xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 4ebdac060e5e24a89a7b3ec33ec46a41621e57fe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
is_mcq_supported(struct ufs_hba * hba)108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
ufshcd_has_pending_tasks(struct ufs_hba * hba)241 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
242 {
243 	return hba->outstanding_tasks || hba->active_uic_cmd ||
244 	       hba->uic_async_done;
245 }
246 
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)247 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
248 {
249 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
250 }
251 
252 static const struct ufs_dev_quirk ufs_fixups[] = {
253 	/* UFS cards deviations table */
254 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
255 	  .model = UFS_ANY_MODEL,
256 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
257 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
260 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
261 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
262 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
263 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
266 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
267 	  .model = "hB8aL1" /*H28U62301AMR*/,
268 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = UFS_ANY_MODEL,
271 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
272 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
273 	  .model = "THGLF2G9C8KBADG",
274 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
275 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
276 	  .model = "THGLF2G9D8KBADG",
277 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
278 	{}
279 };
280 
281 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
282 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
283 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
284 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
285 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
286 static void ufshcd_hba_exit(struct ufs_hba *hba);
287 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
288 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
289 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
290 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
291 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
292 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
293 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
294 			     bool scale_up);
295 static irqreturn_t ufshcd_intr(int irq, void *__hba);
296 static int ufshcd_change_power_mode(struct ufs_hba *hba,
297 			     struct ufs_pa_layer_attr *pwr_mode);
298 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
299 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
300 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
301 					 struct ufs_vreg *vreg);
302 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
303 						 bool enable);
304 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
305 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
306 
ufshcd_enable_irq(struct ufs_hba * hba)307 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
308 {
309 	if (!hba->is_irq_enabled) {
310 		enable_irq(hba->irq);
311 		hba->is_irq_enabled = true;
312 	}
313 }
314 
ufshcd_disable_irq(struct ufs_hba * hba)315 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
316 {
317 	if (hba->is_irq_enabled) {
318 		disable_irq(hba->irq);
319 		hba->is_irq_enabled = false;
320 	}
321 }
322 
ufshcd_configure_wb(struct ufs_hba * hba)323 static void ufshcd_configure_wb(struct ufs_hba *hba)
324 {
325 	if (!ufshcd_is_wb_allowed(hba))
326 		return;
327 
328 	ufshcd_wb_toggle(hba, true);
329 
330 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
331 
332 	if (ufshcd_is_wb_buf_flush_allowed(hba))
333 		ufshcd_wb_toggle_buf_flush(hba, true);
334 }
335 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)336 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
337 {
338 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
339 		scsi_unblock_requests(hba->host);
340 }
341 
ufshcd_scsi_block_requests(struct ufs_hba * hba)342 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
343 {
344 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
345 		scsi_block_requests(hba->host);
346 }
347 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)348 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
349 				      enum ufs_trace_str_t str_t)
350 {
351 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
352 	struct utp_upiu_header *header;
353 
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	if (str_t == UFS_CMD_SEND)
358 		header = &rq->header;
359 	else
360 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
361 
362 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
363 			  UFS_TSF_CDB);
364 }
365 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)366 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
367 					enum ufs_trace_str_t str_t,
368 					struct utp_upiu_req *rq_rsp)
369 {
370 	if (!trace_ufshcd_upiu_enabled())
371 		return;
372 
373 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
374 			  &rq_rsp->qr, UFS_TSF_OSF);
375 }
376 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)377 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
378 				     enum ufs_trace_str_t str_t)
379 {
380 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
381 
382 	if (!trace_ufshcd_upiu_enabled())
383 		return;
384 
385 	if (str_t == UFS_TM_SEND)
386 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
387 				  &descp->upiu_req.req_header,
388 				  &descp->upiu_req.input_param1,
389 				  UFS_TSF_TM_INPUT);
390 	else
391 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
392 				  &descp->upiu_rsp.rsp_header,
393 				  &descp->upiu_rsp.output_param1,
394 				  UFS_TSF_TM_OUTPUT);
395 }
396 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)397 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
398 					 const struct uic_command *ucmd,
399 					 enum ufs_trace_str_t str_t)
400 {
401 	u32 cmd;
402 
403 	if (!trace_ufshcd_uic_command_enabled())
404 		return;
405 
406 	if (str_t == UFS_CMD_SEND)
407 		cmd = ucmd->command;
408 	else
409 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
410 
411 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
412 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
413 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
414 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
415 }
416 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)417 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
418 				     enum ufs_trace_str_t str_t)
419 {
420 	u64 lba = 0;
421 	u8 opcode = 0, group_id = 0;
422 	u32 doorbell = 0;
423 	u32 intr;
424 	int hwq_id = -1;
425 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
426 	struct scsi_cmnd *cmd = lrbp->cmd;
427 	struct request *rq = scsi_cmd_to_rq(cmd);
428 	int transfer_len = -1;
429 
430 	if (!cmd)
431 		return;
432 
433 	/* trace UPIU also */
434 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
435 	if (!trace_ufshcd_command_enabled())
436 		return;
437 
438 	opcode = cmd->cmnd[0];
439 
440 	if (opcode == READ_10 || opcode == WRITE_10) {
441 		/*
442 		 * Currently we only fully trace read(10) and write(10) commands
443 		 */
444 		transfer_len =
445 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
446 		lba = scsi_get_lba(cmd);
447 		if (opcode == WRITE_10)
448 			group_id = lrbp->cmd->cmnd[6];
449 	} else if (opcode == UNMAP) {
450 		/*
451 		 * The number of Bytes to be unmapped beginning with the lba.
452 		 */
453 		transfer_len = blk_rq_bytes(rq);
454 		lba = scsi_get_lba(cmd);
455 	}
456 
457 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
458 
459 	if (is_mcq_enabled(hba)) {
460 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
461 
462 		hwq_id = hwq->id;
463 	} else {
464 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
465 	}
466 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
467 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
468 }
469 
ufshcd_print_clk_freqs(struct ufs_hba * hba)470 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
471 {
472 	struct ufs_clk_info *clki;
473 	struct list_head *head = &hba->clk_list_head;
474 
475 	if (list_empty(head))
476 		return;
477 
478 	list_for_each_entry(clki, head, list) {
479 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
480 				clki->max_freq)
481 			dev_err(hba->dev, "clk: %s, rate: %u\n",
482 					clki->name, clki->curr_freq);
483 	}
484 }
485 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)486 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
487 			     const char *err_name)
488 {
489 	int i;
490 	bool found = false;
491 	const struct ufs_event_hist *e;
492 
493 	if (id >= UFS_EVT_CNT)
494 		return;
495 
496 	e = &hba->ufs_stats.event[id];
497 
498 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
499 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
500 
501 		if (e->tstamp[p] == 0)
502 			continue;
503 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
504 			e->val[p], div_u64(e->tstamp[p], 1000));
505 		found = true;
506 	}
507 
508 	if (!found)
509 		dev_err(hba->dev, "No record of %s\n", err_name);
510 	else
511 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
512 }
513 
ufshcd_print_evt_hist(struct ufs_hba * hba)514 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
515 {
516 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
517 
518 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
519 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
520 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
521 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
522 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
523 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
524 			 "auto_hibern8_err");
525 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
526 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
527 			 "link_startup_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
529 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
530 			 "suspend_fail");
531 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
532 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
533 			 "wlun suspend_fail");
534 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
535 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
536 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
537 
538 	ufshcd_vops_dbg_register_dump(hba);
539 }
540 
541 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)542 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
543 {
544 	const struct ufshcd_lrb *lrbp;
545 	int prdt_length;
546 
547 	lrbp = &hba->lrb[tag];
548 
549 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
550 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
551 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
552 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
553 	dev_err(hba->dev,
554 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
555 		tag, (u64)lrbp->utrd_dma_addr);
556 
557 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
558 			sizeof(struct utp_transfer_req_desc));
559 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_req_dma_addr);
561 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
562 			sizeof(struct utp_upiu_req));
563 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
564 		(u64)lrbp->ucd_rsp_dma_addr);
565 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
566 			sizeof(struct utp_upiu_rsp));
567 
568 	prdt_length = le16_to_cpu(
569 		lrbp->utr_descriptor_ptr->prd_table_length);
570 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
571 		prdt_length /= ufshcd_sg_entry_size(hba);
572 
573 	dev_err(hba->dev,
574 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
575 		tag, prdt_length,
576 		(u64)lrbp->ucd_prdt_dma_addr);
577 
578 	if (pr_prdt)
579 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
580 			ufshcd_sg_entry_size(hba) * prdt_length);
581 }
582 
ufshcd_print_tr_iter(struct request * req,void * priv)583 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
584 {
585 	struct scsi_device *sdev = req->q->queuedata;
586 	struct Scsi_Host *shost = sdev->host;
587 	struct ufs_hba *hba = shost_priv(shost);
588 
589 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
590 
591 	return true;
592 }
593 
594 /**
595  * ufshcd_print_trs_all - print trs for all started requests.
596  * @hba: per-adapter instance.
597  * @pr_prdt: need to print prdt or not.
598  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)599 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
600 {
601 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
602 }
603 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)604 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
605 {
606 	int tag;
607 
608 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
609 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
610 
611 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
612 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
613 	}
614 }
615 
ufshcd_print_host_state(struct ufs_hba * hba)616 static void ufshcd_print_host_state(struct ufs_hba *hba)
617 {
618 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
619 
620 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
621 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
622 		scsi_host_busy(hba->host), hba->outstanding_tasks);
623 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
624 		hba->saved_err, hba->saved_uic_err);
625 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
626 		hba->curr_dev_pwr_mode, hba->uic_link_state);
627 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
628 		hba->pm_op_in_progress, hba->is_sys_suspended);
629 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
630 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
631 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
632 	dev_err(hba->dev,
633 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
634 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
635 		hba->ufs_stats.hibern8_exit_cnt);
636 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
637 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
638 		hba->ufs_stats.last_intr_status);
639 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
640 		hba->eh_flags, hba->req_abort_count);
641 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
642 		hba->ufs_version, hba->capabilities, hba->caps);
643 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
644 		hba->dev_quirks);
645 	if (sdev_ufs)
646 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
647 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
648 
649 	ufshcd_print_clk_freqs(hba);
650 }
651 
652 /**
653  * ufshcd_print_pwr_info - print power params as saved in hba
654  * power info
655  * @hba: per-adapter instance
656  */
ufshcd_print_pwr_info(struct ufs_hba * hba)657 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
658 {
659 	static const char * const names[] = {
660 		"INVALID MODE",
661 		"FAST MODE",
662 		"SLOW_MODE",
663 		"INVALID MODE",
664 		"FASTAUTO_MODE",
665 		"SLOWAUTO_MODE",
666 		"INVALID MODE",
667 	};
668 
669 	/*
670 	 * Using dev_dbg to avoid messages during runtime PM to avoid
671 	 * never-ending cycles of messages written back to storage by user space
672 	 * causing runtime resume, causing more messages and so on.
673 	 */
674 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
675 		 __func__,
676 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
677 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
678 		 names[hba->pwr_info.pwr_rx],
679 		 names[hba->pwr_info.pwr_tx],
680 		 hba->pwr_info.hs_rate);
681 }
682 
ufshcd_device_reset(struct ufs_hba * hba)683 static void ufshcd_device_reset(struct ufs_hba *hba)
684 {
685 	int err;
686 
687 	err = ufshcd_vops_device_reset(hba);
688 
689 	if (!err) {
690 		ufshcd_set_ufs_dev_active(hba);
691 		if (ufshcd_is_wb_allowed(hba)) {
692 			hba->dev_info.wb_enabled = false;
693 			hba->dev_info.wb_buf_flush_enabled = false;
694 		}
695 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
696 			hba->dev_info.rtc_time_baseline = 0;
697 	}
698 	if (err != -EOPNOTSUPP)
699 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
700 }
701 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)702 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
703 {
704 	if (!us)
705 		return;
706 
707 	if (us < 10)
708 		udelay(us);
709 	else
710 		usleep_range(us, us + tolerance);
711 }
712 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
713 
714 /**
715  * ufshcd_wait_for_register - wait for register value to change
716  * @hba: per-adapter interface
717  * @reg: mmio register offset
718  * @mask: mask to apply to the read register value
719  * @val: value to wait for
720  * @interval_us: polling interval in microseconds
721  * @timeout_ms: timeout in milliseconds
722  *
723  * Return: -ETIMEDOUT on error, zero on success.
724  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)725 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
726 				u32 val, unsigned long interval_us,
727 				unsigned long timeout_ms)
728 {
729 	int err = 0;
730 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
731 
732 	/* ignore bits that we don't intend to wait on */
733 	val = val & mask;
734 
735 	while ((ufshcd_readl(hba, reg) & mask) != val) {
736 		usleep_range(interval_us, interval_us + 50);
737 		if (time_after(jiffies, timeout)) {
738 			if ((ufshcd_readl(hba, reg) & mask) != val)
739 				err = -ETIMEDOUT;
740 			break;
741 		}
742 	}
743 
744 	return err;
745 }
746 
747 /**
748  * ufshcd_get_intr_mask - Get the interrupt bit mask
749  * @hba: Pointer to adapter instance
750  *
751  * Return: interrupt bit mask per version
752  */
ufshcd_get_intr_mask(struct ufs_hba * hba)753 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
754 {
755 	if (hba->ufs_version == ufshci_version(1, 0))
756 		return INTERRUPT_MASK_ALL_VER_10;
757 	if (hba->ufs_version <= ufshci_version(2, 0))
758 		return INTERRUPT_MASK_ALL_VER_11;
759 
760 	return INTERRUPT_MASK_ALL_VER_21;
761 }
762 
763 /**
764  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
765  * @hba: Pointer to adapter instance
766  *
767  * Return: UFSHCI version supported by the controller
768  */
ufshcd_get_ufs_version(struct ufs_hba * hba)769 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
770 {
771 	u32 ufshci_ver;
772 
773 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
774 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
775 	else
776 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
777 
778 	/*
779 	 * UFSHCI v1.x uses a different version scheme, in order
780 	 * to allow the use of comparisons with the ufshci_version
781 	 * function, we convert it to the same scheme as ufs 2.0+.
782 	 */
783 	if (ufshci_ver & 0x00010000)
784 		return ufshci_version(1, ufshci_ver & 0x00000100);
785 
786 	return ufshci_ver;
787 }
788 
789 /**
790  * ufshcd_is_device_present - Check if any device connected to
791  *			      the host controller
792  * @hba: pointer to adapter instance
793  *
794  * Return: true if device present, false if no device detected
795  */
ufshcd_is_device_present(struct ufs_hba * hba)796 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
797 {
798 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
799 }
800 
801 /**
802  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
803  * @lrbp: pointer to local command reference block
804  * @cqe: pointer to the completion queue entry
805  *
806  * This function is used to get the OCS field from UTRD
807  *
808  * Return: the OCS field in the UTRD.
809  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)810 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
811 				      struct cq_entry *cqe)
812 {
813 	if (cqe)
814 		return le32_to_cpu(cqe->status) & MASK_OCS;
815 
816 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
817 }
818 
819 /**
820  * ufshcd_utrl_clear() - Clear requests from the controller request list.
821  * @hba: per adapter instance
822  * @mask: mask with one bit set for each request to be cleared
823  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)824 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
825 {
826 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
827 		mask = ~mask;
828 	/*
829 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
830 	 * Register (UTRLCLR): This field is bit significant. Each bit
831 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
832 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
833 	 * by host software to indicate to the host controller that a transfer
834 	 * request slot is cleared. The host controller
835 	 * shall free up any resources associated to the request slot
836 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
837 	 * host software indicates no change to request slots by setting the
838 	 * associated bits in this field to ‘1’. Bits in this field shall only
839 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
840 	 */
841 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
842 }
843 
844 /**
845  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
846  * @hba: per adapter instance
847  * @pos: position of the bit to be cleared
848  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)849 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
850 {
851 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
852 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
853 	else
854 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
855 }
856 
857 /**
858  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
859  * @reg: Register value of host controller status
860  *
861  * Return: 0 on success; a positive value if failed.
862  */
ufshcd_get_lists_status(u32 reg)863 static inline int ufshcd_get_lists_status(u32 reg)
864 {
865 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
866 }
867 
868 /**
869  * ufshcd_get_uic_cmd_result - Get the UIC command result
870  * @hba: Pointer to adapter instance
871  *
872  * This function gets the result of UIC command completion
873  *
874  * Return: 0 on success; non-zero value on error.
875  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)876 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
877 {
878 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
879 	       MASK_UIC_COMMAND_RESULT;
880 }
881 
882 /**
883  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
884  * @hba: Pointer to adapter instance
885  *
886  * This function gets UIC command argument3
887  *
888  * Return: 0 on success; non-zero value on error.
889  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)890 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
891 {
892 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
893 }
894 
895 /**
896  * ufshcd_get_req_rsp - returns the TR response transaction type
897  * @ucd_rsp_ptr: pointer to response UPIU
898  *
899  * Return: UPIU type.
900  */
901 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)902 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
903 {
904 	return ucd_rsp_ptr->header.transaction_code;
905 }
906 
907 /**
908  * ufshcd_is_exception_event - Check if the device raised an exception event
909  * @ucd_rsp_ptr: pointer to response UPIU
910  *
911  * The function checks if the device raised an exception event indicated in
912  * the Device Information field of response UPIU.
913  *
914  * Return: true if exception is raised, false otherwise.
915  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)916 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
917 {
918 	return ucd_rsp_ptr->header.device_information & 1;
919 }
920 
921 /**
922  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
923  * @hba: per adapter instance
924  */
925 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)926 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
927 {
928 	ufshcd_writel(hba, INT_AGGR_ENABLE |
929 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
930 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
931 }
932 
933 /**
934  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
935  * @hba: per adapter instance
936  * @cnt: Interrupt aggregation counter threshold
937  * @tmout: Interrupt aggregation timeout value
938  */
939 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)940 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
941 {
942 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
943 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
944 		      INT_AGGR_TIMEOUT_VAL(tmout),
945 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
946 }
947 
948 /**
949  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
950  * @hba: per adapter instance
951  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)952 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
953 {
954 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
955 }
956 
957 /**
958  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
959  *			When run-stop registers are set to 1, it indicates the
960  *			host controller that it can process the requests
961  * @hba: per adapter instance
962  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)963 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
964 {
965 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
966 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
967 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
968 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
969 }
970 
971 /**
972  * ufshcd_hba_start - Start controller initialization sequence
973  * @hba: per adapter instance
974  */
ufshcd_hba_start(struct ufs_hba * hba)975 static inline void ufshcd_hba_start(struct ufs_hba *hba)
976 {
977 	u32 val = CONTROLLER_ENABLE;
978 
979 	if (ufshcd_crypto_enable(hba))
980 		val |= CRYPTO_GENERAL_ENABLE;
981 
982 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
983 }
984 
985 /**
986  * ufshcd_is_hba_active - Get controller state
987  * @hba: per adapter instance
988  *
989  * Return: true if and only if the controller is active.
990  */
ufshcd_is_hba_active(struct ufs_hba * hba)991 bool ufshcd_is_hba_active(struct ufs_hba *hba)
992 {
993 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
994 }
995 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
996 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)997 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
998 {
999 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
1000 	if (hba->ufs_version <= ufshci_version(1, 1))
1001 		return UFS_UNIPRO_VER_1_41;
1002 	else
1003 		return UFS_UNIPRO_VER_1_6;
1004 }
1005 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1006 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)1007 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1008 {
1009 	/*
1010 	 * If both host and device support UniPro ver1.6 or later, PA layer
1011 	 * parameters tuning happens during link startup itself.
1012 	 *
1013 	 * We can manually tune PA layer parameters if either host or device
1014 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1015 	 * logic simple, we will only do manual tuning if local unipro version
1016 	 * doesn't support ver1.6 or later.
1017 	 */
1018 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1019 }
1020 
1021 /**
1022  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1023  * @hba: per adapter instance
1024  * @scale_up: If True, set max possible frequency othewise set low frequency
1025  *
1026  * Return: 0 if successful; < 0 upon failure.
1027  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1028 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1029 {
1030 	int ret = 0;
1031 	struct ufs_clk_info *clki;
1032 	struct list_head *head = &hba->clk_list_head;
1033 
1034 	if (list_empty(head))
1035 		goto out;
1036 
1037 	list_for_each_entry(clki, head, list) {
1038 		if (!IS_ERR_OR_NULL(clki->clk)) {
1039 			if (scale_up && clki->max_freq) {
1040 				if (clki->curr_freq == clki->max_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->max_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->max_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled up", clki->name,
1052 						clki->curr_freq,
1053 						clki->max_freq);
1054 
1055 				clki->curr_freq = clki->max_freq;
1056 
1057 			} else if (!scale_up && clki->min_freq) {
1058 				if (clki->curr_freq == clki->min_freq)
1059 					continue;
1060 
1061 				ret = clk_set_rate(clki->clk, clki->min_freq);
1062 				if (ret) {
1063 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1064 						__func__, clki->name,
1065 						clki->min_freq, ret);
1066 					break;
1067 				}
1068 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1069 						"scaled down", clki->name,
1070 						clki->curr_freq,
1071 						clki->min_freq);
1072 				clki->curr_freq = clki->min_freq;
1073 			}
1074 		}
1075 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1076 				clki->name, clk_get_rate(clki->clk));
1077 	}
1078 
1079 out:
1080 	return ret;
1081 }
1082 
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1083 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1084 {
1085 	struct dev_pm_opp *opp;
1086 	int ret;
1087 
1088 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1089 						 &freq, 0);
1090 	if (IS_ERR(opp))
1091 		return PTR_ERR(opp);
1092 
1093 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1094 	dev_pm_opp_put(opp);
1095 
1096 	return ret;
1097 }
1098 
1099 /**
1100  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1101  * @hba: per adapter instance
1102  * @freq: frequency to scale
1103  * @scale_up: True if scaling up and false if scaling down
1104  *
1105  * Return: 0 if successful; < 0 upon failure.
1106  */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1107 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1108 			     bool scale_up)
1109 {
1110 	int ret = 0;
1111 	ktime_t start = ktime_get();
1112 
1113 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1114 	if (ret)
1115 		goto out;
1116 
1117 	if (hba->use_pm_opp)
1118 		ret = ufshcd_opp_set_rate(hba, freq);
1119 	else
1120 		ret = ufshcd_set_clk_freq(hba, scale_up);
1121 	if (ret)
1122 		goto out;
1123 
1124 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1125 	if (ret) {
1126 		if (hba->use_pm_opp)
1127 			ufshcd_opp_set_rate(hba,
1128 					    hba->devfreq->previous_freq);
1129 		else
1130 			ufshcd_set_clk_freq(hba, !scale_up);
1131 	}
1132 
1133 out:
1134 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1135 			(scale_up ? "up" : "down"),
1136 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1137 	return ret;
1138 }
1139 
1140 /**
1141  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1142  * @hba: per adapter instance
1143  * @freq: frequency to scale
1144  * @scale_up: True if scaling up and false if scaling down
1145  *
1146  * Return: true if scaling is required, false otherwise.
1147  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1148 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1149 					       unsigned long freq, bool scale_up)
1150 {
1151 	struct ufs_clk_info *clki;
1152 	struct list_head *head = &hba->clk_list_head;
1153 
1154 	if (list_empty(head))
1155 		return false;
1156 
1157 	if (hba->use_pm_opp)
1158 		return freq != hba->clk_scaling.target_freq;
1159 
1160 	list_for_each_entry(clki, head, list) {
1161 		if (!IS_ERR_OR_NULL(clki->clk)) {
1162 			if (scale_up && clki->max_freq) {
1163 				if (clki->curr_freq == clki->max_freq)
1164 					continue;
1165 				return true;
1166 			} else if (!scale_up && clki->min_freq) {
1167 				if (clki->curr_freq == clki->min_freq)
1168 					continue;
1169 				return true;
1170 			}
1171 		}
1172 	}
1173 
1174 	return false;
1175 }
1176 
1177 /*
1178  * Determine the number of pending commands by counting the bits in the SCSI
1179  * device budget maps. This approach has been selected because a bit is set in
1180  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1181  * flag. The host_self_blocked flag can be modified by calling
1182  * scsi_block_requests() or scsi_unblock_requests().
1183  */
ufshcd_pending_cmds(struct ufs_hba * hba)1184 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1185 {
1186 	const struct scsi_device *sdev;
1187 	u32 pending = 0;
1188 
1189 	lockdep_assert_held(hba->host->host_lock);
1190 	__shost_for_each_device(sdev, hba->host)
1191 		pending += sbitmap_weight(&sdev->budget_map);
1192 
1193 	return pending;
1194 }
1195 
1196 /*
1197  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1198  * has expired.
1199  *
1200  * Return: 0 upon success; -EBUSY upon timeout.
1201  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1202 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1203 					u64 wait_timeout_us)
1204 {
1205 	unsigned long flags;
1206 	int ret = 0;
1207 	u32 tm_doorbell;
1208 	u32 tr_pending;
1209 	bool timeout = false, do_last_check = false;
1210 	ktime_t start;
1211 
1212 	ufshcd_hold(hba);
1213 	spin_lock_irqsave(hba->host->host_lock, flags);
1214 	/*
1215 	 * Wait for all the outstanding tasks/transfer requests.
1216 	 * Verify by checking the doorbell registers are clear.
1217 	 */
1218 	start = ktime_get();
1219 	do {
1220 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1221 			ret = -EBUSY;
1222 			goto out;
1223 		}
1224 
1225 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1226 		tr_pending = ufshcd_pending_cmds(hba);
1227 		if (!tm_doorbell && !tr_pending) {
1228 			timeout = false;
1229 			break;
1230 		} else if (do_last_check) {
1231 			break;
1232 		}
1233 
1234 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1235 		io_schedule_timeout(msecs_to_jiffies(20));
1236 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1237 		    wait_timeout_us) {
1238 			timeout = true;
1239 			/*
1240 			 * We might have scheduled out for long time so make
1241 			 * sure to check if doorbells are cleared by this time
1242 			 * or not.
1243 			 */
1244 			do_last_check = true;
1245 		}
1246 		spin_lock_irqsave(hba->host->host_lock, flags);
1247 	} while (tm_doorbell || tr_pending);
1248 
1249 	if (timeout) {
1250 		dev_err(hba->dev,
1251 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1252 			__func__, tm_doorbell, tr_pending);
1253 		ret = -EBUSY;
1254 	}
1255 out:
1256 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1257 	ufshcd_release(hba);
1258 	return ret;
1259 }
1260 
1261 /**
1262  * ufshcd_scale_gear - scale up/down UFS gear
1263  * @hba: per adapter instance
1264  * @scale_up: True for scaling up gear and false for scaling down
1265  *
1266  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1267  * non-zero for any other errors.
1268  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1269 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1270 {
1271 	int ret = 0;
1272 	struct ufs_pa_layer_attr new_pwr_info;
1273 
1274 	if (scale_up) {
1275 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1276 		       sizeof(struct ufs_pa_layer_attr));
1277 	} else {
1278 		memcpy(&new_pwr_info, &hba->pwr_info,
1279 		       sizeof(struct ufs_pa_layer_attr));
1280 
1281 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1282 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1283 			/* save the current power mode */
1284 			memcpy(&hba->clk_scaling.saved_pwr_info,
1285 				&hba->pwr_info,
1286 				sizeof(struct ufs_pa_layer_attr));
1287 
1288 			/* scale down gear */
1289 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1290 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1291 		}
1292 	}
1293 
1294 	/* check if the power mode needs to be changed or not? */
1295 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1296 	if (ret)
1297 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1298 			__func__, ret,
1299 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1300 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1301 
1302 	return ret;
1303 }
1304 
1305 /*
1306  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1307  * has expired.
1308  *
1309  * Return: 0 upon success; -EBUSY upon timeout.
1310  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1311 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1312 {
1313 	int ret = 0;
1314 	/*
1315 	 * make sure that there are no outstanding requests when
1316 	 * clock scaling is in progress
1317 	 */
1318 	mutex_lock(&hba->host->scan_mutex);
1319 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1320 	mutex_lock(&hba->wb_mutex);
1321 	down_write(&hba->clk_scaling_lock);
1322 
1323 	if (!hba->clk_scaling.is_allowed ||
1324 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1325 		ret = -EBUSY;
1326 		up_write(&hba->clk_scaling_lock);
1327 		mutex_unlock(&hba->wb_mutex);
1328 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1329 		mutex_unlock(&hba->host->scan_mutex);
1330 		goto out;
1331 	}
1332 
1333 	/* let's not get into low power until clock scaling is completed */
1334 	ufshcd_hold(hba);
1335 
1336 out:
1337 	return ret;
1338 }
1339 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1340 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1341 {
1342 	up_write(&hba->clk_scaling_lock);
1343 
1344 	/* Enable Write Booster if we have scaled up else disable it */
1345 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1346 		ufshcd_wb_toggle(hba, scale_up);
1347 
1348 	mutex_unlock(&hba->wb_mutex);
1349 
1350 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1351 	mutex_unlock(&hba->host->scan_mutex);
1352 	ufshcd_release(hba);
1353 }
1354 
1355 /**
1356  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1357  * @hba: per adapter instance
1358  * @freq: frequency to scale
1359  * @scale_up: True for scaling up and false for scalin down
1360  *
1361  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1362  * for any other errors.
1363  */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1364 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1365 				bool scale_up)
1366 {
1367 	int ret = 0;
1368 
1369 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1370 	if (ret)
1371 		return ret;
1372 
1373 	/* scale down the gear before scaling down clocks */
1374 	if (!scale_up) {
1375 		ret = ufshcd_scale_gear(hba, false);
1376 		if (ret)
1377 			goto out_unprepare;
1378 	}
1379 
1380 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1381 	if (ret) {
1382 		if (!scale_up)
1383 			ufshcd_scale_gear(hba, true);
1384 		goto out_unprepare;
1385 	}
1386 
1387 	/* scale up the gear after scaling up clocks */
1388 	if (scale_up) {
1389 		ret = ufshcd_scale_gear(hba, true);
1390 		if (ret) {
1391 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1392 					  false);
1393 			goto out_unprepare;
1394 		}
1395 	}
1396 
1397 out_unprepare:
1398 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1399 	return ret;
1400 }
1401 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1402 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1403 {
1404 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1405 					   clk_scaling.suspend_work);
1406 	unsigned long irq_flags;
1407 
1408 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1409 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1410 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1411 		return;
1412 	}
1413 	hba->clk_scaling.is_suspended = true;
1414 	hba->clk_scaling.window_start_t = 0;
1415 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1416 
1417 	devfreq_suspend_device(hba->devfreq);
1418 }
1419 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1420 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1421 {
1422 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1423 					   clk_scaling.resume_work);
1424 	unsigned long irq_flags;
1425 
1426 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1427 	if (!hba->clk_scaling.is_suspended) {
1428 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1429 		return;
1430 	}
1431 	hba->clk_scaling.is_suspended = false;
1432 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1433 
1434 	devfreq_resume_device(hba->devfreq);
1435 }
1436 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1437 static int ufshcd_devfreq_target(struct device *dev,
1438 				unsigned long *freq, u32 flags)
1439 {
1440 	int ret = 0;
1441 	struct ufs_hba *hba = dev_get_drvdata(dev);
1442 	ktime_t start;
1443 	bool scale_up, sched_clk_scaling_suspend_work = false;
1444 	struct list_head *clk_list = &hba->clk_list_head;
1445 	struct ufs_clk_info *clki;
1446 	unsigned long irq_flags;
1447 
1448 	if (!ufshcd_is_clkscaling_supported(hba))
1449 		return -EINVAL;
1450 
1451 	if (hba->use_pm_opp) {
1452 		struct dev_pm_opp *opp;
1453 
1454 		/* Get the recommended frequency from OPP framework */
1455 		opp = devfreq_recommended_opp(dev, freq, flags);
1456 		if (IS_ERR(opp))
1457 			return PTR_ERR(opp);
1458 
1459 		dev_pm_opp_put(opp);
1460 	} else {
1461 		/* Override with the closest supported frequency */
1462 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1463 					list);
1464 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1465 	}
1466 
1467 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1468 	if (ufshcd_eh_in_progress(hba)) {
1469 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1470 		return 0;
1471 	}
1472 
1473 	if (!hba->clk_scaling.active_reqs)
1474 		sched_clk_scaling_suspend_work = true;
1475 
1476 	if (list_empty(clk_list)) {
1477 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1478 		goto out;
1479 	}
1480 
1481 	/* Decide based on the target or rounded-off frequency and update */
1482 	if (hba->use_pm_opp)
1483 		scale_up = *freq > hba->clk_scaling.target_freq;
1484 	else
1485 		scale_up = *freq == clki->max_freq;
1486 
1487 	if (!hba->use_pm_opp && !scale_up)
1488 		*freq = clki->min_freq;
1489 
1490 	/* Update the frequency */
1491 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1492 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1493 		ret = 0;
1494 		goto out; /* no state change required */
1495 	}
1496 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1497 
1498 	start = ktime_get();
1499 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1500 	if (!ret)
1501 		hba->clk_scaling.target_freq = *freq;
1502 
1503 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1504 		(scale_up ? "up" : "down"),
1505 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1506 
1507 out:
1508 	if (sched_clk_scaling_suspend_work)
1509 		queue_work(hba->clk_scaling.workq,
1510 			   &hba->clk_scaling.suspend_work);
1511 
1512 	return ret;
1513 }
1514 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1515 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1516 		struct devfreq_dev_status *stat)
1517 {
1518 	struct ufs_hba *hba = dev_get_drvdata(dev);
1519 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1520 	unsigned long flags;
1521 	ktime_t curr_t;
1522 
1523 	if (!ufshcd_is_clkscaling_supported(hba))
1524 		return -EINVAL;
1525 
1526 	memset(stat, 0, sizeof(*stat));
1527 
1528 	spin_lock_irqsave(hba->host->host_lock, flags);
1529 	curr_t = ktime_get();
1530 	if (!scaling->window_start_t)
1531 		goto start_window;
1532 
1533 	/*
1534 	 * If current frequency is 0, then the ondemand governor considers
1535 	 * there's no initial frequency set. And it always requests to set
1536 	 * to max. frequency.
