333 if (size > PAGE_SIZE)
2334 return -E2BIG;
2335
2336 if (size < offsetofend(struct user_reg, write_index))
2337 return -EINVAL;
2338
2339 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2340
2341 if (ret)
2342 return ret;
2343
2344 /* Ensure only valid flags */
2345 if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
2346 return -EINVAL;
2347
2348 /* Ensure supported size */
2349 switch (kreg->enable_size) {
2350 case 4:
2351 /* 32-bit */
2352 break;
2353 #if BITS_PER_LONG >= 64
2354 case 8:
2355 /* 64-bit */
2356 break;
2357 #endif
2358 default:
2359 return -EINVAL;
2360 }
2361
2362 /* Ensure natural alignment */
2363 if (kreg->enable_addr % kreg->enable_size)
2364 return -EINVAL;
2365
2366 /* Ensure bit range for size */
2367 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2368 return -EINVAL;
2369
2370 /* Ensure accessible */
2371 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2372 kreg->enable_size))
2373 return -EFAULT;
2374
2375 kreg->size = size;
2376
2377 return 0;
2378 }
2379
2380 /*
2381 * Registers a user_event on behalf of a user process.
2382 */
user_events_ioctl_reg(struct user_event_file_info * info,unsigned long uarg)2383 static long user_events_ioctl_reg(struct user_event_file_info *info,
2384 unsigned long uarg)
2385 {
2386 struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2387 struct user_reg reg;
2388 struct user_event *user;
2389 struct user_event_enabler *enabler;
2390 char *name;
2391 long ret;
2392 int write_result;
2393
2394 ret = user_reg_get(ureg, ®);
2395
2396 if (ret)
2397 return ret;
2398
2399 /*
2400 * Prevent users from using the same address and bit multiple times
2401 * within the same mm address space. This can cause unexpected behavior
2402 * for user processes that is far easier to debug if this is explictly
2403 * an error upon registering.
2404 */
2405 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2406 reg.enable_bit))
2407 return -EADDRINUSE;
2408
2409 name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2410 MAX_EVENT_DESC);
2411
2412 if (IS_ERR(name)) {
2413 ret = PTR_ERR(name);
2414 return ret;
2415 }
2416
2417 ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
2418
2419 if (ret) {
2420 kfree(name);
2421 return ret;
2422 }
2423
2424 ret = user_events_ref_add(info, user);
2425
2426 /* No longer need parse ref, ref_add either worked or not */
2427 user_event_put(user, false);
2428
2429 /* Positive number is index and valid */
2430 if (ret < 0)
2431 return ret;
2432
2433 /*
2434 * user_events_ref_add succeeded:
2435 * At this point we have a user_event, it's lifetime is bound by the
2436 * reference count, not this file. If anything fails, the user_event
2437 * still has a reference until the file is released. During release
2438 * any remaining references (from user_events_ref_add) are decremented.
2439 *
2440 * Attempt to create an enabler, which too has a lifetime tied in the
2441 * same way for the event. Once the task that caused the enabler to be
2442 * created exits or issues exec() then the enablers it has created
2443 * will be destroyed and the ref to the event will be decremented.
2444 */
2445 enabler = user_event_enabler_create(®, user, &write_result);
2446
2447 if (!enabler)
2448 return -ENOMEM;
2449
2450 /* Write failed/faulted, give error back to caller */
2451 if (write_result)
2452 return write_result;
2453
2454 put_user((u32)ret, &ureg->write_index);
2455
2456 return 0;
2457 }
2458
2459 /*
2460 * Deletes a user_event on behalf of a user process.
