1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54 };
55
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83 };
84
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128 };
129
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198 }
199
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203 {
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
209 }
210
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214 {
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
237 }
238
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244 }
245
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 int ret;
249
250 ret = wait_for_completion_interruptible(&queue->cm_done);
251 if (ret)
252 return ret;
253 WARN_ON_ONCE(queue->cm_error > 0);
254 return queue->cm_error;
255 }
256
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259 struct nvme_rdma_device *dev = queue->device;
260 struct ib_qp_init_attr init_attr;
261 int ret;
262
263 memset(&init_attr, 0, sizeof(init_attr));
264 init_attr.event_handler = nvme_rdma_qp_event;
265 /* +1 for drain */
266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 /* +1 for drain */
268 init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 init_attr.cap.max_recv_sge = 1;
270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 init_attr.qp_type = IB_QPT_RC;
273 init_attr.send_cq = queue->ib_cq;
274 init_attr.recv_cq = queue->ib_cq;
275 if (queue->pi_support)
276 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 init_attr.qp_context = queue;
278
279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280
281 queue->qp = queue->cm_id->qp;
282 return ret;
283 }
284
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 struct request *rq, unsigned int hctx_idx)
287 {
288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289
290 kfree(req->sqe.data);
291 }
292
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 struct request *rq, unsigned int hctx_idx,
295 unsigned int numa_node)
296 {
297 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301
302 nvme_req(rq)->ctrl = &ctrl->ctrl;
303 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 if (!req->sqe.data)
305 return -ENOMEM;
306
307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 if (queue->pi_support)
309 req->metadata_sgl = (void *)nvme_req(rq) +
310 sizeof(struct nvme_rdma_request) +
311 NVME_RDMA_DATA_SGL_SIZE;
312
313 req->queue = queue;
314 nvme_req(rq)->cmd = req->sqe.data;
315
316 return 0;
317 }
318
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 unsigned int hctx_idx)
321 {
322 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324
325 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326
327 hctx->driver_data = queue;
328 return 0;
329 }
330
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
333 {
334 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 struct nvme_rdma_queue *queue = &ctrl->queues[0];
336
337 BUG_ON(hctx_idx != 0);
338
339 hctx->driver_data = queue;
340 return 0;
341 }
342
nvme_rdma_free_dev(struct kref * ref)343 static void nvme_rdma_free_dev(struct kref *ref)
344 {
345 struct nvme_rdma_device *ndev =
346 container_of(ref, struct nvme_rdma_device, ref);
347
348 mutex_lock(&device_list_mutex);
349 list_del(&ndev->entry);
350 mutex_unlock(&device_list_mutex);
351
352 ib_dealloc_pd(ndev->pd);
353 kfree(ndev);
354 }
355
nvme_rdma_dev_put(struct nvme_rdma_device * dev)356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357 {
358 kref_put(&dev->ref, nvme_rdma_free_dev);
359 }
360
nvme_rdma_dev_get(struct nvme_rdma_device * dev)361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362 {
363 return kref_get_unless_zero(&dev->ref);
364 }
365
366 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368 {
369 struct nvme_rdma_device *ndev;
370
371 mutex_lock(&device_list_mutex);
372 list_for_each_entry(ndev, &device_list, entry) {
373 if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 nvme_rdma_dev_get(ndev))
375 goto out_unlock;
376 }
377
378 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 if (!ndev)
380 goto out_err;
381
382 ndev->dev = cm_id->device;
383 kref_init(&ndev->ref);
384
385 ndev->pd = ib_alloc_pd(ndev->dev,
386 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 if (IS_ERR(ndev->pd))
388 goto out_free_dev;
389
390 if (!(ndev->dev->attrs.device_cap_flags &
391 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 dev_err(&ndev->dev->dev,
393 "Memory registrations not supported.\n");
394 goto out_free_pd;
395 }
396
397 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 ndev->dev->attrs.max_send_sge - 1);
399 list_add(&ndev->entry, &device_list);
400 out_unlock:
401 mutex_unlock(&device_list_mutex);
402 return ndev;
403
404 out_free_pd:
405 ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407 kfree(ndev);
408 out_err:
409 mutex_unlock(&device_list_mutex);
410 return NULL;
411 }
412
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414 {
415 if (nvme_rdma_poll_queue(queue))
416 ib_free_cq(queue->ib_cq);
417 else
418 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419 }
420
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422 {
423 struct nvme_rdma_device *dev;
424 struct ib_device *ibdev;
425
426 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427 return;
428
429 dev = queue->device;
430 ibdev = dev->dev;
431
432 if (queue->pi_support)
433 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435
436 /*
437 * The cm_id object might have been destroyed during RDMA connection
438 * establishment error flow to avoid getting other cma events, thus
439 * the destruction of the QP shouldn't use rdma_cm API.
440 */
441 ib_destroy_qp(queue->qp);
442 nvme_rdma_free_cq(queue);
443
444 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446
447 nvme_rdma_dev_put(dev);
448 }
449
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451 {
452 u32 max_page_list_len;
453
454 if (pi_support)
455 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 else
457 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458
459 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460 }
461
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 struct nvme_rdma_queue *queue)
464 {
465 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466
467 /*
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
470 */
471 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472
473 /* Polling queues need direct cq polling context */
474 if (nvme_rdma_poll_queue(queue))
475 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 comp_vector, IB_POLL_DIRECT);
477 else
478 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 comp_vector, IB_POLL_SOFTIRQ);
480
481 if (IS_ERR(queue->ib_cq)) {
482 ret = PTR_ERR(queue->ib_cq);
483 return ret;
484 }
485
486 return 0;
487 }
488
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490 {
491 struct ib_device *ibdev;
492 const int send_wr_factor = 3; /* MR, SEND, INV */
493 const int cq_factor = send_wr_factor + 1; /* + RECV */
494 int ret, pages_per_mr;
495
496 queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 if (!queue->device) {
498 dev_err(queue->cm_id->device->dev.parent,
499 "no client data found!\n");
500 return -ECONNREFUSED;
501 }
502 ibdev = queue->device->dev;
503
504 /* +1 for ib_drain_qp */
505 queue->cq_size = cq_factor * queue->queue_size + 1;
506
507 ret = nvme_rdma_create_cq(ibdev, queue);
508 if (ret)
509 goto out_put_dev;
510
511 ret = nvme_rdma_create_qp(queue, send_wr_factor);
512 if (ret)
513 goto out_destroy_ib_cq;
514
515 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 if (!queue->rsp_ring) {
518 ret = -ENOMEM;
519 goto out_destroy_qp;
520 }
521
522 /*
523 * Currently we don't use SG_GAPS MR's so if the first entry is
524 * misaligned we'll end up using two entries for a single data page,
525 * so one additional entry is required.