1537 	 */
1538 	if (hba->use_pm_opp) {
1539 		stat->current_frequency = hba->clk_scaling.target_freq;
1540 	} else {
1541 		struct list_head *clk_list = &hba->clk_list_head;
1542 		struct ufs_clk_info *clki;
1543 
1544 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1545 		stat->current_frequency = clki->curr_freq;
1546 	}
1547 
1548 	if (scaling->is_busy_started)
1549 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1550 				scaling->busy_start_t);
1551 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1552 	stat->busy_time = scaling->tot_busy_t;
1553 start_window:
1554 	scaling->window_start_t = curr_t;
1555 	scaling->tot_busy_t = 0;
1556 
1557 	if (scaling->active_reqs) {
1558 		scaling->busy_start_t = curr_t;
1559 		scaling->is_busy_started = true;
1560 	} else {
1561 		scaling->busy_start_t = 0;
1562 		scaling->is_busy_started = false;
1563 	}
1564 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1565 	return 0;
1566 }
1567 
ufshcd_devfreq_init(struct ufs_hba * hba)1568 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1569 {
1570 	struct list_head *clk_list = &hba->clk_list_head;
1571 	struct ufs_clk_info *clki;
1572 	struct devfreq *devfreq;
1573 	int ret;
1574 
1575 	/* Skip devfreq if we don't have any clocks in the list */
1576 	if (list_empty(clk_list))
1577 		return 0;
1578 
1579 	if (!hba->use_pm_opp) {
1580 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1581 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1582 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1583 	}
1584 
1585 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1586 					 &hba->vps->ondemand_data);
1587 	devfreq = devfreq_add_device(hba->dev,
1588 			&hba->vps->devfreq_profile,
1589 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1590 			&hba->vps->ondemand_data);
1591 	if (IS_ERR(devfreq)) {
1592 		ret = PTR_ERR(devfreq);
1593 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1594 
1595 		if (!hba->use_pm_opp) {
1596 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1597 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1598 		}
1599 		return ret;
1600 	}
1601 
1602 	hba->devfreq = devfreq;
1603 
1604 	return 0;
1605 }
1606 
ufshcd_devfreq_remove(struct ufs_hba * hba)1607 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1608 {
1609 	struct list_head *clk_list = &hba->clk_list_head;
1610 
1611 	if (!hba->devfreq)
1612 		return;
1613 
1614 	devfreq_remove_device(hba->devfreq);
1615 	hba->devfreq = NULL;
1616 
1617 	if (!hba->use_pm_opp) {
1618 		struct ufs_clk_info *clki;
1619 
1620 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1621 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1622 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1623 	}
1624 }
1625 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1626 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1627 {
1628 	unsigned long flags;
1629 	bool suspend = false;
1630 
1631 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1632 	cancel_work_sync(&hba->clk_scaling.resume_work);
1633 
1634 	spin_lock_irqsave(hba->host->host_lock, flags);
1635 	if (!hba->clk_scaling.is_suspended) {
1636 		suspend = true;
1637 		hba->clk_scaling.is_suspended = true;
1638 		hba->clk_scaling.window_start_t = 0;
1639 	}
1640 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1641 
1642 	if (suspend)
1643 		devfreq_suspend_device(hba->devfreq);
1644 }
1645 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1646 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1647 {
1648 	unsigned long flags;
1649 	bool resume = false;
1650 
1651 	spin_lock_irqsave(hba->host->host_lock, flags);
1652 	if (hba->clk_scaling.is_suspended) {
1653 		resume = true;
1654 		hba->clk_scaling.is_suspended = false;
1655 	}
1656 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1657 
1658 	if (resume)
1659 		devfreq_resume_device(hba->devfreq);
1660 }
1661 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1662 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1663 		struct device_attribute *attr, char *buf)
1664 {
1665 	struct ufs_hba *hba = dev_get_drvdata(dev);
1666 
1667 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1668 }
1669 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1670 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1671 		struct device_attribute *attr, const char *buf, size_t count)
1672 {
1673 	struct ufs_hba *hba = dev_get_drvdata(dev);
1674 	u32 value;
1675 	int err = 0;
1676 
1677 	if (kstrtou32(buf, 0, &value))
1678 		return -EINVAL;
1679 
1680 	down(&hba->host_sem);
1681 	if (!ufshcd_is_user_access_allowed(hba)) {
1682 		err = -EBUSY;
1683 		goto out;
1684 	}
1685 
1686 	value = !!value;
1687 	if (value == hba->clk_scaling.is_enabled)
1688 		goto out;
1689 
1690 	ufshcd_rpm_get_sync(hba);
1691 	ufshcd_hold(hba);
1692 
1693 	hba->clk_scaling.is_enabled = value;
1694 
1695 	if (value) {
1696 		ufshcd_resume_clkscaling(hba);
1697 	} else {
1698 		ufshcd_suspend_clkscaling(hba);
1699 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1700 		if (err)
1701 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1702 					__func__, err);
1703 	}
1704 
1705 	ufshcd_release(hba);
1706 	ufshcd_rpm_put_sync(hba);
1707 out:
1708 	up(&hba->host_sem);
1709 	return err ? err : count;
1710 }
1711 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1712 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1713 {
1714 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1715 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1716 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1717 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1718 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1719 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1720 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1721 }
1722 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1723 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1724 {
1725 	if (hba->clk_scaling.enable_attr.attr.name)
1726 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1727 }
1728 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1729 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1730 {
1731 	char wq_name[sizeof("ufs_clkscaling_00")];
1732 
1733 	if (!ufshcd_is_clkscaling_supported(hba))
1734 		return;
1735 
1736 	if (!hba->clk_scaling.min_gear)
1737 		hba->clk_scaling.min_gear = UFS_HS_G1;
1738 
1739 	INIT_WORK(&hba->clk_scaling.suspend_work,
1740 		  ufshcd_clk_scaling_suspend_work);
1741 	INIT_WORK(&hba->clk_scaling.resume_work,
1742 		  ufshcd_clk_scaling_resume_work);
1743 
1744 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1745 		 hba->host->host_no);
1746 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1747 
1748 	hba->clk_scaling.is_initialized = true;
1749 }
1750 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1751 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1752 {
1753 	if (!hba->clk_scaling.is_initialized)
1754 		return;
1755 
1756 	ufshcd_remove_clk_scaling_sysfs(hba);
1757 	destroy_workqueue(hba->clk_scaling.workq);
1758 	ufshcd_devfreq_remove(hba);
1759 	hba->clk_scaling.is_initialized = false;
1760 }
1761 
ufshcd_ungate_work(struct work_struct * work)1762 static void ufshcd_ungate_work(struct work_struct *work)
1763 {
1764 	int ret;
1765 	unsigned long flags;
1766 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1767 			clk_gating.ungate_work);
1768 
1769 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1770 
1771 	spin_lock_irqsave(hba->host->host_lock, flags);
1772 	if (hba->clk_gating.state == CLKS_ON) {
1773 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1774 		return;
1775 	}
1776 
1777 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1778 	ufshcd_hba_vreg_set_hpm(hba);
1779 	ufshcd_setup_clocks(hba, true);
1780 
1781 	ufshcd_enable_irq(hba);
1782 
1783 	/* Exit from hibern8 */
1784 	if (ufshcd_can_hibern8_during_gating(hba)) {
1785 		/* Prevent gating in this path */
1786 		hba->clk_gating.is_suspended = true;
1787 		if (ufshcd_is_link_hibern8(hba)) {
1788 			ret = ufshcd_uic_hibern8_exit(hba);
1789 			if (ret)
1790 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1791 					__func__, ret);
1792 			else
1793 				ufshcd_set_link_active(hba);
1794 		}
1795 		hba->clk_gating.is_suspended = false;
1796 	}
1797 }
1798 
1799 /**
1800  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1801  * Also, exit from hibern8 mode and set the link as active.
1802  * @hba: per adapter instance
1803  */
ufshcd_hold(struct ufs_hba * hba)1804 void ufshcd_hold(struct ufs_hba *hba)
1805 {
1806 	bool flush_result;
1807 	unsigned long flags;
1808 
1809 	if (!ufshcd_is_clkgating_allowed(hba) ||
1810 	    !hba->clk_gating.is_initialized)
1811 		return;
1812 	spin_lock_irqsave(hba->host->host_lock, flags);
1813 	hba->clk_gating.active_reqs++;
1814 
1815 start:
1816 	switch (hba->clk_gating.state) {
1817 	case CLKS_ON:
1818 		/*
1819 		 * Wait for the ungate work to complete if in progress.
1820 		 * Though the clocks may be in ON state, the link could
1821 		 * still be in hibner8 state if hibern8 is allowed
1822 		 * during clock gating.
1823 		 * Make sure we exit hibern8 state also in addition to
1824 		 * clocks being ON.
1825 		 */
1826 		if (ufshcd_can_hibern8_during_gating(hba) &&
1827 		    ufshcd_is_link_hibern8(hba)) {
1828 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1829 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1830 			if (hba->clk_gating.is_suspended && !flush_result)
1831 				return;
1832 			spin_lock_irqsave(hba->host->host_lock, flags);
1833 			goto start;
1834 		}
1835 		break;
1836 	case REQ_CLKS_OFF:
1837 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1838 			hba->clk_gating.state = CLKS_ON;
1839 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1840 						hba->clk_gating.state);
1841 			break;
1842 		}
1843 		/*
1844 		 * If we are here, it means gating work is either done or
1845 		 * currently running. Hence, fall through to cancel gating
1846 		 * work and to enable clocks.
1847 		 */
1848 		fallthrough;
1849 	case CLKS_OFF:
1850 		hba->clk_gating.state = REQ_CLKS_ON;
1851 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1852 					hba->clk_gating.state);
1853 		queue_work(hba->clk_gating.clk_gating_workq,
1854 			   &hba->clk_gating.ungate_work);
1855 		/*
1856 		 * fall through to check if we should wait for this
1857 		 * work to be done or not.
1858 		 */
1859 		fallthrough;
1860 	case REQ_CLKS_ON:
1861 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1862 		flush_work(&hba->clk_gating.ungate_work);
1863 		/* Make sure state is CLKS_ON before returning */
1864 		spin_lock_irqsave(hba->host->host_lock, flags);
1865 		goto start;
1866 	default:
1867 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1868 				__func__, hba->clk_gating.state);
1869 		break;
1870 	}
1871 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1872 }
1873 EXPORT_SYMBOL_GPL(ufshcd_hold);
1874 
ufshcd_gate_work(struct work_struct * work)1875 static void ufshcd_gate_work(struct work_struct *work)
1876 {
1877 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1878 			clk_gating.gate_work.work);
1879 	unsigned long flags;
1880 	int ret;
1881 
1882 	spin_lock_irqsave(hba->host->host_lock, flags);
1883 	/*
1884 	 * In case you are here to cancel this work the gating state
1885 	 * would be marked as REQ_CLKS_ON. In this case save time by
1886 	 * skipping the gating work and exit after changing the clock
1887 	 * state to CLKS_ON.
1888 	 */
1889 	if (hba->clk_gating.is_suspended ||
1890 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1891 		hba->clk_gating.state = CLKS_ON;
1892 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1893 					hba->clk_gating.state);
1894 		goto rel_lock;
1895 	}
1896 
1897 	if (ufshcd_is_ufs_dev_busy(hba) ||
1898 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1899 	    hba->clk_gating.active_reqs)
1900 		goto rel_lock;
1901 
1902 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1903 
1904 	/* put the link into hibern8 mode before turning off clocks */
1905 	if (ufshcd_can_hibern8_during_gating(hba)) {
1906 		ret = ufshcd_uic_hibern8_enter(hba);
1907 		if (ret) {
1908 			hba->clk_gating.state = CLKS_ON;
1909 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1910 					__func__, ret);
1911 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1912 						hba->clk_gating.state);
1913 			goto out;
1914 		}
1915 		ufshcd_set_link_hibern8(hba);
1916 	}
1917 
1918 	ufshcd_disable_irq(hba);
1919 
1920 	ufshcd_setup_clocks(hba, false);
1921 
1922 	/* Put the host controller in low power mode if possible */
1923 	ufshcd_hba_vreg_set_lpm(hba);
1924 	/*
1925 	 * In case you are here to cancel this work the gating state
1926 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1927 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1928 	 * and a request to turn them on is pending. By doing this way,
1929 	 * we keep the state machine in tact and this would ultimately
1930 	 * prevent from doing cancel work multiple times when there are
1931 	 * new requests arriving before the current cancel work is done.
1932 	 */
1933 	spin_lock_irqsave(hba->host->host_lock, flags);
1934 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1935 		hba->clk_gating.state = CLKS_OFF;
1936 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1937 					hba->clk_gating.state);
1938 	}
1939 rel_lock:
1940 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1941 out:
1942 	return;
1943 }
1944 
1945 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1946 static void __ufshcd_release(struct ufs_hba *hba)
1947 {
1948 	if (!ufshcd_is_clkgating_allowed(hba))
1949 		return;
1950 
1951 	hba->clk_gating.active_reqs--;
1952 
1953 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1954 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1955 	    ufshcd_has_pending_tasks(hba) || !hba->clk_gating.is_initialized ||
1956 	    hba->clk_gating.state == CLKS_OFF)
1957 		return;
1958 
1959 	hba->clk_gating.state = REQ_CLKS_OFF;
1960 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1961 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1962 			   &hba->clk_gating.gate_work,
1963 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1964 }
1965 
ufshcd_release(struct ufs_hba * hba)1966 void ufshcd_release(struct ufs_hba *hba)
1967 {
1968 	unsigned long flags;
1969 
1970 	spin_lock_irqsave(hba->host->host_lock, flags);
1971 	__ufshcd_release(hba);
1972 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1973 }
1974 EXPORT_SYMBOL_GPL(ufshcd_release);
1975 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1976 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1977 		struct device_attribute *attr, char *buf)
1978 {
1979 	struct ufs_hba *hba = dev_get_drvdata(dev);
1980 
1981 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1982 }
1983 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1984 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1985 {
1986 	struct ufs_hba *hba = dev_get_drvdata(dev);
1987 	unsigned long flags;
1988 
1989 	spin_lock_irqsave(hba->host->host_lock, flags);
1990 	hba->clk_gating.delay_ms = value;
1991 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1992 }
1993 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1994 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1995 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1996 		struct device_attribute *attr, const char *buf, size_t count)
1997 {
1998 	unsigned long value;
1999 
2000 	if (kstrtoul(buf, 0, &value))
2001 		return -EINVAL;
2002 
2003 	ufshcd_clkgate_delay_set(dev, value);
2004 	return count;
2005 }
2006 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2007 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2008 		struct device_attribute *attr, char *buf)
2009 {
2010 	struct ufs_hba *hba = dev_get_drvdata(dev);
2011 
2012 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2013 }
2014 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2015 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2016 		struct device_attribute *attr, const char *buf, size_t count)
2017 {
2018 	struct ufs_hba *hba = dev_get_drvdata(dev);
2019 	unsigned long flags;
2020 	u32 value;
2021 
2022 	if (kstrtou32(buf, 0, &value))
2023 		return -EINVAL;
2024 
2025 	value = !!value;
2026 
2027 	spin_lock_irqsave(hba->host->host_lock, flags);
2028 	if (value == hba->clk_gating.is_enabled)
2029 		goto out;
2030 
2031 	if (value)
2032 		__ufshcd_release(hba);
2033 	else
2034 		hba->clk_gating.active_reqs++;
2035 
2036 	hba->clk_gating.is_enabled = value;
2037 out:
2038 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2039 	return count;
2040 }
2041 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2042 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2043 {
2044 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2045 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2046 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2047 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2048 	hba->clk_gating.delay_attr.attr.mode = 0644;
2049 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2050 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2051 
2052 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2053 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2054 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2055 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2056 	hba->clk_gating.enable_attr.attr.mode = 0644;
2057 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2058 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2059 }
2060 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2061 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2062 {
2063 	if (hba->clk_gating.delay_attr.attr.name)
2064 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2065 	if (hba->clk_gating.enable_attr.attr.name)
2066 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2067 }
2068 
ufshcd_init_clk_gating(struct ufs_hba * hba)2069 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2070 {
2071 	char wq_name[sizeof("ufs_clk_gating_00")];
2072 
2073 	if (!ufshcd_is_clkgating_allowed(hba))
2074 		return;
2075 
2076 	hba->clk_gating.state = CLKS_ON;
2077 
2078 	hba->clk_gating.delay_ms = 150;
2079 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2080 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2081 
2082 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2083 		 hba->host->host_no);
2084 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2085 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2086 
2087 	ufshcd_init_clk_gating_sysfs(hba);
2088 
2089 	hba->clk_gating.is_enabled = true;
2090 	hba->clk_gating.is_initialized = true;
2091 }
2092 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2093 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2094 {
2095 	if (!hba->clk_gating.is_initialized)
2096 		return;
2097 
2098 	ufshcd_remove_clk_gating_sysfs(hba);
2099 
2100 	/* Ungate the clock if necessary. */
2101 	ufshcd_hold(hba);
2102 	hba->clk_gating.is_initialized = false;
2103 	ufshcd_release(hba);
2104 
2105 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2106 }
2107 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2108 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2109 {
2110 	bool queue_resume_work = false;
2111 	ktime_t curr_t = ktime_get();
2112 	unsigned long flags;
2113 
2114 	if (!ufshcd_is_clkscaling_supported(hba))
2115 		return;
2116 
2117 	spin_lock_irqsave(hba->host->host_lock, flags);
2118 	if (!hba->clk_scaling.active_reqs++)
2119 		queue_resume_work = true;
2120 
2121 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2122 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2123 		return;
2124 	}
2125 
2126 	if (queue_resume_work)
2127 		queue_work(hba->clk_scaling.workq,
2128 			   &hba->clk_scaling.resume_work);
2129 
2130 	if (!hba->clk_scaling.window_start_t) {
2131 		hba->clk_scaling.window_start_t = curr_t;
2132 		hba->clk_scaling.tot_busy_t = 0;
2133 		hba->clk_scaling.is_busy_started = false;
2134 	}
2135 
2136 	if (!hba->clk_scaling.is_busy_started) {
2137 		hba->clk_scaling.busy_start_t = curr_t;
2138 		hba->clk_scaling.is_busy_started = true;
2139 	}
2140 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2141 }
2142 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2143 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2144 {
2145 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2146 	unsigned long flags;
2147 
2148 	if (!ufshcd_is_clkscaling_supported(hba))
2149 		return;
2150 
2151 	spin_lock_irqsave(hba->host->host_lock, flags);
2152 	hba->clk_scaling.active_reqs--;
2153 	if (!scaling->active_reqs && scaling->is_busy_started) {
2154 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2155 					scaling->busy_start_t));
2156 		scaling->busy_start_t = 0;
2157 		scaling->is_busy_started = false;
2158 	}
2159 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2160 }
2161 
ufshcd_monitor_opcode2dir(u8 opcode)2162 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2163 {
2164 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2165 		return READ;
2166 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2167 		return WRITE;
2168 	else
2169 		return -EINVAL;
2170 }
2171 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2172 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2173 						struct ufshcd_lrb *lrbp)
2174 {
2175 	const struct ufs_hba_monitor *m = &hba->monitor;
2176 
2177 	return (m->enabled && lrbp && lrbp->cmd &&
2178 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2179 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2180 }
2181 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2182 static void ufshcd_start_monitor(struct ufs_hba *hba,
2183 				 const struct ufshcd_lrb *lrbp)
2184 {
2185 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2186 	unsigned long flags;
2187 
2188 	spin_lock_irqsave(hba->host->host_lock, flags);
2189 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2190 		hba->monitor.busy_start_ts[dir] = ktime_get();
2191 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2192 }
2193 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2194 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2195 {
2196 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2197 	unsigned long flags;
2198 
2199 	spin_lock_irqsave(hba->host->host_lock, flags);
2200 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2201 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2202 		struct ufs_hba_monitor *m = &hba->monitor;
2203 		ktime_t now, inc, lat;
2204 
2205 		now = lrbp->compl_time_stamp;
2206 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2207 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2208 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2209 
2210 		/* Update latencies */
2211 		m->nr_req[dir]++;
2212 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2213 		m->lat_sum[dir] += lat;
2214 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2215 			m->lat_max[dir] = lat;
2216 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2217 			m->lat_min[dir] = lat;
2218 
2219 		m->nr_queued[dir]--;
2220 		/* Push forward the busy start of monitor */
2221 		m->busy_start_ts[dir] = now;
2222 	}
2223 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2224 }
2225 
2226 /**
2227  * ufshcd_send_command - Send SCSI or device management commands
2228  * @hba: per adapter instance
2229  * @task_tag: Task tag of the command
2230  * @hwq: pointer to hardware queue instance
2231  */
2232 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2233 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2234 			 struct ufs_hw_queue *hwq)
2235 {
2236 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2237 	unsigned long flags;
2238 
2239 	lrbp->issue_time_stamp = ktime_get();
2240 	lrbp->issue_time_stamp_local_clock = local_clock();
2241 	lrbp->compl_time_stamp = ktime_set(0, 0);
2242 	lrbp->compl_time_stamp_local_clock = 0;
2243 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2244 	ufshcd_clk_scaling_start_busy(hba);
2245 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2246 		ufshcd_start_monitor(hba, lrbp);
2247 
2248 	if (is_mcq_enabled(hba)) {
2249 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2250 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2251 		struct utp_transfer_req_desc *dest;
2252 
2253 		spin_lock(&hwq->sq_lock);
2254 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2255 		memcpy(dest, src, utrd_size);
2256 		ufshcd_inc_sq_tail(hwq);
2257 		spin_unlock(&hwq->sq_lock);
2258 	} else {
2259 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2260 		if (hba->vops && hba->vops->setup_xfer_req)
2261 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2262 						  !!lrbp->cmd);
2263 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2264 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2265 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2266 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2267 	}
2268 }
2269 
2270 /**
2271  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2272  * @lrbp: pointer to local reference block
2273  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2274 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2275 {
2276 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2277 	u16 resp_len;
2278 	int len;
2279 
2280 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2281 	if (sense_buffer && resp_len) {
2282 		int len_to_copy;
2283 
2284 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2285 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2286 
2287 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2288 		       len_to_copy);
2289 	}
2290 }
2291 
2292 /**
2293  * ufshcd_copy_query_response() - Copy the Query Response and the data
2294  * descriptor
2295  * @hba: per adapter instance
2296  * @lrbp: pointer to local reference block
2297  *
2298  * Return: 0 upon success; < 0 upon failure.
2299  */
2300 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2301 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2302 {
2303 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2304 
2305 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2306 
2307 	/* Get the descriptor */
2308 	if (hba->dev_cmd.query.descriptor &&
2309 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2310 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2311 				GENERAL_UPIU_REQUEST_SIZE;
2312 		u16 resp_len;
2313 		u16 buf_len;
2314 
2315 		/* data segment length */
2316 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2317 				       .data_segment_length);
2318 		buf_len = be16_to_cpu(
2319 				hba->dev_cmd.query.request.upiu_req.length);
2320 		if (likely(buf_len >= resp_len)) {
2321 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2322 		} else {
2323 			dev_warn(hba->dev,
2324 				 "%s: rsp size %d is bigger than buffer size %d",
2325 				 __func__, resp_len, buf_len);
2326 			return -EINVAL;
2327 		}
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 /**
2334  * ufshcd_hba_capabilities - Read controller capabilities
2335  * @hba: per adapter instance
2336  *
2337  * Return: 0 on success, negative on error.
2338  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2339 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2340 {
2341 	int err;
2342 
2343 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2344 
2345 	/* nutrs and nutmrs are 0 based values */
2346 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2347 	hba->nutmrs =
2348 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2349 	hba->reserved_slot = hba->nutrs - 1;
2350 
2351 	/* Read crypto capabilities */
2352 	err = ufshcd_hba_init_crypto_capabilities(hba);
2353 	if (err) {
2354 		dev_err(hba->dev, "crypto setup failed\n");
2355 		return err;
2356 	}
2357 
2358 	/*
2359 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2360 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2361 	 * means we can simply read values regardless of version.
2362 	 */
2363 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2364 	/*
2365 	 * 0h: legacy single doorbell support is available
2366 	 * 1h: indicate that legacy single doorbell support has been removed
2367 	 */
2368 	hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2369 	if (!hba->mcq_sup)
2370 		return 0;
2371 
2372 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2373 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2374 				     hba->mcq_capabilities);
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2381  *                            to accept UIC commands
2382  * @hba: per adapter instance
2383  *
2384  * Return: true on success, else false.
2385  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2386 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2387 {
2388 	u32 val;
2389 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2390 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2391 				    REG_CONTROLLER_STATUS);
2392 	return ret == 0 ? true : false;
2393 }
2394 
2395 /**
2396  * ufshcd_get_upmcrs - Get the power mode change request status
2397  * @hba: Pointer to adapter instance
2398  *
2399  * This function gets the UPMCRS field of HCS register
2400  *
2401  * Return: value of UPMCRS field.
2402  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2403 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2404 {
2405 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2406 }
2407 
2408 /**
2409  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2410  * @hba: per adapter instance
2411  * @uic_cmd: UIC command
2412  */
2413 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2414 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2415 {
2416 	lockdep_assert_held(&hba->uic_cmd_mutex);
2417 
2418 	WARN_ON(hba->active_uic_cmd);
2419 
2420 	hba->active_uic_cmd = uic_cmd;
2421 
2422 	/* Write Args */
2423 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2424 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2425 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2426 
2427 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2428 
2429 	/* Write UIC Cmd */
2430 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2431 		      REG_UIC_COMMAND);
2432 }
2433 
2434 /**
2435  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2436  * @hba: per adapter instance
2437  * @uic_cmd: UIC command
2438  *
2439  * Return: 0 only if success.
2440  */
2441 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2442 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2443 {
2444 	int ret;
2445 	unsigned long flags;
2446 
2447 	lockdep_assert_held(&hba->uic_cmd_mutex);
2448 
2449 	if (wait_for_completion_timeout(&uic_cmd->done,
2450 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2451 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2452 	} else {
2453 		ret = -ETIMEDOUT;
2454 		dev_err(hba->dev,
2455 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2456 			uic_cmd->command, uic_cmd->argument3);
2457 
2458 		if (!uic_cmd->cmd_active) {
2459 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2460 				__func__);
2461 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2462 		}
2463 	}
2464 
2465 	spin_lock_irqsave(hba->host->host_lock, flags);
2466 	hba->active_uic_cmd = NULL;
2467 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2468 
2469 	return ret;
2470 }
2471 
2472 /**
2473  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2474  * @hba: per adapter instance
2475  * @uic_cmd: UIC command
2476  *
2477  * Return: 0 only if success.
2478  */
2479 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2480 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2481 {
2482 	lockdep_assert_held(&hba->uic_cmd_mutex);
2483 
2484 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2485 		dev_err(hba->dev,
2486 			"Controller not ready to accept UIC commands\n");
2487 		return -EIO;
2488 	}
2489 
2490 	init_completion(&uic_cmd->done);
2491 
2492 	uic_cmd->cmd_active = 1;
2493 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2494 
2495 	return 0;
2496 }
2497 
2498 /**
2499  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2500  * @hba: per adapter instance
2501  * @uic_cmd: UIC command
2502  *
2503  * Return: 0 only if success.
2504  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2505 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2506 {
2507 	int ret;
2508 
2509 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2510 		return 0;
2511 
2512 	ufshcd_hold(hba);
2513 	mutex_lock(&hba->uic_cmd_mutex);
2514 	ufshcd_add_delay_before_dme_cmd(hba);
2515 
2516 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2517 	if (!ret)
2518 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2519 
2520 	mutex_unlock(&hba->uic_cmd_mutex);
2521 
2522 	ufshcd_release(hba);
2523 	return ret;
2524 }
2525 
2526 /**
2527  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2528  * @hba:	per-adapter instance
2529  * @lrbp:	pointer to local reference block
2530  * @sg_entries:	The number of sg lists actually used
2531  * @sg_list:	Pointer to SG list
2532  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2533 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2534 			       struct scatterlist *sg_list)
2535 {
2536 	struct ufshcd_sg_entry *prd;
2537 	struct scatterlist *sg;
2538 	int i;
2539 
2540 	if (sg_entries) {
2541 
2542 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2543 			lrbp->utr_descriptor_ptr->prd_table_length =
2544 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2545 		else
2546 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2547 
2548 		prd = lrbp->ucd_prdt_ptr;
2549 
2550 		for_each_sg(sg_list, sg, sg_entries, i) {
2551 			const unsigned int len = sg_dma_len(sg);
2552 
2553 			/*
2554 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2555 			 * based value that indicates the length, in bytes, of
2556 			 * the data block. A maximum of length of 256KB may
2557 			 * exist for any entry. Bits 1:0 of this field shall be
2558 			 * 11b to indicate Dword granularity. A value of '3'
2559 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2560 			 */
2561 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2562 			prd->size = cpu_to_le32(len - 1);
2563 			prd->addr = cpu_to_le64(sg->dma_address);
2564 			prd->reserved = 0;
2565 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2566 		}
2567 	} else {
2568 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2569 	}
2570 }
2571 
2572 /**
2573  * ufshcd_map_sg - Map scatter-gather list to prdt
2574  * @hba: per adapter instance
2575  * @lrbp: pointer to local reference block
2576  *
2577  * Return: 0 in case of success, non-zero value in case of failure.
2578  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2579 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2580 {
2581 	struct scsi_cmnd *cmd = lrbp->cmd;
2582 	int sg_segments = scsi_dma_map(cmd);
2583 
2584 	if (sg_segments < 0)
2585 		return sg_segments;
2586 
2587 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2588 
2589 	return 0;
2590 }
2591 
2592 /**
2593  * ufshcd_enable_intr - enable interrupts
2594  * @hba: per adapter instance
2595  * @intrs: interrupt bits
2596  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2597 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2598 {
2599 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2600 
2601 	if (hba->ufs_version == ufshci_version(1, 0)) {
2602 		u32 rw;
2603 		rw = set & INTERRUPT_MASK_RW_VER_10;
2604 		set = rw | ((set ^ intrs) & intrs);
2605 	} else {
2606 		set |= intrs;
2607 	}
2608 
2609 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2610 }
2611 
2612 /**
2613  * ufshcd_disable_intr - disable interrupts
2614  * @hba: per adapter instance
2615  * @intrs: interrupt bits
2616  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2617 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2618 {
2619 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2620 
2621 	if (hba->ufs_version == ufshci_version(1, 0)) {
2622 		u32 rw;
2623 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2624 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2625 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2626 
2627 	} else {
2628 		set &= ~intrs;
2629 	}
2630 
2631 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2632 }
2633 
2634 /**
2635  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2636  * descriptor according to request
2637  * @lrbp: pointer to local reference block
2638  * @upiu_flags: flags required in the header
2639  * @cmd_dir: requests data direction
2640  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2641  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2642 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2643 					enum dma_data_direction cmd_dir, int ehs_length)
2644 {
2645 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2646 	struct request_desc_header *h = &req_desc->header;
2647 	enum utp_data_direction data_direction;
2648 
2649 	*h = (typeof(*h)){ };
2650 
2651 	if (cmd_dir == DMA_FROM_DEVICE) {
2652 		data_direction = UTP_DEVICE_TO_HOST;
2653 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2654 	} else if (cmd_dir == DMA_TO_DEVICE) {
2655 		data_direction = UTP_HOST_TO_DEVICE;
2656 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2657 	} else {
2658 		data_direction = UTP_NO_DATA_TRANSFER;
2659 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2660 	}
2661 
2662 	h->command_type = lrbp->command_type;
2663 	h->data_direction = data_direction;
2664 	h->ehs_length = ehs_length;
2665 
2666 	if (lrbp->intr_cmd)
2667 		h->interrupt = 1;
2668 
2669 	/* Prepare crypto related dwords */
2670 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2671 
2672 	/*
2673 	 * assigning invalid value for command status. Controller
2674 	 * updates OCS on command completion, with the command
2675 	 * status
2676 	 */
2677 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2678 
2679 	req_desc->prd_table_length = 0;
2680 }
2681 
2682 /**
2683  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2684  * for scsi commands
2685  * @lrbp: local reference block pointer
2686  * @upiu_flags: flags
2687  */
2688 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2689 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2690 {
2691 	struct scsi_cmnd *cmd = lrbp->cmd;
2692 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2693 	unsigned short cdb_len;
2694 
2695 	ucd_req_ptr->header = (struct utp_upiu_header){
2696 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2697 		.flags = upiu_flags,
2698 		.lun = lrbp->lun,
2699 		.task_tag = lrbp->task_tag,
2700 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2701 	};
2702 
2703 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2704 
2705 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2706 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2707 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2708 
2709 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2710 }
2711 
2712 /**
2713  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2714  * @hba: UFS hba
2715  * @lrbp: local reference block pointer
2716  * @upiu_flags: flags
2717  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2718 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2719 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2720 {
2721 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2722 	struct ufs_query *query = &hba->dev_cmd.query;
2723 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2724 
2725 	/* Query request header */
2726 	ucd_req_ptr->header = (struct utp_upiu_header){
2727 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2728 		.flags = upiu_flags,
2729 		.lun = lrbp->lun,
2730 		.task_tag = lrbp->task_tag,
2731 		.query_function = query->request.query_func,
2732 		/* Data segment length only need for WRITE_DESC */
2733 		.data_segment_length =
2734 			query->request.upiu_req.opcode ==
2735 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2736 				cpu_to_be16(len) :
2737 				0,
2738 	};
2739 
2740 	/* Copy the Query Request buffer as is */
2741 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2742 			QUERY_OSF_SIZE);
2743 
2744 	/* Copy the Descriptor */
2745 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2746 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2747 
2748 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2749 }
2750 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2751 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2752 {
2753 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2754 
2755 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2756 
2757 	ucd_req_ptr->header = (struct utp_upiu_header){
2758 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2759 		.task_tag = lrbp->task_tag,
2760 	};
2761 
2762 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2763 }
2764 
2765 /**
2766  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2767  *			     for Device Management Purposes
2768  * @hba: per adapter instance
2769  * @lrbp: pointer to local reference block
2770  *
2771  * Return: 0 upon success; < 0 upon failure.
2772  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2773 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2774 				      struct ufshcd_lrb *lrbp)
2775 {
2776 	u8 upiu_flags;
2777 	int ret = 0;
2778 
2779 	if (hba->ufs_version <= ufshci_version(1, 1))
2780 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2781 	else
2782 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2783 
2784 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2785 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2786 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2787 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2788 		ufshcd_prepare_utp_nop_upiu(lrbp);
2789 	else
2790 		ret = -EINVAL;
2791 
2792 	return ret;
2793 }
2794 
2795 /**
2796  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2797  *			   for SCSI Purposes
2798  * @hba: per adapter instance
2799  * @lrbp: pointer to local reference block
2800  *
2801  * Return: 0 upon success; < 0 upon failure.
2802  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2803 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2804 {
2805 	u8 upiu_flags;
2806 	int ret = 0;
2807 
2808 	if (hba->ufs_version <= ufshci_version(1, 1))
2809 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2810 	else
2811 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2812 
2813 	if (likely(lrbp->cmd)) {
2814 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2815 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2816 	} else {
2817 		ret = -EINVAL;
2818 	}
2819 
2820 	return ret;
2821 }
2822 
2823 /**
2824  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2825  * @upiu_wlun_id: UPIU W-LUN id
2826  *
2827  * Return: SCSI W-LUN id.
2828  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2829 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2830 {
2831 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2832 }
2833 
is_device_wlun(struct scsi_device * sdev)2834 static inline bool is_device_wlun(struct scsi_device *sdev)
2835 {
2836 	return sdev->lun ==
2837 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2838 }
2839 
2840 /*
2841  * Associate the UFS controller queue with the default and poll HCTX types.
2842  * Initialize the mq_map[] arrays.
2843  */
ufshcd_map_queues(struct Scsi_Host * shost)2844 static void ufshcd_map_queues(struct Scsi_Host *shost)
2845 {
2846 	struct ufs_hba *hba = shost_priv(shost);
2847 	int i, queue_offset = 0;
2848 
2849 	if (!is_mcq_supported(hba)) {
2850 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2851 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2852 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2853 		hba->nr_hw_queues = 1;
2854 	}
2855 
2856 	for (i = 0; i < shost->nr_maps; i++) {
2857 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2858 
2859 		map->nr_queues = hba->nr_queues[i];
2860 		if (!map->nr_queues)
2861 			continue;
2862 		map->queue_offset = queue_offset;
2863 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2864 			map->queue_offset = 0;
2865 
2866 		blk_mq_map_queues(map);
2867 		queue_offset += map->nr_queues;
2868 	}
2869 }
2870 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2871 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2872 {
2873 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2874 		i * ufshcd_get_ucd_size(hba);
2875 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2876 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2877 		i * ufshcd_get_ucd_size(hba);
2878 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2879 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2880 
2881 	lrb->utr_descriptor_ptr = utrdlp + i;
2882 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2883 		i * sizeof(struct utp_transfer_req_desc);
2884 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2885 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2886 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2887 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2888 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2889 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2890 }
2891 
2892 /**
2893  * ufshcd_queuecommand - main entry point for SCSI requests
2894  * @host: SCSI host pointer
2895  * @cmd: command from SCSI Midlayer
2896  *
2897  * Return: 0 for success, non-zero in case of failure.
2898  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2899 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2900 {
2901 	struct ufs_hba *hba = shost_priv(host);
2902 	int tag = scsi_cmd_to_rq(cmd)->tag;
2903 	struct ufshcd_lrb *lrbp;
2904 	int err = 0;
2905 	struct ufs_hw_queue *hwq = NULL;
2906 
2907 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2908 
2909 	switch (hba->ufshcd_state) {
2910 	case UFSHCD_STATE_OPERATIONAL:
2911 		break;
2912 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2913 		/*
2914 		 * SCSI error handler can call ->queuecommand() while UFS error
2915 		 * handler is in progress. Error interrupts could change the
2916 		 * state from UFSHCD_STATE_RESET to
2917 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2918 		 * being issued in that case.
2919 		 */
2920 		if (ufshcd_eh_in_progress(hba)) {
2921 			err = SCSI_MLQUEUE_HOST_BUSY;
2922 			goto out;
2923 		}
2924 		break;
2925 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2926 		/*
2927 		 * pm_runtime_get_sync() is used at error handling preparation
2928 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2929 		 * PM ops, it can never be finished if we let SCSI layer keep
2930 		 * retrying it, which gets err handler stuck forever. Neither
2931 		 * can we let the scsi cmd pass through, because UFS is in bad
2932 		 * state, the scsi cmd may eventually time out, which will get
2933 		 * err handler blocked for too long. So, just fail the scsi cmd
2934 		 * sent from PM ops, err handler can recover PM error anyways.
2935 		 */
2936 		if (hba->pm_op_in_progress) {
2937 			hba->force_reset = true;
2938 			set_host_byte(cmd, DID_BAD_TARGET);
2939 			scsi_done(cmd);
2940 			goto out;
2941 		}
2942 		fallthrough;
2943 	case UFSHCD_STATE_RESET:
2944 		err = SCSI_MLQUEUE_HOST_BUSY;
2945 		goto out;
2946 	case UFSHCD_STATE_ERROR:
2947 		set_host_byte(cmd, DID_ERROR);
2948 		scsi_done(cmd);
2949 		goto out;
2950 	}
2951 
2952 	hba->req_abort_count = 0;
2953 
2954 	ufshcd_hold(hba);
2955 
2956 	lrbp = &hba->lrb[tag];
2957 	lrbp->cmd = cmd;
2958 	lrbp->task_tag = tag;
2959 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2960 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2961 
2962 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2963 
2964 	lrbp->req_abort_skip = false;
2965 
2966 	ufshcd_comp_scsi_upiu(hba, lrbp);
2967 
2968 	err = ufshcd_map_sg(hba, lrbp);
2969 	if (err) {
2970 		ufshcd_release(hba);
2971 		goto out;
2972 	}
2973 
2974 	if (is_mcq_enabled(hba))
2975 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2976 
2977 	ufshcd_send_command(hba, tag, hwq);
2978 
2979 out:
2980 	if (ufs_trigger_eh()) {
2981 		unsigned long flags;
2982 
2983 		spin_lock_irqsave(hba->host->host_lock, flags);
2984 		ufshcd_schedule_eh_work(hba);
2985 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2986 	}
2987 
2988 	return err;
2989 }
2990 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2991 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2992 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2993 {
2994 	lrbp->cmd = NULL;
2995 	lrbp->task_tag = tag;
2996 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2997 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2998 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2999 	hba->dev_cmd.type = cmd_type;
3000 
3001 	return ufshcd_compose_devman_upiu(hba, lrbp);
3002 }
3003 
3004 /*
3005  * Check with the block layer if the command is inflight
3006  * @cmd: command to check.
3007  *
3008  * Return: true if command is inflight; false if not.
3009  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3010 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3011 {
3012 	struct request *rq;
3013 
3014 	if (!cmd)
3015 		return false;
3016 
3017 	rq = scsi_cmd_to_rq(cmd);
3018 	if (!blk_mq_request_started(rq))
3019 		return false;
3020 
3021 	return true;
3022 }
3023 
3024 /*
3025  * Clear the pending command in the controller and wait until
3026  * the controller confirms that the command has been cleared.
3027  * @hba: per adapter instance
3028  * @task_tag: The tag number of the command to be cleared.
3029  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3030 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3031 {
3032 	u32 mask;
3033 	unsigned long flags;
3034 	int err;
3035 
3036 	if (is_mcq_enabled(hba)) {
3037 		/*
3038 		 * MCQ mode. Clean up the MCQ resources similar to
3039 		 * what the ufshcd_utrl_clear() does for SDB mode.