2461 */
user_events_ioctl_del(struct user_event_file_info * info,unsigned long uarg)2462 static long user_events_ioctl_del(struct user_event_file_info *info,
2463 unsigned long uarg)
2464 {
2465 void __user *ubuf = (void __user *)uarg;
2466 char *name;
2467 long ret;
2468
2469 name = strndup_user(ubuf, MAX_EVENT_DESC);
2470
2471 if (IS_ERR(name))
2472 return PTR_ERR(name);
2473
2474 /* event_mutex prevents dyn_event from racing */
2475 mutex_lock(&event_mutex);
2476 ret = delete_user_event(info->group, name);
2477 mutex_unlock(&event_mutex);
2478
2479 kfree(name);
2480
2481 return ret;
2482 }
2483
user_unreg_get(struct user_unreg __user * ureg,struct user_unreg * kreg)2484 static long user_unreg_get(struct user_unreg __user *ureg,
2485 struct user_unreg *kreg)
2486 {
2487 u32 size;
2488 long ret;
2489
2490 ret = get_user(size, &ureg->size);
2491
2492 if (ret)
2493 return ret;
2494
2495 if (size > PAGE_SIZE)
2496 return -E2BIG;
2497
2498 if (size < offsetofend(struct user_unreg, disable_addr))
2499 return -EINVAL;
2500
2501 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2502
2503 /* Ensure no reserved values, since we don't support any yet */
2504 if (kreg->__reserved || kreg->__reserved2)
2505 return -EINVAL;
2506
2507 return ret;
2508 }
2509
user_event_mm_clear_bit(struct user_event_mm * user_mm,unsigned long uaddr,unsigned char bit,unsigned long flags)2510 static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2511 unsigned long uaddr, unsigned char bit,
2512 unsigned long flags)
2513 {
2514 struct user_event_enabler enabler;
2515 int result;
2516 int attempt = 0;
2517
2518 memset(&enabler, 0, sizeof(enabler));
2519 enabler.addr = uaddr;
2520 enabler.values = bit | flags;
2521 retry:
2522 /* Prevents state changes from racing with new enablers */
2523 mutex_lock(&event_mutex);
2524
2525 /* Force the bit to be cleared, since no event is attached */
2526 mmap_read_lock(user_mm->mm);
2527 result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
2528 mmap_read_unlock(user_mm->mm);
2529
2530 mutex_unlock(&event_mutex);
2531
2532 if (result) {
2533 /* Attempt to fault-in and retry if it worked */
2534 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
2535 goto retry;
2536 }
2537
2538 return result;
2539 }
2540
2541 /*
2542 * Unregisters an enablement address/bit within a task/user mm.
2543 */
user_events_ioctl_unreg(unsigned long uarg)2544 static long user_events_ioctl_unreg(unsigned long uarg)
2545 {
2546 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2547 struct user_event_mm *mm = current->user_event_mm;
2548 struct user_event_enabler *enabler, *next;
2549 struct user_unreg reg;
2550 unsigned long flags;
2551 long ret;
2552
2553 ret = user_unreg_get(ureg, ®);
2554
2555 if (ret)
2556 return ret;
2557
2558 if (!mm)
2559 return -ENOENT;
2560
2561 flags = 0;
2562 ret = -ENOENT;
2563
2564 /*
2565 * Flags freeing and faulting are used to indicate if the enabler is in
2566 * use at all. When faulting is set a page-fault is occurring asyncly.
2567 * During async fault if freeing is set, the enabler will be destroyed.
2568 * If no async fault is happening, we can destroy it now since we hold
2569 * the event_mutex during these checks.
2570 */
2571 mutex_lock(&event_mutex);
2572
2573 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
2574 if (enabler->addr == reg.disable_addr &&
2575 ENABLE_BIT(enabler) == reg.disable_bit) {
2576 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2577
2578 /* We must keep compat flags for the clear */
2579 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2580
2581 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2582 user_event_enabler_destroy(enabler, true);
2583
2584 /* Removed at least one */
2585 ret = 0;
2586 }
2587 }
2588
2589 mutex_unlock(&event_mutex);
2590
2591 /* Ensure bit is now cleared for user, regardless of event status */
2592 if (!ret)
2593 ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2594 reg.disable_bit, flags);
2595
2596 return ret;
2597 }
2598
2599 /*
2600 * Handles the ioctl from user mode to register or alter operations.