526 */
527 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529 queue->queue_size,
530 IB_MR_TYPE_MEM_REG,
531 pages_per_mr, 0);
532 if (ret) {
533 dev_err(queue->ctrl->ctrl.device,
534 "failed to initialize MR pool sized %d for QID %d\n",
535 queue->queue_size, nvme_rdma_queue_idx(queue));
536 goto out_destroy_ring;
537 }
538
539 if (queue->pi_support) {
540 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 pages_per_mr, pages_per_mr);
543 if (ret) {
544 dev_err(queue->ctrl->ctrl.device,
545 "failed to initialize PI MR pool sized %d for QID %d\n",
546 queue->queue_size, nvme_rdma_queue_idx(queue));
547 goto out_destroy_mr_pool;
548 }
549 }
550
551 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552
553 return 0;
554
555 out_destroy_mr_pool:
556 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561 rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563 nvme_rdma_free_cq(queue);
564 out_put_dev:
565 nvme_rdma_dev_put(queue->device);
566 return ret;
567 }
568
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 int idx, size_t queue_size)
571 {
572 struct nvme_rdma_queue *queue;
573 struct sockaddr *src_addr = NULL;
574 int ret;
575
576 queue = &ctrl->queues[idx];
577 mutex_init(&queue->queue_lock);
578 queue->ctrl = ctrl;
579 if (idx && ctrl->ctrl.max_integrity_segments)
580 queue->pi_support = true;
581 else
582 queue->pi_support = false;
583 init_completion(&queue->cm_done);
584
585 if (idx > 0)
586 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 else
588 queue->cmnd_capsule_len = sizeof(struct nvme_command);
589
590 queue->queue_size = queue_size;
591
592 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 RDMA_PS_TCP, IB_QPT_RC);
594 if (IS_ERR(queue->cm_id)) {
595 dev_info(ctrl->ctrl.device,
596 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 ret = PTR_ERR(queue->cm_id);
598 goto out_destroy_mutex;
599 }
600
601 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 src_addr = (struct sockaddr *)&ctrl->src_addr;
603
604 queue->cm_error = -ETIMEDOUT;
605 ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 (struct sockaddr *)&ctrl->addr,
607 NVME_RDMA_CM_TIMEOUT_MS);
608 if (ret) {
609 dev_info(ctrl->ctrl.device,
610 "rdma_resolve_addr failed (%d).\n", ret);
611 goto out_destroy_cm_id;
612 }
613
614 ret = nvme_rdma_wait_for_cm(queue);
615 if (ret) {
616 dev_info(ctrl->ctrl.device,
617 "rdma connection establishment failed (%d)\n", ret);
618 goto out_destroy_cm_id;
619 }
620
621 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622
623 return 0;
624
625 out_destroy_cm_id:
626 rdma_destroy_id(queue->cm_id);
627 nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629 mutex_destroy(&queue->queue_lock);
630 return ret;
631 }
632
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634 {
635 rdma_disconnect(queue->cm_id);
636 ib_drain_qp(queue->qp);
637 }
638
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642 return;
643
644 mutex_lock(&queue->queue_lock);
645 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646 __nvme_rdma_stop_queue(queue);
647 mutex_unlock(&queue->queue_lock);
648 }
649
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)650 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
651 {
652 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653 return;
654
655 rdma_destroy_id(queue->cm_id);
656 nvme_rdma_destroy_queue_ib(queue);
657 mutex_destroy(&queue->queue_lock);
658 }
659
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)660 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661 {
662 int i;
663
664 for (i = 1; i < ctrl->ctrl.queue_count; i++)
665 nvme_rdma_free_queue(&ctrl->queues[i]);
666 }
667
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)668 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669 {
670 int i;
671
672 for (i = 1; i < ctrl->ctrl.queue_count; i++)
673 nvme_rdma_stop_queue(&ctrl->queues[i]);
674 }
675
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)676 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
677 {
678 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679 int ret;
680
681 if (idx)
682 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
683 else
684 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
685
686 if (!ret) {
687 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
688 } else {
689 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690 __nvme_rdma_stop_queue(queue);
691 dev_info(ctrl->ctrl.device,
692 "failed to connect queue: %d ret=%d\n", idx, ret);
693 }
694 return ret;
695 }
696
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl,int first,int last)697 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698 int first, int last)
699 {
700 int i, ret = 0;
701
702 for (i = first; i < last; i++) {
703 ret = nvme_rdma_start_queue(ctrl, i);
704 if (ret)
705 goto out_stop_queues;
706 }
707
708 return 0;
709
710 out_stop_queues:
711 for (i--; i >= first; i--)
712 nvme_rdma_stop_queue(&ctrl->queues[i]);
713 return ret;
714 }
715
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)716 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
717 {
718 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719 unsigned int nr_io_queues;
720 int i, ret;
721
722 nr_io_queues = nvmf_nr_io_queues(opts);
723 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
724 if (ret)
725 return ret;
726
727 if (nr_io_queues == 0) {
728 dev_err(ctrl->ctrl.device,
729 "unable to set any I/O queues\n");
730 return -ENOMEM;
731 }
732
733 ctrl->ctrl.queue_count = nr_io_queues + 1;
734 dev_info(ctrl->ctrl.device,
735 "creating %d I/O queues.\n", nr_io_queues);
736
737 nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739 ret = nvme_rdma_alloc_queue(ctrl, i,
740 ctrl->ctrl.sqsize + 1);
741 if (ret)
742 goto out_free_queues;
743 }
744
745 return 0;
746
747 out_free_queues:
748 for (i--; i >= 1; i--)
749 nvme_rdma_free_queue(&ctrl->queues[i]);
750
751 return ret;
752 }
753
nvme_rdma_alloc_tag_set(struct nvme_ctrl * ctrl)754 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
755 {
756 unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757 NVME_RDMA_DATA_SGL_SIZE;
758
759 if (ctrl->max_integrity_segments)
760 cmd_size += sizeof(struct nvme_rdma_sgl) +
761 NVME_RDMA_METADATA_SGL_SIZE;
762
763 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
764 &nvme_rdma_mq_ops,
765 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766 cmd_size);
767 }
768
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl)769 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
770 {
771 if (ctrl->async_event_sqe.data) {
772 cancel_work_sync(&ctrl->ctrl.async_event_work);
773 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774 sizeof(struct nvme_command), DMA_TO_DEVICE);
775 ctrl->async_event_sqe.data = NULL;
776 }
777 nvme_rdma_free_queue(&ctrl->queues[0]);
778 }
779
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)780 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781 bool new)
782 {
783 bool pi_capable = false;
784 int error;
785
786 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
787 if (error)
788 return error;
789
790 ctrl->device = ctrl->queues[0].device;
791 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
792
793 /* T10-PI support */
794 if (ctrl->device->dev->attrs.kernel_cap_flags &
795 IBK_INTEGRITY_HANDOVER)
796 pi_capable = true;
797
798 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
799 pi_capable);
800
801 /*
802 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803 * It's safe, since any chage in the underlying RDMA device will issue
804 * error recovery and queue re-creation.
805 */
806 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807 sizeof(struct nvme_command), DMA_TO_DEVICE);
808 if (error)
809 goto out_free_queue;
810
811 if (new) {
812 error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814 sizeof(struct nvme_rdma_request) +
815 NVME_RDMA_DATA_SGL_SIZE);
816 if (error)
817 goto out_free_async_qe;
818
819 }
820
821 error = nvme_rdma_start_queue(ctrl, 0);
822 if (error)
823 goto out_remove_admin_tag_set;
824
825 error = nvme_enable_ctrl(&ctrl->ctrl);
826 if (error)
827 goto out_stop_queue;
828
829 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831 if (pi_capable)
832 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833 else
834 ctrl->ctrl.max_integrity_segments = 0;
835
836 nvme_unquiesce_admin_queue(&ctrl->ctrl);
837
838 error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
839 if (error)
840 goto out_quiesce_queue;
841
842 return 0;
843
844 out_quiesce_queue:
845 nvme_quiesce_admin_queue(&ctrl->ctrl);
846 blk_sync_queue(ctrl->ctrl.admin_q);
847 out_stop_queue:
848 nvme_rdma_stop_queue(&ctrl->queues[0]);
849 nvme_cancel_admin_tagset(&ctrl->ctrl);
850 out_remove_admin_tag_set:
851 if (new)
852 nvme_remove_admin_tag_set(&ctrl->ctrl);
853 out_free_async_qe:
854 if (ctrl->async_event_sqe.data) {
855 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856 sizeof(struct nvme_command), DMA_TO_DEVICE);
857 ctrl->async_event_sqe.data = NULL;
858 }
859 out_free_queue:
860 nvme_rdma_free_queue(&ctrl->queues[0]);
861 return error;
862 }
863
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
865 {
866 int ret, nr_queues;
867
868 ret = nvme_rdma_alloc_io_queues(ctrl);
869 if (ret)
870 return ret;
871
872 if (new) {
873 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
874 if (ret)
875 goto out_free_io_queues;
876 }
877
878 /*
879 * Only start IO queues for which we have allocated the tagset
880 * and limitted it to the available queues. On reconnects, the
881 * queue number might have changed.