3040 		 */
3041 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3042 		if (err) {
3043 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3044 				__func__, task_tag, err);
3045 			return err;
3046 		}
3047 		return 0;
3048 	}
3049 
3050 	mask = 1U << task_tag;
3051 
3052 	/* clear outstanding transaction before retry */
3053 	spin_lock_irqsave(hba->host->host_lock, flags);
3054 	ufshcd_utrl_clear(hba, mask);
3055 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3056 
3057 	/*
3058 	 * wait for h/w to clear corresponding bit in door-bell.
3059 	 * max. wait is 1 sec.
3060 	 */
3061 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3062 					mask, ~mask, 1000, 1000);
3063 }
3064 
3065 /**
3066  * ufshcd_dev_cmd_completion() - handles device management command responses
3067  * @hba: per adapter instance
3068  * @lrbp: pointer to local reference block
3069  *
3070  * Return: 0 upon success; < 0 upon failure.
3071  */
3072 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3073 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3074 {
3075 	enum upiu_response_transaction resp;
3076 	int err = 0;
3077 
3078 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3079 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3080 
3081 	switch (resp) {
3082 	case UPIU_TRANSACTION_NOP_IN:
3083 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3084 			err = -EINVAL;
3085 			dev_err(hba->dev, "%s: unexpected response %x\n",
3086 					__func__, resp);
3087 		}
3088 		break;
3089 	case UPIU_TRANSACTION_QUERY_RSP: {
3090 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3091 
3092 		if (response == 0) {
3093 			err = ufshcd_copy_query_response(hba, lrbp);
3094 		} else {
3095 			err = -EINVAL;
3096 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3097 					__func__, response);
3098 		}
3099 		break;
3100 	}
3101 	case UPIU_TRANSACTION_REJECT_UPIU:
3102 		/* TODO: handle Reject UPIU Response */
3103 		err = -EPERM;
3104 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3105 				__func__);
3106 		break;
3107 	case UPIU_TRANSACTION_RESPONSE:
3108 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3109 			err = -EINVAL;
3110 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3111 		}
3112 		break;
3113 	default:
3114 		err = -EINVAL;
3115 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3116 				__func__, resp);
3117 		break;
3118 	}
3119 
3120 	return err;
3121 }
3122 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3123 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3124 		struct ufshcd_lrb *lrbp, int max_timeout)
3125 {
3126 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3127 	unsigned long flags;
3128 	bool pending;
3129 	int err;
3130 
3131 retry:
3132 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3133 						time_left);
3134 
3135 	if (likely(time_left)) {
3136 		/*
3137 		 * The completion handler called complete() and the caller of
3138 		 * this function still owns the @lrbp tag so the code below does
3139 		 * not trigger any race conditions.
3140 		 */
3141 		hba->dev_cmd.complete = NULL;
3142 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3143 		if (!err)
3144 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3145 	} else {
3146 		err = -ETIMEDOUT;
3147 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3148 			__func__, lrbp->task_tag);
3149 
3150 		/* MCQ mode */
3151 		if (is_mcq_enabled(hba)) {
3152 			/* successfully cleared the command, retry if needed */
3153 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3154 				err = -EAGAIN;
3155 			hba->dev_cmd.complete = NULL;
3156 			return err;
3157 		}
3158 
3159 		/* SDB mode */
3160 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3161 			/* successfully cleared the command, retry if needed */
3162 			err = -EAGAIN;
3163 			/*
3164 			 * Since clearing the command succeeded we also need to
3165 			 * clear the task tag bit from the outstanding_reqs
3166 			 * variable.
3167 			 */
3168 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3169 			pending = test_bit(lrbp->task_tag,
3170 					   &hba->outstanding_reqs);
3171 			if (pending) {
3172 				hba->dev_cmd.complete = NULL;
3173 				__clear_bit(lrbp->task_tag,
3174 					    &hba->outstanding_reqs);
3175 			}
3176 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3177 
3178 			if (!pending) {
3179 				/*
3180 				 * The completion handler ran while we tried to
3181 				 * clear the command.
3182 				 */
3183 				time_left = 1;
3184 				goto retry;
3185 			}
3186 		} else {
3187 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3188 				__func__, lrbp->task_tag);
3189 
3190 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3191 			pending = test_bit(lrbp->task_tag,
3192 					   &hba->outstanding_reqs);
3193 			if (pending)
3194 				hba->dev_cmd.complete = NULL;
3195 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3196 
3197 			if (!pending) {
3198 				/*
3199 				 * The completion handler ran while we tried to
3200 				 * clear the command.
3201 				 */
3202 				time_left = 1;
3203 				goto retry;
3204 			}
3205 		}
3206 	}
3207 
3208 	return err;
3209 }
3210 
3211 /**
3212  * ufshcd_exec_dev_cmd - API for sending device management requests
3213  * @hba: UFS hba
3214  * @cmd_type: specifies the type (NOP, Query...)
3215  * @timeout: timeout in milliseconds
3216  *
3217  * Return: 0 upon success; < 0 upon failure.
3218  *
3219  * NOTE: Since there is only one available tag for device management commands,
3220  * it is expected you hold the hba->dev_cmd.lock mutex.
3221  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3222 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3223 		enum dev_cmd_type cmd_type, int timeout)
3224 {
3225 	DECLARE_COMPLETION_ONSTACK(wait);
3226 	const u32 tag = hba->reserved_slot;
3227 	struct ufshcd_lrb *lrbp;
3228 	int err;
3229 
3230 	/* Protects use of hba->reserved_slot. */
3231 	lockdep_assert_held(&hba->dev_cmd.lock);
3232 
3233 	down_read(&hba->clk_scaling_lock);
3234 
3235 	lrbp = &hba->lrb[tag];
3236 	lrbp->cmd = NULL;
3237 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3238 	if (unlikely(err))
3239 		goto out;
3240 
3241 	hba->dev_cmd.complete = &wait;
3242 
3243 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3244 
3245 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3246 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3247 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3248 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3249 
3250 out:
3251 	up_read(&hba->clk_scaling_lock);
3252 	return err;
3253 }
3254 
3255 /**
3256  * ufshcd_init_query() - init the query response and request parameters
3257  * @hba: per-adapter instance
3258  * @request: address of the request pointer to be initialized
3259  * @response: address of the response pointer to be initialized
3260  * @opcode: operation to perform
3261  * @idn: flag idn to access
3262  * @index: LU number to access
3263  * @selector: query/flag/descriptor further identification
3264  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3265 static inline void ufshcd_init_query(struct ufs_hba *hba,
3266 		struct ufs_query_req **request, struct ufs_query_res **response,
3267 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3268 {
3269 	*request = &hba->dev_cmd.query.request;
3270 	*response = &hba->dev_cmd.query.response;
3271 	memset(*request, 0, sizeof(struct ufs_query_req));
3272 	memset(*response, 0, sizeof(struct ufs_query_res));
3273 	(*request)->upiu_req.opcode = opcode;
3274 	(*request)->upiu_req.idn = idn;
3275 	(*request)->upiu_req.index = index;
3276 	(*request)->upiu_req.selector = selector;
3277 }
3278 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3279 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3280 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3281 {
3282 	int ret;
3283 	int retries;
3284 
3285 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3286 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3287 		if (ret)
3288 			dev_dbg(hba->dev,
3289 				"%s: failed with error %d, retries %d\n",
3290 				__func__, ret, retries);
3291 		else
3292 			break;
3293 	}
3294 
3295 	if (ret)
3296 		dev_err(hba->dev,
3297 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3298 			__func__, opcode, idn, ret, retries);
3299 	return ret;
3300 }
3301 
3302 /**
3303  * ufshcd_query_flag() - API function for sending flag query requests
3304  * @hba: per-adapter instance
3305  * @opcode: flag query to perform
3306  * @idn: flag idn to access
3307  * @index: flag index to access
3308  * @flag_res: the flag value after the query request completes
3309  *
3310  * Return: 0 for success, non-zero in case of failure.
3311  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3312 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3313 			enum flag_idn idn, u8 index, bool *flag_res)
3314 {
3315 	struct ufs_query_req *request = NULL;
3316 	struct ufs_query_res *response = NULL;
3317 	int err, selector = 0;
3318 	int timeout = QUERY_REQ_TIMEOUT;
3319 
3320 	BUG_ON(!hba);
3321 
3322 	ufshcd_hold(hba);
3323 	mutex_lock(&hba->dev_cmd.lock);
3324 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3325 			selector);
3326 
3327 	switch (opcode) {
3328 	case UPIU_QUERY_OPCODE_SET_FLAG:
3329 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3330 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3331 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3332 		break;
3333 	case UPIU_QUERY_OPCODE_READ_FLAG:
3334 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3335 		if (!flag_res) {
3336 			/* No dummy reads */
3337 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3338 					__func__);
3339 			err = -EINVAL;
3340 			goto out_unlock;
3341 		}
3342 		break;
3343 	default:
3344 		dev_err(hba->dev,
3345 			"%s: Expected query flag opcode but got = %d\n",
3346 			__func__, opcode);
3347 		err = -EINVAL;
3348 		goto out_unlock;
3349 	}
3350 
3351 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3352 
3353 	if (err) {
3354 		dev_err(hba->dev,
3355 			"%s: Sending flag query for idn %d failed, err = %d\n",
3356 			__func__, idn, err);
3357 		goto out_unlock;
3358 	}
3359 
3360 	if (flag_res)
3361 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3362 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3363 
3364 out_unlock:
3365 	mutex_unlock(&hba->dev_cmd.lock);
3366 	ufshcd_release(hba);
3367 	return err;
3368 }
3369 
3370 /**
3371  * ufshcd_query_attr - API function for sending attribute requests
3372  * @hba: per-adapter instance
3373  * @opcode: attribute opcode
3374  * @idn: attribute idn to access
3375  * @index: index field
3376  * @selector: selector field
3377  * @attr_val: the attribute value after the query request completes
3378  *
3379  * Return: 0 for success, non-zero in case of failure.
3380 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3381 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3382 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3383 {
3384 	struct ufs_query_req *request = NULL;
3385 	struct ufs_query_res *response = NULL;
3386 	int err;
3387 
3388 	BUG_ON(!hba);
3389 
3390 	if (!attr_val) {
3391 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3392 				__func__, opcode);
3393 		return -EINVAL;
3394 	}
3395 
3396 	ufshcd_hold(hba);
3397 
3398 	mutex_lock(&hba->dev_cmd.lock);
3399 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3400 			selector);
3401 
3402 	switch (opcode) {
3403 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3404 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3405 		request->upiu_req.value = cpu_to_be32(*attr_val);
3406 		break;
3407 	case UPIU_QUERY_OPCODE_READ_ATTR:
3408 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3409 		break;
3410 	default:
3411 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3412 				__func__, opcode);
3413 		err = -EINVAL;
3414 		goto out_unlock;
3415 	}
3416 
3417 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3418 
3419 	if (err) {
3420 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3421 				__func__, opcode, idn, index, err);
3422 		goto out_unlock;
3423 	}
3424 
3425 	*attr_val = be32_to_cpu(response->upiu_res.value);
3426 
3427 out_unlock:
3428 	mutex_unlock(&hba->dev_cmd.lock);
3429 	ufshcd_release(hba);
3430 	return err;
3431 }
3432 
3433 /**
3434  * ufshcd_query_attr_retry() - API function for sending query
3435  * attribute with retries
3436  * @hba: per-adapter instance
3437  * @opcode: attribute opcode
3438  * @idn: attribute idn to access
3439  * @index: index field
3440  * @selector: selector field
3441  * @attr_val: the attribute value after the query request
3442  * completes
3443  *
3444  * Return: 0 for success, non-zero in case of failure.
3445 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3446 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3447 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3448 	u32 *attr_val)
3449 {
3450 	int ret = 0;
3451 	u32 retries;
3452 
3453 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3454 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3455 						selector, attr_val);
3456 		if (ret)
3457 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3458 				__func__, ret, retries);
3459 		else
3460 			break;
3461 	}
3462 
3463 	if (ret)
3464 		dev_err(hba->dev,
3465 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3466 			__func__, idn, ret, QUERY_REQ_RETRIES);
3467 	return ret;
3468 }
3469 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3470 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3471 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3472 			u8 selector, u8 *desc_buf, int *buf_len)
3473 {
3474 	struct ufs_query_req *request = NULL;
3475 	struct ufs_query_res *response = NULL;
3476 	int err;
3477 
3478 	BUG_ON(!hba);
3479 
3480 	if (!desc_buf) {
3481 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3482 				__func__, opcode);
3483 		return -EINVAL;
3484 	}
3485 
3486 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3487 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3488 				__func__, *buf_len);
3489 		return -EINVAL;
3490 	}
3491 
3492 	ufshcd_hold(hba);
3493 
3494 	mutex_lock(&hba->dev_cmd.lock);
3495 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3496 			selector);
3497 	hba->dev_cmd.query.descriptor = desc_buf;
3498 	request->upiu_req.length = cpu_to_be16(*buf_len);
3499 
3500 	switch (opcode) {
3501 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3502 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3503 		break;
3504 	case UPIU_QUERY_OPCODE_READ_DESC:
3505 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3506 		break;
3507 	default:
3508 		dev_err(hba->dev,
3509 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3510 				__func__, opcode);
3511 		err = -EINVAL;
3512 		goto out_unlock;
3513 	}
3514 
3515 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3516 
3517 	if (err) {
3518 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3519 				__func__, opcode, idn, index, err);
3520 		goto out_unlock;
3521 	}
3522 
3523 	*buf_len = be16_to_cpu(response->upiu_res.length);
3524 
3525 out_unlock:
3526 	hba->dev_cmd.query.descriptor = NULL;
3527 	mutex_unlock(&hba->dev_cmd.lock);
3528 	ufshcd_release(hba);
3529 	return err;
3530 }
3531 
3532 /**
3533  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3534  * @hba: per-adapter instance
3535  * @opcode: attribute opcode
3536  * @idn: attribute idn to access
3537  * @index: index field
3538  * @selector: selector field
3539  * @desc_buf: the buffer that contains the descriptor
3540  * @buf_len: length parameter passed to the device
3541  *
3542  * The buf_len parameter will contain, on return, the length parameter
3543  * received on the response.
3544  *
3545  * Return: 0 for success, non-zero in case of failure.
3546  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3547 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3548 				  enum query_opcode opcode,
3549 				  enum desc_idn idn, u8 index,
3550 				  u8 selector,
3551 				  u8 *desc_buf, int *buf_len)
3552 {
3553 	int err;
3554 	int retries;
3555 
3556 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3557 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3558 						selector, desc_buf, buf_len);
3559 		if (!err || err == -EINVAL)
3560 			break;
3561 	}
3562 
3563 	return err;
3564 }
3565 
3566 /**
3567  * ufshcd_read_desc_param - read the specified descriptor parameter
3568  * @hba: Pointer to adapter instance
3569  * @desc_id: descriptor idn value
3570  * @desc_index: descriptor index
3571  * @param_offset: offset of the parameter to read
3572  * @param_read_buf: pointer to buffer where parameter would be read
3573  * @param_size: sizeof(param_read_buf)
3574  *
3575  * Return: 0 in case of success, non-zero otherwise.
3576  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3577 int ufshcd_read_desc_param(struct ufs_hba *hba,
3578 			   enum desc_idn desc_id,
3579 			   int desc_index,
3580 			   u8 param_offset,
3581 			   u8 *param_read_buf,
3582 			   u8 param_size)
3583 {
3584 	int ret;
3585 	u8 *desc_buf;
3586 	int buff_len = QUERY_DESC_MAX_SIZE;
3587 	bool is_kmalloc = true;
3588 
3589 	/* Safety check */
3590 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3591 		return -EINVAL;
3592 
3593 	/* Check whether we need temp memory */
3594 	if (param_offset != 0 || param_size < buff_len) {
3595 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3596 		if (!desc_buf)
3597 			return -ENOMEM;
3598 	} else {
3599 		desc_buf = param_read_buf;
3600 		is_kmalloc = false;
3601 	}
3602 
3603 	/* Request for full descriptor */
3604 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3605 					    desc_id, desc_index, 0,
3606 					    desc_buf, &buff_len);
3607 	if (ret) {
3608 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3609 			__func__, desc_id, desc_index, param_offset, ret);
3610 		goto out;
3611 	}
3612 
3613 	/* Update descriptor length */
3614 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3615 
3616 	if (param_offset >= buff_len) {
3617 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3618 			__func__, param_offset, desc_id, buff_len);
3619 		ret = -EINVAL;
3620 		goto out;
3621 	}
3622 
3623 	/* Sanity check */
3624 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3625 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3626 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	if (is_kmalloc) {
3632 		/* Make sure we don't copy more data than available */
3633 		if (param_offset >= buff_len)
3634 			ret = -EINVAL;
3635 		else
3636 			memcpy(param_read_buf, &desc_buf[param_offset],
3637 			       min_t(u32, param_size, buff_len - param_offset));
3638 	}
3639 out:
3640 	if (is_kmalloc)
3641 		kfree(desc_buf);
3642 	return ret;
3643 }
3644 
3645 /**
3646  * struct uc_string_id - unicode string
3647  *
3648  * @len: size of this descriptor inclusive
3649  * @type: descriptor type
3650  * @uc: unicode string character
3651  */
3652 struct uc_string_id {
3653 	u8 len;
3654 	u8 type;
3655 	wchar_t uc[];
3656 } __packed;
3657 
3658 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3659 static inline char ufshcd_remove_non_printable(u8 ch)
3660 {
3661 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3662 }
3663 
3664 /**
3665  * ufshcd_read_string_desc - read string descriptor
3666  * @hba: pointer to adapter instance
3667  * @desc_index: descriptor index
3668  * @buf: pointer to buffer where descriptor would be read,
3669  *       the caller should free the memory.
3670  * @ascii: if true convert from unicode to ascii characters
3671  *         null terminated string.
3672  *
3673  * Return:
3674  * *      string size on success.
3675  * *      -ENOMEM: on allocation failure
3676  * *      -EINVAL: on a wrong parameter
3677  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3678 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3679 			    u8 **buf, bool ascii)
3680 {
3681 	struct uc_string_id *uc_str;
3682 	u8 *str;
3683 	int ret;
3684 
3685 	if (!buf)
3686 		return -EINVAL;
3687 
3688 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3689 	if (!uc_str)
3690 		return -ENOMEM;
3691 
3692 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3693 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3694 	if (ret < 0) {
3695 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3696 			QUERY_REQ_RETRIES, ret);
3697 		str = NULL;
3698 		goto out;
3699 	}
3700 
3701 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3702 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3703 		str = NULL;
3704 		ret = 0;
3705 		goto out;
3706 	}
3707 
3708 	if (ascii) {
3709 		ssize_t ascii_len;
3710 		int i;
3711 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3712 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3713 		str = kzalloc(ascii_len, GFP_KERNEL);
3714 		if (!str) {
3715 			ret = -ENOMEM;
3716 			goto out;
3717 		}
3718 
3719 		/*
3720 		 * the descriptor contains string in UTF16 format
3721 		 * we need to convert to utf-8 so it can be displayed
3722 		 */
3723 		ret = utf16s_to_utf8s(uc_str->uc,
3724 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3725 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3726 
3727 		/* replace non-printable or non-ASCII characters with spaces */
3728 		for (i = 0; i < ret; i++)
3729 			str[i] = ufshcd_remove_non_printable(str[i]);
3730 
3731 		str[ret++] = '\0';
3732 
3733 	} else {
3734 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3735 		if (!str) {
3736 			ret = -ENOMEM;
3737 			goto out;
3738 		}
3739 		ret = uc_str->len;
3740 	}
3741 out:
3742 	*buf = str;
3743 	kfree(uc_str);
3744 	return ret;
3745 }
3746 
3747 /**
3748  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3749  * @hba: Pointer to adapter instance
3750  * @lun: lun id
3751  * @param_offset: offset of the parameter to read
3752  * @param_read_buf: pointer to buffer where parameter would be read
3753  * @param_size: sizeof(param_read_buf)
3754  *
3755  * Return: 0 in case of success, non-zero otherwise.
3756  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3757 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3758 					      int lun,
3759 					      enum unit_desc_param param_offset,
3760 					      u8 *param_read_buf,
3761 					      u32 param_size)
3762 {
3763 	/*
3764 	 * Unit descriptors are only available for general purpose LUs (LUN id
3765 	 * from 0 to 7) and RPMB Well known LU.
3766 	 */
3767 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3768 		return -EOPNOTSUPP;
3769 
3770 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3771 				      param_offset, param_read_buf, param_size);
3772 }
3773 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3774 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3775 {
3776 	int err = 0;
3777 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3778 
3779 	if (hba->dev_info.wspecversion >= 0x300) {
3780 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3781 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3782 				&gating_wait);
3783 		if (err)
3784 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3785 					 err, gating_wait);
3786 
3787 		if (gating_wait == 0) {
3788 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3789 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3790 					 gating_wait);
3791 		}
3792 
3793 		hba->dev_info.clk_gating_wait_us = gating_wait;
3794 	}
3795 
3796 	return err;
3797 }
3798 
3799 /**
3800  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3801  * @hba: per adapter instance
3802  *
3803  * 1. Allocate DMA memory for Command Descriptor array
3804  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3805  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3806  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3807  *	(UTMRDL)
3808  * 4. Allocate memory for local reference block(lrb).
3809  *
3810  * Return: 0 for success, non-zero in case of failure.
3811  */
ufshcd_memory_alloc(struct ufs_hba * hba)3812 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3813 {
3814 	size_t utmrdl_size, utrdl_size, ucdl_size;
3815 
3816 	/* Allocate memory for UTP command descriptors */
3817 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3818 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3819 						  ucdl_size,
3820 						  &hba->ucdl_dma_addr,
3821 						  GFP_KERNEL);
3822 
3823 	/*
3824 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3825 	 */
3826 	if (!hba->ucdl_base_addr ||
3827 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3828 		dev_err(hba->dev,
3829 			"Command Descriptor Memory allocation failed\n");
3830 		goto out;
3831 	}
3832 
3833 	/*
3834 	 * Allocate memory for UTP Transfer descriptors
3835 	 * UFSHCI requires 1KB alignment of UTRD
3836 	 */
3837 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3838 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3839 						   utrdl_size,
3840 						   &hba->utrdl_dma_addr,
3841 						   GFP_KERNEL);
3842 	if (!hba->utrdl_base_addr ||
3843 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3844 		dev_err(hba->dev,
3845 			"Transfer Descriptor Memory allocation failed\n");
3846 		goto out;
3847 	}
3848 
3849 	/*
3850 	 * Skip utmrdl allocation; it may have been
3851 	 * allocated during first pass and not released during
3852 	 * MCQ memory allocation.
3853 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3854 	 */
3855 	if (hba->utmrdl_base_addr)
3856 		goto skip_utmrdl;
3857 	/*
3858 	 * Allocate memory for UTP Task Management descriptors
3859 	 * UFSHCI requires 1KB alignment of UTMRD
3860 	 */
3861 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3862 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3863 						    utmrdl_size,
3864 						    &hba->utmrdl_dma_addr,
3865 						    GFP_KERNEL);
3866 	if (!hba->utmrdl_base_addr ||
3867 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3868 		dev_err(hba->dev,
3869 		"Task Management Descriptor Memory allocation failed\n");
3870 		goto out;
3871 	}
3872 
3873 skip_utmrdl:
3874 	/* Allocate memory for local reference block */
3875 	hba->lrb = devm_kcalloc(hba->dev,
3876 				hba->nutrs, sizeof(struct ufshcd_lrb),
3877 				GFP_KERNEL);
3878 	if (!hba->lrb) {
3879 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3880 		goto out;
3881 	}
3882 	return 0;
3883 out:
3884 	return -ENOMEM;
3885 }
3886 
3887 /**
3888  * ufshcd_host_memory_configure - configure local reference block with
3889  *				memory offsets
3890  * @hba: per adapter instance
3891  *
3892  * Configure Host memory space
3893  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3894  * address.
3895  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3896  * and PRDT offset.
3897  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3898  * into local reference block.
3899  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3900 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3901 {
3902 	struct utp_transfer_req_desc *utrdlp;
3903 	dma_addr_t cmd_desc_dma_addr;
3904 	dma_addr_t cmd_desc_element_addr;
3905 	u16 response_offset;
3906 	u16 prdt_offset;
3907 	int cmd_desc_size;
3908 	int i;
3909 
3910 	utrdlp = hba->utrdl_base_addr;
3911 
3912 	response_offset =
3913 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3914 	prdt_offset =
3915 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3916 
3917 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3918 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3919 
3920 	for (i = 0; i < hba->nutrs; i++) {
3921 		/* Configure UTRD with command descriptor base address */
3922 		cmd_desc_element_addr =
3923 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3924 		utrdlp[i].command_desc_base_addr =
3925 				cpu_to_le64(cmd_desc_element_addr);
3926 
3927 		/* Response upiu and prdt offset should be in double words */
3928 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3929 			utrdlp[i].response_upiu_offset =
3930 				cpu_to_le16(response_offset);
3931 			utrdlp[i].prd_table_offset =
3932 				cpu_to_le16(prdt_offset);
3933 			utrdlp[i].response_upiu_length =
3934 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3935 		} else {
3936 			utrdlp[i].response_upiu_offset =
3937 				cpu_to_le16(response_offset >> 2);
3938 			utrdlp[i].prd_table_offset =
3939 				cpu_to_le16(prdt_offset >> 2);
3940 			utrdlp[i].response_upiu_length =
3941 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3942 		}
3943 
3944 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3945 	}
3946 }
3947 
3948 /**
3949  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3950  * @hba: per adapter instance
3951  *
3952  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3953  * in order to initialize the Unipro link startup procedure.
3954  * Once the Unipro links are up, the device connected to the controller
3955  * is detected.
3956  *
3957  * Return: 0 on success, non-zero value on failure.
3958  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3959 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3960 {
3961 	struct uic_command uic_cmd = {0};
3962 	int ret;
3963 
3964 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3965 
3966 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3967 	if (ret)
3968 		dev_dbg(hba->dev,
3969 			"dme-link-startup: error code %d\n", ret);
3970 	return ret;
3971 }
3972 /**
3973  * ufshcd_dme_reset - UIC command for DME_RESET
3974  * @hba: per adapter instance
3975  *
3976  * DME_RESET command is issued in order to reset UniPro stack.
3977  * This function now deals with cold reset.
3978  *
3979  * Return: 0 on success, non-zero value on failure.
3980  */
ufshcd_dme_reset(struct ufs_hba * hba)3981 static int ufshcd_dme_reset(struct ufs_hba *hba)
3982 {
3983 	struct uic_command uic_cmd = {0};
3984 	int ret;
3985 
3986 	uic_cmd.command = UIC_CMD_DME_RESET;
3987 
3988 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3989 	if (ret)
3990 		dev_err(hba->dev,
3991 			"dme-reset: error code %d\n", ret);
3992 
3993 	return ret;
3994 }
3995 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3996 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3997 			       int agreed_gear,
3998 			       int adapt_val)
3999 {
4000 	int ret;
4001 
4002 	if (agreed_gear < UFS_HS_G4)
4003 		adapt_val = PA_NO_ADAPT;
4004 
4005 	ret = ufshcd_dme_set(hba,
4006 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4007 			     adapt_val);
4008 	return ret;
4009 }
4010 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4011 
4012 /**
4013  * ufshcd_dme_enable - UIC command for DME_ENABLE
4014  * @hba: per adapter instance
4015  *
4016  * DME_ENABLE command is issued in order to enable UniPro stack.
4017  *
4018  * Return: 0 on success, non-zero value on failure.
4019  */
ufshcd_dme_enable(struct ufs_hba * hba)4020 static int ufshcd_dme_enable(struct ufs_hba *hba)
4021 {
4022 	struct uic_command uic_cmd = {0};
4023 	int ret;
4024 
4025 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4026 
4027 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4028 	if (ret)
4029 		dev_err(hba->dev,
4030 			"dme-enable: error code %d\n", ret);
4031 
4032 	return ret;
4033 }
4034 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4035 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4036 {
4037 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4038 	unsigned long min_sleep_time_us;
4039 
4040 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4041 		return;
4042 
4043 	/*
4044 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4045 	 * this function
4046 	 */
4047 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4048 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4049 	} else {
4050 		unsigned long delta =
4051 			(unsigned long) ktime_to_us(
4052 				ktime_sub(ktime_get(),
4053 				hba->last_dme_cmd_tstamp));
4054 
4055 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4056 			min_sleep_time_us =
4057 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4058 		else
4059 			min_sleep_time_us = 0; /* no more delay required */
4060 	}
4061 
4062 	if (min_sleep_time_us > 0) {
4063 		/* allow sleep for extra 50us if needed */
4064 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4065 	}
4066 
4067 	/* update the last_dme_cmd_tstamp */
4068 	hba->last_dme_cmd_tstamp = ktime_get();
4069 }
4070 
4071 /**
4072  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4073  * @hba: per adapter instance
4074  * @attr_sel: uic command argument1
4075  * @attr_set: attribute set type as uic command argument2
4076  * @mib_val: setting value as uic command argument3
4077  * @peer: indicate whether peer or local
4078  *
4079  * Return: 0 on success, non-zero value on failure.
4080  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4081 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4082 			u8 attr_set, u32 mib_val, u8 peer)
4083 {
4084 	struct uic_command uic_cmd = {0};
4085 	static const char *const action[] = {
4086 		"dme-set",
4087 		"dme-peer-set"
4088 	};
4089 	const char *set = action[!!peer];
4090 	int ret;
4091 	int retries = UFS_UIC_COMMAND_RETRIES;
4092 
4093 	uic_cmd.command = peer ?
4094 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4095 	uic_cmd.argument1 = attr_sel;
4096 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4097 	uic_cmd.argument3 = mib_val;
4098 
4099 	do {
4100 		/* for peer attributes we retry upon failure */
4101 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4102 		if (ret)
4103 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4104 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4105 	} while (ret && peer && --retries);
4106 
4107 	if (ret)
4108 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4109 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4110 			UFS_UIC_COMMAND_RETRIES - retries);
4111 
4112 	return ret;
4113 }
4114 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4115 
4116 /**
4117  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4118  * @hba: per adapter instance
4119  * @attr_sel: uic command argument1
4120  * @mib_val: the value of the attribute as returned by the UIC command
4121  * @peer: indicate whether peer or local
4122  *
4123  * Return: 0 on success, non-zero value on failure.
4124  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4125 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4126 			u32 *mib_val, u8 peer)
4127 {
4128 	struct uic_command uic_cmd = {0};
4129 	static const char *const action[] = {
4130 		"dme-get",
4131 		"dme-peer-get"
4132 	};
4133 	const char *get = action[!!peer];
4134 	int ret;
4135 	int retries = UFS_UIC_COMMAND_RETRIES;
4136 	struct ufs_pa_layer_attr orig_pwr_info;
4137 	struct ufs_pa_layer_attr temp_pwr_info;
4138 	bool pwr_mode_change = false;
4139 
4140 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4141 		orig_pwr_info = hba->pwr_info;
4142 		temp_pwr_info = orig_pwr_info;
4143 
4144 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4145 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4146 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4147 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4148 			pwr_mode_change = true;
4149 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4150 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4151 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4152 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4153 			pwr_mode_change = true;
4154 		}
4155 		if (pwr_mode_change) {
4156 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4157 			if (ret)
4158 				goto out;
4159 		}
4160 	}
4161 
4162 	uic_cmd.command = peer ?
4163 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4164 	uic_cmd.argument1 = attr_sel;
4165 
4166 	do {
4167 		/* for peer attributes we retry upon failure */
4168 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4169 		if (ret)
4170 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4171 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4172 	} while (ret && peer && --retries);
4173 
4174 	if (ret)
4175 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4176 			get, UIC_GET_ATTR_ID(attr_sel),
4177 			UFS_UIC_COMMAND_RETRIES - retries);
4178 
4179 	if (mib_val && !ret)
4180 		*mib_val = uic_cmd.argument3;
4181 
4182 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4183 	    && pwr_mode_change)
4184 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4185 out:
4186 	return ret;
4187 }
4188 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4189 
4190 /**
4191  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4192  * state) and waits for it to take effect.
4193  *
4194  * @hba: per adapter instance
4195  * @cmd: UIC command to execute
4196  *
4197  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4198  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4199  * and device UniPro link and hence it's final completion would be indicated by
4200  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4201  * addition to normal UIC command completion Status (UCCS). This function only
4202  * returns after the relevant status bits indicate the completion.
4203  *
4204  * Return: 0 on success, non-zero value on failure.
4205  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4206 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4207 {
4208 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4209 	unsigned long flags;
4210 	u8 status;
4211 	int ret;
4212 	bool reenable_intr = false;
4213 
4214 	mutex_lock(&hba->uic_cmd_mutex);
4215 	ufshcd_add_delay_before_dme_cmd(hba);
4216 
4217 	spin_lock_irqsave(hba->host->host_lock, flags);
4218 	if (ufshcd_is_link_broken(hba)) {
4219 		ret = -ENOLINK;
4220 		goto out_unlock;
4221 	}
4222 	hba->uic_async_done = &uic_async_done;
4223 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4224 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4225 		/*
4226 		 * Make sure UIC command completion interrupt is disabled before
4227 		 * issuing UIC command.
4228 		 */
4229 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4230 		reenable_intr = true;
4231 	}
4232 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4233 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4234 	if (ret) {
4235 		dev_err(hba->dev,
4236 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4237 			cmd->command, cmd->argument3, ret);
4238 		goto out;
4239 	}
4240 
4241 	if (!wait_for_completion_timeout(hba->uic_async_done,
4242 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4243 		dev_err(hba->dev,
4244 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4245 			cmd->command, cmd->argument3);
4246 
4247 		if (!cmd->cmd_active) {
4248 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4249 				__func__);
4250 			goto check_upmcrs;
4251 		}
4252 
4253 		ret = -ETIMEDOUT;
4254 		goto out;
4255 	}
4256 
4257 check_upmcrs:
4258 	status = ufshcd_get_upmcrs(hba);
4259 	if (status != PWR_LOCAL) {
4260 		dev_err(hba->dev,
4261 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4262 			cmd->command, status);
4263 		ret = (status != PWR_OK) ? status : -1;
4264 	}
4265 out:
4266 	if (ret) {
4267 		ufshcd_print_host_state(hba);
4268 		ufshcd_print_pwr_info(hba);
4269 		ufshcd_print_evt_hist(hba);
4270 	}
4271 
4272 	spin_lock_irqsave(hba->host->host_lock, flags);
4273 	hba->active_uic_cmd = NULL;
4274 	hba->uic_async_done = NULL;
4275 	if (reenable_intr)
4276 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4277 	if (ret) {
4278 		ufshcd_set_link_broken(hba);
4279 		ufshcd_schedule_eh_work(hba);
4280 	}
4281 out_unlock:
4282 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4283 	mutex_unlock(&hba->uic_cmd_mutex);
4284 
4285 	return ret;
4286 }
4287 
4288 /**
4289  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4290  * @hba: per adapter instance
4291  * @uic_cmd: UIC command
4292  *
4293  * Return: 0 only if success.
4294  */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4295 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4296 {
4297 	int ret;
4298 
4299 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4300 		return 0;
4301 
4302 	ufshcd_hold(hba);
4303 
4304 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4305 	    uic_cmd->command == UIC_CMD_DME_SET) {
4306 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4307 		goto out;
4308 	}
4309 
4310 	mutex_lock(&hba->uic_cmd_mutex);
4311 	ufshcd_add_delay_before_dme_cmd(hba);
4312 
4313 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4314 	if (!ret)
4315 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4316 
4317 	mutex_unlock(&hba->uic_cmd_mutex);
4318 
4319 out:
4320 	ufshcd_release(hba);
4321 	return ret;
4322 }
4323 
4324 /**
4325  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4326  *				using DME_SET primitives.
4327  * @hba: per adapter instance
4328  * @mode: powr mode value
4329  *
4330  * Return: 0 on success, non-zero value on failure.