2601 */
user_events_ioctl(struct file * file,unsigned int cmd,unsigned long uarg)2602 static long user_events_ioctl(struct file *file, unsigned int cmd,
2603 unsigned long uarg)
2604 {
2605 struct user_event_file_info *info = file->private_data;
2606 struct user_event_group *group = info->group;
2607 long ret = -ENOTTY;
2608
2609 switch (cmd) {
2610 case DIAG_IOCSREG:
2611 mutex_lock(&group->reg_mutex);
2612 ret = user_events_ioctl_reg(info, uarg);
2613 mutex_unlock(&group->reg_mutex);
2614 break;
2615
2616 case DIAG_IOCSDEL:
2617 mutex_lock(&group->reg_mutex);
2618 ret = user_events_ioctl_del(info, uarg);
2619 mutex_unlock(&group->reg_mutex);
2620 break;
2621
2622 case DIAG_IOCSUNREG:
2623 mutex_lock(&group->reg_mutex);
2624 ret = user_events_ioctl_unreg(uarg);
2625 mutex_unlock(&group->reg_mutex);
2626 break;
2627 }
2628
2629 return ret;
2630 }
2631
2632 /*
2633 * Handles the final close of the file from user mode.
2634 */
user_events_release(struct inode * node,struct file * file)2635 static int user_events_release(struct inode *node, struct file *file)
2636 {
2637 struct user_event_file_info *info = file->private_data;
2638 struct user_event_group *group;
2639 struct user_event_refs *refs;
2640 int i;
2641
2642 if (!info)
2643 return -EINVAL;
2644
2645 group = info->group;
2646
2647 /*
2648 * Ensure refs cannot change under any situation by taking the
2649 * register mutex during the final freeing of the references.
2650 */
2651 mutex_lock(&group->reg_mutex);
2652
2653 refs = info->refs;
2654
2655 if (!refs)
2656 goto out;
2657
2658 /*
2659 * The lifetime of refs has reached an end, it's tied to this file.
2660 * The underlying user_events are ref counted, and cannot be freed.
2661 * After this decrement, the user_events may be freed elsewhere.
2662 */
2663 for (i = 0; i < refs->count; ++i)
2664 user_event_put(refs->events[i], false);
2665
2666 out:
2667 file->private_data = NULL;
2668
2669 mutex_unlock(&group->reg_mutex);
2670
2671 kfree(refs);
2672 kfree(info);
2673
2674 return 0;
2675 }
2676
2677 static const struct file_operations user_data_fops = {
2678 .open = user_events_open,
2679 .write = user_events_write,
2680 .write_iter = user_events_write_iter,
2681 .unlocked_ioctl = user_events_ioctl,
2682 .release = user_events_release,
2683 };
2684
user_seq_start(struct seq_file * m,loff_t * pos)2685 static void *user_seq_start(struct seq_file *m, loff_t *pos)
2686 {
2687 if (*pos)
2688 return NULL;
2689
2690 return (void *)1;
2691 }
2692
user_seq_next(struct seq_file * m,void * p,loff_t * pos)2693 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2694 {
2695 ++*pos;
2696 return NULL;
2697 }
2698
user_seq_stop(struct seq_file * m,void * p)2699 static void user_seq_stop(struct seq_file *m, void *p)
2700 {
2701 }
2702
user_seq_show(struct seq_file * m,void * p)2703 static int user_seq_show(struct seq_file *m, void *p)
2704 {
2705 struct user_event_group *group = m->private;
2706 struct user_event *user;
2707 char status;
2708 int i, active = 0, busy = 0;
2709
2710 if (!group)
2711 return -EINVAL;
2712
2713 mutex_lock(&group->reg_mutex);
2714
2715 hash_for_each(group->register_table, i, user, node) {
2716 status = user->status;
2717
2718 seq_printf(m, "%s", EVENT_NAME(user));
2719
2720 if (status != 0)
2721 seq_puts(m, " #");
2722
2723 if (status != 0) {
2724 seq_puts(m, " Used by");
2725 if (status & EVENT_STATUS_FTRACE)
2726 seq_puts(m, " ftrace");
2727 if (status & EVENT_STATUS_PERF)