882 */
883 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
885 if (ret)
886 goto out_cleanup_tagset;
887
888 if (!new) {
889 nvme_start_freeze(&ctrl->ctrl);
890 nvme_unquiesce_io_queues(&ctrl->ctrl);
891 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
892 /*
893 * If we timed out waiting for freeze we are likely to
894 * be stuck. Fail the controller initialization just
895 * to be safe.
896 */
897 ret = -ENODEV;
898 nvme_unfreeze(&ctrl->ctrl);
899 goto out_wait_freeze_timed_out;
900 }
901 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902 ctrl->ctrl.queue_count - 1);
903 nvme_unfreeze(&ctrl->ctrl);
904 }
905
906 /*
907 * If the number of queues has increased (reconnect case)
908 * start all new queues now.
909 */
910 ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911 ctrl->tag_set.nr_hw_queues + 1);
912 if (ret)
913 goto out_wait_freeze_timed_out;
914
915 return 0;
916
917 out_wait_freeze_timed_out:
918 nvme_quiesce_io_queues(&ctrl->ctrl);
919 nvme_sync_io_queues(&ctrl->ctrl);
920 nvme_rdma_stop_io_queues(ctrl);
921 out_cleanup_tagset:
922 nvme_cancel_tagset(&ctrl->ctrl);
923 if (new)
924 nvme_remove_io_tag_set(&ctrl->ctrl);
925 out_free_io_queues:
926 nvme_rdma_free_io_queues(ctrl);
927 return ret;
928 }
929
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)930 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931 bool remove)
932 {
933 nvme_quiesce_admin_queue(&ctrl->ctrl);
934 blk_sync_queue(ctrl->ctrl.admin_q);
935 nvme_rdma_stop_queue(&ctrl->queues[0]);
936 nvme_cancel_admin_tagset(&ctrl->ctrl);
937 if (remove) {
938 nvme_unquiesce_admin_queue(&ctrl->ctrl);
939 nvme_remove_admin_tag_set(&ctrl->ctrl);
940 }
941 nvme_rdma_destroy_admin_queue(ctrl);
942 }
943
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)944 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945 bool remove)
946 {
947 if (ctrl->ctrl.queue_count > 1) {
948 nvme_quiesce_io_queues(&ctrl->ctrl);
949 nvme_sync_io_queues(&ctrl->ctrl);
950 nvme_rdma_stop_io_queues(ctrl);
951 nvme_cancel_tagset(&ctrl->ctrl);
952 if (remove) {
953 nvme_unquiesce_io_queues(&ctrl->ctrl);
954 nvme_remove_io_tag_set(&ctrl->ctrl);
955 }
956 nvme_rdma_free_io_queues(ctrl);
957 }
958 }
959
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)960 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
961 {
962 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
963
964 flush_work(&ctrl->err_work);
965 cancel_delayed_work_sync(&ctrl->reconnect_work);
966 }
967
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)968 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
969 {
970 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
971
972 if (list_empty(&ctrl->list))
973 goto free_ctrl;
974
975 mutex_lock(&nvme_rdma_ctrl_mutex);
976 list_del(&ctrl->list);
977 mutex_unlock(&nvme_rdma_ctrl_mutex);
978
979 nvmf_free_options(nctrl->opts);
980 free_ctrl:
981 kfree(ctrl->queues);
982 kfree(ctrl);
983 }
984
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)985 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
986 {
987 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
988
989 /* If we are resetting/deleting then do nothing */
990 if (state != NVME_CTRL_CONNECTING) {
991 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
992 return;
993 }
994
995 if (nvmf_should_reconnect(&ctrl->ctrl)) {
996 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
997 ctrl->ctrl.opts->reconnect_delay);
998 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
999 ctrl->ctrl.opts->reconnect_delay * HZ);
1000 } else {
1001 nvme_delete_ctrl(&ctrl->ctrl);
1002 }
1003 }
1004
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1005 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1006 {
1007 int ret;
1008 bool changed;
1009
1010 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1011 if (ret)
1012 return ret;
1013
1014 if (ctrl->ctrl.icdoff) {
1015 ret = -EOPNOTSUPP;
1016 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1017 goto destroy_admin;
1018 }
1019
1020 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1021 ret = -EOPNOTSUPP;
1022 dev_err(ctrl->ctrl.device,
1023 "Mandatory keyed sgls are not supported!\n");
1024 goto destroy_admin;
1025 }
1026
1027 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1028 dev_warn(ctrl->ctrl.device,
1029 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1030 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1031 }
1032
1033 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1034 dev_warn(ctrl->ctrl.device,
1035 "ctrl sqsize %u > max queue size %u, clamping down\n",
1036 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1037 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1038 }
1039
1040 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1041 dev_warn(ctrl->ctrl.device,
1042 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1043 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1044 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1045 }
1046
1047 if (ctrl->ctrl.sgls & (1 << 20))
1048 ctrl->use_inline_data = true;
1049
1050 if (ctrl->ctrl.queue_count > 1) {
1051 ret = nvme_rdma_configure_io_queues(ctrl, new);
1052 if (ret)
1053 goto destroy_admin;
1054 }
1055
1056 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1057 if (!changed) {
1058 /*
1059 * state change failure is ok if we started ctrl delete,
1060 * unless we're during creation of a new controller to
1061 * avoid races with teardown flow.