4331  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4332 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4333 {
4334 	struct uic_command uic_cmd = {0};
4335 	int ret;
4336 
4337 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4338 		ret = ufshcd_dme_set(hba,
4339 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4340 		if (ret) {
4341 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4342 						__func__, ret);
4343 			goto out;
4344 		}
4345 	}
4346 
4347 	uic_cmd.command = UIC_CMD_DME_SET;
4348 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4349 	uic_cmd.argument3 = mode;
4350 	ufshcd_hold(hba);
4351 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4352 	ufshcd_release(hba);
4353 
4354 out:
4355 	return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4358 
ufshcd_link_recovery(struct ufs_hba * hba)4359 int ufshcd_link_recovery(struct ufs_hba *hba)
4360 {
4361 	int ret;
4362 	unsigned long flags;
4363 
4364 	spin_lock_irqsave(hba->host->host_lock, flags);
4365 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4366 	ufshcd_set_eh_in_progress(hba);
4367 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4368 
4369 	/* Reset the attached device */
4370 	ufshcd_device_reset(hba);
4371 
4372 	ret = ufshcd_host_reset_and_restore(hba);
4373 
4374 	spin_lock_irqsave(hba->host->host_lock, flags);
4375 	if (ret)
4376 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4377 	ufshcd_clear_eh_in_progress(hba);
4378 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4379 
4380 	if (ret)
4381 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4382 			__func__, ret);
4383 
4384 	return ret;
4385 }
4386 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4387 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4388 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4389 {
4390 	int ret;
4391 	struct uic_command uic_cmd = {0};
4392 	ktime_t start = ktime_get();
4393 
4394 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4395 
4396 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4397 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4398 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4399 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4400 
4401 	if (ret)
4402 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4403 			__func__, ret);
4404 	else
4405 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4406 								POST_CHANGE);
4407 
4408 	return ret;
4409 }
4410 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4411 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4412 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4413 {
4414 	struct uic_command uic_cmd = {0};
4415 	int ret;
4416 	ktime_t start = ktime_get();
4417 
4418 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4419 
4420 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4421 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4422 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4423 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4424 
4425 	if (ret) {
4426 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4427 			__func__, ret);
4428 	} else {
4429 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4430 								POST_CHANGE);
4431 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4432 		hba->ufs_stats.hibern8_exit_cnt++;
4433 	}
4434 
4435 	return ret;
4436 }
4437 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4438 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4439 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4440 {
4441 	unsigned long flags;
4442 	bool update = false;
4443 
4444 	if (!ufshcd_is_auto_hibern8_supported(hba))
4445 		return;
4446 
4447 	spin_lock_irqsave(hba->host->host_lock, flags);
4448 	if (hba->ahit != ahit) {
4449 		hba->ahit = ahit;
4450 		update = true;
4451 	}
4452 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4453 
4454 	if (update &&
4455 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4456 		ufshcd_rpm_get_sync(hba);
4457 		ufshcd_hold(hba);
4458 		ufshcd_auto_hibern8_enable(hba);
4459 		ufshcd_release(hba);
4460 		ufshcd_rpm_put_sync(hba);
4461 	}
4462 }
4463 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4464 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4465 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4466 {
4467 	if (!ufshcd_is_auto_hibern8_supported(hba))
4468 		return;
4469 
4470 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4471 }
4472 
4473  /**
4474  * ufshcd_init_pwr_info - setting the POR (power on reset)
4475  * values in hba power info
4476  * @hba: per-adapter instance
4477  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4478 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4479 {
4480 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4481 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4482 	hba->pwr_info.lane_rx = UFS_LANE_1;
4483 	hba->pwr_info.lane_tx = UFS_LANE_1;
4484 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4485 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4486 	hba->pwr_info.hs_rate = 0;
4487 }
4488 
4489 /**
4490  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4491  * @hba: per-adapter instance
4492  *
4493  * Return: 0 upon success; < 0 upon failure.
4494  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4495 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4496 {
4497 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4498 
4499 	if (hba->max_pwr_info.is_valid)
4500 		return 0;
4501 
4502 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4503 		pwr_info->pwr_tx = FASTAUTO_MODE;
4504 		pwr_info->pwr_rx = FASTAUTO_MODE;
4505 	} else {
4506 		pwr_info->pwr_tx = FAST_MODE;
4507 		pwr_info->pwr_rx = FAST_MODE;
4508 	}
4509 	pwr_info->hs_rate = PA_HS_MODE_B;
4510 
4511 	/* Get the connected lane count */
4512 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4513 			&pwr_info->lane_rx);
4514 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4515 			&pwr_info->lane_tx);
4516 
4517 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4518 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4519 				__func__,
4520 				pwr_info->lane_rx,
4521 				pwr_info->lane_tx);
4522 		return -EINVAL;
4523 	}
4524 
4525 	/*
4526 	 * First, get the maximum gears of HS speed.
4527 	 * If a zero value, it means there is no HSGEAR capability.
4528 	 * Then, get the maximum gears of PWM speed.
4529 	 */
4530 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4531 	if (!pwr_info->gear_rx) {
4532 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4533 				&pwr_info->gear_rx);
4534 		if (!pwr_info->gear_rx) {
4535 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4536 				__func__, pwr_info->gear_rx);
4537 			return -EINVAL;
4538 		}
4539 		pwr_info->pwr_rx = SLOW_MODE;
4540 	}
4541 
4542 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4543 			&pwr_info->gear_tx);
4544 	if (!pwr_info->gear_tx) {
4545 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4546 				&pwr_info->gear_tx);
4547 		if (!pwr_info->gear_tx) {
4548 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4549 				__func__, pwr_info->gear_tx);
4550 			return -EINVAL;
4551 		}
4552 		pwr_info->pwr_tx = SLOW_MODE;
4553 	}
4554 
4555 	hba->max_pwr_info.is_valid = true;
4556 	return 0;
4557 }
4558 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4559 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4560 			     struct ufs_pa_layer_attr *pwr_mode)
4561 {
4562 	int ret;
4563 
4564 	/* if already configured to the requested pwr_mode */
4565 	if (!hba->force_pmc &&
4566 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4567 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4568 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4569 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4570 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4571 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4572 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4573 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4574 		return 0;
4575 	}
4576 
4577 	/*
4578 	 * Configure attributes for power mode change with below.
4579 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4580 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4581 	 * - PA_HSSERIES
4582 	 */
4583 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4584 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4585 			pwr_mode->lane_rx);
4586 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4587 			pwr_mode->pwr_rx == FAST_MODE)
4588 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4589 	else
4590 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4591 
4592 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4593 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4594 			pwr_mode->lane_tx);
4595 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4596 			pwr_mode->pwr_tx == FAST_MODE)
4597 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4598 	else
4599 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4600 
4601 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4602 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4603 	    pwr_mode->pwr_rx == FAST_MODE ||
4604 	    pwr_mode->pwr_tx == FAST_MODE)
4605 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4606 						pwr_mode->hs_rate);
4607 
4608 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4609 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4610 				DL_FC0ProtectionTimeOutVal_Default);
4611 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4612 				DL_TC0ReplayTimeOutVal_Default);
4613 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4614 				DL_AFC0ReqTimeOutVal_Default);
4615 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4616 				DL_FC1ProtectionTimeOutVal_Default);
4617 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4618 				DL_TC1ReplayTimeOutVal_Default);
4619 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4620 				DL_AFC1ReqTimeOutVal_Default);
4621 
4622 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4623 				DL_FC0ProtectionTimeOutVal_Default);
4624 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4625 				DL_TC0ReplayTimeOutVal_Default);
4626 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4627 				DL_AFC0ReqTimeOutVal_Default);
4628 	}
4629 
4630 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4631 			| pwr_mode->pwr_tx);
4632 
4633 	if (ret) {
4634 		dev_err(hba->dev,
4635 			"%s: power mode change failed %d\n", __func__, ret);
4636 	} else {
4637 		memcpy(&hba->pwr_info, pwr_mode,
4638 			sizeof(struct ufs_pa_layer_attr));
4639 	}
4640 
4641 	return ret;
4642 }
4643 
4644 /**
4645  * ufshcd_config_pwr_mode - configure a new power mode
4646  * @hba: per-adapter instance
4647  * @desired_pwr_mode: desired power configuration
4648  *
4649  * Return: 0 upon success; < 0 upon failure.
4650  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4651 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4652 		struct ufs_pa_layer_attr *desired_pwr_mode)
4653 {
4654 	struct ufs_pa_layer_attr final_params = { 0 };
4655 	int ret;
4656 
4657 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4658 					desired_pwr_mode, &final_params);
4659 
4660 	if (ret)
4661 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4662 
4663 	ret = ufshcd_change_power_mode(hba, &final_params);
4664 
4665 	if (!ret)
4666 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4667 					&final_params);
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4672 
4673 /**
4674  * ufshcd_complete_dev_init() - checks device readiness
4675  * @hba: per-adapter instance
4676  *
4677  * Set fDeviceInit flag and poll until device toggles it.
4678  *
4679  * Return: 0 upon success; < 0 upon failure.
4680  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4681 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4682 {
4683 	int err;
4684 	bool flag_res = true;
4685 	ktime_t timeout;
4686 
4687 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4688 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4689 	if (err) {
4690 		dev_err(hba->dev,
4691 			"%s: setting fDeviceInit flag failed with error %d\n",
4692 			__func__, err);
4693 		goto out;
4694 	}
4695 
4696 	/* Poll fDeviceInit flag to be cleared */
4697 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4698 	do {
4699 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4700 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4701 		if (!flag_res)
4702 			break;
4703 		usleep_range(500, 1000);
4704 	} while (ktime_before(ktime_get(), timeout));
4705 
4706 	if (err) {
4707 		dev_err(hba->dev,
4708 				"%s: reading fDeviceInit flag failed with error %d\n",
4709 				__func__, err);
4710 	} else if (flag_res) {
4711 		dev_err(hba->dev,
4712 				"%s: fDeviceInit was not cleared by the device\n",
4713 				__func__);
4714 		err = -EBUSY;
4715 	}
4716 out:
4717 	return err;
4718 }
4719 
4720 /**
4721  * ufshcd_make_hba_operational - Make UFS controller operational
4722  * @hba: per adapter instance
4723  *
4724  * To bring UFS host controller to operational state,
4725  * 1. Enable required interrupts
4726  * 2. Configure interrupt aggregation
4727  * 3. Program UTRL and UTMRL base address
4728  * 4. Configure run-stop-registers
4729  *
4730  * Return: 0 on success, non-zero value on failure.
4731  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4732 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4733 {
4734 	int err = 0;
4735 	u32 reg;
4736 
4737 	/* Enable required interrupts */
4738 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4739 
4740 	/* Configure interrupt aggregation */
4741 	if (ufshcd_is_intr_aggr_allowed(hba))
4742 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4743 	else
4744 		ufshcd_disable_intr_aggr(hba);
4745 
4746 	/* Configure UTRL and UTMRL base address registers */
4747 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4748 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4749 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4750 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4751 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4752 			REG_UTP_TASK_REQ_LIST_BASE_L);
4753 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4754 			REG_UTP_TASK_REQ_LIST_BASE_H);
4755 
4756 	/*
4757 	 * Make sure base address and interrupt setup are updated before
4758 	 * enabling the run/stop registers below.
4759 	 */
4760 	wmb();
4761 
4762 	/*
4763 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4764 	 */
4765 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4766 	if (!(ufshcd_get_lists_status(reg))) {
4767 		ufshcd_enable_run_stop_reg(hba);
4768 	} else {
4769 		dev_err(hba->dev,
4770 			"Host controller not ready to process requests");
4771 		err = -EIO;
4772 	}
4773 
4774 	return err;
4775 }
4776 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4777 
4778 /**
4779  * ufshcd_hba_stop - Send controller to reset state
4780  * @hba: per adapter instance
4781  */
ufshcd_hba_stop(struct ufs_hba * hba)4782 void ufshcd_hba_stop(struct ufs_hba *hba)
4783 {
4784 	unsigned long flags;
4785 	int err;
4786 
4787 	/*
4788 	 * Obtain the host lock to prevent that the controller is disabled
4789 	 * while the UFS interrupt handler is active on another CPU.
4790 	 */
4791 	spin_lock_irqsave(hba->host->host_lock, flags);
4792 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4794 
4795 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4796 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4797 					10, 1);
4798 	if (err)
4799 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4800 }
4801 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4802 
4803 /**
4804  * ufshcd_hba_execute_hce - initialize the controller
4805  * @hba: per adapter instance
4806  *
4807  * The controller resets itself and controller firmware initialization
4808  * sequence kicks off. When controller is ready it will set
4809  * the Host Controller Enable bit to 1.
4810  *
4811  * Return: 0 on success, non-zero value on failure.
4812  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4813 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4814 {
4815 	int retry_outer = 3;
4816 	int retry_inner;
4817 
4818 start:
4819 	if (ufshcd_is_hba_active(hba))
4820 		/* change controller state to "reset state" */
4821 		ufshcd_hba_stop(hba);
4822 
4823 	/* UniPro link is disabled at this point */
4824 	ufshcd_set_link_off(hba);
4825 
4826 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4827 
4828 	/* start controller initialization sequence */
4829 	ufshcd_hba_start(hba);
4830 
4831 	/*
4832 	 * To initialize a UFS host controller HCE bit must be set to 1.
4833 	 * During initialization the HCE bit value changes from 1->0->1.
4834 	 * When the host controller completes initialization sequence
4835 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4836 	 * to check if the controller has completed initialization sequence.
4837 	 * So without this delay the value HCE = 1, set in the previous
4838 	 * instruction might be read back.
4839 	 * This delay can be changed based on the controller.
4840 	 */
4841 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4842 
4843 	/* wait for the host controller to complete initialization */
4844 	retry_inner = 50;
4845 	while (!ufshcd_is_hba_active(hba)) {
4846 		if (retry_inner) {
4847 			retry_inner--;
4848 		} else {
4849 			dev_err(hba->dev,
4850 				"Controller enable failed\n");
4851 			if (retry_outer) {
4852 				retry_outer--;
4853 				goto start;
4854 			}
4855 			return -EIO;
4856 		}
4857 		usleep_range(1000, 1100);
4858 	}
4859 
4860 	/* enable UIC related interrupts */
4861 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4862 
4863 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4864 
4865 	return 0;
4866 }
4867 
ufshcd_hba_enable(struct ufs_hba * hba)4868 int ufshcd_hba_enable(struct ufs_hba *hba)
4869 {
4870 	int ret;
4871 
4872 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4873 		ufshcd_set_link_off(hba);
4874 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4875 
4876 		/* enable UIC related interrupts */
4877 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4878 		ret = ufshcd_dme_reset(hba);
4879 		if (ret) {
4880 			dev_err(hba->dev, "DME_RESET failed\n");
4881 			return ret;
4882 		}
4883 
4884 		ret = ufshcd_dme_enable(hba);
4885 		if (ret) {
4886 			dev_err(hba->dev, "Enabling DME failed\n");
4887 			return ret;
4888 		}
4889 
4890 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4891 	} else {
4892 		ret = ufshcd_hba_execute_hce(hba);
4893 	}
4894 
4895 	return ret;
4896 }
4897 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4898 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4899 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4900 {
4901 	int tx_lanes = 0, i, err = 0;
4902 
4903 	if (!peer)
4904 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4905 			       &tx_lanes);
4906 	else
4907 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4908 				    &tx_lanes);
4909 	for (i = 0; i < tx_lanes; i++) {
4910 		if (!peer)
4911 			err = ufshcd_dme_set(hba,
4912 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4913 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4914 					0);
4915 		else
4916 			err = ufshcd_dme_peer_set(hba,
4917 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4918 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4919 					0);
4920 		if (err) {
4921 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4922 				__func__, peer, i, err);
4923 			break;
4924 		}
4925 	}
4926 
4927 	return err;
4928 }
4929 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4930 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4931 {
4932 	return ufshcd_disable_tx_lcc(hba, true);
4933 }
4934 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4935 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4936 {
4937 	struct ufs_event_hist *e;
4938 
4939 	if (id >= UFS_EVT_CNT)
4940 		return;
4941 
4942 	e = &hba->ufs_stats.event[id];
4943 	e->val[e->pos] = val;
4944 	e->tstamp[e->pos] = local_clock();
4945 	e->cnt += 1;
4946 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4947 
4948 	ufshcd_vops_event_notify(hba, id, &val);
4949 }
4950 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4951 
4952 /**
4953  * ufshcd_link_startup - Initialize unipro link startup
4954  * @hba: per adapter instance
4955  *
4956  * Return: 0 for success, non-zero in case of failure.
4957  */
ufshcd_link_startup(struct ufs_hba * hba)4958 static int ufshcd_link_startup(struct ufs_hba *hba)
4959 {
4960 	int ret;
4961 	int retries = DME_LINKSTARTUP_RETRIES;
4962 	bool link_startup_again = false;
4963 
4964 	/*
4965 	 * If UFS device isn't active then we will have to issue link startup
4966 	 * 2 times to make sure the device state move to active.
4967 	 */
4968 	if (!ufshcd_is_ufs_dev_active(hba))
4969 		link_startup_again = true;
4970 
4971 link_startup:
4972 	do {
4973 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4974 
4975 		ret = ufshcd_dme_link_startup(hba);
4976 
4977 		/* check if device is detected by inter-connect layer */
4978 		if (!ret && !ufshcd_is_device_present(hba)) {
4979 			ufshcd_update_evt_hist(hba,
4980 					       UFS_EVT_LINK_STARTUP_FAIL,
4981 					       0);
4982 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4983 			ret = -ENXIO;
4984 			goto out;
4985 		}
4986 
4987 		/*
4988 		 * DME link lost indication is only received when link is up,
4989 		 * but we can't be sure if the link is up until link startup
4990 		 * succeeds. So reset the local Uni-Pro and try again.
4991 		 */
4992 		if (ret && retries && ufshcd_hba_enable(hba)) {
4993 			ufshcd_update_evt_hist(hba,
4994 					       UFS_EVT_LINK_STARTUP_FAIL,
4995 					       (u32)ret);
4996 			goto out;
4997 		}
4998 	} while (ret && retries--);
4999 
5000 	if (ret) {
5001 		/* failed to get the link up... retire */
5002 		ufshcd_update_evt_hist(hba,
5003 				       UFS_EVT_LINK_STARTUP_FAIL,
5004 				       (u32)ret);
5005 		goto out;
5006 	}
5007 
5008 	if (link_startup_again) {
5009 		link_startup_again = false;
5010 		retries = DME_LINKSTARTUP_RETRIES;
5011 		goto link_startup;
5012 	}
5013 
5014 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5015 	ufshcd_init_pwr_info(hba);
5016 	ufshcd_print_pwr_info(hba);
5017 
5018 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5019 		ret = ufshcd_disable_device_tx_lcc(hba);
5020 		if (ret)
5021 			goto out;
5022 	}
5023 
5024 	/* Include any host controller configuration via UIC commands */
5025 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5026 	if (ret)
5027 		goto out;
5028 
5029 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5030 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5031 	ret = ufshcd_make_hba_operational(hba);
5032 out:
5033 	if (ret) {
5034 		dev_err(hba->dev, "link startup failed %d\n", ret);
5035 		ufshcd_print_host_state(hba);
5036 		ufshcd_print_pwr_info(hba);
5037 		ufshcd_print_evt_hist(hba);
5038 	}
5039 	return ret;
5040 }
5041 
5042 /**
5043  * ufshcd_verify_dev_init() - Verify device initialization
5044  * @hba: per-adapter instance
5045  *
5046  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5047  * device Transport Protocol (UTP) layer is ready after a reset.
5048  * If the UTP layer at the device side is not initialized, it may
5049  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5050  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5051  *
5052  * Return: 0 upon success; < 0 upon failure.
5053  */
ufshcd_verify_dev_init(struct ufs_hba * hba)5054 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5055 {
5056 	int err = 0;
5057 	int retries;
5058 
5059 	ufshcd_hold(hba);
5060 	mutex_lock(&hba->dev_cmd.lock);
5061 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5062 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5063 					  hba->nop_out_timeout);
5064 
5065 		if (!err || err == -ETIMEDOUT)
5066 			break;
5067 
5068 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5069 	}
5070 	mutex_unlock(&hba->dev_cmd.lock);
5071 	ufshcd_release(hba);
5072 
5073 	if (err)
5074 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5075 	return err;
5076 }
5077 
5078 /**
5079  * ufshcd_setup_links - associate link b/w device wlun and other luns
5080  * @sdev: pointer to SCSI device
5081  * @hba: pointer to ufs hba
5082  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5083 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5084 {
5085 	struct device_link *link;
5086 
5087 	/*
5088 	 * Device wlun is the supplier & rest of the luns are consumers.
5089 	 * This ensures that device wlun suspends after all other luns.
5090 	 */
5091 	if (hba->ufs_device_wlun) {
5092 		link = device_link_add(&sdev->sdev_gendev,
5093 				       &hba->ufs_device_wlun->sdev_gendev,
5094 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5095 		if (!link) {
5096 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5097 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5098 			return;
5099 		}
5100 		hba->luns_avail--;
5101 		/* Ignore REPORT_LUN wlun probing */
5102 		if (hba->luns_avail == 1) {
5103 			ufshcd_rpm_put(hba);
5104 			return;
5105 		}
5106 	} else {
5107 		/*
5108 		 * Device wlun is probed. The assumption is that WLUNs are
5109 		 * scanned before other LUNs.
5110 		 */
5111 		hba->luns_avail--;
5112 	}
5113 }
5114 
5115 /**
5116  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5117  * @hba: per-adapter instance
5118  * @sdev: pointer to SCSI device
5119  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5120 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5121 {
5122 	int len = QUERY_DESC_MAX_SIZE;
5123 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5124 	u8 lun_qdepth = hba->nutrs;
5125 	u8 *desc_buf;
5126 	int ret;
5127 
5128 	desc_buf = kzalloc(len, GFP_KERNEL);
5129 	if (!desc_buf)
5130 		goto set_qdepth;
5131 
5132 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5133 	if (ret < 0) {
5134 		if (ret == -EOPNOTSUPP)
5135 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5136 			lun_qdepth = 1;
5137 		kfree(desc_buf);
5138 		goto set_qdepth;
5139 	}
5140 
5141 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5142 		/*
5143 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5144 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5145 		 */
5146 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5147 	}
5148 	/*
5149 	 * According to UFS device specification, the write protection mode is only supported by
5150 	 * normal LU, not supported by WLUN.
5151 	 */
5152 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5153 	    !hba->dev_info.is_lu_power_on_wp &&
5154 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5155 		hba->dev_info.is_lu_power_on_wp = true;
5156 
5157 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5158 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5159 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5160 		hba->dev_info.b_advanced_rpmb_en = true;
5161 
5162 
5163 	kfree(desc_buf);
5164 set_qdepth:
5165 	/*
5166 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5167 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5168 	 */
5169 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5170 	scsi_change_queue_depth(sdev, lun_qdepth);
5171 }
5172 
5173 /**
5174  * ufshcd_slave_alloc - handle initial SCSI device configurations
5175  * @sdev: pointer to SCSI device
5176  *
5177  * Return: success.
5178  */
ufshcd_slave_alloc(struct scsi_device * sdev)5179 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5180 {
5181 	struct ufs_hba *hba;
5182 
5183 	hba = shost_priv(sdev->host);
5184 
5185 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5186 	sdev->use_10_for_ms = 1;
5187 
5188 	/* DBD field should be set to 1 in mode sense(10) */
5189 	sdev->set_dbd_for_ms = 1;
5190 
5191 	/* allow SCSI layer to restart the device in case of errors */
5192 	sdev->allow_restart = 1;
5193 
5194 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5195 	sdev->no_report_opcodes = 1;
5196 
5197 	/* WRITE_SAME command is not supported */
5198 	sdev->no_write_same = 1;
5199 
5200 	ufshcd_lu_init(hba, sdev);
5201 
5202 	ufshcd_setup_links(hba, sdev);
5203 
5204 	return 0;
5205 }
5206 
5207 /**
5208  * ufshcd_change_queue_depth - change queue depth
5209  * @sdev: pointer to SCSI device
5210  * @depth: required depth to set
5211  *
5212  * Change queue depth and make sure the max. limits are not crossed.
5213  *
5214  * Return: new queue depth.
5215  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5216 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5217 {
5218 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5219 }
5220 
5221 /**
5222  * ufshcd_slave_configure - adjust SCSI device configurations
5223  * @sdev: pointer to SCSI device
5224  *
5225  * Return: 0 (success).
5226  */
ufshcd_slave_configure(struct scsi_device * sdev)5227 static int ufshcd_slave_configure(struct scsi_device *sdev)
5228 {
5229 	struct ufs_hba *hba = shost_priv(sdev->host);
5230 	struct request_queue *q = sdev->request_queue;
5231 
5232 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5233 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5234 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5235 	/*
5236 	 * Block runtime-pm until all consumers are added.
5237 	 * Refer ufshcd_setup_links().
5238 	 */
5239 	if (is_device_wlun(sdev))
5240 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5241 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5242 		sdev->rpm_autosuspend = 1;
5243 	/*
5244 	 * Do not print messages during runtime PM to avoid never-ending cycles
5245 	 * of messages written back to storage by user space causing runtime
5246 	 * resume, causing more messages and so on.
5247 	 */
5248 	sdev->silence_suspend = 1;
5249 
5250 	ufshcd_crypto_register(hba, q);
5251 
5252 	return 0;
5253 }
5254 
5255 /**
5256  * ufshcd_slave_destroy - remove SCSI device configurations
5257  * @sdev: pointer to SCSI device
5258  */
ufshcd_slave_destroy(struct scsi_device * sdev)5259 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5260 {
5261 	struct ufs_hba *hba;
5262 	unsigned long flags;
5263 
5264 	hba = shost_priv(sdev->host);
5265 
5266 	/* Drop the reference as it won't be needed anymore */
5267 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5268 		spin_lock_irqsave(hba->host->host_lock, flags);
5269 		hba->ufs_device_wlun = NULL;
5270 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5271 	} else if (hba->ufs_device_wlun) {
5272 		struct device *supplier = NULL;
5273 
5274 		/* Ensure UFS Device WLUN exists and does not disappear */
5275 		spin_lock_irqsave(hba->host->host_lock, flags);
5276 		if (hba->ufs_device_wlun) {
5277 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5278 			get_device(supplier);
5279 		}
5280 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5281 
5282 		if (supplier) {
5283 			/*
5284 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5285 			 * device will not have been registered but can still
5286 			 * have a device link holding a reference to the device.
5287 			 */
5288 			device_link_remove(&sdev->sdev_gendev, supplier);
5289 			put_device(supplier);
5290 		}
5291 	}
5292 }
5293 
5294 /**
5295  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5296  * @lrbp: pointer to local reference block of completed command
5297  * @scsi_status: SCSI command status
5298  *
5299  * Return: value base on SCSI command status.
5300  */
5301 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5302 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5303 {
5304 	int result = 0;
5305 
5306 	switch (scsi_status) {
5307 	case SAM_STAT_CHECK_CONDITION:
5308 		ufshcd_copy_sense_data(lrbp);
5309 		fallthrough;
5310 	case SAM_STAT_GOOD:
5311 		result |= DID_OK << 16 | scsi_status;
5312 		break;
5313 	case SAM_STAT_TASK_SET_FULL:
5314 	case SAM_STAT_BUSY:
5315 	case SAM_STAT_TASK_ABORTED:
5316 		ufshcd_copy_sense_data(lrbp);
5317 		result |= scsi_status;
5318 		break;
5319 	default:
5320 		result |= DID_ERROR << 16;
5321 		break;
5322 	} /* end of switch */
5323 
5324 	return result;
5325 }
5326 
5327 /**
5328  * ufshcd_transfer_rsp_status - Get overall status of the response
5329  * @hba: per adapter instance
5330  * @lrbp: pointer to local reference block of completed command
5331  * @cqe: pointer to the completion queue entry
5332  *
5333  * Return: result of the command to notify SCSI midlayer.
5334  */
5335 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5336 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5337 			   struct cq_entry *cqe)
5338 {
5339 	int result = 0;
5340 	int scsi_status;
5341 	enum utp_ocs ocs;
5342 	u8 upiu_flags;
5343 	u32 resid;
5344 
5345 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5346 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5347 	/*
5348 	 * Test !overflow instead of underflow to support UFS devices that do
5349 	 * not set either flag.
5350 	 */
5351 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5352 		scsi_set_resid(lrbp->cmd, resid);
5353 
5354 	/* overall command status of utrd */
5355 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5356 
5357 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5358 		if (lrbp->ucd_rsp_ptr->header.response ||
5359 		    lrbp->ucd_rsp_ptr->header.status)
5360 			ocs = OCS_SUCCESS;
5361 	}
5362 
5363 	switch (ocs) {
5364 	case OCS_SUCCESS:
5365 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5366 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5367 		case UPIU_TRANSACTION_RESPONSE:
5368 			/*
5369 			 * get the result based on SCSI status response
5370 			 * to notify the SCSI midlayer of the command status
5371 			 */
5372 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5373 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5374 
5375 			/*
5376 			 * Currently we are only supporting BKOPs exception
5377 			 * events hence we can ignore BKOPs exception event
5378 			 * during power management callbacks. BKOPs exception
5379 			 * event is not expected to be raised in runtime suspend
5380 			 * callback as it allows the urgent bkops.
5381 			 * During system suspend, we are anyway forcefully
5382 			 * disabling the bkops and if urgent bkops is needed
5383 			 * it will be enabled on system resume. Long term
5384 			 * solution could be to abort the system suspend if
5385 			 * UFS device needs urgent BKOPs.
5386 			 */
5387 			if (!hba->pm_op_in_progress &&
5388 			    !ufshcd_eh_in_progress(hba) &&
5389 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5390 				/* Flushed in suspend */
5391 				schedule_work(&hba->eeh_work);
5392 			break;
5393 		case UPIU_TRANSACTION_REJECT_UPIU:
5394 			/* TODO: handle Reject UPIU Response */
5395 			result = DID_ERROR << 16;
5396 			dev_err(hba->dev,
5397 				"Reject UPIU not fully implemented\n");
5398 			break;
5399 		default:
5400 			dev_err(hba->dev,
5401 				"Unexpected request response code = %x\n",
5402 				result);
5403 			result = DID_ERROR << 16;
5404 			break;
5405 		}
5406 		break;
5407 	case OCS_ABORTED:
5408 		result |= DID_ABORT << 16;
5409 		break;
5410 	case OCS_INVALID_COMMAND_STATUS:
5411 		result |= DID_REQUEUE << 16;
5412 		break;
5413 	case OCS_INVALID_CMD_TABLE_ATTR:
5414 	case OCS_INVALID_PRDT_ATTR:
5415 	case OCS_MISMATCH_DATA_BUF_SIZE:
5416 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5417 	case OCS_PEER_COMM_FAILURE:
5418 	case OCS_FATAL_ERROR:
5419 	case OCS_DEVICE_FATAL_ERROR:
5420 	case OCS_INVALID_CRYPTO_CONFIG:
5421 	case OCS_GENERAL_CRYPTO_ERROR:
5422 	default:
5423 		result |= DID_ERROR << 16;
5424 		dev_err(hba->dev,
5425 				"OCS error from controller = %x for tag %d\n",
5426 				ocs, lrbp->task_tag);
5427 		ufshcd_print_evt_hist(hba);
5428 		ufshcd_print_host_state(hba);
5429 		break;
5430 	} /* end of switch */
5431 
5432 	if ((host_byte(result) != DID_OK) &&
5433 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5434 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5435 	return result;
5436 }
5437 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5438 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5439 					 u32 intr_mask)
5440 {
5441 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5442 	    !ufshcd_is_auto_hibern8_enabled(hba))
5443 		return false;
5444 
5445 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5446 		return false;
5447 
5448 	if (hba->active_uic_cmd &&
5449 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5450 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5451 		return false;
5452 
5453 	return true;
5454 }
5455 
5456 /**
5457  * ufshcd_uic_cmd_compl - handle completion of uic command
5458  * @hba: per adapter instance
5459  * @intr_status: interrupt status generated by the controller
5460  *
5461  * Return:
5462  *  IRQ_HANDLED - If interrupt is valid
5463  *  IRQ_NONE    - If invalid interrupt
5464  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5465 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5466 {
5467 	irqreturn_t retval = IRQ_NONE;
5468 
5469 	spin_lock(hba->host->host_lock);
5470 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5471 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5472 
5473 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5474 		hba->active_uic_cmd->argument2 |=
5475 			ufshcd_get_uic_cmd_result(hba);
5476 		hba->active_uic_cmd->argument3 =
5477 			ufshcd_get_dme_attr_val(hba);
5478 		if (!hba->uic_async_done)
5479 			hba->active_uic_cmd->cmd_active = 0;
5480 		complete(&hba->active_uic_cmd->done);
5481 		retval = IRQ_HANDLED;
5482 	}
5483 
5484 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5485 		hba->active_uic_cmd->cmd_active = 0;
5486 		complete(hba->uic_async_done);
5487 		retval = IRQ_HANDLED;
5488 	}
5489 
5490 	if (retval == IRQ_HANDLED)
5491 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5492 					     UFS_CMD_COMP);
5493 	spin_unlock(hba->host->host_lock);
5494 	return retval;
5495 }
5496 
5497 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5498 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5499 			     struct ufshcd_lrb *lrbp)
5500 {
5501 	struct scsi_cmnd *cmd = lrbp->cmd;
5502 
5503 	scsi_dma_unmap(cmd);
5504 	ufshcd_release(hba);
5505 	ufshcd_clk_scaling_update_busy(hba);
5506 }
5507 
5508 /**
5509  * ufshcd_compl_one_cqe - handle a completion queue entry
5510  * @hba: per adapter instance
5511  * @task_tag: the task tag of the request to be completed
5512  * @cqe: pointer to the completion queue entry
5513  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5514 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5515 			  struct cq_entry *cqe)
5516 {
5517 	struct ufshcd_lrb *lrbp;
5518 	struct scsi_cmnd *cmd;
5519 	enum utp_ocs ocs;
5520 
5521 	lrbp = &hba->lrb[task_tag];
5522 	lrbp->compl_time_stamp = ktime_get();
5523 	lrbp->compl_time_stamp_local_clock = local_clock();
5524 	cmd = lrbp->cmd;
5525 	if (cmd) {
5526 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5527 			ufshcd_update_monitor(hba, lrbp);
5528 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5529 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5530 		ufshcd_release_scsi_cmd(hba, lrbp);
5531 		/* Do not touch lrbp after scsi done */
5532 		scsi_done(cmd);
5533 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5534 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5535 		if (hba->dev_cmd.complete) {
5536 			if (cqe) {
5537 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5538 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5539 			}
5540 			complete(hba->dev_cmd.complete);
5541 			ufshcd_clk_scaling_update_busy(hba);
5542 		}
5543 	}
5544 }
5545 
5546 /**
5547  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5548  * @hba: per adapter instance
5549  * @completed_reqs: bitmask that indicates which requests to complete
5550  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5551 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5552 					unsigned long completed_reqs)
5553 {
5554 	int tag;
5555 
5556 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5557 		ufshcd_compl_one_cqe(hba, tag, NULL);
5558 }
5559 
5560 /* Any value that is not an existing queue number is fine for this constant. */
5561 enum {
5562 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5563 };
5564 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5565 static void ufshcd_clear_polled(struct ufs_hba *hba,
5566 				unsigned long *completed_reqs)
5567 {
5568 	int tag;
5569 
5570 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5571 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5572 
5573 		if (!cmd)
5574 			continue;
5575 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5576 			__clear_bit(tag, completed_reqs);
5577 	}
5578 }
5579 
5580 /*
5581  * Return: > 0 if one or more commands have been completed or 0 if no
5582  * requests have been completed.
5583  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5584 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5585 {
5586 	struct ufs_hba *hba = shost_priv(shost);
5587 	unsigned long completed_reqs, flags;
5588 	u32 tr_doorbell;
5589 	struct ufs_hw_queue *hwq;
5590 
5591 	if (is_mcq_enabled(hba)) {
5592 		hwq = &hba->uhq[queue_num];
5593 
5594 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5595 	}
5596 
5597 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5598 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5599 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5600 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5601 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5602 		  hba->outstanding_reqs);
5603 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5604 		/* Do not complete polled requests from interrupt context. */
5605 		ufshcd_clear_polled(hba, &completed_reqs);
5606 	}
5607 	hba->outstanding_reqs &= ~completed_reqs;
5608 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5609 
5610 	if (completed_reqs)
5611 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5612 
5613 	return completed_reqs != 0;
5614 }
5615 
5616 /**
5617  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5618  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5619  * to complete the pending transfers and free the resources associated with
5620  * the scsi command.
5621  *
5622  * @hba: per adapter instance
5623  * @force_compl: This flag is set to true when invoked
5624  * from ufshcd_host_reset_and_restore() in which case it requires special
5625  * handling because the host controller has been reset by ufshcd_hba_stop().
5626  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5627 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5628 					      bool force_compl)
5629 {
5630 	struct ufs_hw_queue *hwq;
5631 	struct ufshcd_lrb *lrbp;
5632 	struct scsi_cmnd *cmd;
5633 	unsigned long flags;
5634 	u32 hwq_num, utag;
5635 	int tag;
5636 
5637 	for (tag = 0; tag < hba->nutrs; tag++) {
5638 		lrbp = &hba->lrb[tag];
5639 		cmd = lrbp->cmd;
5640 		if (!ufshcd_cmd_inflight(cmd) ||
5641 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5642 			continue;
5643 
5644 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5645 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5646 		hwq = &hba->uhq[hwq_num];
5647 
5648 		if (force_compl) {
5649 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5650 			/*
5651 			 * For those cmds of which the cqes are not present
5652 			 * in the cq, complete them explicitly.
5653 			 */
5654 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5655 				spin_lock_irqsave(&hwq->cq_lock, flags);
5656 				set_host_byte(cmd, DID_REQUEUE);
5657 				ufshcd_release_scsi_cmd(hba, lrbp);
5658 				scsi_done(cmd);
5659 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5660 			}
5661 		} else {
5662 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5663 		}
5664 	}
5665 }
5666 
5667 /**
5668  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5669  * @hba: per adapter instance
5670  *
5671  * Return:
5672  *  IRQ_HANDLED - If interrupt is valid
5673  *  IRQ_NONE    - If invalid interrupt
5674  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5675 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5676 {
5677 	/* Resetting interrupt aggregation counters first and reading the
5678 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5679 	 * In order to prevent other interrupts starvation the DB is read once
5680 	 * after reset. The down side of this solution is the possibility of
5681 	 * false interrupt if device completes another request after resetting
5682 	 * aggregation and before reading the DB.
5683 	 */
5684 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5685 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5686 		ufshcd_reset_intr_aggr(hba);
5687 
5688 	if (ufs_fail_completion())
5689 		return IRQ_HANDLED;
5690 
5691 	/*
5692 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5693 	 * do not want polling to trigger spurious interrupt complaints.