2728 seq_puts(m, " perf");
2729 if (status & EVENT_STATUS_OTHER)
2730 seq_puts(m, " other");
2731 busy++;
2732 }
2733
2734 seq_puts(m, "\n");
2735 active++;
2736 }
2737
2738 mutex_unlock(&group->reg_mutex);
2739
2740 seq_puts(m, "\n");
2741 seq_printf(m, "Active: %d\n", active);
2742 seq_printf(m, "Busy: %d\n", busy);
2743
2744 return 0;
2745 }
2746
2747 static const struct seq_operations user_seq_ops = {
2748 .start = user_seq_start,
2749 .next = user_seq_next,
2750 .stop = user_seq_stop,
2751 .show = user_seq_show,
2752 };
2753
user_status_open(struct inode * node,struct file * file)2754 static int user_status_open(struct inode *node, struct file *file)
2755 {
2756 struct user_event_group *group;
2757 int ret;
2758
2759 group = current_user_event_group();
2760
2761 if (!group)
2762 return -ENOENT;
2763
2764 ret = seq_open(file, &user_seq_ops);
2765
2766 if (!ret) {
2767 /* Chain group to seq_file */
2768 struct seq_file *m = file->private_data;
2769
2770 m->private = group;
2771 }
2772
2773 return ret;
2774 }
2775
2776 static const struct file_operations user_status_fops = {
2777 .open = user_status_open,
2778 .read = seq_read,
2779 .llseek = seq_lseek,
2780 .release = seq_release,
2781 };
2782
2783 /*
2784 * Creates a set of tracefs files to allow user mode interactions.
2785 */
create_user_tracefs(void)2786 static int create_user_tracefs(void)
2787 {
2788 struct dentry *edata, *emmap;
2789
2790 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2791 NULL, NULL, &user_data_fops);
2792
2793 if (!edata) {
2794 pr_warn("Could not create tracefs 'user_events_data' entry\n");
2795 goto err;
2796 }
2797
2798 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
2799 NULL, NULL, &user_status_fops);
2800
2801 if (!emmap) {
2802 tracefs_remove(edata);
2803 pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2804 goto err;
2805 }
2806
2807 return 0;
2808 err:
2809 return -ENODEV;
2810 }
2811
set_max_user_events_sysctl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2812 static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2813 void *buffer, size_t *lenp, loff_t *ppos)
2814 {
2815 int ret;
2816
2817 mutex_lock(&event_mutex);
2818
2819 ret = proc_douintvec(table, write, buffer, lenp, ppos);
2820
2821 mutex_unlock(&event_mutex);
2822
2823 return ret;
2824 }
2825
2826 static struct ctl_table user_event_sysctls[] = {
2827 {
2828 .procname = "user_events_max",
2829 .data = &max_user_events,
2830 .maxlen = sizeof(unsigned int),
2831 .mode = 0644,
2832 .proc_handler = set_max_user_events_sysctl,
2833 },
2834 {}
2835 };
2836
trace_events_user_init(void)2837 static int __init trace_events_user_init(void)
2838 {
2839 int ret;
2840
2841 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2842
2843 if (!fault_cache)
2844 return -ENOMEM;
2845
2846 init_group = user_event_group_create();
2847
2848 if (!init_group) {
2849 kmem_cache_destroy(fault_cache);
2850 return -ENOMEM;
2851 }
2852
2853 ret = create_user_tracefs();
2854
2855 if (ret) {
2856 pr_warn("user_events could not register with tracefs\n");
2857 user_event_group_destroy(init_group);
2858 kmem_cache_destroy(fault_cache);
2859 init_group = NULL;
2860 return ret;
2861 }
2862
2863 if (dyn_event_register(&user_event_dops))
2864 pr_warn("user_events could not register with dyn_events\n");
2865
2866 register_sysctl_init("kernel", user_event_sysctls);
2867
2868 return 0;
2869 }
2870
2871 fs_initcall(trace_events_user_init);
2872