1062 */
1063 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1064
1065 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1066 state != NVME_CTRL_DELETING_NOIO);
1067 WARN_ON_ONCE(new);
1068 ret = -EINVAL;
1069 goto destroy_io;
1070 }
1071
1072 nvme_start_ctrl(&ctrl->ctrl);
1073 return 0;
1074
1075 destroy_io:
1076 if (ctrl->ctrl.queue_count > 1) {
1077 nvme_quiesce_io_queues(&ctrl->ctrl);
1078 nvme_sync_io_queues(&ctrl->ctrl);
1079 nvme_rdma_stop_io_queues(ctrl);
1080 nvme_cancel_tagset(&ctrl->ctrl);
1081 if (new)
1082 nvme_remove_io_tag_set(&ctrl->ctrl);
1083 nvme_rdma_free_io_queues(ctrl);
1084 }
1085 destroy_admin:
1086 nvme_rdma_teardown_admin_queue(ctrl, new);
1087 return ret;
1088 }
1089
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1090 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1091 {
1092 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1093 struct nvme_rdma_ctrl, reconnect_work);
1094
1095 ++ctrl->ctrl.nr_reconnects;
1096
1097 if (nvme_rdma_setup_ctrl(ctrl, false))
1098 goto requeue;
1099
1100 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1101 ctrl->ctrl.nr_reconnects);
1102
1103 ctrl->ctrl.nr_reconnects = 0;
1104
1105 return;
1106
1107 requeue:
1108 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1109 ctrl->ctrl.nr_reconnects);
1110 nvme_rdma_reconnect_or_remove(ctrl);
1111 }
1112
nvme_rdma_error_recovery_work(struct work_struct * work)1113 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1114 {
1115 struct nvme_rdma_ctrl *ctrl = container_of(work,
1116 struct nvme_rdma_ctrl, err_work);
1117
1118 nvme_stop_keep_alive(&ctrl->ctrl);
1119 flush_work(&ctrl->ctrl.async_event_work);
1120 nvme_rdma_teardown_io_queues(ctrl, false);
1121 nvme_unquiesce_io_queues(&ctrl->ctrl);
1122 nvme_rdma_teardown_admin_queue(ctrl, false);
1123 nvme_unquiesce_admin_queue(&ctrl->ctrl);
1124 nvme_auth_stop(&ctrl->ctrl);
1125
1126 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1127 /* state change failure is ok if we started ctrl delete */
1128 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1129
1130 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1131 state != NVME_CTRL_DELETING_NOIO);
1132 return;
1133 }
1134
1135 nvme_rdma_reconnect_or_remove(ctrl);
1136 }
1137
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1138 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1139 {
1140 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1141 return;
1142
1143 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1144 queue_work(nvme_reset_wq, &ctrl->err_work);
1145 }
1146
nvme_rdma_end_request(struct nvme_rdma_request * req)1147 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1148 {
1149 struct request *rq = blk_mq_rq_from_pdu(req);
1150
1151 if (!refcount_dec_and_test(&req->ref))
1152 return;
1153 if (!nvme_try_complete_req(rq, req->status, req->result))
1154 nvme_rdma_complete_rq(rq);
1155 }
1156
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1157 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1158 const char *op)
1159 {
1160 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1161 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1162
1163 if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
1164 dev_info(ctrl->ctrl.device,
1165 "%s for CQE 0x%p failed with status %s (%d)\n",
1166 op, wc->wr_cqe,
1167 ib_wc_status_msg(wc->status), wc->status);
1168 nvme_rdma_error_recovery(ctrl);
1169 }
1170
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1171 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1172 {
1173 if (unlikely(wc->status != IB_WC_SUCCESS))
1174 nvme_rdma_wr_error(cq, wc, "MEMREG");
1175 }
1176
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1177 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1178 {
1179 struct nvme_rdma_request *req =
1180 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1181
1182 if (unlikely(wc->status != IB_WC_SUCCESS))
1183 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1184 else
1185 nvme_rdma_end_request(req);
1186 }
1187
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1188 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1189 struct nvme_rdma_request *req)
1190 {
1191 struct ib_send_wr wr = {
1192 .opcode = IB_WR_LOCAL_INV,
1193 .next = NULL,
1194 .num_sge = 0,
1195 .send_flags = IB_SEND_SIGNALED,
1196 .ex.invalidate_rkey = req->mr->rkey,
1197 };
1198
1199 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1200 wr.wr_cqe = &req->reg_cqe;
1201
1202 return ib_post_send(queue->qp, &wr, NULL);
1203 }
1204
nvme_rdma_dma_unmap_req(struct ib_device * ibdev,struct request * rq)1205 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1206 {
1207 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1208
1209 if (blk_integrity_rq(rq)) {
1210 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1211 req->metadata_sgl->nents, rq_dma_dir(rq));
1212 sg_free_table_chained(&req->metadata_sgl->sg_table,
1213 NVME_INLINE_METADATA_SG_CNT);
1214 }
1215
1216 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1217 rq_dma_dir(rq));
1218 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1219 }
1220
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1221 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1222 struct request *rq)
1223 {
1224 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1225 struct nvme_rdma_device *dev = queue->device;
1226 struct ib_device *ibdev = dev->dev;
1227 struct list_head *pool = &queue->qp->rdma_mrs;
1228
1229 if (!blk_rq_nr_phys_segments(rq))
1230 return;
1231
1232 if (req->use_sig_mr)
1233 pool = &queue->qp->sig_mrs;
1234
1235 if (req->mr) {
1236 ib_mr_pool_put(queue->qp, pool, req->mr);
1237 req->mr = NULL;
1238 }
1239
1240 nvme_rdma_dma_unmap_req(ibdev, rq);
1241 }
1242
nvme_rdma_set_sg_null(struct nvme_command * c)1243 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1244 {
1245 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1246
1247 sg->addr = 0;
1248 put_unaligned_le24(0, sg->length);
1249 put_unaligned_le32(0, sg->key);
1250 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1251 return 0;
1252 }
1253
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1254 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1255 struct nvme_rdma_request *req, struct nvme_command *c,
1256 int count)
1257 {
1258 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1259 struct ib_sge *sge = &req->sge[1];
1260 struct scatterlist *sgl;
1261 u32 len = 0;
1262 int i;
1263
1264 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1265 sge->addr = sg_dma_address(sgl);
1266 sge->length = sg_dma_len(sgl);
1267 sge->lkey = queue->device->pd->local_dma_lkey;
1268 len += sge->length;
1269 sge++;
1270 }
1271
1272 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1273 sg->length = cpu_to_le32(len);
1274 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1275
1276 req->num_sge += count;
1277 return 0;
1278 }
1279
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1280 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1281 struct nvme_rdma_request *req, struct nvme_command *c)
1282 {
1283 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1284
1285 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1286 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1287 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1288 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1289 return 0;
1290 }
1291
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1292 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1293 struct nvme_rdma_request *req, struct nvme_command *c,
1294 int count)
1295 {
1296 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1297 int nr;
1298
1299 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1300 if (WARN_ON_ONCE(!req->mr))
1301 return -EAGAIN;
1302
1303 /*
1304 * Align the MR to a 4K page size to match the ctrl page size and
1305 * the block virtual boundary.
1306 */
1307 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1308 SZ_4K);
1309 if (unlikely(nr < count)) {
1310 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1311 req->mr = NULL;
1312 if (nr < 0)
1313 return nr;
1314 return -EINVAL;
1315 }
1316
1317 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1318
1319 req->reg_cqe.done = nvme_rdma_memreg_done;
1320 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1321 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1322 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1323 req->reg_wr.wr.num_sge = 0;
1324 req->reg_wr.mr = req->mr;
1325 req->reg_wr.key = req->mr->rkey;