5694 	 */
5695 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5696 
5697 	return IRQ_HANDLED;
5698 }
5699 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5700 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5701 {
5702 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5703 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5704 				       &ee_ctrl_mask);
5705 }
5706 
ufshcd_write_ee_control(struct ufs_hba * hba)5707 int ufshcd_write_ee_control(struct ufs_hba *hba)
5708 {
5709 	int err;
5710 
5711 	mutex_lock(&hba->ee_ctrl_mutex);
5712 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5713 	mutex_unlock(&hba->ee_ctrl_mutex);
5714 	if (err)
5715 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5716 			__func__, err);
5717 	return err;
5718 }
5719 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5720 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5721 			     const u16 *other_mask, u16 set, u16 clr)
5722 {
5723 	u16 new_mask, ee_ctrl_mask;
5724 	int err = 0;
5725 
5726 	mutex_lock(&hba->ee_ctrl_mutex);
5727 	new_mask = (*mask & ~clr) | set;
5728 	ee_ctrl_mask = new_mask | *other_mask;
5729 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5730 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5731 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5732 	if (!err) {
5733 		hba->ee_ctrl_mask = ee_ctrl_mask;
5734 		*mask = new_mask;
5735 	}
5736 	mutex_unlock(&hba->ee_ctrl_mutex);
5737 	return err;
5738 }
5739 
5740 /**
5741  * ufshcd_disable_ee - disable exception event
5742  * @hba: per-adapter instance
5743  * @mask: exception event to disable
5744  *
5745  * Disables exception event in the device so that the EVENT_ALERT
5746  * bit is not set.
5747  *
5748  * Return: zero on success, non-zero error value on failure.
5749  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5750 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5751 {
5752 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5753 }
5754 
5755 /**
5756  * ufshcd_enable_ee - enable exception event
5757  * @hba: per-adapter instance
5758  * @mask: exception event to enable
5759  *
5760  * Enable corresponding exception event in the device to allow
5761  * device to alert host in critical scenarios.
5762  *
5763  * Return: zero on success, non-zero error value on failure.
5764  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5765 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5766 {
5767 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5768 }
5769 
5770 /**
5771  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5772  * @hba: per-adapter instance
5773  *
5774  * Allow device to manage background operations on its own. Enabling
5775  * this might lead to inconsistent latencies during normal data transfers
5776  * as the device is allowed to manage its own way of handling background
5777  * operations.
5778  *
5779  * Return: zero on success, non-zero on failure.
5780  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5781 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5782 {
5783 	int err = 0;
5784 
5785 	if (hba->auto_bkops_enabled)
5786 		goto out;
5787 
5788 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5789 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5790 	if (err) {
5791 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5792 				__func__, err);
5793 		goto out;
5794 	}
5795 
5796 	hba->auto_bkops_enabled = true;
5797 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5798 
5799 	/* No need of URGENT_BKOPS exception from the device */
5800 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5801 	if (err)
5802 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5803 				__func__, err);
5804 out:
5805 	return err;
5806 }
5807 
5808 /**
5809  * ufshcd_disable_auto_bkops - block device in doing background operations
5810  * @hba: per-adapter instance
5811  *
5812  * Disabling background operations improves command response latency but
5813  * has drawback of device moving into critical state where the device is
5814  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5815  * host is idle so that BKOPS are managed effectively without any negative
5816  * impacts.
5817  *
5818  * Return: zero on success, non-zero on failure.
5819  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5820 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5821 {
5822 	int err = 0;
5823 
5824 	if (!hba->auto_bkops_enabled)
5825 		goto out;
5826 
5827 	/*
5828 	 * If host assisted BKOPs is to be enabled, make sure
5829 	 * urgent bkops exception is allowed.
5830 	 */
5831 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5832 	if (err) {
5833 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5834 				__func__, err);
5835 		goto out;
5836 	}
5837 
5838 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5839 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5840 	if (err) {
5841 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5842 				__func__, err);
5843 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5844 		goto out;
5845 	}
5846 
5847 	hba->auto_bkops_enabled = false;
5848 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5849 	hba->is_urgent_bkops_lvl_checked = false;
5850 out:
5851 	return err;
5852 }
5853 
5854 /**
5855  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5856  * @hba: per adapter instance
5857  *
5858  * After a device reset the device may toggle the BKOPS_EN flag
5859  * to default value. The s/w tracking variables should be updated
5860  * as well. This function would change the auto-bkops state based on
5861  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5862  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5863 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5864 {
5865 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5866 		hba->auto_bkops_enabled = false;
5867 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5868 		ufshcd_enable_auto_bkops(hba);
5869 	} else {
5870 		hba->auto_bkops_enabled = true;
5871 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5872 		ufshcd_disable_auto_bkops(hba);
5873 	}
5874 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5875 	hba->is_urgent_bkops_lvl_checked = false;
5876 }
5877 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5878 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5879 {
5880 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5881 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5882 }
5883 
5884 /**
5885  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5886  * @hba: per-adapter instance
5887  * @status: bkops_status value
5888  *
5889  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5890  * flag in the device to permit background operations if the device
5891  * bkops_status is greater than or equal to "status" argument passed to
5892  * this function, disable otherwise.
5893  *
5894  * Return: 0 for success, non-zero in case of failure.
5895  *
5896  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5897  * to know whether auto bkops is enabled or disabled after this function
5898  * returns control to it.
5899  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5900 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5901 			     enum bkops_status status)
5902 {
5903 	int err;
5904 	u32 curr_status = 0;
5905 
5906 	err = ufshcd_get_bkops_status(hba, &curr_status);
5907 	if (err) {
5908 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5909 				__func__, err);
5910 		goto out;
5911 	} else if (curr_status > BKOPS_STATUS_MAX) {
5912 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5913 				__func__, curr_status);
5914 		err = -EINVAL;
5915 		goto out;
5916 	}
5917 
5918 	if (curr_status >= status)
5919 		err = ufshcd_enable_auto_bkops(hba);
5920 	else
5921 		err = ufshcd_disable_auto_bkops(hba);
5922 out:
5923 	return err;
5924 }
5925 
5926 /**
5927  * ufshcd_urgent_bkops - handle urgent bkops exception event
5928  * @hba: per-adapter instance
5929  *
5930  * Enable fBackgroundOpsEn flag in the device to permit background
5931  * operations.
5932  *
5933  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5934  * and negative error value for any other failure.
5935  *
5936  * Return: 0 upon success; < 0 upon failure.
5937  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5938 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5939 {
5940 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5941 }
5942 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5943 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5944 {
5945 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5946 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5947 }
5948 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5949 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5950 {
5951 	int err;
5952 	u32 curr_status = 0;
5953 
5954 	if (hba->is_urgent_bkops_lvl_checked)
5955 		goto enable_auto_bkops;
5956 
5957 	err = ufshcd_get_bkops_status(hba, &curr_status);
5958 	if (err) {
5959 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5960 				__func__, err);
5961 		goto out;
5962 	}
5963 
5964 	/*
5965 	 * We are seeing that some devices are raising the urgent bkops
5966 	 * exception events even when BKOPS status doesn't indicate performace
5967 	 * impacted or critical. Handle these device by determining their urgent
5968 	 * bkops status at runtime.
5969 	 */
5970 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5971 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5972 				__func__, curr_status);
5973 		/* update the current status as the urgent bkops level */
5974 		hba->urgent_bkops_lvl = curr_status;
5975 		hba->is_urgent_bkops_lvl_checked = true;
5976 	}
5977 
5978 enable_auto_bkops:
5979 	err = ufshcd_enable_auto_bkops(hba);
5980 out:
5981 	if (err < 0)
5982 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5983 				__func__, err);
5984 }
5985 
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5986 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5987 {
5988 	u32 value;
5989 
5990 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5991 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5992 		return;
5993 
5994 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5995 
5996 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5997 
5998 	/*
5999 	 * A placeholder for the platform vendors to add whatever additional
6000 	 * steps required
6001 	 */
6002 }
6003 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6004 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6005 {
6006 	u8 index;
6007 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6008 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6009 
6010 	index = ufshcd_wb_get_query_index(hba);
6011 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6012 }
6013 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6014 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6015 {
6016 	int ret;
6017 
6018 	if (!ufshcd_is_wb_allowed(hba) ||
6019 	    hba->dev_info.wb_enabled == enable)
6020 		return 0;
6021 
6022 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6023 	if (ret) {
6024 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6025 			__func__, enable ? "enabling" : "disabling", ret);
6026 		return ret;
6027 	}
6028 
6029 	hba->dev_info.wb_enabled = enable;
6030 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6031 			__func__, enable ? "enabled" : "disabled");
6032 
6033 	return ret;
6034 }
6035 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6036 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6037 						 bool enable)
6038 {
6039 	int ret;
6040 
6041 	ret = __ufshcd_wb_toggle(hba, enable,
6042 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6043 	if (ret) {
6044 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6045 			__func__, enable ? "enabling" : "disabling", ret);
6046 		return;
6047 	}
6048 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6049 			__func__, enable ? "enabled" : "disabled");
6050 }
6051 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6052 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6053 {
6054 	int ret;
6055 
6056 	if (!ufshcd_is_wb_allowed(hba) ||
6057 	    hba->dev_info.wb_buf_flush_enabled == enable)
6058 		return 0;
6059 
6060 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6061 	if (ret) {
6062 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6063 			__func__, enable ? "enabling" : "disabling", ret);
6064 		return ret;
6065 	}
6066 
6067 	hba->dev_info.wb_buf_flush_enabled = enable;
6068 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6069 			__func__, enable ? "enabled" : "disabled");
6070 
6071 	return ret;
6072 }
6073 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6074 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6075 						u32 avail_buf)
6076 {
6077 	u32 cur_buf;
6078 	int ret;
6079 	u8 index;
6080 
6081 	index = ufshcd_wb_get_query_index(hba);
6082 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6083 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6084 					      index, 0, &cur_buf);
6085 	if (ret) {
6086 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6087 			__func__, ret);
6088 		return false;
6089 	}
6090 
6091 	if (!cur_buf) {
6092 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6093 			 cur_buf);
6094 		return false;
6095 	}
6096 	/* Let it continue to flush when available buffer exceeds threshold */
6097 	return avail_buf < hba->vps->wb_flush_threshold;
6098 }
6099 
ufshcd_wb_force_disable(struct ufs_hba * hba)6100 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6101 {
6102 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6103 		ufshcd_wb_toggle_buf_flush(hba, false);
6104 
6105 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6106 	ufshcd_wb_toggle(hba, false);
6107 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6108 
6109 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6110 }
6111 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6112 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6113 {
6114 	u32 lifetime;
6115 	int ret;
6116 	u8 index;
6117 
6118 	index = ufshcd_wb_get_query_index(hba);
6119 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6120 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6121 				      index, 0, &lifetime);
6122 	if (ret) {
6123 		dev_err(hba->dev,
6124 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6125 			__func__, ret);
6126 		return false;
6127 	}
6128 
6129 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6130 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6131 			__func__, lifetime);
6132 		return false;
6133 	}
6134 
6135 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6136 		__func__, lifetime);
6137 
6138 	return true;
6139 }
6140 
ufshcd_wb_need_flush(struct ufs_hba * hba)6141 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6142 {
6143 	int ret;
6144 	u32 avail_buf;
6145 	u8 index;
6146 
6147 	if (!ufshcd_is_wb_allowed(hba))
6148 		return false;
6149 
6150 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6151 		ufshcd_wb_force_disable(hba);
6152 		return false;
6153 	}
6154 
6155 	/*
6156 	 * The ufs device needs the vcc to be ON to flush.
6157 	 * With user-space reduction enabled, it's enough to enable flush
6158 	 * by checking only the available buffer. The threshold
6159 	 * defined here is > 90% full.
6160 	 * With user-space preserved enabled, the current-buffer
6161 	 * should be checked too because the wb buffer size can reduce
6162 	 * when disk tends to be full. This info is provided by current
6163 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6164 	 * keeping vcc on when current buffer is empty.
6165 	 */
6166 	index = ufshcd_wb_get_query_index(hba);
6167 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6168 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6169 				      index, 0, &avail_buf);
6170 	if (ret) {
6171 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6172 			 __func__, ret);
6173 		return false;
6174 	}
6175 
6176 	if (!hba->dev_info.b_presrv_uspc_en)
6177 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6178 
6179 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6180 }
6181 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6182 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6183 {
6184 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6185 					   struct ufs_hba,
6186 					   rpm_dev_flush_recheck_work);
6187 	/*
6188 	 * To prevent unnecessary VCC power drain after device finishes
6189 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6190 	 * after a certain delay to recheck the threshold by next runtime
6191 	 * suspend.
6192 	 */
6193 	ufshcd_rpm_get_sync(hba);
6194 	ufshcd_rpm_put_sync(hba);
6195 }
6196 
6197 /**
6198  * ufshcd_exception_event_handler - handle exceptions raised by device
6199  * @work: pointer to work data
6200  *
6201  * Read bExceptionEventStatus attribute from the device and handle the
6202  * exception event accordingly.
6203  */
ufshcd_exception_event_handler(struct work_struct * work)6204 static void ufshcd_exception_event_handler(struct work_struct *work)
6205 {
6206 	struct ufs_hba *hba;
6207 	int err;
6208 	u32 status = 0;
6209 	hba = container_of(work, struct ufs_hba, eeh_work);
6210 
6211 	ufshcd_scsi_block_requests(hba);
6212 	err = ufshcd_get_ee_status(hba, &status);
6213 	if (err) {
6214 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6215 				__func__, err);
6216 		goto out;
6217 	}
6218 
6219 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6220 
6221 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6222 		ufshcd_bkops_exception_event_handler(hba);
6223 
6224 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6225 		ufshcd_temp_exception_event_handler(hba, status);
6226 
6227 	ufs_debugfs_exception_event(hba, status);
6228 out:
6229 	ufshcd_scsi_unblock_requests(hba);
6230 }
6231 
6232 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6233 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6234 {
6235 	if (is_mcq_enabled(hba))
6236 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6237 	else
6238 		ufshcd_transfer_req_compl(hba);
6239 
6240 	ufshcd_tmc_handler(hba);
6241 }
6242 
6243 /**
6244  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6245  *				to recover from the DL NAC errors or not.
6246  * @hba: per-adapter instance
6247  *
6248  * Return: true if error handling is required, false otherwise.
6249  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6250 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6251 {
6252 	unsigned long flags;
6253 	bool err_handling = true;
6254 
6255 	spin_lock_irqsave(hba->host->host_lock, flags);
6256 	/*
6257 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6258 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6259 	 */
6260 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6261 		goto out;
6262 
6263 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6264 	    ((hba->saved_err & UIC_ERROR) &&
6265 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6266 		goto out;
6267 
6268 	if ((hba->saved_err & UIC_ERROR) &&
6269 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6270 		int err;
6271 		/*
6272 		 * wait for 50ms to see if we can get any other errors or not.
6273 		 */
6274 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6275 		msleep(50);
6276 		spin_lock_irqsave(hba->host->host_lock, flags);
6277 
6278 		/*
6279 		 * now check if we have got any other severe errors other than
6280 		 * DL NAC error?
6281 		 */
6282 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6283 		    ((hba->saved_err & UIC_ERROR) &&
6284 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6285 			goto out;
6286 
6287 		/*
6288 		 * As DL NAC is the only error received so far, send out NOP
6289 		 * command to confirm if link is still active or not.
6290 		 *   - If we don't get any response then do error recovery.
6291 		 *   - If we get response then clear the DL NAC error bit.
6292 		 */
6293 
6294 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6295 		err = ufshcd_verify_dev_init(hba);
6296 		spin_lock_irqsave(hba->host->host_lock, flags);
6297 
6298 		if (err)
6299 			goto out;
6300 
6301 		/* Link seems to be alive hence ignore the DL NAC errors */
6302 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6303 			hba->saved_err &= ~UIC_ERROR;
6304 		/* clear NAC error */
6305 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6306 		if (!hba->saved_uic_err)
6307 			err_handling = false;
6308 	}
6309 out:
6310 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6311 	return err_handling;
6312 }
6313 
6314 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6315 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6316 {
6317 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6318 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6319 }
6320 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6321 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6322 {
6323 	lockdep_assert_held(hba->host->host_lock);
6324 
6325 	/* handle fatal errors only when link is not in error state */
6326 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6327 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6328 		    ufshcd_is_saved_err_fatal(hba))
6329 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6330 		else
6331 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6332 		queue_work(hba->eh_wq, &hba->eh_work);
6333 	}
6334 }
6335 
ufshcd_force_error_recovery(struct ufs_hba * hba)6336 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6337 {
6338 	spin_lock_irq(hba->host->host_lock);
6339 	hba->force_reset = true;
6340 	ufshcd_schedule_eh_work(hba);
6341 	spin_unlock_irq(hba->host->host_lock);
6342 }
6343 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6344 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6345 {
6346 	mutex_lock(&hba->wb_mutex);
6347 	down_write(&hba->clk_scaling_lock);
6348 	hba->clk_scaling.is_allowed = allow;
6349 	up_write(&hba->clk_scaling_lock);
6350 	mutex_unlock(&hba->wb_mutex);
6351 }
6352 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6353 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6354 {
6355 	if (suspend) {
6356 		if (hba->clk_scaling.is_enabled)
6357 			ufshcd_suspend_clkscaling(hba);
6358 		ufshcd_clk_scaling_allow(hba, false);
6359 	} else {
6360 		ufshcd_clk_scaling_allow(hba, true);
6361 		if (hba->clk_scaling.is_enabled)
6362 			ufshcd_resume_clkscaling(hba);
6363 	}
6364 }
6365 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6366 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6367 {
6368 	ufshcd_rpm_get_sync(hba);
6369 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6370 	    hba->is_sys_suspended) {
6371 		enum ufs_pm_op pm_op;
6372 
6373 		/*
6374 		 * Don't assume anything of resume, if
6375 		 * resume fails, irq and clocks can be OFF, and powers
6376 		 * can be OFF or in LPM.
6377 		 */
6378 		ufshcd_setup_hba_vreg(hba, true);
6379 		ufshcd_enable_irq(hba);
6380 		ufshcd_setup_vreg(hba, true);
6381 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6382 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6383 		ufshcd_hold(hba);
6384 		if (!ufshcd_is_clkgating_allowed(hba))
6385 			ufshcd_setup_clocks(hba, true);
6386 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6387 		ufshcd_vops_resume(hba, pm_op);
6388 	} else {
6389 		ufshcd_hold(hba);
6390 		if (ufshcd_is_clkscaling_supported(hba) &&
6391 		    hba->clk_scaling.is_enabled)
6392 			ufshcd_suspend_clkscaling(hba);
6393 		ufshcd_clk_scaling_allow(hba, false);
6394 	}
6395 	ufshcd_scsi_block_requests(hba);
6396 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6397 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6398 	cancel_work_sync(&hba->eeh_work);
6399 }
6400 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6401 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6402 {
6403 	ufshcd_scsi_unblock_requests(hba);
6404 	ufshcd_release(hba);
6405 	if (ufshcd_is_clkscaling_supported(hba))
6406 		ufshcd_clk_scaling_suspend(hba, false);
6407 	ufshcd_rpm_put(hba);
6408 }
6409 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6410 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6411 {
6412 	return (!hba->is_powered || hba->shutting_down ||
6413 		!hba->ufs_device_wlun ||
6414 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6415 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6416 		   ufshcd_is_link_broken(hba))));
6417 }
6418 
6419 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6420 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6421 {
6422 	struct Scsi_Host *shost = hba->host;
6423 	struct scsi_device *sdev;
6424 	struct request_queue *q;
6425 	int ret;
6426 
6427 	hba->is_sys_suspended = false;
6428 	/*
6429 	 * Set RPM status of wlun device to RPM_ACTIVE,
6430 	 * this also clears its runtime error.
6431 	 */
6432 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6433 
6434 	/* hba device might have a runtime error otherwise */
6435 	if (ret)
6436 		ret = pm_runtime_set_active(hba->dev);
6437 	/*
6438 	 * If wlun device had runtime error, we also need to resume those
6439 	 * consumer scsi devices in case any of them has failed to be
6440 	 * resumed due to supplier runtime resume failure. This is to unblock
6441 	 * blk_queue_enter in case there are bios waiting inside it.
6442 	 */
6443 	if (!ret) {
6444 		shost_for_each_device(sdev, shost) {
6445 			q = sdev->request_queue;
6446 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6447 				       q->rpm_status == RPM_SUSPENDING))
6448 				pm_request_resume(q->dev);
6449 		}
6450 	}
6451 }
6452 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6453 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6454 {
6455 }
6456 #endif
6457 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6458 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6459 {
6460 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6461 	u32 mode;
6462 
6463 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6464 
6465 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6466 		return true;
6467 
6468 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6469 		return true;
6470 
6471 	return false;
6472 }
6473 
ufshcd_abort_one(struct request * rq,void * priv)6474 static bool ufshcd_abort_one(struct request *rq, void *priv)
6475 {
6476 	int *ret = priv;
6477 	u32 tag = rq->tag;
6478 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6479 	struct scsi_device *sdev = cmd->device;
6480 	struct Scsi_Host *shost = sdev->host;
6481 	struct ufs_hba *hba = shost_priv(shost);
6482 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6483 	struct ufs_hw_queue *hwq;
6484 	unsigned long flags;
6485 
6486 	*ret = ufshcd_try_to_abort_task(hba, tag);
6487 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6488 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6489 		*ret ? "failed" : "succeeded");
6490 
6491 	/* Release cmd in MCQ mode if abort succeeds */
6492 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6493 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6494 		if (!hwq)
6495 			return 0;
6496 		spin_lock_irqsave(&hwq->cq_lock, flags);
6497 		if (ufshcd_cmd_inflight(lrbp->cmd))
6498 			ufshcd_release_scsi_cmd(hba, lrbp);
6499 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6500 	}
6501 
6502 	return *ret == 0;
6503 }
6504 
6505 /**
6506  * ufshcd_abort_all - Abort all pending commands.
6507  * @hba: Host bus adapter pointer.
6508  *
6509  * Return: true if and only if the host controller needs to be reset.
6510  */
ufshcd_abort_all(struct ufs_hba * hba)6511 static bool ufshcd_abort_all(struct ufs_hba *hba)
6512 {
6513 	int tag, ret = 0;
6514 
6515 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6516 	if (ret)
6517 		goto out;
6518 
6519 	/* Clear pending task management requests */
6520 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6521 		ret = ufshcd_clear_tm_cmd(hba, tag);
6522 		if (ret)
6523 			goto out;
6524 	}
6525 
6526 out:
6527 	/* Complete the requests that are cleared by s/w */
6528 	ufshcd_complete_requests(hba, false);
6529 
6530 	return ret != 0;
6531 }
6532 
6533 /**
6534  * ufshcd_err_handler - handle UFS errors that require s/w attention
6535  * @work: pointer to work structure
6536  */
ufshcd_err_handler(struct work_struct * work)6537 static void ufshcd_err_handler(struct work_struct *work)
6538 {
6539 	int retries = MAX_ERR_HANDLER_RETRIES;
6540 	struct ufs_hba *hba;
6541 	unsigned long flags;
6542 	bool needs_restore;
6543 	bool needs_reset;
6544 	int pmc_err;
6545 
6546 	hba = container_of(work, struct ufs_hba, eh_work);
6547 
6548 	dev_info(hba->dev,
6549 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6550 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6551 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6552 		 hba->saved_uic_err, hba->force_reset,
6553 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6554 
6555 	down(&hba->host_sem);
6556 	spin_lock_irqsave(hba->host->host_lock, flags);
6557 	if (ufshcd_err_handling_should_stop(hba)) {
6558 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6559 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6560 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6561 		up(&hba->host_sem);
6562 		return;
6563 	}
6564 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6565 
6566 	ufshcd_err_handling_prepare(hba);
6567 
6568 	spin_lock_irqsave(hba->host->host_lock, flags);
6569 	ufshcd_set_eh_in_progress(hba);
6570 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6571 
6572 	/* Complete requests that have door-bell cleared by h/w */
6573 	ufshcd_complete_requests(hba, false);
6574 	spin_lock_irqsave(hba->host->host_lock, flags);
6575 again:
6576 	needs_restore = false;
6577 	needs_reset = false;
6578 
6579 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6580 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6581 	/*
6582 	 * A full reset and restore might have happened after preparation
6583 	 * is finished, double check whether we should stop.
6584 	 */
6585 	if (ufshcd_err_handling_should_stop(hba))
6586 		goto skip_err_handling;
6587 
6588 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6589 	    !hba->force_reset) {
6590 		bool ret;
6591 
6592 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6593 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6594 		ret = ufshcd_quirk_dl_nac_errors(hba);
6595 		spin_lock_irqsave(hba->host->host_lock, flags);
6596 		if (!ret && ufshcd_err_handling_should_stop(hba))
6597 			goto skip_err_handling;
6598 	}
6599 
6600 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6601 	    (hba->saved_uic_err &&
6602 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6603 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6604 
6605 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6606 		ufshcd_print_host_state(hba);
6607 		ufshcd_print_pwr_info(hba);
6608 		ufshcd_print_evt_hist(hba);
6609 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6610 		ufshcd_print_trs_all(hba, pr_prdt);
6611 		spin_lock_irqsave(hba->host->host_lock, flags);
6612 	}
6613 
6614 	/*
6615 	 * if host reset is required then skip clearing the pending
6616 	 * transfers forcefully because they will get cleared during
6617 	 * host reset and restore
6618 	 */
6619 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6620 	    ufshcd_is_saved_err_fatal(hba) ||
6621 	    ((hba->saved_err & UIC_ERROR) &&
6622 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6623 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6624 		needs_reset = true;
6625 		goto do_reset;
6626 	}
6627 
6628 	/*
6629 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6630 	 * check if power mode restore is needed.
6631 	 */
6632 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6633 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6634 		if (!hba->saved_uic_err)
6635 			hba->saved_err &= ~UIC_ERROR;
6636 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6637 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6638 			needs_restore = true;
6639 		spin_lock_irqsave(hba->host->host_lock, flags);
6640 		if (!hba->saved_err && !needs_restore)
6641 			goto skip_err_handling;
6642 	}
6643 
6644 	hba->silence_err_logs = true;
6645 	/* release lock as clear command might sleep */
6646 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6647 
6648 	needs_reset = ufshcd_abort_all(hba);
6649 
6650 	spin_lock_irqsave(hba->host->host_lock, flags);
6651 	hba->silence_err_logs = false;
6652 	if (needs_reset)
6653 		goto do_reset;
6654 
6655 	/*
6656 	 * After all reqs and tasks are cleared from doorbell,
6657 	 * now it is safe to retore power mode.
6658 	 */
6659 	if (needs_restore) {
6660 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6661 		/*
6662 		 * Hold the scaling lock just in case dev cmds
6663 		 * are sent via bsg and/or sysfs.
6664 		 */
6665 		down_write(&hba->clk_scaling_lock);
6666 		hba->force_pmc = true;
6667 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6668 		if (pmc_err) {
6669 			needs_reset = true;
6670 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6671 					__func__, pmc_err);
6672 		}
6673 		hba->force_pmc = false;
6674 		ufshcd_print_pwr_info(hba);
6675 		up_write(&hba->clk_scaling_lock);
6676 		spin_lock_irqsave(hba->host->host_lock, flags);
6677 	}
6678 
6679 do_reset:
6680 	/* Fatal errors need reset */
6681 	if (needs_reset) {
6682 		int err;
6683 
6684 		hba->force_reset = false;
6685 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6686 		err = ufshcd_reset_and_restore(hba);
6687 		if (err)
6688 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6689 					__func__, err);
6690 		else
6691 			ufshcd_recover_pm_error(hba);
6692 		spin_lock_irqsave(hba->host->host_lock, flags);
6693 	}
6694 
6695 skip_err_handling:
6696 	if (!needs_reset) {
6697 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6698 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6699 		if (hba->saved_err || hba->saved_uic_err)
6700 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6701 			    __func__, hba->saved_err, hba->saved_uic_err);
6702 	}
6703 	/* Exit in an operational state or dead */
6704 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6705 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6706 		if (--retries)
6707 			goto again;
6708 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6709 	}
6710 	ufshcd_clear_eh_in_progress(hba);
6711 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6712 	ufshcd_err_handling_unprepare(hba);
6713 	up(&hba->host_sem);
6714 
6715 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6716 		 ufshcd_state_name[hba->ufshcd_state]);
6717 }
6718 
6719 /**
6720  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6721  * @hba: per-adapter instance
6722  *
6723  * Return:
6724  *  IRQ_HANDLED - If interrupt is valid
6725  *  IRQ_NONE    - If invalid interrupt
6726  */
ufshcd_update_uic_error(struct ufs_hba * hba)6727 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6728 {
6729 	u32 reg;
6730 	irqreturn_t retval = IRQ_NONE;
6731 
6732 	/* PHY layer error */
6733 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6734 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6735 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6736 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6737 		/*
6738 		 * To know whether this error is fatal or not, DB timeout
6739 		 * must be checked but this error is handled separately.
6740 		 */
6741 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6742 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6743 					__func__);
6744 
6745 		/* Got a LINERESET indication. */
6746 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6747 			struct uic_command *cmd = NULL;
6748 
6749 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6750 			if (hba->uic_async_done && hba->active_uic_cmd)
6751 				cmd = hba->active_uic_cmd;
6752 			/*
6753 			 * Ignore the LINERESET during power mode change
6754 			 * operation via DME_SET command.
6755 			 */
6756 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6757 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6758 		}
6759 		retval |= IRQ_HANDLED;
6760 	}
6761 
6762 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6763 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6764 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6765 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6766 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6767 
6768 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6769 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6770 		else if (hba->dev_quirks &
6771 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6772 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6773 				hba->uic_error |=
6774 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6775 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6776 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6777 		}
6778 		retval |= IRQ_HANDLED;
6779 	}
6780 
6781 	/* UIC NL/TL/DME errors needs software retry */
6782 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6783 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6784 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6785 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6786 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6787 		retval |= IRQ_HANDLED;
6788 	}
6789 
6790 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6791 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6792 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6793 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6794 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6795 		retval |= IRQ_HANDLED;
6796 	}
6797 
6798 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6799 	if ((reg & UIC_DME_ERROR) &&
6800 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6801 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6802 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6803 		retval |= IRQ_HANDLED;
6804 	}
6805 
6806 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6807 			__func__, hba->uic_error);
6808 	return retval;
6809 }
6810 
6811 /**
6812  * ufshcd_check_errors - Check for errors that need s/w attention
6813  * @hba: per-adapter instance
6814  * @intr_status: interrupt status generated by the controller
6815  *
6816  * Return:
6817  *  IRQ_HANDLED - If interrupt is valid
6818  *  IRQ_NONE    - If invalid interrupt
6819  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6820 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6821 {
6822 	bool queue_eh_work = false;
6823 	irqreturn_t retval = IRQ_NONE;
6824 
6825 	spin_lock(hba->host->host_lock);
6826 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6827 
6828 	if (hba->errors & INT_FATAL_ERRORS) {
6829 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6830 				       hba->errors);
6831 		queue_eh_work = true;
6832 	}
6833 
6834 	if (hba->errors & UIC_ERROR) {
6835 		hba->uic_error = 0;
6836 		retval = ufshcd_update_uic_error(hba);
6837 		if (hba->uic_error)
6838 			queue_eh_work = true;
6839 	}
6840 
6841 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6842 		dev_err(hba->dev,
6843 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6844 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6845 			"Enter" : "Exit",
6846 			hba->errors, ufshcd_get_upmcrs(hba));
6847 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6848 				       hba->errors);
6849 		ufshcd_set_link_broken(hba);
6850 		queue_eh_work = true;
6851 	}
6852 
6853 	if (queue_eh_work) {
6854 		/*
6855 		 * update the transfer error masks to sticky bits, let's do this
6856 		 * irrespective of current ufshcd_state.
6857 		 */
6858 		hba->saved_err |= hba->errors;
6859 		hba->saved_uic_err |= hba->uic_error;
6860 
6861 		/* dump controller state before resetting */
6862 		if ((hba->saved_err &
6863 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6864 		    (hba->saved_uic_err &&
6865 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6866 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6867 					__func__, hba->saved_err,
6868 					hba->saved_uic_err);
6869 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6870 					 "host_regs: ");
6871 			ufshcd_print_pwr_info(hba);
6872 		}
6873 		ufshcd_schedule_eh_work(hba);
6874 		retval |= IRQ_HANDLED;
6875 	}
6876 	/*
6877 	 * if (!queue_eh_work) -
6878 	 * Other errors are either non-fatal where host recovers
6879 	 * itself without s/w intervention or errors that will be
6880 	 * handled by the SCSI core layer.
6881 	 */
6882 	hba->errors = 0;
6883 	hba->uic_error = 0;
6884 	spin_unlock(hba->host->host_lock);
6885 	return retval;
6886 }
6887 
6888 /**
6889  * ufshcd_tmc_handler - handle task management function completion
6890  * @hba: per adapter instance
6891  *
6892  * Return:
6893  *  IRQ_HANDLED - If interrupt is valid
6894  *  IRQ_NONE    - If invalid interrupt
6895  */
ufshcd_tmc_handler(struct ufs_hba * hba)6896 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6897 {
6898 	unsigned long flags, pending, issued;
6899 	irqreturn_t ret = IRQ_NONE;
6900 	int tag;
6901 
6902 	spin_lock_irqsave(hba->host->host_lock, flags);
6903 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6904 	issued = hba->outstanding_tasks & ~pending;
6905 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6906 		struct request *req = hba->tmf_rqs[tag];
6907 		struct completion *c = req->end_io_data;
6908 
6909 		complete(c);
6910 		ret = IRQ_HANDLED;
6911 	}
6912 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6913 
6914 	return ret;
6915 }
6916 
6917 /**
6918  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6919  * @hba: per adapter instance
6920  *
6921  * Return: IRQ_HANDLED if interrupt is handled.
6922  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6923 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6924 {
6925 	struct ufs_hw_queue *hwq;
6926 	unsigned long outstanding_cqs;
6927 	unsigned int nr_queues;
6928 	int i, ret;
6929 	u32 events;
6930 
6931 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6932 	if (ret)
6933 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6934 
6935 	/* Exclude the poll queues */
6936 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6937 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6938 		hwq = &hba->uhq[i];
6939 
6940 		events = ufshcd_mcq_read_cqis(hba, i);
6941 		if (events)
6942 			ufshcd_mcq_write_cqis(hba, events, i);
6943 
6944 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6945 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6946 	}
6947 
6948 	return IRQ_HANDLED;
6949 }
6950 
6951 /**
6952  * ufshcd_sl_intr - Interrupt service routine
6953  * @hba: per adapter instance
6954  * @intr_status: contains interrupts generated by the controller
6955  *
6956  * Return:
6957  *  IRQ_HANDLED - If interrupt is valid
6958  *  IRQ_NONE    - If invalid interrupt
6959  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6960 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6961 {
6962 	irqreturn_t retval = IRQ_NONE;
6963 
6964 	if (intr_status & UFSHCD_UIC_MASK)
6965 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6966 
6967 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6968 		retval |= ufshcd_check_errors(hba, intr_status);
6969 
6970 	if (intr_status & UTP_TASK_REQ_COMPL)
6971 		retval |= ufshcd_tmc_handler(hba);
6972 
6973 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6974 		retval |= ufshcd_transfer_req_compl(hba);
6975 
6976 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6977 		retval |= ufshcd_handle_mcq_cq_events(hba);
6978 
6979 	return retval;
6980 }
6981 
6982 /**
6983  * ufshcd_intr - Main interrupt service routine
6984  * @irq: irq number
6985  * @__hba: pointer to adapter instance
6986  *
6987  * Return:
6988  *  IRQ_HANDLED - If interrupt is valid
6989  *  IRQ_NONE    - If invalid interrupt
6990  */
ufshcd_intr(int irq,void * __hba)6991 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6992 {
6993 	u32 intr_status, enabled_intr_status = 0;
6994 	irqreturn_t retval = IRQ_NONE;
6995 	struct ufs_hba *hba = __hba;
6996 	int retries = hba->nutrs;
6997 
6998 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6999 	hba->ufs_stats.last_intr_status = intr_status;
7000 	hba->ufs_stats.last_intr_ts = local_clock();
7001 
7002 	/*
7003 	 * There could be max of hba->nutrs reqs in flight and in worst case
7004 	 * if the reqs get finished 1 by 1 after the interrupt status is
7005 	 * read, make sure we handle them by checking the interrupt status
7006 	 * again in a loop until we process all of the reqs before returning.
7007 	 */
7008 	while (intr_status && retries--) {
7009 		enabled_intr_status =
7010 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7011 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7012 		if (enabled_intr_status)
7013 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7014 
7015 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7016 	}
7017 
7018 	if (enabled_intr_status && retval == IRQ_NONE &&
7019 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7020 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7021 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7022 					__func__,
7023 					intr_status,
7024 					hba->ufs_stats.last_intr_status,
7025 					enabled_intr_status);
7026 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7027 	}
7028 
7029 	return retval;
7030 }
7031 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7032 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7033 {
7034 	int err = 0;
7035 	u32 mask = 1 << tag;
7036 	unsigned long flags;
7037 
7038 	if (!test_bit(tag, &hba->outstanding_tasks))
7039 		goto out;
7040 
7041 	spin_lock_irqsave(hba->host->host_lock, flags);
7042 	ufshcd_utmrl_clear(hba, tag);
7043 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7044 
7045 	/* poll for max. 1 sec to clear door bell register by h/w */
7046 	err = ufshcd_wait_for_register(hba,
7047 			REG_UTP_TASK_REQ_DOOR_BELL,
7048 			mask, 0, 1000, 1000);
7049 
7050 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7051 		tag, err < 0 ? "failed" : "succeeded");
7052 
7053 out:
7054 	return err;
7055 }
7056 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7057 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7058 		struct utp_task_req_desc *treq, u8 tm_function)
7059 {
7060 	struct request_queue *q = hba->tmf_queue;
7061 	struct Scsi_Host *host = hba->host;
7062 	DECLARE_COMPLETION_ONSTACK(wait);
7063 	struct request *req;
7064 	unsigned long flags;
7065 	int task_tag, err;
7066 
7067 	/*
7068 	 * blk_mq_alloc_request() is used here only to get a free tag.