1326 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1327 IB_ACCESS_REMOTE_READ |
1328 IB_ACCESS_REMOTE_WRITE;
1329
1330 sg->addr = cpu_to_le64(req->mr->iova);
1331 put_unaligned_le24(req->mr->length, sg->length);
1332 put_unaligned_le32(req->mr->rkey, sg->key);
1333 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1334 NVME_SGL_FMT_INVALIDATE;
1335
1336 return 0;
1337 }
1338
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1339 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1340 struct nvme_command *cmd, struct ib_sig_domain *domain,
1341 u16 control, u8 pi_type)
1342 {
1343 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1344 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1345 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1346 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1347 if (control & NVME_RW_PRINFO_PRCHK_REF)
1348 domain->sig.dif.ref_remap = true;
1349
1350 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1351 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1352 domain->sig.dif.app_escape = true;
1353 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1354 domain->sig.dif.ref_escape = true;
1355 }
1356
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1357 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1358 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1359 u8 pi_type)
1360 {
1361 u16 control = le16_to_cpu(cmd->rw.control);
1362
1363 memset(sig_attrs, 0, sizeof(*sig_attrs));
1364 if (control & NVME_RW_PRINFO_PRACT) {
1365 /* for WRITE_INSERT/READ_STRIP no memory domain */
1366 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1367 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1368 pi_type);
1369 /* Clear the PRACT bit since HCA will generate/verify the PI */
1370 control &= ~NVME_RW_PRINFO_PRACT;
1371 cmd->rw.control = cpu_to_le16(control);
1372 } else {
1373 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1374 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1375 pi_type);
1376 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1377 pi_type);
1378 }
1379 }
1380
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1381 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1382 {
1383 *mask = 0;
1384 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1385 *mask |= IB_SIG_CHECK_REFTAG;
1386 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1387 *mask |= IB_SIG_CHECK_GUARD;
1388 }
1389
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1390 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1391 {
1392 if (unlikely(wc->status != IB_WC_SUCCESS))
1393 nvme_rdma_wr_error(cq, wc, "SIG");
1394 }
1395
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1396 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1397 struct nvme_rdma_request *req, struct nvme_command *c,
1398 int count, int pi_count)
1399 {
1400 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1401 struct ib_reg_wr *wr = &req->reg_wr;
1402 struct request *rq = blk_mq_rq_from_pdu(req);
1403 struct nvme_ns *ns = rq->q->queuedata;
1404 struct bio *bio = rq->bio;
1405 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1406 int nr;
1407
1408 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1409 if (WARN_ON_ONCE(!req->mr))
1410 return -EAGAIN;
1411
1412 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1413 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1414 SZ_4K);
1415 if (unlikely(nr))
1416 goto mr_put;
1417
1418 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1419 req->mr->sig_attrs, ns->pi_type);
1420 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1421
1422 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1423
1424 req->reg_cqe.done = nvme_rdma_sig_done;
1425 memset(wr, 0, sizeof(*wr));
1426 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1427 wr->wr.wr_cqe = &req->reg_cqe;
1428 wr->wr.num_sge = 0;
1429 wr->wr.send_flags = 0;
1430 wr->mr = req->mr;
1431 wr->key = req->mr->rkey;
1432 wr->access = IB_ACCESS_LOCAL_WRITE |
1433 IB_ACCESS_REMOTE_READ |
1434 IB_ACCESS_REMOTE_WRITE;
1435
1436 sg->addr = cpu_to_le64(req->mr->iova);
1437 put_unaligned_le24(req->mr->length, sg->length);
1438 put_unaligned_le32(req->mr->rkey, sg->key);
1439 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1440
1441 return 0;
1442
1443 mr_put:
1444 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1445 req->mr = NULL;
1446 if (nr < 0)
1447 return nr;
1448 return -EINVAL;
1449 }
1450
nvme_rdma_dma_map_req(struct ib_device * ibdev,struct request * rq,int * count,int * pi_count)1451 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1452 int *count, int *pi_count)
1453 {
1454 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1455 int ret;
1456
1457 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1458 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1459 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1460 NVME_INLINE_SG_CNT);
1461 if (ret)
1462 return -ENOMEM;
1463
1464 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1465 req->data_sgl.sg_table.sgl);
1466
1467 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1468 req->data_sgl.nents, rq_dma_dir(rq));
1469 if (unlikely(*count <= 0)) {
1470 ret = -EIO;
1471 goto out_free_table;
1472 }
1473
1474 if (blk_integrity_rq(rq)) {
1475 req->metadata_sgl->sg_table.sgl =
1476 (struct scatterlist *)(req->metadata_sgl + 1);
1477 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1478 blk_rq_count_integrity_sg(rq->q, rq->bio),
1479 req->metadata_sgl->sg_table.sgl,
1480 NVME_INLINE_METADATA_SG_CNT);
1481 if (unlikely(ret)) {
1482 ret = -ENOMEM;
1483 goto out_unmap_sg;
1484 }
1485
1486 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1487 rq->bio, req->metadata_sgl->sg_table.sgl);
1488 *pi_count = ib_dma_map_sg(ibdev,
1489 req->metadata_sgl->sg_table.sgl,
1490 req->metadata_sgl->nents,
1491 rq_dma_dir(rq));
1492 if (unlikely(*pi_count <= 0)) {
1493 ret = -EIO;
1494 goto out_free_pi_table;
1495 }
1496 }
1497
1498 return 0;
1499
1500 out_free_pi_table:
1501 sg_free_table_chained(&req->metadata_sgl->sg_table,
1502 NVME_INLINE_METADATA_SG_CNT);
1503 out_unmap_sg:
1504 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1505 rq_dma_dir(rq));
1506 out_free_table:
1507 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1508 return ret;
1509 }
1510
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1511 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1512 struct request *rq, struct nvme_command *c)
1513 {
1514 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1515 struct nvme_rdma_device *dev = queue->device;
1516 struct ib_device *ibdev = dev->dev;
1517 int pi_count = 0;
1518 int count, ret;
1519
1520 req->num_sge = 1;
1521 refcount_set(&req->ref, 2); /* send and recv completions */
1522
1523 c->common.flags |= NVME_CMD_SGL_METABUF;
1524
1525 if (!blk_rq_nr_phys_segments(rq))
1526 return nvme_rdma_set_sg_null(c);
1527
1528 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1529 if (unlikely(ret))
1530 return ret;
1531
1532 if (req->use_sig_mr) {
1533 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1534 goto out;
1535 }
1536
1537 if (count <= dev->num_inline_segments) {
1538 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1539 queue->ctrl->use_inline_data &&
1540 blk_rq_payload_bytes(rq) <=
1541 nvme_rdma_inline_data_size(queue)) {
1542 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1543 goto out;
1544 }
1545
1546 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1547 ret = nvme_rdma_map_sg_single(queue, req, c);
1548 goto out;
1549 }
1550 }
1551
1552 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1553 out:
1554 if (unlikely(ret))
1555 goto out_dma_unmap_req;
1556
1557 return 0;
1558
1559 out_dma_unmap_req:
1560 nvme_rdma_dma_unmap_req(ibdev, rq);
1561 return ret;
1562 }
1563
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1564 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1565 {
1566 struct nvme_rdma_qe *qe =
1567 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1568 struct nvme_rdma_request *req =
1569 container_of(qe, struct nvme_rdma_request, sqe);
1570
1571 if (unlikely(wc->status != IB_WC_SUCCESS))
1572 nvme_rdma_wr_error(cq, wc, "SEND");
1573 else
1574 nvme_rdma_end_request(req);
1575 }
1576
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1577 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1578 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1579 struct ib_send_wr *first)
1580 {
1581 struct ib_send_wr wr;
1582 int ret;
1583