7069 	 */
7070 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7071 	if (IS_ERR(req))
7072 		return PTR_ERR(req);
7073 
7074 	req->end_io_data = &wait;
7075 	ufshcd_hold(hba);
7076 
7077 	spin_lock_irqsave(host->host_lock, flags);
7078 
7079 	task_tag = req->tag;
7080 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
7081 		  task_tag);
7082 	hba->tmf_rqs[req->tag] = req;
7083 	treq->upiu_req.req_header.task_tag = task_tag;
7084 
7085 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7086 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7087 
7088 	/* send command to the controller */
7089 	__set_bit(task_tag, &hba->outstanding_tasks);
7090 
7091 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7092 	/* Make sure that doorbell is committed immediately */
7093 	wmb();
7094 
7095 	spin_unlock_irqrestore(host->host_lock, flags);
7096 
7097 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7098 
7099 	/* wait until the task management command is completed */
7100 	err = wait_for_completion_io_timeout(&wait,
7101 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7102 	if (!err) {
7103 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7104 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7105 				__func__, tm_function);
7106 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7107 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7108 					__func__, task_tag);
7109 		err = -ETIMEDOUT;
7110 	} else {
7111 		err = 0;
7112 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7113 
7114 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7115 	}
7116 
7117 	spin_lock_irqsave(hba->host->host_lock, flags);
7118 	hba->tmf_rqs[req->tag] = NULL;
7119 	__clear_bit(task_tag, &hba->outstanding_tasks);
7120 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7121 
7122 	ufshcd_release(hba);
7123 	blk_mq_free_request(req);
7124 
7125 	return err;
7126 }
7127 
7128 /**
7129  * ufshcd_issue_tm_cmd - issues task management commands to controller
7130  * @hba: per adapter instance
7131  * @lun_id: LUN ID to which TM command is sent
7132  * @task_id: task ID to which the TM command is applicable
7133  * @tm_function: task management function opcode
7134  * @tm_response: task management service response return value
7135  *
7136  * Return: non-zero value on error, zero on success.
7137  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7138 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7139 		u8 tm_function, u8 *tm_response)
7140 {
7141 	struct utp_task_req_desc treq = { };
7142 	enum utp_ocs ocs_value;
7143 	int err;
7144 
7145 	/* Configure task request descriptor */
7146 	treq.header.interrupt = 1;
7147 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7148 
7149 	/* Configure task request UPIU */
7150 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7151 	treq.upiu_req.req_header.lun = lun_id;
7152 	treq.upiu_req.req_header.tm_function = tm_function;
7153 
7154 	/*
7155 	 * The host shall provide the same value for LUN field in the basic
7156 	 * header and for Input Parameter.
7157 	 */
7158 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7159 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7160 
7161 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7162 	if (err == -ETIMEDOUT)
7163 		return err;
7164 
7165 	ocs_value = treq.header.ocs & MASK_OCS;
7166 	if (ocs_value != OCS_SUCCESS)
7167 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7168 				__func__, ocs_value);
7169 	else if (tm_response)
7170 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7171 				MASK_TM_SERVICE_RESP;
7172 	return err;
7173 }
7174 
7175 /**
7176  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7177  * @hba:	per-adapter instance
7178  * @req_upiu:	upiu request
7179  * @rsp_upiu:	upiu reply
7180  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7181  * @buff_len:	descriptor size, 0 if NA
7182  * @cmd_type:	specifies the type (NOP, Query...)
7183  * @desc_op:	descriptor operation
7184  *
7185  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7186  * Therefore, it "rides" the device management infrastructure: uses its tag and
7187  * tasks work queues.
7188  *
7189  * Since there is only one available tag for device management commands,
7190  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7191  *
7192  * Return: 0 upon success; < 0 upon failure.
7193  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7194 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7195 					struct utp_upiu_req *req_upiu,
7196 					struct utp_upiu_req *rsp_upiu,
7197 					u8 *desc_buff, int *buff_len,
7198 					enum dev_cmd_type cmd_type,
7199 					enum query_opcode desc_op)
7200 {
7201 	DECLARE_COMPLETION_ONSTACK(wait);
7202 	const u32 tag = hba->reserved_slot;
7203 	struct ufshcd_lrb *lrbp;
7204 	int err = 0;
7205 	u8 upiu_flags;
7206 
7207 	/* Protects use of hba->reserved_slot. */
7208 	lockdep_assert_held(&hba->dev_cmd.lock);
7209 
7210 	down_read(&hba->clk_scaling_lock);
7211 
7212 	lrbp = &hba->lrb[tag];
7213 	lrbp->cmd = NULL;
7214 	lrbp->task_tag = tag;
7215 	lrbp->lun = 0;
7216 	lrbp->intr_cmd = true;
7217 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7218 	hba->dev_cmd.type = cmd_type;
7219 
7220 	if (hba->ufs_version <= ufshci_version(1, 1))
7221 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7222 	else
7223 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7224 
7225 	/* update the task tag in the request upiu */
7226 	req_upiu->header.task_tag = tag;
7227 
7228 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7229 
7230 	/* just copy the upiu request as it is */
7231 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7232 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7233 		/* The Data Segment Area is optional depending upon the query
7234 		 * function value. for WRITE DESCRIPTOR, the data segment
7235 		 * follows right after the tsf.
7236 		 */
7237 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7238 		*buff_len = 0;
7239 	}
7240 
7241 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7242 
7243 	hba->dev_cmd.complete = &wait;
7244 
7245 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7246 
7247 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7248 	/*
7249 	 * ignore the returning value here - ufshcd_check_query_response is
7250 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7251 	 * read the response directly ignoring all errors.
7252 	 */
7253 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7254 
7255 	/* just copy the upiu response as it is */
7256 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7257 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7258 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7259 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7260 					   .data_segment_length);
7261 
7262 		if (*buff_len >= resp_len) {
7263 			memcpy(desc_buff, descp, resp_len);
7264 			*buff_len = resp_len;
7265 		} else {
7266 			dev_warn(hba->dev,
7267 				 "%s: rsp size %d is bigger than buffer size %d",
7268 				 __func__, resp_len, *buff_len);
7269 			*buff_len = 0;
7270 			err = -EINVAL;
7271 		}
7272 	}
7273 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7274 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7275 
7276 	up_read(&hba->clk_scaling_lock);
7277 	return err;
7278 }
7279 
7280 /**
7281  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7282  * @hba:	per-adapter instance
7283  * @req_upiu:	upiu request
7284  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7285  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7286  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7287  * @buff_len:	descriptor size, 0 if NA
7288  * @desc_op:	descriptor operation
7289  *
7290  * Supports UTP Transfer requests (nop and query), and UTP Task
7291  * Management requests.
7292  * It is up to the caller to fill the upiu conent properly, as it will
7293  * be copied without any further input validations.
7294  *
7295  * Return: 0 upon success; < 0 upon failure.
7296  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7297 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7298 			     struct utp_upiu_req *req_upiu,
7299 			     struct utp_upiu_req *rsp_upiu,
7300 			     enum upiu_request_transaction msgcode,
7301 			     u8 *desc_buff, int *buff_len,
7302 			     enum query_opcode desc_op)
7303 {
7304 	int err;
7305 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7306 	struct utp_task_req_desc treq = { };
7307 	enum utp_ocs ocs_value;
7308 	u8 tm_f = req_upiu->header.tm_function;
7309 
7310 	switch (msgcode) {
7311 	case UPIU_TRANSACTION_NOP_OUT:
7312 		cmd_type = DEV_CMD_TYPE_NOP;
7313 		fallthrough;
7314 	case UPIU_TRANSACTION_QUERY_REQ:
7315 		ufshcd_hold(hba);
7316 		mutex_lock(&hba->dev_cmd.lock);
7317 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7318 						   desc_buff, buff_len,
7319 						   cmd_type, desc_op);
7320 		mutex_unlock(&hba->dev_cmd.lock);
7321 		ufshcd_release(hba);
7322 
7323 		break;
7324 	case UPIU_TRANSACTION_TASK_REQ:
7325 		treq.header.interrupt = 1;
7326 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7327 
7328 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7329 
7330 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7331 		if (err == -ETIMEDOUT)
7332 			break;
7333 
7334 		ocs_value = treq.header.ocs & MASK_OCS;
7335 		if (ocs_value != OCS_SUCCESS) {
7336 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7337 				ocs_value);
7338 			break;
7339 		}
7340 
7341 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7342 
7343 		break;
7344 	default:
7345 		err = -EINVAL;
7346 
7347 		break;
7348 	}
7349 
7350 	return err;
7351 }
7352 
7353 /**
7354  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7355  * @hba:	per adapter instance
7356  * @req_upiu:	upiu request
7357  * @rsp_upiu:	upiu reply
7358  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7359  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7360  * @sg_cnt:	The number of sg lists actually used
7361  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7362  * @dir:	DMA direction
7363  *
7364  * Return: zero on success, non-zero on failure.
7365  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7366 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7367 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7368 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7369 			 enum dma_data_direction dir)
7370 {
7371 	DECLARE_COMPLETION_ONSTACK(wait);
7372 	const u32 tag = hba->reserved_slot;
7373 	struct ufshcd_lrb *lrbp;
7374 	int err = 0;
7375 	int result;
7376 	u8 upiu_flags;
7377 	u8 *ehs_data;
7378 	u16 ehs_len;
7379 
7380 	/* Protects use of hba->reserved_slot. */
7381 	ufshcd_hold(hba);
7382 	mutex_lock(&hba->dev_cmd.lock);
7383 	down_read(&hba->clk_scaling_lock);
7384 
7385 	lrbp = &hba->lrb[tag];
7386 	lrbp->cmd = NULL;
7387 	lrbp->task_tag = tag;
7388 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7389 
7390 	lrbp->intr_cmd = true;
7391 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7392 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7393 
7394 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7395 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7396 
7397 	/*
7398 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7399 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7400 	 * HW controller takes EHS length from UTRD.
7401 	 */
7402 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7403 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7404 	else
7405 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7406 
7407 	/* update the task tag */
7408 	req_upiu->header.task_tag = tag;
7409 
7410 	/* copy the UPIU(contains CDB) request as it is */
7411 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7412 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7413 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7414 
7415 	if (dir != DMA_NONE && sg_list)
7416 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7417 
7418 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7419 
7420 	hba->dev_cmd.complete = &wait;
7421 
7422 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7423 
7424 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7425 
7426 	if (!err) {
7427 		/* Just copy the upiu response as it is */
7428 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7429 		/* Get the response UPIU result */
7430 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7431 			lrbp->ucd_rsp_ptr->header.status;
7432 
7433 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7434 		/*
7435 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7436 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7437 		 * Message is 02h
7438 		 */
7439 		if (ehs_len == 2 && rsp_ehs) {
7440 			/*
7441 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7442 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7443 			 */
7444 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7445 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7446 		}
7447 	}
7448 
7449 	up_read(&hba->clk_scaling_lock);
7450 	mutex_unlock(&hba->dev_cmd.lock);
7451 	ufshcd_release(hba);
7452 	return err ? : result;
7453 }
7454 
7455 /**
7456  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7457  * @cmd: SCSI command pointer
7458  *
7459  * Return: SUCCESS or FAILED.
7460  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7461 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7462 {
7463 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7464 	struct Scsi_Host *host;
7465 	struct ufs_hba *hba;
7466 	struct ufs_hw_queue *hwq;
7467 	struct ufshcd_lrb *lrbp;
7468 	u32 pos, not_cleared_mask = 0;
7469 	int err;
7470 	u8 resp = 0xF, lun;
7471 
7472 	host = cmd->device->host;
7473 	hba = shost_priv(host);
7474 
7475 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7476 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7477 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7478 		if (!err)
7479 			err = resp;
7480 		goto out;
7481 	}
7482 
7483 	if (is_mcq_enabled(hba)) {
7484 		for (pos = 0; pos < hba->nutrs; pos++) {
7485 			lrbp = &hba->lrb[pos];
7486 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7487 			    lrbp->lun == lun) {
7488 				ufshcd_clear_cmd(hba, pos);
7489 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7490 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7491 			}
7492 		}
7493 		err = 0;
7494 		goto out;
7495 	}
7496 
7497 	/* clear the commands that were pending for corresponding LUN */
7498 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7499 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7500 		if (hba->lrb[pos].lun == lun)
7501 			__set_bit(pos, &pending_reqs);
7502 	hba->outstanding_reqs &= ~pending_reqs;
7503 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7504 
7505 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7506 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7507 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7508 			not_cleared = 1U << pos &
7509 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7510 			hba->outstanding_reqs |= not_cleared;
7511 			not_cleared_mask |= not_cleared;
7512 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7513 
7514 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7515 				__func__, pos);
7516 		}
7517 	}
7518 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7519 
7520 out:
7521 	hba->req_abort_count = 0;
7522 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7523 	if (!err) {
7524 		err = SUCCESS;
7525 	} else {
7526 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7527 		err = FAILED;
7528 	}
7529 	return err;
7530 }
7531 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7532 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7533 {
7534 	struct ufshcd_lrb *lrbp;
7535 	int tag;
7536 
7537 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7538 		lrbp = &hba->lrb[tag];
7539 		lrbp->req_abort_skip = true;
7540 	}
7541 }
7542 
7543 /**
7544  * ufshcd_try_to_abort_task - abort a specific task
7545  * @hba: Pointer to adapter instance
7546  * @tag: Task tag/index to be aborted
7547  *
7548  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7549  * command, and in host controller by clearing the door-bell register. There can
7550  * be race between controller sending the command to the device while abort is
7551  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7552  * really issued and then try to abort it.
7553  *
7554  * Return: zero on success, non-zero on failure.
7555  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7556 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7557 {
7558 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7559 	int err = 0;
7560 	int poll_cnt;
7561 	u8 resp = 0xF;
7562 	u32 reg;
7563 
7564 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7565 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7566 				UFS_QUERY_TASK, &resp);
7567 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7568 			/* cmd pending in the device */
7569 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7570 				__func__, tag);
7571 			break;
7572 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7573 			/*
7574 			 * cmd not pending in the device, check if it is
7575 			 * in transition.
7576 			 */
7577 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7578 				__func__, tag);
7579 			if (is_mcq_enabled(hba)) {
7580 				/* MCQ mode */
7581 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7582 					/* sleep for max. 200us same delay as in SDB mode */
7583 					usleep_range(100, 200);
7584 					continue;
7585 				}
7586 				/* command completed already */
7587 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7588 					__func__, tag);
7589 				goto out;
7590 			}
7591 
7592 			/* Single Doorbell Mode */
7593 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7594 			if (reg & (1 << tag)) {
7595 				/* sleep for max. 200us to stabilize */
7596 				usleep_range(100, 200);
7597 				continue;
7598 			}
7599 			/* command completed already */
7600 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7601 				__func__, tag);
7602 			goto out;
7603 		} else {
7604 			dev_err(hba->dev,
7605 				"%s: no response from device. tag = %d, err %d\n",
7606 				__func__, tag, err);
7607 			if (!err)
7608 				err = resp; /* service response error */
7609 			goto out;
7610 		}
7611 	}
7612 
7613 	if (!poll_cnt) {
7614 		err = -EBUSY;
7615 		goto out;
7616 	}
7617 
7618 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7619 			UFS_ABORT_TASK, &resp);
7620 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7621 		if (!err) {
7622 			err = resp; /* service response error */
7623 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7624 				__func__, tag, err);
7625 		}
7626 		goto out;
7627 	}
7628 
7629 	err = ufshcd_clear_cmd(hba, tag);
7630 	if (err)
7631 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7632 			__func__, tag, err);
7633 
7634 out:
7635 	return err;
7636 }
7637 
7638 /**
7639  * ufshcd_abort - scsi host template eh_abort_handler callback
7640  * @cmd: SCSI command pointer
7641  *
7642  * Return: SUCCESS or FAILED.
7643  */
ufshcd_abort(struct scsi_cmnd * cmd)7644 static int ufshcd_abort(struct scsi_cmnd *cmd)
7645 {
7646 	struct Scsi_Host *host = cmd->device->host;
7647 	struct ufs_hba *hba = shost_priv(host);
7648 	int tag = scsi_cmd_to_rq(cmd)->tag;
7649 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7650 	unsigned long flags;
7651 	int err = FAILED;
7652 	bool outstanding;
7653 	u32 reg;
7654 
7655 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7656 
7657 	ufshcd_hold(hba);
7658 
7659 	if (!is_mcq_enabled(hba)) {
7660 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7661 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7662 			/* If command is already aborted/completed, return FAILED. */
7663 			dev_err(hba->dev,
7664 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7665 				__func__, tag, hba->outstanding_reqs, reg);
7666 			goto release;
7667 		}
7668 	}
7669 
7670 	/* Print Transfer Request of aborted task */
7671 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7672 
7673 	/*
7674 	 * Print detailed info about aborted request.
7675 	 * As more than one request might get aborted at the same time,
7676 	 * print full information only for the first aborted request in order
7677 	 * to reduce repeated printouts. For other aborted requests only print
7678 	 * basic details.
7679 	 */
7680 	scsi_print_command(cmd);
7681 	if (!hba->req_abort_count) {
7682 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7683 		ufshcd_print_evt_hist(hba);
7684 		ufshcd_print_host_state(hba);
7685 		ufshcd_print_pwr_info(hba);
7686 		ufshcd_print_tr(hba, tag, true);
7687 	} else {
7688 		ufshcd_print_tr(hba, tag, false);
7689 	}
7690 	hba->req_abort_count++;
7691 
7692 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7693 		/* only execute this code in single doorbell mode */
7694 		dev_err(hba->dev,
7695 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7696 		__func__, tag);
7697 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7698 		goto release;
7699 	}
7700 
7701 	/*
7702 	 * Task abort to the device W-LUN is illegal. When this command
7703 	 * will fail, due to spec violation, scsi err handling next step
7704 	 * will be to send LU reset which, again, is a spec violation.
7705 	 * To avoid these unnecessary/illegal steps, first we clean up
7706 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7707 	 * then queue the eh_work and bail.
7708 	 */
7709 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7710 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7711 
7712 		spin_lock_irqsave(host->host_lock, flags);
7713 		hba->force_reset = true;
7714 		ufshcd_schedule_eh_work(hba);
7715 		spin_unlock_irqrestore(host->host_lock, flags);
7716 		goto release;
7717 	}
7718 
7719 	if (is_mcq_enabled(hba)) {
7720 		/* MCQ mode. Branch off to handle abort for mcq mode */
7721 		err = ufshcd_mcq_abort(cmd);
7722 		goto release;
7723 	}
7724 
7725 	/* Skip task abort in case previous aborts failed and report failure */
7726 	if (lrbp->req_abort_skip) {
7727 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7728 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7729 		goto release;
7730 	}
7731 
7732 	err = ufshcd_try_to_abort_task(hba, tag);
7733 	if (err) {
7734 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7735 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7736 		err = FAILED;
7737 		goto release;
7738 	}
7739 
7740 	/*
7741 	 * Clear the corresponding bit from outstanding_reqs since the command
7742 	 * has been aborted successfully.
7743 	 */
7744 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7745 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7746 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7747 
7748 	if (outstanding)
7749 		ufshcd_release_scsi_cmd(hba, lrbp);
7750 
7751 	err = SUCCESS;
7752 
7753 release:
7754 	/* Matches the ufshcd_hold() call at the start of this function. */
7755 	ufshcd_release(hba);
7756 	return err;
7757 }
7758 
7759 /**
7760  * ufshcd_host_reset_and_restore - reset and restore host controller
7761  * @hba: per-adapter instance
7762  *
7763  * Note that host controller reset may issue DME_RESET to
7764  * local and remote (device) Uni-Pro stack and the attributes
7765  * are reset to default state.
7766  *
7767  * Return: zero on success, non-zero on failure.
7768  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7769 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7770 {
7771 	int err;
7772 
7773 	/*
7774 	 * Stop the host controller and complete the requests
7775 	 * cleared by h/w
7776 	 */
7777 	ufshcd_hba_stop(hba);
7778 	hba->silence_err_logs = true;
7779 	ufshcd_complete_requests(hba, true);
7780 	hba->silence_err_logs = false;
7781 
7782 	/* scale up clocks to max frequency before full reinitialization */
7783 	if (ufshcd_is_clkscaling_supported(hba))
7784 		ufshcd_scale_clks(hba, ULONG_MAX, true);
7785 
7786 	err = ufshcd_hba_enable(hba);
7787 
7788 	/* Establish the link again and restore the device */
7789 	if (!err)
7790 		err = ufshcd_probe_hba(hba, false);
7791 
7792 	if (err)
7793 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7794 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7795 	return err;
7796 }
7797 
7798 /**
7799  * ufshcd_reset_and_restore - reset and re-initialize host/device
7800  * @hba: per-adapter instance
7801  *
7802  * Reset and recover device, host and re-establish link. This
7803  * is helpful to recover the communication in fatal error conditions.
7804  *
7805  * Return: zero on success, non-zero on failure.
7806  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7807 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7808 {
7809 	u32 saved_err = 0;
7810 	u32 saved_uic_err = 0;
7811 	int err = 0;
7812 	unsigned long flags;
7813 	int retries = MAX_HOST_RESET_RETRIES;
7814 
7815 	spin_lock_irqsave(hba->host->host_lock, flags);
7816 	do {
7817 		/*
7818 		 * This is a fresh start, cache and clear saved error first,
7819 		 * in case new error generated during reset and restore.
7820 		 */
7821 		saved_err |= hba->saved_err;
7822 		saved_uic_err |= hba->saved_uic_err;
7823 		hba->saved_err = 0;
7824 		hba->saved_uic_err = 0;
7825 		hba->force_reset = false;
7826 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7827 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7828 
7829 		/* Reset the attached device */
7830 		ufshcd_device_reset(hba);
7831 
7832 		err = ufshcd_host_reset_and_restore(hba);
7833 
7834 		spin_lock_irqsave(hba->host->host_lock, flags);
7835 		if (err)
7836 			continue;
7837 		/* Do not exit unless operational or dead */
7838 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7839 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7840 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7841 			err = -EAGAIN;
7842 	} while (err && --retries);
7843 
7844 	/*
7845 	 * Inform scsi mid-layer that we did reset and allow to handle
7846 	 * Unit Attention properly.
7847 	 */
7848 	scsi_report_bus_reset(hba->host, 0);
7849 	if (err) {
7850 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7851 		hba->saved_err |= saved_err;
7852 		hba->saved_uic_err |= saved_uic_err;
7853 	}
7854 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7855 
7856 	return err;
7857 }
7858 
7859 /**
7860  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7861  * @cmd: SCSI command pointer
7862  *
7863  * Return: SUCCESS or FAILED.
7864  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7865 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7866 {
7867 	int err = SUCCESS;
7868 	unsigned long flags;
7869 	struct ufs_hba *hba;
7870 
7871 	hba = shost_priv(cmd->device->host);
7872 
7873 	spin_lock_irqsave(hba->host->host_lock, flags);
7874 	hba->force_reset = true;
7875 	ufshcd_schedule_eh_work(hba);
7876 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7877 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7878 
7879 	flush_work(&hba->eh_work);
7880 
7881 	spin_lock_irqsave(hba->host->host_lock, flags);
7882 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7883 		err = FAILED;
7884 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7885 
7886 	return err;
7887 }
7888 
7889 /**
7890  * ufshcd_get_max_icc_level - calculate the ICC level
7891  * @sup_curr_uA: max. current supported by the regulator
7892  * @start_scan: row at the desc table to start scan from
7893  * @buff: power descriptor buffer
7894  *
7895  * Return: calculated max ICC level for specific regulator.
7896  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7897 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7898 				    const char *buff)
7899 {
7900 	int i;
7901 	int curr_uA;
7902 	u16 data;
7903 	u16 unit;
7904 
7905 	for (i = start_scan; i >= 0; i--) {
7906 		data = get_unaligned_be16(&buff[2 * i]);
7907 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7908 						ATTR_ICC_LVL_UNIT_OFFSET;
7909 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7910 		switch (unit) {
7911 		case UFSHCD_NANO_AMP:
7912 			curr_uA = curr_uA / 1000;
7913 			break;
7914 		case UFSHCD_MILI_AMP:
7915 			curr_uA = curr_uA * 1000;
7916 			break;
7917 		case UFSHCD_AMP:
7918 			curr_uA = curr_uA * 1000 * 1000;
7919 			break;
7920 		case UFSHCD_MICRO_AMP:
7921 		default:
7922 			break;
7923 		}
7924 		if (sup_curr_uA >= curr_uA)
7925 			break;
7926 	}
7927 	if (i < 0) {
7928 		i = 0;
7929 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7930 	}
7931 
7932 	return (u32)i;
7933 }
7934 
7935 /**
7936  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7937  * In case regulators are not initialized we'll return 0
7938  * @hba: per-adapter instance
7939  * @desc_buf: power descriptor buffer to extract ICC levels from.
7940  *
7941  * Return: calculated ICC level.
7942  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7943 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7944 						const u8 *desc_buf)
7945 {
7946 	u32 icc_level = 0;
7947 
7948 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7949 						!hba->vreg_info.vccq2) {
7950 		/*
7951 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7952 		 * never-ending cycles of messages written back to storage by
7953 		 * user space causing runtime resume, causing more messages and
7954 		 * so on.
7955 		 */
7956 		dev_dbg(hba->dev,
7957 			"%s: Regulator capability was not set, actvIccLevel=%d",
7958 							__func__, icc_level);
7959 		goto out;
7960 	}
7961 
7962 	if (hba->vreg_info.vcc->max_uA)
7963 		icc_level = ufshcd_get_max_icc_level(
7964 				hba->vreg_info.vcc->max_uA,
7965 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7966 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7967 
7968 	if (hba->vreg_info.vccq->max_uA)
7969 		icc_level = ufshcd_get_max_icc_level(
7970 				hba->vreg_info.vccq->max_uA,
7971 				icc_level,
7972 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7973 
7974 	if (hba->vreg_info.vccq2->max_uA)
7975 		icc_level = ufshcd_get_max_icc_level(
7976 				hba->vreg_info.vccq2->max_uA,
7977 				icc_level,
7978 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7979 out:
7980 	return icc_level;
7981 }
7982 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7983 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7984 {
7985 	int ret;
7986 	u8 *desc_buf;
7987 	u32 icc_level;
7988 
7989 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7990 	if (!desc_buf)
7991 		return;
7992 
7993 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7994 				     desc_buf, QUERY_DESC_MAX_SIZE);
7995 	if (ret) {
7996 		dev_err(hba->dev,
7997 			"%s: Failed reading power descriptor ret = %d",
7998 			__func__, ret);
7999 		goto out;
8000 	}
8001 
8002 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
8003 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
8004 
8005 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8006 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
8007 
8008 	if (ret)
8009 		dev_err(hba->dev,
8010 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
8011 			__func__, icc_level, ret);
8012 
8013 out:
8014 	kfree(desc_buf);
8015 }
8016 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8017 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8018 {
8019 	scsi_autopm_get_device(sdev);
8020 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8021 	if (sdev->rpm_autosuspend)
8022 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8023 						 RPM_AUTOSUSPEND_DELAY_MS);
8024 	scsi_autopm_put_device(sdev);
8025 }
8026 
8027 /**
8028  * ufshcd_scsi_add_wlus - Adds required W-LUs
8029  * @hba: per-adapter instance
8030  *
8031  * UFS device specification requires the UFS devices to support 4 well known
8032  * logical units:
8033  *	"REPORT_LUNS" (address: 01h)
8034  *	"UFS Device" (address: 50h)
8035  *	"RPMB" (address: 44h)
8036  *	"BOOT" (address: 30h)
8037  * UFS device's power management needs to be controlled by "POWER CONDITION"
8038  * field of SSU (START STOP UNIT) command. But this "power condition" field
8039  * will take effect only when its sent to "UFS device" well known logical unit
8040  * hence we require the scsi_device instance to represent this logical unit in
8041  * order for the UFS host driver to send the SSU command for power management.
8042  *
8043  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8044  * Block) LU so user space process can control this LU. User space may also
8045  * want to have access to BOOT LU.
8046  *
8047  * This function adds scsi device instances for each of all well known LUs
8048  * (except "REPORT LUNS" LU).
8049  *
8050  * Return: zero on success (all required W-LUs are added successfully),
8051  * non-zero error value on failure (if failed to add any of the required W-LU).
8052  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8053 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8054 {
8055 	int ret = 0;
8056 	struct scsi_device *sdev_boot, *sdev_rpmb;
8057 
8058 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8059 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8060 	if (IS_ERR(hba->ufs_device_wlun)) {
8061 		ret = PTR_ERR(hba->ufs_device_wlun);
8062 		hba->ufs_device_wlun = NULL;
8063 		goto out;
8064 	}
8065 	scsi_device_put(hba->ufs_device_wlun);
8066 
8067 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8068 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8069 	if (IS_ERR(sdev_rpmb)) {
8070 		ret = PTR_ERR(sdev_rpmb);
8071 		goto remove_ufs_device_wlun;
8072 	}
8073 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8074 	scsi_device_put(sdev_rpmb);
8075 
8076 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8077 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8078 	if (IS_ERR(sdev_boot)) {
8079 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8080 	} else {
8081 		ufshcd_blk_pm_runtime_init(sdev_boot);
8082 		scsi_device_put(sdev_boot);
8083 	}
8084 	goto out;
8085 
8086 remove_ufs_device_wlun:
8087 	scsi_remove_device(hba->ufs_device_wlun);
8088 out:
8089 	return ret;
8090 }
8091 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8092 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8093 {
8094 	struct ufs_dev_info *dev_info = &hba->dev_info;
8095 	u8 lun;
8096 	u32 d_lu_wb_buf_alloc;
8097 	u32 ext_ufs_feature;
8098 
8099 	if (!ufshcd_is_wb_allowed(hba))
8100 		return;
8101 
8102 	/*
8103 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8104 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8105 	 * enabled
8106 	 */
8107 	if (!(dev_info->wspecversion >= 0x310 ||
8108 	      dev_info->wspecversion == 0x220 ||
8109 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8110 		goto wb_disabled;
8111 
8112 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8113 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8114 
8115 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8116 		goto wb_disabled;
8117 
8118 	/*
8119 	 * WB may be supported but not configured while provisioning. The spec
8120 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8121 	 * buffer configured.
8122 	 */
8123 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8124 
8125 	dev_info->b_presrv_uspc_en =
8126 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8127 
8128 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8129 		if (!get_unaligned_be32(desc_buf +
8130 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8131 			goto wb_disabled;
8132 	} else {
8133 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8134 			d_lu_wb_buf_alloc = 0;
8135 			ufshcd_read_unit_desc_param(hba,
8136 					lun,
8137 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8138 					(u8 *)&d_lu_wb_buf_alloc,
8139 					sizeof(d_lu_wb_buf_alloc));
8140 			if (d_lu_wb_buf_alloc) {
8141 				dev_info->wb_dedicated_lu = lun;
8142 				break;
8143 			}
8144 		}
8145 
8146 		if (!d_lu_wb_buf_alloc)
8147 			goto wb_disabled;
8148 	}
8149 
8150 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8151 		goto wb_disabled;
8152 
8153 	return;
8154 
8155 wb_disabled:
8156 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8157 }
8158 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8159 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8160 {
8161 	struct ufs_dev_info *dev_info = &hba->dev_info;
8162 	u32 ext_ufs_feature;
8163 	u8 mask = 0;
8164 
8165 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8166 		return;
8167 
8168 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8169 
8170 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8171 		mask |= MASK_EE_TOO_LOW_TEMP;
8172 
8173 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8174 		mask |= MASK_EE_TOO_HIGH_TEMP;
8175 
8176 	if (mask) {
8177 		ufshcd_enable_ee(hba, mask);
8178 		ufs_hwmon_probe(hba, mask);
8179 	}
8180 }
8181 
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8182 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8183 {
8184 	struct ufs_dev_info *dev_info = &hba->dev_info;
8185 	u32 ext_ufs_feature;
8186 	u32 ext_iid_en = 0;
8187 	int err;
8188 
8189 	/* Only UFS-4.0 and above may support EXT_IID */
8190 	if (dev_info->wspecversion < 0x400)
8191 		goto out;
8192 
8193 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8194 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8195 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8196 		goto out;
8197 
8198 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8199 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8200 	if (err)
8201 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8202 
8203 out:
8204 	dev_info->b_ext_iid_en = ext_iid_en;
8205 }
8206 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8207 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8208 			     const struct ufs_dev_quirk *fixups)
8209 {
8210 	const struct ufs_dev_quirk *f;
8211 	struct ufs_dev_info *dev_info = &hba->dev_info;
8212 
8213 	if (!fixups)
8214 		return;
8215 
8216 	for (f = fixups; f->quirk; f++) {
8217 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8218 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8219 		     ((dev_info->model &&
8220 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8221 		      !strcmp(f->model, UFS_ANY_MODEL)))
8222 			hba->dev_quirks |= f->quirk;
8223 	}
8224 }
8225 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8226 
ufs_fixup_device_setup(struct ufs_hba * hba)8227 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8228 {
8229 	/* fix by general quirk table */
8230 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8231 
8232 	/* allow vendors to fix quirks */
8233 	ufshcd_vops_fixup_dev_quirks(hba);
8234 }
8235 
ufshcd_update_rtc(struct ufs_hba * hba)8236 static void ufshcd_update_rtc(struct ufs_hba *hba)
8237 {
8238 	struct timespec64 ts64;
8239 	int err;
8240 	u32 val;
8241 
8242 	ktime_get_real_ts64(&ts64);
8243 
8244 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8245 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8246 		return;
8247 	}
8248 
8249 	/*
8250 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8251 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8252 	 */
8253 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8254 
8255 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8256 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8257 		return;
8258 
8259 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8260 				0, 0, &val);
8261 	ufshcd_rpm_put(hba);
8262 
8263 	if (err)
8264 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8265 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8266 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8267 }
8268 
ufshcd_rtc_work(struct work_struct * work)8269 static void ufshcd_rtc_work(struct work_struct *work)
8270 {
8271 	struct ufs_hba *hba;
8272 
8273 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8274 
8275 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8276 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8277 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8278 	    !hba->clk_gating.active_reqs)
8279 		ufshcd_update_rtc(hba);
8280 
8281 	if (ufshcd_is_ufs_dev_active(hba))
8282 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8283 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8284 }
8285 
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8286 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8287 {
8288 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8289 	struct ufs_dev_info *dev_info = &hba->dev_info;
8290 
8291 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8292 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8293 
8294 		/*
8295 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8296 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8297 		 * 2010 00:00, here we need to adjust ABS baseline.
8298 		 */
8299 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8300 							mktime64(1970, 1, 1, 0, 0, 0);
8301 	} else {
8302 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8303 		dev_info->rtc_time_baseline = 0;
8304 	}
8305 }
8306 
ufs_get_device_desc(struct ufs_hba * hba)8307 static int ufs_get_device_desc(struct ufs_hba *hba)
8308 {
8309 	int err;
8310 	u8 model_index;
8311 	u8 *desc_buf;
8312 	struct ufs_dev_info *dev_info = &hba->dev_info;
8313 
8314 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8315 	if (!desc_buf) {
8316 		err = -ENOMEM;
8317 		goto out;
8318 	}
8319 
8320 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8321 				     QUERY_DESC_MAX_SIZE);
8322 	if (err) {
8323 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8324 			__func__, err);
8325 		goto out;
8326 	}
8327 
8328 	/*
8329 	 * getting vendor (manufacturerID) and Bank Index in big endian
8330 	 * format
8331 	 */
8332 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8333 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8334 
8335 	/* getting Specification Version in big endian format */
8336 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8337 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8338 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8339 
8340 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8341 
8342 	err = ufshcd_read_string_desc(hba, model_index,
8343 				      &dev_info->model, SD_ASCII_STD);
8344 	if (err < 0) {
8345 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8346 			__func__, err);
8347 		goto out;
8348 	}
8349 
8350 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8351 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8352 
8353 	ufs_fixup_device_setup(hba);
8354 
8355 	ufshcd_wb_probe(hba, desc_buf);
8356 
8357 	ufshcd_temp_notif_probe(hba, desc_buf);
8358 
8359 	ufs_init_rtc(hba, desc_buf);
8360 
8361 	if (hba->ext_iid_sup)
8362 		ufshcd_ext_iid_probe(hba, desc_buf);
8363 
8364 	/*
8365 	 * ufshcd_read_string_desc returns size of the string
8366 	 * reset the error value
8367 	 */
8368 	err = 0;
8369 
8370 out:
8371 	kfree(desc_buf);
8372 	return err;
8373 }
8374 
ufs_put_device_desc(struct ufs_hba * hba)8375 static void ufs_put_device_desc(struct ufs_hba *hba)
8376 {
8377 	struct ufs_dev_info *dev_info = &hba->dev_info;
8378 
8379 	kfree(dev_info->model);
8380 	dev_info->model = NULL;
8381 }
8382 
8383 /**
8384  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8385  * @hba: per-adapter instance
8386  *
8387  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8388  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8389  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8390  * the hibern8 exit latency.
8391  *
8392  * Return: zero on success, non-zero error value on failure.
8393  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)8394 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8395 {
8396 	int ret = 0;
8397 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8398 
8399 	ret = ufshcd_dme_peer_get(hba,
8400 				  UIC_ARG_MIB_SEL(
8401 					RX_MIN_ACTIVATETIME_CAPABILITY,
8402 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8403 				  &peer_rx_min_activatetime);
8404 	if (ret)
8405 		goto out;
8406 
8407 	/* make sure proper unit conversion is applied */
8408 	tuned_pa_tactivate =
8409 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8410 		 / PA_TACTIVATE_TIME_UNIT_US);
8411 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8412 			     tuned_pa_tactivate);
8413 
8414 out:
8415 	return ret;
8416 }
8417 
8418 /**
8419  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8420  * @hba: per-adapter instance
8421  *
8422  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8423  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8424  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8425  * This optimal value can help reduce the hibern8 exit latency.
8426  *
8427  * Return: zero on success, non-zero error value on failure.
8428  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)8429 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8430 {
8431 	int ret = 0;
8432 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8433 	u32 max_hibern8_time, tuned_pa_hibern8time;
8434 
8435 	ret = ufshcd_dme_get(hba,
8436 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8437 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8438 				  &local_tx_hibern8_time_cap);
8439 	if (ret)
8440 		goto out;
8441 
8442 	ret = ufshcd_dme_peer_get(hba,
8443 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8444 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8445 				  &peer_rx_hibern8_time_cap);
8446 	if (ret)
8447 		goto out;
8448 
8449 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8450 			       peer_rx_hibern8_time_cap);
8451 	/* make sure proper unit conversion is applied */
8452 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8453 				/ PA_HIBERN8_TIME_UNIT_US);
8454 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8455 			     tuned_pa_hibern8time);
8456 out:
8457 	return ret;
8458 }
8459 
8460 /**
8461  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8462  * less than device PA_TACTIVATE time.
8463  * @hba: per-adapter instance
8464  *
8465  * Some UFS devices require host PA_TACTIVATE to be lower than device
8466  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8467  * for such devices.
8468  *
8469  * Return: zero on success, non-zero error value on failure.
8470  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8471 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8472 {
8473 	int ret = 0;
8474 	u32 granularity, peer_granularity;
8475 	u32 pa_tactivate, peer_pa_tactivate;
8476 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8477 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8478 
8479 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8480 				  &granularity);
8481 	if (ret)
8482 		goto out;
8483 
8484 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8485 				  &peer_granularity);
8486 	if (ret)
8487 		goto out;
8488 
8489 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8490 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8491 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8492 			__func__, granularity);
8493 		return -EINVAL;
8494 	}
8495 
8496 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8497 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8498 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8499 			__func__, peer_granularity);
8500 		return -EINVAL;
8501 	}
8502 
8503 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8504 	if (ret)
8505 		goto out;
8506 
8507 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8508 				  &peer_pa_tactivate);
8509 	if (ret)
8510 		goto out;
8511 
8512 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8513 	peer_pa_tactivate_us = peer_pa_tactivate *
8514 			     gran_to_us_table[peer_granularity - 1];
8515 
8516 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8517 		u32 new_peer_pa_tactivate;
8518 
8519 		new_peer_pa_tactivate = pa_tactivate_us /
8520 				      gran_to_us_table[peer_granularity - 1];
8521 		new_peer_pa_tactivate++;
8522 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8523 					  new_peer_pa_tactivate);
8524 	}
8525 
8526 out:
8527 	return ret;
8528 }
8529 
8530 /**
8531  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8532  * @hba: per-adapter instance
8533  *
8534  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8535  * to ensure proper hibernation timing. This function retrieves the current
8536  * PA_HIBERN8TIME value and increments it by 100us.
8537  */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8538 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8539 {
8540 	u32 pa_h8time;
8541 	int ret;
8542 
8543 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8544 	if (ret) {
8545 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8546 		return;
8547 	}
8548 
8549 	/* Increment by 1 to increase hibernation time by 100 µs */
8550 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8551 	if (ret)
8552 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8553 }
8554 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8555 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8556 {
8557 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8558 		ufshcd_tune_pa_tactivate(hba);
8559 		ufshcd_tune_pa_hibern8time(hba);
8560 	}
8561 
8562 	ufshcd_vops_apply_dev_quirks(hba);
8563 
8564 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8565 		/* set 1ms timeout for PA_TACTIVATE */
8566 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8567 
8568 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8569 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8570 
8571 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8572 		ufshcd_quirk_override_pa_h8time(hba);
8573 }
8574 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8575 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8576 {
8577 	hba->ufs_stats.hibern8_exit_cnt = 0;
8578 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8579 	hba->req_abort_count = 0;
8580 }
8581 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8582 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8583 {
8584 	int err;
8585 	u8 *desc_buf;
8586 
8587 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8588 	if (!desc_buf) {
8589 		err = -ENOMEM;
8590 		goto out;
8591 	}
8592 
8593 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8594 				     desc_buf, QUERY_DESC_MAX_SIZE);
8595 	if (err) {
8596 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8597 				__func__, err);
8598 		goto out;
8599 	}
8600 
8601 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8602 		hba->dev_info.max_lu_supported = 32;
8603 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8604 		hba->dev_info.max_lu_supported = 8;
8605 
8606 out:
8607 	kfree(desc_buf);
8608 	return err;
8609 }
8610 
8611 struct ufs_ref_clk {
8612 	unsigned long freq_hz;
8613 	enum ufs_ref_clk_freq val;
8614 };
8615 
8616 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8617 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8618 	{26000000, REF_CLK_FREQ_26_MHZ},
8619 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8620 	{52000000, REF_CLK_FREQ_52_MHZ},
8621 	{0, REF_CLK_FREQ_INVAL},
8622 };
8623 
8624 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8625 ufs_get_bref_clk_from_hz(unsigned long freq)
8626 {
8627 	int i;
8628 
8629 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8630 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8631 			return ufs_ref_clk_freqs[i].val;
8632 
8633 	return REF_CLK_FREQ_INVAL;
8634 }
8635 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8636 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8637 {
8638 	unsigned long freq;
8639 
8640 	freq = clk_get_rate(refclk);
8641 
8642 	hba->dev_ref_clk_freq =
8643 		ufs_get_bref_clk_from_hz(freq);
8644 
8645 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8646 		dev_err(hba->dev,
8647 		"invalid ref_clk setting = %ld\n", freq);
8648 }
8649 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8650 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8651 {
8652 	int err;
8653 	u32 ref_clk;
8654 	u32 freq = hba->dev_ref_clk_freq;
8655 
8656 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8657 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8658 
8659 	if (err) {
8660 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8661 			err);
8662 		goto out;
8663 	}
8664 
8665 	if (ref_clk == freq)
8666 		goto out; /* nothing to update */
8667 
8668 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8669 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8670 
8671 	if (err) {
8672 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8673 			ufs_ref_clk_freqs[freq].freq_hz);
8674 		goto out;
8675 	}
8676 
8677 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8678 			ufs_ref_clk_freqs[freq].freq_hz);
8679 
8680 out:
8681 	return err;
8682 }
8683 
ufshcd_device_params_init(struct ufs_hba * hba)8684 static int ufshcd_device_params_init(struct ufs_hba *hba)
8685 {
8686 	bool flag;
8687 	int ret;
8688 
8689 	/* Init UFS geometry descriptor related parameters */
8690 	ret = ufshcd_device_geo_params_init(hba);
8691 	if (ret)
8692 		goto out;
8693 
8694 	/* Check and apply UFS device quirks */
8695 	ret = ufs_get_device_desc(hba);
8696 	if (ret) {
8697 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8698 			__func__, ret);
8699 		goto out;
8700 	}
8701 
8702 	ufshcd_get_ref_clk_gating_wait(hba);
8703 
8704 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8705 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8706 		hba->dev_info.f_power_on_wp_en = flag;
8707 
8708 	/* Probe maximum power mode co-supported by both UFS host and device */
8709 	if (ufshcd_get_max_pwr_mode(hba))
8710 		dev_err(hba->dev,
8711 			"%s: Failed getting max supported power mode\n",
8712 			__func__);
8713 out:
8714 	return ret;
8715 }
8716 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8717 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8718 {
8719 	int err;
8720 	struct ufs_query_req *request = NULL;
8721 	struct ufs_query_res *response = NULL;
8722 	struct ufs_dev_info *dev_info = &hba->dev_info;
8723 	struct utp_upiu_query_v4_0 *upiu_data;
8724 
8725 	if (dev_info->wspecversion < 0x400)
8726 		return;
8727 
8728 	ufshcd_hold(hba);
8729 
8730 	mutex_lock(&hba->dev_cmd.lock);
8731 
8732 	ufshcd_init_query(hba, &request, &response,
8733 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8734 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8735 
8736 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8737 
8738 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8739 
8740 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8741 
8742 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8743 
8744 	if (err)
8745 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8746 			__func__, err);
8747 
8748 	mutex_unlock(&hba->dev_cmd.lock);
8749 	ufshcd_release(hba);
8750 }
8751 
8752 /**
8753  * ufshcd_add_lus - probe and add UFS logical units
8754  * @hba: per-adapter instance
8755  *
8756  * Return: 0 upon success; < 0 upon failure.
8757  */
ufshcd_add_lus(struct ufs_hba * hba)8758 static int ufshcd_add_lus(struct ufs_hba *hba)
8759 {
8760 	int ret;
8761 
8762 	/* Add required well known logical units to scsi mid layer */
8763 	ret = ufshcd_scsi_add_wlus(hba);
8764 	if (ret)
8765 		goto out;
8766 
8767 	/* Initialize devfreq after UFS device is detected */
8768 	if (ufshcd_is_clkscaling_supported(hba)) {
8769 		memcpy(&hba->clk_scaling.saved_pwr_info,
8770 			&hba->pwr_info,
8771 			sizeof(struct ufs_pa_layer_attr));
8772 		hba->clk_scaling.is_allowed = true;
8773 
8774 		ret = ufshcd_devfreq_init(hba);
8775 		if (ret)
8776 			goto out;
8777 
8778 		hba->clk_scaling.is_enabled = true;
8779 		ufshcd_init_clk_scaling_sysfs(hba);
8780 	}
8781 
8782 	/*
8783 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8784 	 * pointer and hence must only be started after the WLUN pointer has
8785 	 * been initialized by ufshcd_scsi_add_wlus().
8786 	 */
8787 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8788 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8789 
8790 	ufs_bsg_probe(hba);
8791 	scsi_scan_host(hba->host);
8792 
8793 out:
8794 	return ret;
8795 }
8796 
8797 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8798 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8799 {
8800 	size_t ucdl_size, utrdl_size;
8801 
8802 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8803 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8804 			   hba->ucdl_dma_addr);
8805 
8806 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8807 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8808 			   hba->utrdl_dma_addr);
8809 
8810 	devm_kfree(hba->dev, hba->lrb);
8811 }
8812 
ufshcd_alloc_mcq(struct ufs_hba * hba)8813 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8814 {
8815 	int ret;
8816 	int old_nutrs = hba->nutrs;
8817 
8818 	ret = ufshcd_mcq_decide_queue_depth(hba);
8819 	if (ret < 0)
8820 		return ret;
8821 
8822 	hba->nutrs = ret;
8823 	ret = ufshcd_mcq_init(hba);
8824 	if (ret)
8825 		goto err;
8826 
8827 	/*
8828 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8829 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8830 	 */
8831 	if (hba->nutrs != old_nutrs) {
8832 		ufshcd_release_sdb_queue(hba, old_nutrs);
8833 		ret = ufshcd_memory_alloc(hba);
8834 		if (ret)
8835 			goto err;
8836 		ufshcd_host_memory_configure(hba);
8837 	}
8838 
8839 	ret = ufshcd_mcq_memory_alloc(hba);
8840 	if (ret)
8841 		goto err;
8842 
8843 	return 0;
8844 err:
8845 	hba->nutrs = old_nutrs;
8846 	return ret;
8847 }
8848 
ufshcd_config_mcq(struct ufs_hba * hba)8849 static void ufshcd_config_mcq(struct ufs_hba *hba)
8850 {
8851 	int ret;
8852 	u32 intrs;
8853 
8854 	ret = ufshcd_mcq_vops_config_esi(hba);
8855 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8856 
8857 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8858 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8859 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8860 	ufshcd_enable_intr(hba, intrs);
8861 	ufshcd_mcq_make_queues_operational(hba);
8862 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8863 
8864 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8865 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8866 
8867 	/* Select MCQ mode */
8868 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8869 		      REG_UFS_MEM_CFG);
8870 	hba->mcq_enabled = true;
8871 
8872 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8873 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8874 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8875 		 hba->nutrs);
8876 }
8877 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8878 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8879 {
8880 	int ret;
8881 	struct Scsi_Host *host = hba->host;
8882 
8883 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8884 
8885 	ret = ufshcd_link_startup(hba);
8886 	if (ret)
8887 		return ret;
8888 
8889 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8890 		return ret;
8891 
8892 	/* Debug counters initialization */
8893 	ufshcd_clear_dbg_ufs_stats(hba);
8894 
8895 	/* UniPro link is active now */
8896 	ufshcd_set_link_active(hba);
8897 
8898 	/* Reconfigure MCQ upon reset */
8899 	if (is_mcq_enabled(hba) && !init_dev_params)
8900 		ufshcd_config_mcq(hba);
8901 
8902 	/* Verify device initialization by sending NOP OUT UPIU */
8903 	ret = ufshcd_verify_dev_init(hba);
8904 	if (ret)
8905 		return ret;
8906 
8907 	/* Initiate UFS initialization, and waiting until completion */
8908 	ret = ufshcd_complete_dev_init(hba);
8909 	if (ret)
8910 		return ret;
8911 
8912 	/*
8913 	 * Initialize UFS device parameters used by driver, these
8914 	 * parameters are associated with UFS descriptors.
8915 	 */
8916 	if (init_dev_params) {
8917 		ret = ufshcd_device_params_init(hba);
8918 		if (ret)
8919 			return ret;
8920 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8921 			ret = ufshcd_alloc_mcq(hba);
8922 			if (!ret) {
8923 				ufshcd_config_mcq(hba);
8924 			} else {
8925 				/* Continue with SDB mode */
8926 				use_mcq_mode = false;
8927 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8928 					 ret);
8929 			}
8930 			ret = scsi_add_host(host, hba->dev);
8931 			if (ret) {
8932 				dev_err(hba->dev, "scsi_add_host failed\n");
8933 				return ret;
8934 			}
8935 			hba->scsi_host_added = true;
8936 		} else if (is_mcq_supported(hba)) {
8937 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8938 			ufshcd_config_mcq(hba);
8939 		}
8940 	}
8941 
8942 	ufshcd_tune_unipro_params(hba);
8943 
8944 	/* UFS device is also active now */
8945 	ufshcd_set_ufs_dev_active(hba);
8946 	ufshcd_force_reset_auto_bkops(hba);
8947 
8948 	ufshcd_set_timestamp_attr(hba);
8949 
8950 	/* Gear up to HS gear if supported */
8951 	if (hba->max_pwr_info.is_valid) {
8952 		/*
8953 		 * Set the right value to bRefClkFreq before attempting to
8954 		 * switch to HS gears.
8955 		 */
8956 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8957 			ufshcd_set_dev_ref_clk(hba);
8958 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8959 		if (ret) {
8960 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8961 					__func__, ret);
8962 			return ret;
8963 		}
8964 	}
8965 
8966 	return 0;
8967 }
8968 
8969 /**
8970  * ufshcd_probe_hba - probe hba to detect device and initialize it
8971  * @hba: per-adapter instance
8972  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8973  *
8974  * Execute link-startup and verify device initialization
8975  *
8976  * Return: 0 upon success; < 0 upon failure.
8977  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8978 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8979 {
8980 	ktime_t start = ktime_get();
8981 	unsigned long flags;
8982 	int ret;
8983 
8984 	ret = ufshcd_device_init(hba, init_dev_params);
8985 	if (ret)
8986 		goto out;
8987 
8988 	if (!hba->pm_op_in_progress &&
8989 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8990 		/* Reset the device and controller before doing reinit */
8991 		ufshcd_device_reset(hba);
8992 		ufs_put_device_desc(hba);
8993 		ufshcd_hba_stop(hba);
8994 		ret = ufshcd_hba_enable(hba);
8995 		if (ret) {
8996 			dev_err(hba->dev, "Host controller enable failed\n");
8997 			ufshcd_print_evt_hist(hba);
8998 			ufshcd_print_host_state(hba);
8999 			goto out;
9000 		}
9001 
9002 		/* Reinit the device */
9003 		ret = ufshcd_device_init(hba, init_dev_params);
9004 		if (ret)
9005 			goto out;
9006 	}
9007 
9008 	ufshcd_print_pwr_info(hba);
9009 
9010 	/*
9011 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
9012 	 * and for removable UFS card as well, hence always set the parameter.
9013 	 * Note: Error handler may issue the device reset hence resetting
9014 	 * bActiveICCLevel as well so it is always safe to set this here.
9015 	 */
9016 	ufshcd_set_active_icc_lvl(hba);
9017 
9018 	/* Enable UFS Write Booster if supported */
9019 	ufshcd_configure_wb(hba);
9020 
9021 	if (hba->ee_usr_mask)
9022 		ufshcd_write_ee_control(hba);
9023 	/* Enable Auto-Hibernate if configured */
9024 	ufshcd_auto_hibern8_enable(hba);
9025 
9026 out:
9027 	spin_lock_irqsave(hba->host->host_lock, flags);
9028 	if (ret)
9029 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
9030 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
9031 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
9032 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9033 
9034 	trace_ufshcd_init(dev_name(hba->dev), ret,
9035 		ktime_to_us(ktime_sub(ktime_get(), start)),
9036 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9037 	return ret;
9038 }
9039 
9040 /**
9041  * ufshcd_async_scan - asynchronous execution for probing hba
9042  * @data: data pointer to pass to this function
9043  * @cookie: cookie data
9044  */
ufshcd_async_scan(void * data,async_cookie_t cookie)9045 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
9046 {
9047 	struct ufs_hba *hba = (struct ufs_hba *)data;
9048 	int ret;
9049 
9050 	down(&hba->host_sem);
9051 	/* Initialize hba, detect and initialize UFS device */
9052 	ret = ufshcd_probe_hba(hba, true);
9053 	up(&hba->host_sem);
9054 	if (ret)
9055 		goto out;
9056 
9057 	/* Probe and add UFS logical units  */
9058 	ret = ufshcd_add_lus(hba);
9059 
9060 out:
9061 	pm_runtime_put_sync(hba->dev);
9062 
9063 	if (ret)
9064 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9065 }
9066 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)9067 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9068 {
9069 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9070 
9071 	if (!hba->system_suspending) {
9072 		/* Activate the error handler in the SCSI core. */
9073 		return SCSI_EH_NOT_HANDLED;
9074 	}
9075 
9076 	/*
9077 	 * If we get here we know that no TMFs are outstanding and also that
9078 	 * the only pending command is a START STOP UNIT command. Handle the
9079 	 * timeout of that command directly to prevent a deadlock between
9080 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9081 	 */
9082 	ufshcd_link_recovery(hba);
9083 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9084 		 __func__, hba->outstanding_tasks);
9085 
9086 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9087 }
9088 
9089 static const struct attribute_group *ufshcd_driver_groups[] = {
9090 	&ufs_sysfs_unit_descriptor_group,
9091 	&ufs_sysfs_lun_attributes_group,
9092 	NULL,
9093 };
9094 
9095 static struct ufs_hba_variant_params ufs_hba_vps = {
9096 	.hba_enable_delay_us		= 1000,
9097 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9098 	.devfreq_profile.polling_ms	= 100,
9099 	.devfreq_profile.target		= ufshcd_devfreq_target,
9100 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9101 	.ondemand_data.upthreshold	= 70,
9102 	.ondemand_data.downdifferential	= 5,
9103 };
9104 
9105 static const struct scsi_host_template ufshcd_driver_template = {
9106 	.module			= THIS_MODULE,
9107 	.name			= UFSHCD,
9108 	.proc_name		= UFSHCD,
9109 	.map_queues		= ufshcd_map_queues,
9110 	.queuecommand		= ufshcd_queuecommand,
9111 	.mq_poll		= ufshcd_poll,
9112 	.slave_alloc		= ufshcd_slave_alloc,
9113 	.slave_configure	= ufshcd_slave_configure,
9114 	.slave_destroy		= ufshcd_slave_destroy,
9115 	.change_queue_depth	= ufshcd_change_queue_depth,
9116 	.eh_abort_handler	= ufshcd_abort,
9117 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9118 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9119 	.eh_timed_out		= ufshcd_eh_timed_out,
9120 	.this_id		= -1,
9121 	.sg_tablesize		= SG_ALL,
9122 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
9123 	.can_queue		= UFSHCD_CAN_QUEUE,
9124 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9125 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9126 	.max_host_blocked	= 1,
9127 	.track_queue_depth	= 1,
9128 	.skip_settle_delay	= 1,
9129 	.sdev_groups		= ufshcd_driver_groups,
9130 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
9131 };
9132 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9133 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9134 				   int ua)
9135 {
9136 	int ret;
9137 
9138 	if (!vreg)
9139 		return 0;
9140 
9141 	/*
9142 	 * "set_load" operation shall be required on those regulators
9143 	 * which specifically configured current limitation. Otherwise
9144 	 * zero max_uA may cause unexpected behavior when regulator is
9145 	 * enabled or set as high power mode.
9146 	 */
9147 	if (!vreg->max_uA)
9148 		return 0;
9149 
9150 	ret = regulator_set_load(vreg->reg, ua);
9151 	if (ret < 0) {
9152 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9153 				__func__, vreg->name, ua, ret);
9154 	}
9155 
9156 	return ret;
9157 }
9158 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9159 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9160 					 struct ufs_vreg *vreg)
9161 {
9162 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9163 }
9164 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9165 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9166 					 struct ufs_vreg *vreg)
9167 {
9168 	if (!vreg)
9169 		return 0;
9170 
9171 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9172 }
9173 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9174 static int ufshcd_config_vreg(struct device *dev,
9175 		struct ufs_vreg *vreg, bool on)
9176 {
9177 	if (regulator_count_voltages(vreg->reg) <= 0)
9178 		return 0;
9179 
9180 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9181 }
9182 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9183 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9184 {
9185 	int ret = 0;
9186 
9187 	if (!vreg || vreg->enabled)
9188 		goto out;
9189 
9190 	ret = ufshcd_config_vreg(dev, vreg, true);
9191 	if (!ret)
9192 		ret = regulator_enable(vreg->reg);
9193 
9194 	if (!ret)
9195 		vreg->enabled = true;
9196 	else
9197 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9198 				__func__, vreg->name, ret);
9199 out:
9200 	return ret;
9201 }
9202 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9203 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9204 {
9205 	int ret = 0;
9206 
9207 	if (!vreg || !vreg->enabled || vreg->always_on)
9208 		goto out;
9209 
9210 	ret = regulator_disable(vreg->reg);
9211 
9212 	if (!ret) {
9213 		/* ignore errors on applying disable config */
9214 		ufshcd_config_vreg(dev, vreg, false);
9215 		vreg->enabled = false;
9216 	} else {
9217 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9218 				__func__, vreg->name, ret);
9219 	}
9220 out:
9221 	return ret;
9222 }
9223 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9224 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9225 {
9226 	int ret = 0;
9227 	struct device *dev = hba->dev;
9228 	struct ufs_vreg_info *info = &hba->vreg_info;
9229 
9230 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9231 	if (ret)
9232 		goto out;
9233 
9234 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9235 	if (ret)
9236 		goto out;
9237 
9238 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9239 
9240 out:
9241 	if (ret) {
9242 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9243 		ufshcd_toggle_vreg(dev, info->vccq, false);
9244 		ufshcd_toggle_vreg(dev, info->vcc, false);
9245 	}
9246 	return ret;
9247 }
9248 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9249 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9250 {
9251 	struct ufs_vreg_info *info = &hba->vreg_info;
9252 
9253 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9254 }
9255 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9256 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9257 {
9258 	int ret = 0;
9259 
9260 	if (!vreg)
9261 		goto out;
9262 
9263 	vreg->reg = devm_regulator_get(dev, vreg->name);
9264 	if (IS_ERR(vreg->reg)) {
9265 		ret = PTR_ERR(vreg->reg);
9266 		dev_err(dev, "%s: %s get failed, err=%d\n",
9267 				__func__, vreg->name, ret);
9268 	}
9269 out:
9270 	return ret;
9271 }
9272 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9273 
ufshcd_init_vreg(struct ufs_hba * hba)9274 static int ufshcd_init_vreg(struct ufs_hba *hba)
9275 {
9276 	int ret = 0;
9277 	struct device *dev = hba->dev;
9278 	struct ufs_vreg_info *info = &hba->vreg_info;
9279 
9280 	ret = ufshcd_get_vreg(dev, info->vcc);
9281 	if (ret)
9282 		goto out;
9283 
9284 	ret = ufshcd_get_vreg(dev, info->vccq);
9285 	if (!ret)
9286 		ret = ufshcd_get_vreg(dev, info->vccq2);
9287 out:
9288 	return ret;
9289 }
9290 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9291 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9292 {
9293 	struct ufs_vreg_info *info = &hba->vreg_info;
9294 
9295 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9296 }
9297 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9298 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9299 {
9300 	int ret = 0;
9301 	struct ufs_clk_info *clki;
9302 	struct list_head *head = &hba->clk_list_head;
9303 	unsigned long flags;
9304 	ktime_t start = ktime_get();
9305 	bool clk_state_changed = false;
9306 
9307 	if (list_empty(head))
9308 		goto out;
9309 
9310 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9311 	if (ret)
9312 		return ret;
9313 
9314 	list_for_each_entry(clki, head, list) {
9315 		if (!IS_ERR_OR_NULL(clki->clk)) {
9316 			/*
9317 			 * Don't disable clocks which are needed
9318 			 * to keep the link active.
9319 			 */
9320 			if (ufshcd_is_link_active(hba) &&
9321 			    clki->keep_link_active)
9322 				continue;
9323 
9324 			clk_state_changed = on ^ clki->enabled;
9325 			if (on && !clki->enabled) {
9326 				ret = clk_prepare_enable(clki->clk);
9327 				if (ret) {
9328 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9329 						__func__, clki->name, ret);
9330 					goto out;
9331 				}
9332 			} else if (!on && clki->enabled) {
9333 				clk_disable_unprepare(clki->clk);
9334 			}
9335 			clki->enabled = on;
9336 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9337 					clki->name, on ? "en" : "dis");
9338 		}
9339 	}
9340 
9341 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9342 	if (ret)
9343 		return ret;
9344 
9345 out:
9346 	if (ret) {
9347 		list_for_each_entry(clki, head, list) {
9348 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9349 				clk_disable_unprepare(clki->clk);
9350 		}
9351 	} else if (!ret && on) {
9352 		spin_lock_irqsave(hba->host->host_lock, flags);
9353 		hba->clk_gating.state = CLKS_ON;
9354 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9355 					hba->clk_gating.state);
9356 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9357 	}
9358 
9359 	if (clk_state_changed)
9360 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9361 			(on ? "on" : "off"),
9362 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9363 	return ret;
9364 }
9365 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9366 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9367 {
9368 	u32 freq;
9369 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9370 
9371 	if (ret) {
9372 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9373 		return REF_CLK_FREQ_INVAL;
9374 	}
9375 
9376 	return ufs_get_bref_clk_from_hz(freq);
9377 }
9378 
ufshcd_init_clocks(struct ufs_hba * hba)9379 static int ufshcd_init_clocks(struct ufs_hba *hba)
9380 {
9381 	int ret = 0;
9382 	struct ufs_clk_info *clki;
9383 	struct device *dev = hba->dev;
9384 	struct list_head *head = &hba->clk_list_head;
9385 
9386 	if (list_empty(head))
9387 		goto out;
9388 
9389 	list_for_each_entry(clki, head, list) {
9390 		if (!clki->name)
9391 			continue;
9392 
9393 		clki->clk = devm_clk_get(dev, clki->name);
9394 		if (IS_ERR(clki->clk)) {
9395 			ret = PTR_ERR(clki->clk);
9396 			dev_err(dev, "%s: %s clk get failed, %d\n",
9397 					__func__, clki->name, ret);
9398 			goto out;
9399 		}
9400 
9401 		/*
9402 		 * Parse device ref clk freq as per device tree "ref_clk".
9403 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9404 		 * in ufshcd_alloc_host().
9405 		 */
9406 		if (!strcmp(clki->name, "ref_clk"))
9407 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9408 
9409 		if (clki->max_freq) {
9410 			ret = clk_set_rate(clki->clk, clki->max_freq);
9411 			if (ret) {
9412 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9413 					__func__, clki->name,
9414 					clki->max_freq, ret);
9415 				goto out;
9416 			}
9417 			clki->curr_freq = clki->max_freq;
9418 		}
9419 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9420 				clki->name, clk_get_rate(clki->clk));
9421 	}
9422 
9423 	/* Set Max. frequency for all clocks */
9424 	if (hba->use_pm_opp) {
9425 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9426 		if (ret) {
9427 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9428 				ret);
9429 			goto out;
9430 		}
9431 	}
9432 
9433 out:
9434 	return ret;
9435 }
9436 
ufshcd_variant_hba_init(struct ufs_hba * hba)9437 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9438 {
9439 	int err = 0;
9440 
9441 	if (!hba->vops)
9442 		goto out;
9443 
9444 	err = ufshcd_vops_init(hba);
9445 	if (err)
9446 		dev_err_probe(hba->dev, err,
9447 			      "%s: variant %s init failed with err %d\n",
9448 			      __func__, ufshcd_get_var_name(hba), err);
9449 out:
9450 	return err;
9451 }
9452 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9453 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9454 {
9455 	if (!hba->vops)
9456 		return;
9457 
9458 	ufshcd_vops_exit(hba);
9459 }
9460 
ufshcd_hba_init(struct ufs_hba * hba)9461 static int ufshcd_hba_init(struct ufs_hba *hba)
9462 {
9463 	int err;
9464 
9465 	/*
9466 	 * Handle host controller power separately from the UFS device power
9467 	 * rails as it will help controlling the UFS host controller power
9468 	 * collapse easily which is different than UFS device power collapse.
9469 	 * Also, enable the host controller power before we go ahead with rest
9470 	 * of the initialization here.
9471 	 */
9472 	err = ufshcd_init_hba_vreg(hba);
9473 	if (err)
9474 		goto out;
9475 
9476 	err = ufshcd_setup_hba_vreg(hba, true);
9477 	if (err)
9478 		goto out;
9479 
9480 	err = ufshcd_init_clocks(hba);
9481 	if (err)
9482 		goto out_disable_hba_vreg;
9483 
9484 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9485 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9486 
9487 	err = ufshcd_setup_clocks(hba, true);
9488 	if (err)
9489 		goto out_disable_hba_vreg;
9490 
9491 	err = ufshcd_init_vreg(hba);
9492 	if (err)
9493 		goto out_disable_clks;
9494 
9495 	err = ufshcd_setup_vreg(hba, true);
9496 	if (err)
9497 		goto out_disable_clks;
9498 
9499 	err = ufshcd_variant_hba_init(hba);
9500 	if (err)
9501 		goto out_disable_vreg;
9502 
9503 	ufs_debugfs_hba_init(hba);
9504 
9505 	hba->is_powered = true;
9506 	goto out;
9507 
9508 out_disable_vreg:
9509 	ufshcd_setup_vreg(hba, false);
9510 out_disable_clks:
9511 	ufshcd_setup_clocks(hba, false);
9512 out_disable_hba_vreg:
9513 	ufshcd_setup_hba_vreg(hba, false);
9514 out:
9515 	return err;
9516 }
9517 
ufshcd_hba_exit(struct ufs_hba * hba)9518 static void ufshcd_hba_exit(struct ufs_hba *hba)
9519 {
9520 	if (hba->is_powered) {
9521 		ufshcd_exit_clk_scaling(hba);
9522 		ufshcd_exit_clk_gating(hba);
9523 		if (hba->eh_wq)
9524 			destroy_workqueue(hba->eh_wq);
9525 		ufs_debugfs_hba_exit(hba);
9526 		ufshcd_variant_hba_exit(hba);
9527 		ufshcd_setup_vreg(hba, false);
9528 		ufshcd_setup_clocks(hba, false);
9529 		ufshcd_setup_hba_vreg(hba, false);
9530 		hba->is_powered = false;
9531 		ufs_put_device_desc(hba);
9532 	}
9533 }
9534 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9535 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9536 				     enum ufs_dev_pwr_mode pwr_mode,
9537 				     struct scsi_sense_hdr *sshdr)
9538 {
9539 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9540 	const struct scsi_exec_args args = {
9541 		.sshdr = sshdr,
9542 		.req_flags = BLK_MQ_REQ_PM,
9543 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9544 	};
9545 
9546 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9547 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9548 			&args);
9549 }
9550 
9551 /**
9552  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9553  *			     power mode
9554  * @hba: per adapter instance
9555  * @pwr_mode: device power mode to set
9556  *
9557  * Return: 0 if requested power mode is set successfully;
9558  *         < 0 if failed to set the requested power mode.
9559  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9560 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9561 				     enum ufs_dev_pwr_mode pwr_mode)
9562 {
9563 	struct scsi_sense_hdr sshdr;
9564 	struct scsi_device *sdp;
9565 	unsigned long flags;
9566 	int ret, retries;
9567 
9568 	spin_lock_irqsave(hba->host->host_lock, flags);
9569 	sdp = hba->ufs_device_wlun;
9570 	if (sdp && scsi_device_online(sdp))
9571 		ret = scsi_device_get(sdp);
9572 	else
9573 		ret = -ENODEV;
9574 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9575 
9576 	if (ret)
9577 		return ret;
9578 
9579 	/*
9580 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9581 	 * handling, which would wait for host to be resumed. Since we know
9582 	 * we are functional while we are here, skip host resume in error
9583 	 * handling context.
9584 	 */
9585 	hba->host->eh_noresume = 1;
9586 
9587 	/*
9588 	 * Current function would be generally called from the power management
9589 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9590 	 * already suspended childs.
9591 	 */
9592 	for (retries = 3; retries > 0; --retries) {
9593 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9594 		/*
9595 		 * scsi_execute() only returns a negative value if the request
9596 		 * queue is dying.
9597 		 */
9598 		if (ret <= 0)
9599 			break;
9600 	}
9601 	if (ret) {
9602 		sdev_printk(KERN_WARNING, sdp,
9603 			    "START_STOP failed for power mode: %d, result %x\n",
9604 			    pwr_mode, ret);
9605 		if (ret > 0) {
9606 			if (scsi_sense_valid(&sshdr))
9607 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9608 			ret = -EIO;
9609 		}
9610 	} else {
9611 		hba->curr_dev_pwr_mode = pwr_mode;
9612 	}
9613 
9614 	scsi_device_put(sdp);
9615 	hba->host->eh_noresume = 0;
9616 	return ret;
9617 }
9618 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9619 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9620 					enum uic_link_state req_link_state,
9621 					bool check_for_bkops)
9622 {
9623 	int ret = 0;
9624 
9625 	if (req_link_state == hba->uic_link_state)
9626 		return 0;
9627 
9628 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9629 		ret = ufshcd_uic_hibern8_enter(hba);
9630 		if (!ret) {
9631 			ufshcd_set_link_hibern8(hba);
9632 		} else {
9633 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9634 					__func__, ret);
9635 			goto out;
9636 		}
9637 	}
9638 	/*
9639 	 * If autobkops is enabled, link can't be turned off because
9640 	 * turning off the link would also turn off the device, except in the
9641 	 * case of DeepSleep where the device is expected to remain powered.
9642 	 */
9643 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9644 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9645 		/*
9646 		 * Let's make sure that link is in low power mode, we are doing
9647 		 * this currently by putting the link in Hibern8. Otherway to
9648 		 * put the link in low power mode is to send the DME end point
9649 		 * to device and then send the DME reset command to local
9650 		 * unipro. But putting the link in hibern8 is much faster.
9651 		 *
9652 		 * Note also that putting the link in Hibern8 is a requirement
9653 		 * for entering DeepSleep.
9654 		 */
9655 		ret = ufshcd_uic_hibern8_enter(hba);
9656 		if (ret) {
9657 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9658 					__func__, ret);
9659 			goto out;
9660 		}
9661 		/*
9662 		 * Change controller state to "reset state" which
9663 		 * should also put the link in off/reset state
9664 		 */
9665 		ufshcd_hba_stop(hba);
9666 		/*
9667 		 * TODO: Check if we need any delay to make sure that
9668 		 * controller is reset
9669 		 */
9670 		ufshcd_set_link_off(hba);
9671 	}
9672 
9673 out:
9674 	return ret;
9675 }
9676 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9677 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9678 {
9679 	bool vcc_off = false;
9680 
9681 	/*
9682 	 * It seems some UFS devices may keep drawing more than sleep current
9683 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9684 	 * To avoid this situation, add 2ms delay before putting these UFS
9685 	 * rails in LPM mode.
9686 	 */
9687 	if (!ufshcd_is_link_active(hba) &&
9688 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9689 		usleep_range(2000, 2100);
9690 
9691 	/*
9692 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9693 	 * power.
9694 	 *
9695 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9696 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9697 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9698 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9699 	 *
9700 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9701 	 * in low power state which would save some power.
9702 	 *
9703 	 * If Write Booster is enabled and the device needs to flush the WB
9704 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9705 	 */
9706 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9707 	    !hba->dev_info.is_lu_power_on_wp) {
9708 		ufshcd_setup_vreg(hba, false);
9709 		vcc_off = true;
9710 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9711 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9712 		vcc_off = true;
9713 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9714 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9715 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9716 		}
9717 	}
9718 
9719 	/*
9720 	 * Some UFS devices require delay after VCC power rail is turned-off.
9721 	 */
9722 	if (vcc_off && hba->vreg_info.vcc &&
9723 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9724 		usleep_range(5000, 5100);
9725 }
9726 
9727 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9728 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9729 {
9730 	int ret = 0;
9731 
9732 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9733 	    !hba->dev_info.is_lu_power_on_wp) {
9734 		ret = ufshcd_setup_vreg(hba, true);
9735 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9736 		if (!ufshcd_is_link_active(hba)) {
9737 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9738 			if (ret)
9739 				goto vcc_disable;
9740 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9741 			if (ret)
9742 				goto vccq_lpm;
9743 		}
9744 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9745 	}
9746 	goto out;
9747 
9748 vccq_lpm:
9749 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9750 vcc_disable:
9751 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9752 out:
9753 	return ret;
9754 }
9755 #endif /* CONFIG_PM */
9756 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9757 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9758 {
9759 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9760 		ufshcd_setup_hba_vreg(hba, false);
9761 }
9762 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9763 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9764 {
9765 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9766 		ufshcd_setup_hba_vreg(hba, true);
9767 }
9768 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9769 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9770 {
9771 	int ret = 0;
9772 	bool check_for_bkops;
9773 	enum ufs_pm_level pm_lvl;
9774 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9775 	enum uic_link_state req_link_state;
9776 
9777 	hba->pm_op_in_progress = true;
9778 	if (pm_op != UFS_SHUTDOWN_PM) {
9779 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9780 			 hba->rpm_lvl : hba->spm_lvl;
9781 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9782 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9783 	} else {
9784 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9785 		req_link_state = UIC_LINK_OFF_STATE;
9786 	}
9787 
9788 	/*
9789 	 * If we can't transition into any of the low power modes
9790 	 * just gate the clocks.