1584 sge->addr = qe->dma;
1585 sge->length = sizeof(struct nvme_command);
1586 sge->lkey = queue->device->pd->local_dma_lkey;
1587
1588 wr.next = NULL;
1589 wr.wr_cqe = &qe->cqe;
1590 wr.sg_list = sge;
1591 wr.num_sge = num_sge;
1592 wr.opcode = IB_WR_SEND;
1593 wr.send_flags = IB_SEND_SIGNALED;
1594
1595 if (first)
1596 first->next = ≀
1597 else
1598 first = ≀
1599
1600 ret = ib_post_send(queue->qp, first, NULL);
1601 if (unlikely(ret)) {
1602 dev_err(queue->ctrl->ctrl.device,
1603 "%s failed with error code %d\n", __func__, ret);
1604 }
1605 return ret;
1606 }
1607
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1608 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1609 struct nvme_rdma_qe *qe)
1610 {
1611 struct ib_recv_wr wr;
1612 struct ib_sge list;
1613 int ret;
1614
1615 list.addr = qe->dma;
1616 list.length = sizeof(struct nvme_completion);
1617 list.lkey = queue->device->pd->local_dma_lkey;
1618
1619 qe->cqe.done = nvme_rdma_recv_done;
1620
1621 wr.next = NULL;
1622 wr.wr_cqe = &qe->cqe;
1623 wr.sg_list = &list;
1624 wr.num_sge = 1;
1625
1626 ret = ib_post_recv(queue->qp, &wr, NULL);
1627 if (unlikely(ret)) {
1628 dev_err(queue->ctrl->ctrl.device,
1629 "%s failed with error code %d\n", __func__, ret);
1630 }
1631 return ret;
1632 }
1633
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1634 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1635 {
1636 u32 queue_idx = nvme_rdma_queue_idx(queue);
1637
1638 if (queue_idx == 0)
1639 return queue->ctrl->admin_tag_set.tags[queue_idx];
1640 return queue->ctrl->tag_set.tags[queue_idx - 1];
1641 }
1642
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1643 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1644 {
1645 if (unlikely(wc->status != IB_WC_SUCCESS))
1646 nvme_rdma_wr_error(cq, wc, "ASYNC");
1647 }
1648
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1649 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1650 {
1651 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1652 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1653 struct ib_device *dev = queue->device->dev;
1654 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1655 struct nvme_command *cmd = sqe->data;
1656 struct ib_sge sge;
1657 int ret;
1658
1659 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1660
1661 memset(cmd, 0, sizeof(*cmd));
1662 cmd->common.opcode = nvme_admin_async_event;
1663 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1664 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1665 nvme_rdma_set_sg_null(cmd);
1666
1667 sqe->cqe.done = nvme_rdma_async_done;
1668
1669 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1670 DMA_TO_DEVICE);
1671
1672 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1673 WARN_ON_ONCE(ret);
1674 }
1675
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1676 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1677 struct nvme_completion *cqe, struct ib_wc *wc)
1678 {
1679 struct request *rq;
1680 struct nvme_rdma_request *req;
1681
1682 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1683 if (!rq) {
1684 dev_err(queue->ctrl->ctrl.device,
1685 "got bad command_id %#x on QP %#x\n",
1686 cqe->command_id, queue->qp->qp_num);
1687 nvme_rdma_error_recovery(queue->ctrl);
1688 return;
1689 }
1690 req = blk_mq_rq_to_pdu(rq);
1691
1692 req->status = cqe->status;
1693 req->result = cqe->result;
1694
1695 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1696 if (unlikely(!req->mr ||
1697 wc->ex.invalidate_rkey != req->mr->rkey)) {
1698 dev_err(queue->ctrl->ctrl.device,
1699 "Bogus remote invalidation for rkey %#x\n",
1700 req->mr ? req->mr->rkey : 0);
1701 nvme_rdma_error_recovery(queue->ctrl);
1702 }
1703 } else if (req->mr) {
1704 int ret;
1705
1706 ret = nvme_rdma_inv_rkey(queue, req);
1707 if (unlikely(ret < 0)) {
1708 dev_err(queue->ctrl->ctrl.device,
1709 "Queueing INV WR for rkey %#x failed (%d)\n",
1710 req->mr->rkey, ret);
1711 nvme_rdma_error_recovery(queue->ctrl);
1712 }
1713 /* the local invalidation completion will end the request */
1714 return;
1715 }
1716
1717 nvme_rdma_end_request(req);
1718 }
1719
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1720 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1721 {
1722 struct nvme_rdma_qe *qe =
1723 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1724 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1725 struct ib_device *ibdev = queue->device->dev;
1726 struct nvme_completion *cqe = qe->data;
1727 const size_t len = sizeof(struct nvme_completion);
1728
1729 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1730 nvme_rdma_wr_error(cq, wc, "RECV");
1731 return;
1732 }
1733
1734 /* sanity checking for received data length */
1735 if (unlikely(wc->byte_len < len)) {
1736 dev_err(queue->ctrl->ctrl.device,
1737 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1738 nvme_rdma_error_recovery(queue->ctrl);
1739 return;
1740 }
1741
1742 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1743 /*
1744 * AEN requests are special as they don't time out and can
1745 * survive any kind of queue freeze and often don't respond to
1746 * aborts. We don't even bother to allocate a struct request
1747 * for them but rather special case them here.
1748 */
1749 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1750 cqe->command_id)))
1751 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1752 &cqe->result);
1753 else
1754 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1755 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1756
1757 nvme_rdma_post_recv(queue, qe);
1758 }
1759
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1760 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1761 {
1762 int ret, i;
1763
1764 for (i = 0; i < queue->queue_size; i++) {
1765 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1766 if (ret)
1767 return ret;
1768 }
1769
1770 return 0;
1771 }
1772
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1773 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1774 struct rdma_cm_event *ev)
1775 {
1776 struct rdma_cm_id *cm_id = queue->cm_id;
1777 int status = ev->status;
1778 const char *rej_msg;
1779 const struct nvme_rdma_cm_rej *rej_data;
1780 u8 rej_data_len;
1781
1782 rej_msg = rdma_reject_msg(cm_id, status);
1783 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1784
1785 if (rej_data && rej_data_len >= sizeof(u16)) {
1786 u16 sts = le16_to_cpu(rej_data->sts);
1787
1788 dev_err(queue->ctrl->ctrl.device,
1789 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1790 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1791 } else {
1792 dev_err(queue->ctrl->ctrl.device,
1793 "Connect rejected: status %d (%s).\n", status, rej_msg);
1794 }
1795
1796 return -ECONNRESET;
1797 }
1798
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1799 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1800 {
1801 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1802 int ret;
1803
1804 ret = nvme_rdma_create_queue_ib(queue);
1805 if (ret)
1806 return ret;
1807
1808 if (ctrl->opts->tos >= 0)
1809 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1810 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1811 if (ret) {
1812 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1813 queue->cm_error);
1814 goto out_destroy_queue;
1815 }
1816
1817 return 0;
1818
1819 out_destroy_queue:
1820 nvme_rdma_destroy_queue_ib(queue);
1821 return ret;
1822 }
1823
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1824 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1825 {
1826 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1827 struct rdma_conn_param param = { };
1828 struct nvme_rdma_cm_req priv = { };
1829 int ret;
1830
1831 param.qp_num = queue->qp->qp_num;
1832 param.flow_control = 1;
1833
1834 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1835 /* maximum retry count */
1836 param.retry_count = 7;
1837 param.rnr_retry_count = 7;
1838 param.private_data = &priv;
1839 param.private_data_len = sizeof(priv);
1840
1841 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1842 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1843 /*
1844 * set the admin queue depth to the minimum size
1845 * specified by the Fabrics standard.
1846 */
1847 if (priv.qid == 0) {
1848 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1849 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1850 } else {
1851 /*
1852 * current interpretation of the fabrics spec
1853 * is at minimum you make hrqsize sqsize+1, or a
1854 * 1's based representation of sqsize.