9791 	 */
9792 	ufshcd_hold(hba);
9793 	hba->clk_gating.is_suspended = true;
9794 
9795 	if (ufshcd_is_clkscaling_supported(hba))
9796 		ufshcd_clk_scaling_suspend(hba, true);
9797 
9798 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9799 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9800 		goto vops_suspend;
9801 	}
9802 
9803 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9804 	    (req_link_state == hba->uic_link_state))
9805 		goto enable_scaling;
9806 
9807 	/* UFS device & link must be active before we enter in this function */
9808 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9809 		/*  Wait err handler finish or trigger err recovery */
9810 		if (!ufshcd_eh_in_progress(hba))
9811 			ufshcd_force_error_recovery(hba);
9812 		ret = -EBUSY;
9813 		goto enable_scaling;
9814 	}
9815 
9816 	if (pm_op == UFS_RUNTIME_PM) {
9817 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9818 			/*
9819 			 * The device is idle with no requests in the queue,
9820 			 * allow background operations if bkops status shows
9821 			 * that performance might be impacted.
9822 			 */
9823 			ret = ufshcd_urgent_bkops(hba);
9824 			if (ret) {
9825 				/*
9826 				 * If return err in suspend flow, IO will hang.
9827 				 * Trigger error handler and break suspend for
9828 				 * error recovery.
9829 				 */
9830 				ufshcd_force_error_recovery(hba);
9831 				ret = -EBUSY;
9832 				goto enable_scaling;
9833 			}
9834 		} else {
9835 			/* make sure that auto bkops is disabled */
9836 			ufshcd_disable_auto_bkops(hba);
9837 		}
9838 		/*
9839 		 * If device needs to do BKOP or WB buffer flush during
9840 		 * Hibern8, keep device power mode as "active power mode"
9841 		 * and VCC supply.
9842 		 */
9843 		hba->dev_info.b_rpm_dev_flush_capable =
9844 			hba->auto_bkops_enabled ||
9845 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9846 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9847 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9848 			ufshcd_wb_need_flush(hba));
9849 	}
9850 
9851 	flush_work(&hba->eeh_work);
9852 
9853 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9854 	if (ret)
9855 		goto enable_scaling;
9856 
9857 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9858 		if (pm_op != UFS_RUNTIME_PM)
9859 			/* ensure that bkops is disabled */
9860 			ufshcd_disable_auto_bkops(hba);
9861 
9862 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9863 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9864 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9865 				/*
9866 				 * If return err in suspend flow, IO will hang.
9867 				 * Trigger error handler and break suspend for
9868 				 * error recovery.
9869 				 */
9870 				ufshcd_force_error_recovery(hba);
9871 				ret = -EBUSY;
9872 			}
9873 			if (ret)
9874 				goto enable_scaling;
9875 		}
9876 	}
9877 
9878 	/*
9879 	 * In the case of DeepSleep, the device is expected to remain powered
9880 	 * with the link off, so do not check for bkops.
9881 	 */
9882 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9883 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9884 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9885 		/*
9886 		 * If return err in suspend flow, IO will hang.
9887 		 * Trigger error handler and break suspend for
9888 		 * error recovery.
9889 		 */
9890 		ufshcd_force_error_recovery(hba);
9891 		ret = -EBUSY;
9892 	}
9893 	if (ret)
9894 		goto set_dev_active;
9895 
9896 vops_suspend:
9897 	/*
9898 	 * Call vendor specific suspend callback. As these callbacks may access
9899 	 * vendor specific host controller register space call them before the
9900 	 * host clocks are ON.
9901 	 */
9902 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9903 	if (ret)
9904 		goto set_link_active;
9905 
9906 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9907 	goto out;
9908 
9909 set_link_active:
9910 	/*
9911 	 * Device hardware reset is required to exit DeepSleep. Also, for
9912 	 * DeepSleep, the link is off so host reset and restore will be done
9913 	 * further below.
9914 	 */
9915 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9916 		ufshcd_device_reset(hba);
9917 		WARN_ON(!ufshcd_is_link_off(hba));
9918 	}
9919 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9920 		ufshcd_set_link_active(hba);
9921 	else if (ufshcd_is_link_off(hba))
9922 		ufshcd_host_reset_and_restore(hba);
9923 set_dev_active:
9924 	/* Can also get here needing to exit DeepSleep */
9925 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9926 		ufshcd_device_reset(hba);
9927 		ufshcd_host_reset_and_restore(hba);
9928 	}
9929 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9930 		ufshcd_disable_auto_bkops(hba);
9931 enable_scaling:
9932 	if (ufshcd_is_clkscaling_supported(hba))
9933 		ufshcd_clk_scaling_suspend(hba, false);
9934 
9935 	hba->dev_info.b_rpm_dev_flush_capable = false;
9936 out:
9937 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9938 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9939 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9940 	}
9941 
9942 	if (ret) {
9943 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9944 		hba->clk_gating.is_suspended = false;
9945 		ufshcd_release(hba);
9946 	}
9947 	hba->pm_op_in_progress = false;
9948 	return ret;
9949 }
9950 
9951 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9952 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9953 {
9954 	int ret;
9955 	enum uic_link_state old_link_state = hba->uic_link_state;
9956 
9957 	hba->pm_op_in_progress = true;
9958 
9959 	/*
9960 	 * Call vendor specific resume callback. As these callbacks may access
9961 	 * vendor specific host controller register space call them when the
9962 	 * host clocks are ON.
9963 	 */
9964 	ret = ufshcd_vops_resume(hba, pm_op);
9965 	if (ret)
9966 		goto out;
9967 
9968 	/* For DeepSleep, the only supported option is to have the link off */
9969 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9970 
9971 	if (ufshcd_is_link_hibern8(hba)) {
9972 		ret = ufshcd_uic_hibern8_exit(hba);
9973 		if (!ret) {
9974 			ufshcd_set_link_active(hba);
9975 		} else {
9976 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9977 					__func__, ret);
9978 			goto vendor_suspend;
9979 		}
9980 	} else if (ufshcd_is_link_off(hba)) {
9981 		/*
9982 		 * A full initialization of the host and the device is
9983 		 * required since the link was put to off during suspend.
9984 		 * Note, in the case of DeepSleep, the device will exit
9985 		 * DeepSleep due to device reset.
9986 		 */
9987 		ret = ufshcd_reset_and_restore(hba);
9988 		/*
9989 		 * ufshcd_reset_and_restore() should have already
9990 		 * set the link state as active
9991 		 */
9992 		if (ret || !ufshcd_is_link_active(hba))
9993 			goto vendor_suspend;
9994 	}
9995 
9996 	if (!ufshcd_is_ufs_dev_active(hba)) {
9997 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9998 		if (ret)
9999 			goto set_old_link_state;
10000 		ufshcd_set_timestamp_attr(hba);
10001 		schedule_delayed_work(&hba->ufs_rtc_update_work,
10002 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
10003 	}
10004 
10005 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
10006 		ufshcd_enable_auto_bkops(hba);
10007 	else
10008 		/*
10009 		 * If BKOPs operations are urgently needed at this moment then
10010 		 * keep auto-bkops enabled or else disable it.
10011 		 */
10012 		ufshcd_urgent_bkops(hba);
10013 
10014 	if (hba->ee_usr_mask)
10015 		ufshcd_write_ee_control(hba);
10016 
10017 	if (ufshcd_is_clkscaling_supported(hba))
10018 		ufshcd_clk_scaling_suspend(hba, false);
10019 
10020 	if (hba->dev_info.b_rpm_dev_flush_capable) {
10021 		hba->dev_info.b_rpm_dev_flush_capable = false;
10022 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
10023 	}
10024 
10025 	/* Enable Auto-Hibernate if configured */
10026 	ufshcd_auto_hibern8_enable(hba);
10027 
10028 	goto out;
10029 
10030 set_old_link_state:
10031 	ufshcd_link_state_transition(hba, old_link_state, 0);
10032 vendor_suspend:
10033 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
10034 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
10035 out:
10036 	if (ret)
10037 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
10038 	hba->clk_gating.is_suspended = false;
10039 	ufshcd_release(hba);
10040 	hba->pm_op_in_progress = false;
10041 	return ret;
10042 }
10043 
ufshcd_wl_runtime_suspend(struct device * dev)10044 static int ufshcd_wl_runtime_suspend(struct device *dev)
10045 {
10046 	struct scsi_device *sdev = to_scsi_device(dev);
10047 	struct ufs_hba *hba;
10048 	int ret;
10049 	ktime_t start = ktime_get();
10050 
10051 	hba = shost_priv(sdev->host);
10052 
10053 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
10054 	if (ret)
10055 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10056 
10057 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
10058 		ktime_to_us(ktime_sub(ktime_get(), start)),
10059 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10060 
10061 	return ret;
10062 }
10063 
ufshcd_wl_runtime_resume(struct device * dev)10064 static int ufshcd_wl_runtime_resume(struct device *dev)
10065 {
10066 	struct scsi_device *sdev = to_scsi_device(dev);
10067 	struct ufs_hba *hba;
10068 	int ret = 0;
10069 	ktime_t start = ktime_get();
10070 
10071 	hba = shost_priv(sdev->host);
10072 
10073 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10074 	if (ret)
10075 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10076 
10077 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
10078 		ktime_to_us(ktime_sub(ktime_get(), start)),
10079 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10080 
10081 	return ret;
10082 }
10083 #endif
10084 
10085 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10086 static int ufshcd_wl_suspend(struct device *dev)
10087 {
10088 	struct scsi_device *sdev = to_scsi_device(dev);
10089 	struct ufs_hba *hba;
10090 	int ret = 0;
10091 	ktime_t start = ktime_get();
10092 
10093 	hba = shost_priv(sdev->host);
10094 	down(&hba->host_sem);
10095 	hba->system_suspending = true;
10096 
10097 	if (pm_runtime_suspended(dev))
10098 		goto out;
10099 
10100 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10101 	if (ret) {
10102 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10103 		up(&hba->host_sem);
10104 	}
10105 
10106 out:
10107 	if (!ret)
10108 		hba->is_sys_suspended = true;
10109 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
10110 		ktime_to_us(ktime_sub(ktime_get(), start)),
10111 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10112 
10113 	return ret;
10114 }
10115 
ufshcd_wl_resume(struct device * dev)10116 static int ufshcd_wl_resume(struct device *dev)
10117 {
10118 	struct scsi_device *sdev = to_scsi_device(dev);
10119 	struct ufs_hba *hba;
10120 	int ret = 0;
10121 	ktime_t start = ktime_get();
10122 
10123 	hba = shost_priv(sdev->host);
10124 
10125 	if (pm_runtime_suspended(dev))
10126 		goto out;
10127 
10128 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10129 	if (ret)
10130 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10131 out:
10132 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10133 		ktime_to_us(ktime_sub(ktime_get(), start)),
10134 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10135 	if (!ret)
10136 		hba->is_sys_suspended = false;
10137 	hba->system_suspending = false;
10138 	up(&hba->host_sem);
10139 	return ret;
10140 }
10141 #endif
10142 
10143 /**
10144  * ufshcd_suspend - helper function for suspend operations
10145  * @hba: per adapter instance
10146  *
10147  * This function will put disable irqs, turn off clocks
10148  * and set vreg and hba-vreg in lpm mode.
10149  *
10150  * Return: 0 upon success; < 0 upon failure.
10151  */
ufshcd_suspend(struct ufs_hba * hba)10152 static int ufshcd_suspend(struct ufs_hba *hba)
10153 {
10154 	int ret;
10155 
10156 	if (!hba->is_powered)
10157 		return 0;
10158 	/*
10159 	 * Disable the host irq as host controller as there won't be any
10160 	 * host controller transaction expected till resume.
10161 	 */
10162 	ufshcd_disable_irq(hba);
10163 	ret = ufshcd_setup_clocks(hba, false);
10164 	if (ret) {
10165 		ufshcd_enable_irq(hba);
10166 		return ret;
10167 	}
10168 	if (ufshcd_is_clkgating_allowed(hba)) {
10169 		hba->clk_gating.state = CLKS_OFF;
10170 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10171 					hba->clk_gating.state);
10172 	}
10173 
10174 	ufshcd_vreg_set_lpm(hba);
10175 	/* Put the host controller in low power mode if possible */
10176 	ufshcd_hba_vreg_set_lpm(hba);
10177 	return ret;
10178 }
10179 
10180 #ifdef CONFIG_PM
10181 /**
10182  * ufshcd_resume - helper function for resume operations
10183  * @hba: per adapter instance
10184  *
10185  * This function basically turns on the regulators, clocks and
10186  * irqs of the hba.
10187  *
10188  * Return: 0 for success and non-zero for failure.
10189  */
ufshcd_resume(struct ufs_hba * hba)10190 static int ufshcd_resume(struct ufs_hba *hba)
10191 {
10192 	int ret;
10193 
10194 	if (!hba->is_powered)
10195 		return 0;
10196 
10197 	ufshcd_hba_vreg_set_hpm(hba);
10198 	ret = ufshcd_vreg_set_hpm(hba);
10199 	if (ret)
10200 		goto out;
10201 
10202 	/* Make sure clocks are enabled before accessing controller */
10203 	ret = ufshcd_setup_clocks(hba, true);
10204 	if (ret)
10205 		goto disable_vreg;
10206 
10207 	/* enable the host irq as host controller would be active soon */
10208 	ufshcd_enable_irq(hba);
10209 
10210 	goto out;
10211 
10212 disable_vreg:
10213 	ufshcd_vreg_set_lpm(hba);
10214 out:
10215 	if (ret)
10216 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10217 	return ret;
10218 }
10219 #endif /* CONFIG_PM */
10220 
10221 #ifdef CONFIG_PM_SLEEP
10222 /**
10223  * ufshcd_system_suspend - system suspend callback
10224  * @dev: Device associated with the UFS controller.
10225  *
10226  * Executed before putting the system into a sleep state in which the contents
10227  * of main memory are preserved.
10228  *
10229  * Return: 0 for success and non-zero for failure.
10230  */
ufshcd_system_suspend(struct device * dev)10231 int ufshcd_system_suspend(struct device *dev)
10232 {
10233 	struct ufs_hba *hba = dev_get_drvdata(dev);
10234 	int ret = 0;
10235 	ktime_t start = ktime_get();
10236 
10237 	if (pm_runtime_suspended(hba->dev))
10238 		goto out;
10239 
10240 	ret = ufshcd_suspend(hba);
10241 out:
10242 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10243 		ktime_to_us(ktime_sub(ktime_get(), start)),
10244 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10245 	return ret;
10246 }
10247 EXPORT_SYMBOL(ufshcd_system_suspend);
10248 
10249 /**
10250  * ufshcd_system_resume - system resume callback
10251  * @dev: Device associated with the UFS controller.
10252  *
10253  * Executed after waking the system up from a sleep state in which the contents
10254  * of main memory were preserved.
10255  *
10256  * Return: 0 for success and non-zero for failure.
10257  */
ufshcd_system_resume(struct device * dev)10258 int ufshcd_system_resume(struct device *dev)
10259 {
10260 	struct ufs_hba *hba = dev_get_drvdata(dev);
10261 	ktime_t start = ktime_get();
10262 	int ret = 0;
10263 
10264 	if (pm_runtime_suspended(hba->dev))
10265 		goto out;
10266 
10267 	ret = ufshcd_resume(hba);
10268 
10269 out:
10270 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10271 		ktime_to_us(ktime_sub(ktime_get(), start)),
10272 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10273 
10274 	return ret;
10275 }
10276 EXPORT_SYMBOL(ufshcd_system_resume);
10277 #endif /* CONFIG_PM_SLEEP */
10278 
10279 #ifdef CONFIG_PM
10280 /**
10281  * ufshcd_runtime_suspend - runtime suspend callback
10282  * @dev: Device associated with the UFS controller.
10283  *
10284  * Check the description of ufshcd_suspend() function for more details.
10285  *
10286  * Return: 0 for success and non-zero for failure.
10287  */
ufshcd_runtime_suspend(struct device * dev)10288 int ufshcd_runtime_suspend(struct device *dev)
10289 {
10290 	struct ufs_hba *hba = dev_get_drvdata(dev);
10291 	int ret;
10292 	ktime_t start = ktime_get();
10293 
10294 	ret = ufshcd_suspend(hba);
10295 
10296 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10297 		ktime_to_us(ktime_sub(ktime_get(), start)),
10298 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10299 	return ret;
10300 }
10301 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10302 
10303 /**
10304  * ufshcd_runtime_resume - runtime resume routine
10305  * @dev: Device associated with the UFS controller.
10306  *
10307  * This function basically brings controller
10308  * to active state. Following operations are done in this function:
10309  *
10310  * 1. Turn on all the controller related clocks
10311  * 2. Turn ON VCC rail
10312  *
10313  * Return: 0 upon success; < 0 upon failure.
10314  */
ufshcd_runtime_resume(struct device * dev)10315 int ufshcd_runtime_resume(struct device *dev)
10316 {
10317 	struct ufs_hba *hba = dev_get_drvdata(dev);
10318 	int ret;
10319 	ktime_t start = ktime_get();
10320 
10321 	ret = ufshcd_resume(hba);
10322 
10323 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10324 		ktime_to_us(ktime_sub(ktime_get(), start)),
10325 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10326 	return ret;
10327 }
10328 EXPORT_SYMBOL(ufshcd_runtime_resume);
10329 #endif /* CONFIG_PM */
10330 
ufshcd_wl_shutdown(struct device * dev)10331 static void ufshcd_wl_shutdown(struct device *dev)
10332 {
10333 	struct scsi_device *sdev = to_scsi_device(dev);
10334 	struct ufs_hba *hba = shost_priv(sdev->host);
10335 
10336 	down(&hba->host_sem);
10337 	hba->shutting_down = true;
10338 	up(&hba->host_sem);
10339 
10340 	/* Turn on everything while shutting down */
10341 	ufshcd_rpm_get_sync(hba);
10342 	scsi_device_quiesce(sdev);
10343 	shost_for_each_device(sdev, hba->host) {
10344 		if (sdev == hba->ufs_device_wlun)
10345 			continue;
10346 		mutex_lock(&sdev->state_mutex);
10347 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10348 		mutex_unlock(&sdev->state_mutex);
10349 	}
10350 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10351 
10352 	/*
10353 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10354 	 * clocks.
10355 	 */
10356 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10357 		ufshcd_suspend(hba);
10358 
10359 	hba->is_powered = false;
10360 }
10361 
10362 /**
10363  * ufshcd_remove - de-allocate SCSI host and host memory space
10364  *		data structure memory
10365  * @hba: per adapter instance
10366  */
ufshcd_remove(struct ufs_hba * hba)10367 void ufshcd_remove(struct ufs_hba *hba)
10368 {
10369 	if (hba->ufs_device_wlun)
10370 		ufshcd_rpm_get_sync(hba);
10371 	ufs_hwmon_remove(hba);
10372 	ufs_bsg_remove(hba);
10373 	ufs_sysfs_remove_nodes(hba->dev);
10374 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10375 	blk_mq_destroy_queue(hba->tmf_queue);
10376 	blk_put_queue(hba->tmf_queue);
10377 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10378 	if (hba->scsi_host_added)
10379 		scsi_remove_host(hba->host);
10380 	/* disable interrupts */
10381 	ufshcd_disable_intr(hba, hba->intr_mask);
10382 	ufshcd_hba_stop(hba);
10383 	ufshcd_hba_exit(hba);
10384 }
10385 EXPORT_SYMBOL_GPL(ufshcd_remove);
10386 
10387 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10388 int ufshcd_system_freeze(struct device *dev)
10389 {
10390 
10391 	return ufshcd_system_suspend(dev);
10392 
10393 }
10394 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10395 
ufshcd_system_restore(struct device * dev)10396 int ufshcd_system_restore(struct device *dev)
10397 {
10398 
10399 	struct ufs_hba *hba = dev_get_drvdata(dev);
10400 	int ret;
10401 
10402 	ret = ufshcd_system_resume(dev);
10403 	if (ret)
10404 		return ret;
10405 
10406 	/* Configure UTRL and UTMRL base address registers */
10407 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10408 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10409 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10410 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10411 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10412 			REG_UTP_TASK_REQ_LIST_BASE_L);
10413 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10414 			REG_UTP_TASK_REQ_LIST_BASE_H);
10415 	/*
10416 	 * Make sure that UTRL and UTMRL base address registers
10417 	 * are updated with the latest queue addresses. Only after
10418 	 * updating these addresses, we can queue the new commands.
10419 	 */
10420 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10421 
10422 	return 0;
10423 
10424 }
10425 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10426 
ufshcd_system_thaw(struct device * dev)10427 int ufshcd_system_thaw(struct device *dev)
10428 {
10429 	return ufshcd_system_resume(dev);
10430 }
10431 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10432 #endif /* CONFIG_PM_SLEEP  */
10433 
10434 /**
10435  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10436  * @hba: pointer to Host Bus Adapter (HBA)
10437  */
ufshcd_dealloc_host(struct ufs_hba * hba)10438 void ufshcd_dealloc_host(struct ufs_hba *hba)
10439 {
10440 	scsi_host_put(hba->host);
10441 }
10442 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10443 
10444 /**
10445  * ufshcd_set_dma_mask - Set dma mask based on the controller
10446  *			 addressing capability
10447  * @hba: per adapter instance
10448  *
10449  * Return: 0 for success, non-zero for failure.
10450  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10451 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10452 {
10453 	if (hba->vops && hba->vops->set_dma_mask)
10454 		return hba->vops->set_dma_mask(hba);
10455 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10456 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10457 			return 0;
10458 	}
10459 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10460 }
10461 
10462 /**
10463  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10464  * @dev: pointer to device handle
10465  * @hba_handle: driver private handle
10466  *
10467  * Return: 0 on success, non-zero value on failure.
10468  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10469 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10470 {
10471 	struct Scsi_Host *host;
10472 	struct ufs_hba *hba;
10473 	int err = 0;
10474 
10475 	if (!dev) {
10476 		dev_err(dev,
10477 		"Invalid memory reference for dev is NULL\n");
10478 		err = -ENODEV;
10479 		goto out_error;
10480 	}
10481 
10482 	host = scsi_host_alloc(&ufshcd_driver_template,
10483 				sizeof(struct ufs_hba));
10484 	if (!host) {
10485 		dev_err(dev, "scsi_host_alloc failed\n");
10486 		err = -ENOMEM;
10487 		goto out_error;
10488 	}
10489 	host->nr_maps = HCTX_TYPE_POLL + 1;
10490 	hba = shost_priv(host);
10491 	hba->host = host;
10492 	hba->dev = dev;
10493 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10494 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10495 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10496 	INIT_LIST_HEAD(&hba->clk_list_head);
10497 	spin_lock_init(&hba->outstanding_lock);
10498 
10499 	*hba_handle = hba;
10500 
10501 out_error:
10502 	return err;
10503 }
10504 EXPORT_SYMBOL(ufshcd_alloc_host);
10505 
10506 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10507 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10508 				     const struct blk_mq_queue_data *qd)
10509 {
10510 	WARN_ON_ONCE(true);
10511 	return BLK_STS_NOTSUPP;
10512 }
10513 
10514 static const struct blk_mq_ops ufshcd_tmf_ops = {
10515 	.queue_rq = ufshcd_queue_tmf,
10516 };
10517 
10518 /**
10519  * ufshcd_init - Driver initialization routine
10520  * @hba: per-adapter instance
10521  * @mmio_base: base register address
10522  * @irq: Interrupt line of device
10523  *
10524  * Return: 0 on success, non-zero value on failure.
10525  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10526 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10527 {
10528 	int err;
10529 	struct Scsi_Host *host = hba->host;
10530 	struct device *dev = hba->dev;
10531 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10532 
10533 	/*
10534 	 * dev_set_drvdata() must be called before any callbacks are registered
10535 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10536 	 * sysfs).
10537 	 */
10538 	dev_set_drvdata(dev, hba);
10539 
10540 	if (!mmio_base) {
10541 		dev_err(hba->dev,
10542 		"Invalid memory reference for mmio_base is NULL\n");
10543 		err = -ENODEV;
10544 		goto out_error;
10545 	}
10546 
10547 	hba->mmio_base = mmio_base;
10548 	hba->irq = irq;
10549 	hba->vps = &ufs_hba_vps;
10550 
10551 	err = ufshcd_hba_init(hba);
10552 	if (err)
10553 		goto out_error;
10554 
10555 	/* Read capabilities registers */
10556 	err = ufshcd_hba_capabilities(hba);
10557 	if (err)
10558 		goto out_disable;
10559 
10560 	/* Get UFS version supported by the controller */
10561 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10562 
10563 	/* Get Interrupt bit mask per version */
10564 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10565 
10566 	err = ufshcd_set_dma_mask(hba);
10567 	if (err) {
10568 		dev_err(hba->dev, "set dma mask failed\n");
10569 		goto out_disable;
10570 	}
10571 
10572 	/* Allocate memory for host memory space */
10573 	err = ufshcd_memory_alloc(hba);
10574 	if (err) {
10575 		dev_err(hba->dev, "Memory allocation failed\n");
10576 		goto out_disable;
10577 	}
10578 
10579 	/* Configure LRB */
10580 	ufshcd_host_memory_configure(hba);
10581 
10582 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10583 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10584 	host->max_id = UFSHCD_MAX_ID;
10585 	host->max_lun = UFS_MAX_LUNS;
10586 	host->max_channel = UFSHCD_MAX_CHANNEL;
10587 	host->unique_id = host->host_no;
10588 	host->max_cmd_len = UFS_CDB_SIZE;
10589 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10590 
10591 	hba->max_pwr_info.is_valid = false;
10592 
10593 	/* Initialize work queues */
10594 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10595 		 hba->host->host_no);
10596 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10597 	if (!hba->eh_wq) {
10598 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10599 			__func__);
10600 		err = -ENOMEM;
10601 		goto out_disable;
10602 	}
10603 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10604 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10605 
10606 	sema_init(&hba->host_sem, 1);
10607 
10608 	/* Initialize UIC command mutex */
10609 	mutex_init(&hba->uic_cmd_mutex);
10610 
10611 	/* Initialize mutex for device management commands */
10612 	mutex_init(&hba->dev_cmd.lock);
10613 
10614 	/* Initialize mutex for exception event control */
10615 	mutex_init(&hba->ee_ctrl_mutex);
10616 
10617 	mutex_init(&hba->wb_mutex);
10618 	init_rwsem(&hba->clk_scaling_lock);
10619 
10620 	ufshcd_init_clk_gating(hba);
10621 
10622 	ufshcd_init_clk_scaling(hba);
10623 
10624 	/*
10625 	 * In order to avoid any spurious interrupt immediately after
10626 	 * registering UFS controller interrupt handler, clear any pending UFS
10627 	 * interrupt status and disable all the UFS interrupts.
10628 	 */
10629 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10630 		      REG_INTERRUPT_STATUS);
10631 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10632 	/*
10633 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10634 	 * status is cleared before registering UFS interrupt handler.
10635 	 */
10636 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10637 
10638 	/* IRQ registration */
10639 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10640 	if (err) {
10641 		dev_err(hba->dev, "request irq failed\n");
10642 		goto out_disable;
10643 	} else {
10644 		hba->is_irq_enabled = true;
10645 	}
10646 
10647 	if (!is_mcq_supported(hba)) {
10648 		if (!hba->lsdb_sup) {
10649 			dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10650 				__func__);
10651 			err = -EINVAL;
10652 			goto out_disable;
10653 		}
10654 		err = scsi_add_host(host, hba->dev);
10655 		if (err) {
10656 			dev_err(hba->dev, "scsi_add_host failed\n");
10657 			goto out_disable;
10658 		}
10659 		hba->scsi_host_added = true;
10660 	}
10661 
10662 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10663 		.nr_hw_queues	= 1,
10664 		.queue_depth	= hba->nutmrs,
10665 		.ops		= &ufshcd_tmf_ops,
10666 		.flags		= BLK_MQ_F_NO_SCHED,
10667 	};
10668 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10669 	if (err < 0)
10670 		goto out_remove_scsi_host;
10671 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10672 	if (IS_ERR(hba->tmf_queue)) {
10673 		err = PTR_ERR(hba->tmf_queue);
10674 		goto free_tmf_tag_set;
10675 	}
10676 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10677 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10678 	if (!hba->tmf_rqs) {
10679 		err = -ENOMEM;
10680 		goto free_tmf_queue;
10681 	}
10682 
10683 	/* Reset the attached device */
10684 	ufshcd_device_reset(hba);
10685 
10686 	ufshcd_init_crypto(hba);
10687 
10688 	/* Host controller enable */
10689 	err = ufshcd_hba_enable(hba);
10690 	if (err) {
10691 		dev_err(hba->dev, "Host controller enable failed\n");
10692 		ufshcd_print_evt_hist(hba);
10693 		ufshcd_print_host_state(hba);
10694 		goto free_tmf_queue;
10695 	}
10696 
10697 	/*
10698 	 * Set the default power management level for runtime and system PM if
10699 	 * not set by the host controller drivers.
10700 	 * Default power saving mode is to keep UFS link in Hibern8 state
10701 	 * and UFS device in sleep state.
10702 	 */
10703 	if (!hba->rpm_lvl)
10704 		hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10705 						UFS_SLEEP_PWR_MODE,
10706 						UIC_LINK_HIBERN8_STATE);
10707 	if (!hba->spm_lvl)
10708 		hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10709 						UFS_SLEEP_PWR_MODE,
10710 						UIC_LINK_HIBERN8_STATE);
10711 
10712 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10713 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10714 
10715 	/* Set the default auto-hiberate idle timer value to 150 ms */
10716 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10717 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10718 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10719 	}
10720 
10721 	/* Hold auto suspend until async scan completes */
10722 	pm_runtime_get_sync(dev);
10723 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10724 	/*
10725 	 * We are assuming that device wasn't put in sleep/power-down
10726 	 * state exclusively during the boot stage before kernel.
10727 	 * This assumption helps avoid doing link startup twice during
10728 	 * ufshcd_probe_hba().
10729 	 */
10730 	ufshcd_set_ufs_dev_active(hba);
10731 
10732 	async_schedule(ufshcd_async_scan, hba);
10733 	ufs_sysfs_add_nodes(hba->dev);
10734 
10735 	device_enable_async_suspend(dev);
10736 	return 0;
10737 
10738 free_tmf_queue:
10739 	blk_mq_destroy_queue(hba->tmf_queue);
10740 	blk_put_queue(hba->tmf_queue);
10741 free_tmf_tag_set:
10742 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10743 out_remove_scsi_host:
10744 	if (hba->scsi_host_added)
10745 		scsi_remove_host(hba->host);
10746 out_disable:
10747 	hba->is_irq_enabled = false;
10748 	ufshcd_hba_exit(hba);
10749 out_error:
10750 	return err;
10751 }
10752 EXPORT_SYMBOL_GPL(ufshcd_init);
10753 
ufshcd_resume_complete(struct device * dev)10754 void ufshcd_resume_complete(struct device *dev)
10755 {
10756 	struct ufs_hba *hba = dev_get_drvdata(dev);
10757 
10758 	if (hba->complete_put) {
10759 		ufshcd_rpm_put(hba);
10760 		hba->complete_put = false;
10761 	}
10762 }
10763 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10764 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10765 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10766 {
10767 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10768 	enum ufs_dev_pwr_mode dev_pwr_mode;
10769 	enum uic_link_state link_state;
10770 	unsigned long flags;
10771 	bool res;
10772 
10773 	spin_lock_irqsave(&dev->power.lock, flags);
10774 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10775 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10776 	res = pm_runtime_suspended(dev) &&
10777 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10778 	      hba->uic_link_state == link_state &&
10779 	      !hba->dev_info.b_rpm_dev_flush_capable;
10780 	spin_unlock_irqrestore(&dev->power.lock, flags);
10781 
10782 	return res;
10783 }
10784 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10785 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10786 {
10787 	struct ufs_hba *hba = dev_get_drvdata(dev);
10788 	int ret;
10789 
10790 	/*
10791 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10792 	 * are same. And it doesn't wake up the device for system-suspend
10793 	 * if it's runtime suspended. But ufs doesn't follow that.
10794 	 * Refer ufshcd_resume_complete()
10795 	 */
10796 	if (hba->ufs_device_wlun) {
10797 		/* Prevent runtime suspend */
10798 		ufshcd_rpm_get_noresume(hba);
10799 		/*
10800 		 * Check if already runtime suspended in same state as system
10801 		 * suspend would be.
10802 		 */
10803 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10804 			/* RPM state is not ok for SPM, so runtime resume */
10805 			ret = ufshcd_rpm_resume(hba);
10806 			if (ret < 0 && ret != -EACCES) {
10807 				ufshcd_rpm_put(hba);
10808 				return ret;
10809 			}
10810 		}
10811 		hba->complete_put = true;
10812 	}
10813 	return 0;
10814 }
10815 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10816 
ufshcd_suspend_prepare(struct device * dev)10817 int ufshcd_suspend_prepare(struct device *dev)
10818 {
10819 	return __ufshcd_suspend_prepare(dev, true);
10820 }
10821 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10822 
10823 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10824 static int ufshcd_wl_poweroff(struct device *dev)
10825 {
10826 	struct scsi_device *sdev = to_scsi_device(dev);
10827 	struct ufs_hba *hba = shost_priv(sdev->host);
10828 
10829 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10830 	return 0;
10831 }
10832 #endif
10833 
ufshcd_wl_probe(struct device * dev)10834 static int ufshcd_wl_probe(struct device *dev)
10835 {
10836 	struct scsi_device *sdev = to_scsi_device(dev);
10837 
10838 	if (!is_device_wlun(sdev))
10839 		return -ENODEV;
10840 
10841 	blk_pm_runtime_init(sdev->request_queue, dev);
10842 	pm_runtime_set_autosuspend_delay(dev, 0);
10843 	pm_runtime_allow(dev);
10844 
10845 	return  0;
10846 }
10847 
ufshcd_wl_remove(struct device * dev)10848 static int ufshcd_wl_remove(struct device *dev)
10849 {
10850 	pm_runtime_forbid(dev);
10851 	return 0;
10852 }
10853 
10854 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10855 #ifdef CONFIG_PM_SLEEP
10856 	.suspend = ufshcd_wl_suspend,
10857 	.resume = ufshcd_wl_resume,
10858 	.freeze = ufshcd_wl_suspend,
10859 	.thaw = ufshcd_wl_resume,
10860 	.poweroff = ufshcd_wl_poweroff,
10861 	.restore = ufshcd_wl_resume,
10862 #endif
10863 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10864 };
10865 
ufshcd_check_header_layout(void)10866 static void ufshcd_check_header_layout(void)
10867 {
10868 	/*
10869 	 * gcc compilers before version 10 cannot do constant-folding for
10870 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10871 	 * before.
10872 	 */
10873 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10874 		return;
10875 
10876 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10877 				.cci = 3})[0] != 3);
10878 
10879 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10880 				.ehs_length = 2})[1] != 2);
10881 
10882 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10883 				.enable_crypto = 1})[2]
10884 		     != 0x80);
10885 
10886 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10887 					.command_type = 5,
10888 					.data_direction = 3,
10889 					.interrupt = 1,
10890 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10891 
10892 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10893 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10894 		cpu_to_le32(0xdeadbeef));
10895 
10896 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10897 				.ocs = 4})[8] != 4);
10898 
10899 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10900 				.cds = 5})[9] != 5);
10901 
10902 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10903 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10904 		cpu_to_le32(0xbadcafe));
10905 
10906 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10907 			     .iid = 0xf })[4] != 0xf0);
10908 
10909 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10910 			     .command_set_type = 0xf })[4] != 0xf);
10911 }
10912 
10913 /*
10914  * ufs_dev_wlun_template - describes ufs device wlun
10915  * ufs-device wlun - used to send pm commands
10916  * All luns are consumers of ufs-device wlun.
10917  *
10918  * Currently, no sd driver is present for wluns.
10919  * Hence the no specific pm operations are performed.
10920  * With ufs design, SSU should be sent to ufs-device wlun.
10921  * Hence register a scsi driver for ufs wluns only.
10922  */
10923 static struct scsi_driver ufs_dev_wlun_template = {
10924 	.gendrv = {
10925 		.name = "ufs_device_wlun",
10926 		.owner = THIS_MODULE,
10927 		.probe = ufshcd_wl_probe,
10928 		.remove = ufshcd_wl_remove,
10929 		.pm = &ufshcd_wl_pm_ops,
10930 		.shutdown = ufshcd_wl_shutdown,
10931 	},
10932 };
10933 
ufshcd_core_init(void)10934 static int __init ufshcd_core_init(void)
10935 {
10936 	int ret;
10937 
10938 	ufshcd_check_header_layout();
10939 
10940 	ufs_debugfs_init();
10941 
10942 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10943 	if (ret)
10944 		ufs_debugfs_exit();
10945 	return ret;
10946 }
10947 
ufshcd_core_exit(void)10948 static void __exit ufshcd_core_exit(void)
10949 {
10950 	ufs_debugfs_exit();
10951 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10952 }
10953 
10954 module_init(ufshcd_core_init);
10955 module_exit(ufshcd_core_exit);
10956 
10957 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10958 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10959 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10960 MODULE_SOFTDEP("pre: governor_simpleondemand");
10961 MODULE_LICENSE("GPL");
10962