1855 */
1856 priv.hrqsize = cpu_to_le16(queue->queue_size);
1857 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1858 }
1859
1860 ret = rdma_connect_locked(queue->cm_id, ¶m);
1861 if (ret) {
1862 dev_err(ctrl->ctrl.device,
1863 "rdma_connect_locked failed (%d).\n", ret);
1864 return ret;
1865 }
1866
1867 return 0;
1868 }
1869
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1870 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1871 struct rdma_cm_event *ev)
1872 {
1873 struct nvme_rdma_queue *queue = cm_id->context;
1874 int cm_error = 0;
1875
1876 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1877 rdma_event_msg(ev->event), ev->event,
1878 ev->status, cm_id);
1879
1880 switch (ev->event) {
1881 case RDMA_CM_EVENT_ADDR_RESOLVED:
1882 cm_error = nvme_rdma_addr_resolved(queue);
1883 break;
1884 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1885 cm_error = nvme_rdma_route_resolved(queue);
1886 break;
1887 case RDMA_CM_EVENT_ESTABLISHED:
1888 queue->cm_error = nvme_rdma_conn_established(queue);
1889 /* complete cm_done regardless of success/failure */
1890 complete(&queue->cm_done);
1891 return 0;
1892 case RDMA_CM_EVENT_REJECTED:
1893 cm_error = nvme_rdma_conn_rejected(queue, ev);
1894 break;
1895 case RDMA_CM_EVENT_ROUTE_ERROR:
1896 case RDMA_CM_EVENT_CONNECT_ERROR:
1897 case RDMA_CM_EVENT_UNREACHABLE:
1898 case RDMA_CM_EVENT_ADDR_ERROR:
1899 dev_dbg(queue->ctrl->ctrl.device,
1900 "CM error event %d\n", ev->event);
1901 cm_error = -ECONNRESET;
1902 break;
1903 case RDMA_CM_EVENT_DISCONNECTED:
1904 case RDMA_CM_EVENT_ADDR_CHANGE:
1905 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1906 dev_dbg(queue->ctrl->ctrl.device,
1907 "disconnect received - connection closed\n");
1908 nvme_rdma_error_recovery(queue->ctrl);
1909 break;
1910 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1911 /* device removal is handled via the ib_client API */
1912 break;
1913 default:
1914 dev_err(queue->ctrl->ctrl.device,
1915 "Unexpected RDMA CM event (%d)\n", ev->event);
1916 nvme_rdma_error_recovery(queue->ctrl);
1917 break;
1918 }
1919
1920 if (cm_error) {
1921 queue->cm_error = cm_error;
1922 complete(&queue->cm_done);
1923 }
1924
1925 return 0;
1926 }
1927
nvme_rdma_complete_timed_out(struct request * rq)1928 static void nvme_rdma_complete_timed_out(struct request *rq)
1929 {
1930 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1931 struct nvme_rdma_queue *queue = req->queue;
1932
1933 nvme_rdma_stop_queue(queue);
1934 nvmf_complete_timed_out_request(rq);
1935 }
1936
nvme_rdma_timeout(struct request * rq)1937 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1938 {
1939 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1940 struct nvme_rdma_queue *queue = req->queue;
1941 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1942
1943 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1944 rq->tag, nvme_rdma_queue_idx(queue));
1945
1946 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
1947 /*
1948 * If we are resetting, connecting or deleting we should
1949 * complete immediately because we may block controller
1950 * teardown or setup sequence
1951 * - ctrl disable/shutdown fabrics requests
1952 * - connect requests
1953 * - initialization admin requests
1954 * - I/O requests that entered after unquiescing and
1955 * the controller stopped responding
1956 *
1957 * All other requests should be cancelled by the error
1958 * recovery work, so it's fine that we fail it here.
1959 */
1960 nvme_rdma_complete_timed_out(rq);
1961 return BLK_EH_DONE;
1962 }
1963
1964 /*
1965 * LIVE state should trigger the normal error recovery which will
1966 * handle completing this request.
1967 */
1968 nvme_rdma_error_recovery(ctrl);
1969 return BLK_EH_RESET_TIMER;
1970 }
1971
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1972 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1973 const struct blk_mq_queue_data *bd)
1974 {
1975 struct nvme_ns *ns = hctx->queue->queuedata;
1976 struct nvme_rdma_queue *queue = hctx->driver_data;
1977 struct request *rq = bd->rq;
1978 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1979 struct nvme_rdma_qe *sqe = &req->sqe;
1980 struct nvme_command *c = nvme_req(rq)->cmd;
1981 struct ib_device *dev;
1982 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1983 blk_status_t ret;
1984 int err;
1985
1986 WARN_ON_ONCE(rq->tag < 0);
1987
1988 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1989 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1990
1991 dev = queue->device->dev;
1992
1993 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1994 sizeof(struct nvme_command),
1995 DMA_TO_DEVICE);
1996 err = ib_dma_mapping_error(dev, req->sqe.dma);
1997 if (unlikely(err))
1998 return BLK_STS_RESOURCE;
1999
2000 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2001 sizeof(struct nvme_command), DMA_TO_DEVICE);
2002
2003 ret = nvme_setup_cmd(ns, rq);
2004 if (ret)
2005 goto unmap_qe;
2006
2007 nvme_start_request(rq);
2008
2009 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2010 queue->pi_support &&
2011 (c->common.opcode == nvme_cmd_write ||
2012 c->common.opcode == nvme_cmd_read) &&
2013 nvme_ns_has_pi(ns))
2014 req->use_sig_mr = true;
2015 else
2016 req->use_sig_mr = false;
2017
2018 err = nvme_rdma_map_data(queue, rq, c);
2019 if (unlikely(err < 0)) {
2020 dev_err(queue->ctrl->ctrl.device,
2021 "Failed to map data (%d)\n", err);
2022 goto err;
2023 }
2024
2025 sqe->cqe.done = nvme_rdma_send_done;
2026
2027 ib_dma_sync_single_for_device(dev, sqe->dma,
2028 sizeof(struct nvme_command), DMA_TO_DEVICE);
2029
2030 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2031 req->mr ? &req->reg_wr.wr : NULL);
2032 if (unlikely(err))
2033 goto err_unmap;
2034
2035 return BLK_STS_OK;
2036
2037 err_unmap:
2038 nvme_rdma_unmap_data(queue, rq);
2039 err:
2040 if (err == -EIO)
2041 ret = nvme_host_path_error(rq);
2042 else if (err == -ENOMEM || err == -EAGAIN)
2043 ret = BLK_STS_RESOURCE;
2044 else
2045 ret = BLK_STS_IOERR;
2046 nvme_cleanup_cmd(rq);
2047 unmap_qe:
2048 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2049 DMA_TO_DEVICE);
2050 return ret;
2051 }
2052
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2053 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2054 {
2055 struct nvme_rdma_queue *queue = hctx->driver_data;
2056
2057 return ib_process_cq_direct(queue->ib_cq, -1);
2058 }
2059
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2060 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2061 {
2062 struct request *rq = blk_mq_rq_from_pdu(req);
2063 struct ib_mr_status mr_status;
2064 int ret;
2065
2066 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2067 if (ret) {
2068 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2069 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2070 return;
2071 }
2072
2073 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2074 switch (mr_status.sig_err.err_type) {
2075 case IB_SIG_BAD_GUARD:
2076 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2077 break;
2078 case IB_SIG_BAD_REFTAG:
2079 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2080 break;
2081 case IB_SIG_BAD_APPTAG:
2082 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2083 break;
2084 }
2085 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2086 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2087 mr_status.sig_err.actual);
2088 }
2089 }
2090
nvme_rdma_complete_rq(struct request * rq)2091 static void nvme_rdma_complete_rq(struct request *rq)
2092 {
2093 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2094 struct nvme_rdma_queue *queue = req->queue;
2095 struct ib_device *ibdev = queue->device->dev;
2096
2097 if (req->use_sig_mr)
2098 nvme_rdma_check_pi_status(req);
2099
2100 nvme_rdma_unmap_data(queue, rq);
2101 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2102 DMA_TO_DEVICE);
2103 nvme_complete_rq(rq);
2104 }
2105
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2106 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2107 {
2108 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2109
2110 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2111 }
2112
2113 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2114 .queue_rq = nvme_rdma_queue_rq,
2115 .complete = nvme_rdma_complete_rq,
2116 .init_request = nvme_rdma_init_request,
2117 .exit_request = nvme_rdma_exit_request,
2118 .init_hctx = nvme_rdma_init_hctx,
2119 .timeout = nvme_rdma_timeout,
2120 .map_queues = nvme_rdma_map_queues,
2121 .poll = nvme_rdma_poll,
2122 };
2123
2124 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2125 .queue_rq = nvme_rdma_queue_rq,
2126 .complete = nvme_rdma_complete_rq,
2127 .init_request = nvme_rdma_init_request,
2128 .exit_request = nvme_rdma_exit_request,
2129 .init_hctx = nvme_rdma_init_admin_hctx,
2130 .timeout = nvme_rdma_timeout,
2131 };
2132
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2133 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2134 {
2135 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2136 nvme_quiesce_admin_queue(&ctrl->ctrl);
2137 nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2138 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2139 }
2140
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2141 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2142 {
2143 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2144 }
2145
nvme_rdma_reset_ctrl_work(struct work_struct * work)2146 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2147 {
2148 struct nvme_rdma_ctrl *ctrl =
2149 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2150
2151 nvme_stop_ctrl(&ctrl->ctrl);
2152 nvme_rdma_shutdown_ctrl(ctrl, false);
2153
2154 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2155 /* state change failure should never happen */
2156 WARN_ON_ONCE(1);
2157 return;
2158 }
2159
2160 if (nvme_rdma_setup_ctrl(ctrl, false))
2161 goto out_fail;
2162
2163 return;
2164
2165 out_fail:
2166 ++ctrl->ctrl.nr_reconnects;
2167 nvme_rdma_reconnect_or_remove(ctrl);
2168 }
2169
2170 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2171 .name = "rdma",
2172 .module = THIS_MODULE,
2173 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2174 .reg_read32 = nvmf_reg_read32,
2175 .reg_read64 = nvmf_reg_read64,
2176 .reg_write32 = nvmf_reg_write32,
2177 .free_ctrl = nvme_rdma_free_ctrl,
2178 .submit_async_event = nvme_rdma_submit_async_event,
2179 .delete_ctrl = nvme_rdma_delete_ctrl,
2180 .get_address = nvmf_get_address,
2181 .stop_ctrl = nvme_rdma_stop_ctrl,
2182 };
2183
2184 /*
2185 * Fails a connection request if it matches an existing controller
2186 * (association) with the same tuple:
2187 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2188 *
2189 * if local address is not specified in the request, it will match an
2190 * existing controller with all the other parameters the same and no
2191 * local port address specified as well.
2192 *
2193 * The ports don't need to be compared as they are intrinsically
2194 * already matched by the port pointers supplied.
2195 */
2196 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2197 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2198 {
2199 struct nvme_rdma_ctrl *ctrl;
2200 bool found = false;
2201
2202 mutex_lock(&nvme_rdma_ctrl_mutex);
2203 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2204 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2205 if (found)
2206 break;
2207 }
2208 mutex_unlock(&nvme_rdma_ctrl_mutex);
2209
2210 return found;
2211 }
2212
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2213 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2214 struct nvmf_ctrl_options *opts)
2215 {
2216 struct nvme_rdma_ctrl *ctrl;
2217 int ret;
2218 bool changed;
2219
2220 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2221 if (!ctrl)
2222 return ERR_PTR(-ENOMEM);
2223 ctrl->ctrl.opts = opts;
2224 INIT_LIST_HEAD(&ctrl->list);
2225
2226 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2227 opts->trsvcid =
2228 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2229 if (!opts->trsvcid) {
2230 ret = -ENOMEM;
2231 goto out_free_ctrl;
2232 }
2233 opts->mask |= NVMF_OPT_TRSVCID;
2234 }
2235
2236 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2237 opts->traddr, opts->trsvcid, &ctrl->addr);
2238 if (ret) {
2239 pr_err("malformed address passed: %s:%s\n",
2240 opts->traddr, opts->trsvcid);
2241 goto out_free_ctrl;
2242 }
2243
2244 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2245 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2246 opts->host_traddr, NULL, &ctrl->src_addr);
2247 if (ret) {
2248 pr_err("malformed src address passed: %s\n",
2249 opts->host_traddr);
2250 goto out_free_ctrl;
2251 }
2252 }
2253
2254 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2255 ret = -EALREADY;
2256 goto out_free_ctrl;
2257 }
2258
2259 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2260 nvme_rdma_reconnect_ctrl_work);
2261 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2262 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2263
2264 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2265 opts->nr_poll_queues + 1;
2266 ctrl->ctrl.sqsize = opts->queue_size - 1;
2267 ctrl->ctrl.kato = opts->kato;
2268
2269 ret = -ENOMEM;
2270 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2271 GFP_KERNEL);
2272 if (!ctrl->queues)
2273 goto out_free_ctrl;
2274
2275 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2276 0 /* no quirks, we're perfect! */);
2277 if (ret)
2278 goto out_kfree_queues;
2279
2280 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2281 WARN_ON_ONCE(!changed);
2282
2283 ret = nvme_rdma_setup_ctrl(ctrl, true);
2284 if (ret)
2285 goto out_uninit_ctrl;
2286
2287 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2288 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2289
2290 mutex_lock(&nvme_rdma_ctrl_mutex);
2291 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2292 mutex_unlock(&nvme_rdma_ctrl_mutex);
2293
2294 return &ctrl->ctrl;
2295
2296 out_uninit_ctrl:
2297 nvme_uninit_ctrl(&ctrl->ctrl);
2298 nvme_put_ctrl(&ctrl->ctrl);
2299 if (ret > 0)
2300 ret = -EIO;
2301 return ERR_PTR(ret);
2302 out_kfree_queues:
2303 kfree(ctrl->queues);
2304 out_free_ctrl:
2305 kfree(ctrl);
2306 return ERR_PTR(ret);
2307 }
2308
2309 static struct nvmf_transport_ops nvme_rdma_transport = {
2310 .name = "rdma",
2311 .module = THIS_MODULE,
2312 .required_opts = NVMF_OPT_TRADDR,
2313 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2314 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2315 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2316 NVMF_OPT_TOS,
2317 .create_ctrl = nvme_rdma_create_ctrl,
2318 };
2319
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2320 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2321 {
2322 struct nvme_rdma_ctrl *ctrl;
2323 struct nvme_rdma_device *ndev;
2324 bool found = false;
2325
2326 mutex_lock(&device_list_mutex);
2327 list_for_each_entry(ndev, &device_list, entry) {
2328 if (ndev->dev == ib_device) {
2329 found = true;
2330 break;
2331 }
2332 }
2333 mutex_unlock(&device_list_mutex);
2334
2335 if (!found)
2336 return;
2337
2338 /* Delete all controllers using this device */
2339 mutex_lock(&nvme_rdma_ctrl_mutex);
2340 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2341 if (ctrl->device->dev != ib_device)
2342 continue;
2343 nvme_delete_ctrl(&ctrl->ctrl);
2344 }
2345 mutex_unlock(&nvme_rdma_ctrl_mutex);
2346
2347 flush_workqueue(nvme_delete_wq);
2348 }
2349
2350 static struct ib_client nvme_rdma_ib_client = {
2351 .name = "nvme_rdma",
2352 .remove = nvme_rdma_remove_one
2353 };
2354
nvme_rdma_init_module(void)2355 static int __init nvme_rdma_init_module(void)
2356 {
2357 int ret;
2358
2359 ret = ib_register_client(&nvme_rdma_ib_client);
2360 if (ret)
2361 return ret;
2362
2363 ret = nvmf_register_transport(&nvme_rdma_transport);
2364 if (ret)
2365 goto err_unreg_client;
2366
2367 return 0;
2368
2369 err_unreg_client:
2370 ib_unregister_client(&nvme_rdma_ib_client);
2371 return ret;
2372 }
2373
nvme_rdma_cleanup_module(void)2374 static void __exit nvme_rdma_cleanup_module(void)
2375 {
2376 struct nvme_rdma_ctrl *ctrl;
2377
2378 nvmf_unregister_transport(&nvme_rdma_transport);
2379 ib_unregister_client(&nvme_rdma_ib_client);
2380
2381 mutex_lock(&nvme_rdma_ctrl_mutex);
2382 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2383 nvme_delete_ctrl(&ctrl->ctrl);
2384 mutex_unlock(&nvme_rdma_ctrl_mutex);
2385 flush_workqueue(nvme_delete_wq);
2386 }
2387
2388 module_init(nvme_rdma_init_module);
2389 module_exit(nvme_rdma_cleanup_module);
2390
2391 MODULE_LICENSE("GPL v2");
2392