1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * u_audio.c -- interface to USB gadget "ALSA sound card" utilities
4 *
5 * Copyright (C) 2016
6 * Author: Ruslan Bilovol <ruslan.bilovol@gmail.com>
7 *
8 * Sound card implementation was cut-and-pasted with changes
9 * from f_uac2.c and has:
10 * Copyright (C) 2011
11 * Yadwinder Singh (yadi.brar01@gmail.com)
12 * Jaswinder Singh (jaswinder.singh@linaro.org)
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/control.h>
21 #include <sound/tlv.h>
22 #include <linux/usb/audio.h>
23
24 #include "u_audio.h"
25
26 #define BUFF_SIZE_MAX (PAGE_SIZE * 16)
27 #define PRD_SIZE_MAX PAGE_SIZE
28 #define MIN_PERIODS 4
29
30 enum {
31 UAC_FBACK_CTRL,
32 UAC_P_PITCH_CTRL,
33 UAC_MUTE_CTRL,
34 UAC_VOLUME_CTRL,
35 UAC_RATE_CTRL,
36 };
37
38 /* Runtime data params for one stream */
39 struct uac_rtd_params {
40 struct snd_uac_chip *uac; /* parent chip */
41 bool ep_enabled; /* if the ep is enabled */
42
43 struct snd_pcm_substream *ss;
44
45 /* Ring buffer */
46 ssize_t hw_ptr;
47
48 void *rbuf;
49
50 unsigned int pitch; /* Stream pitch ratio to 1000000 */
51 unsigned int max_psize; /* MaxPacketSize of endpoint */
52
53 struct usb_request **reqs;
54
55 struct usb_request *req_fback; /* Feedback endpoint request */
56 bool fb_ep_enabled; /* if the ep is enabled */
57
58 /* Volume/Mute controls and their state */
59 int fu_id; /* Feature Unit ID */
60 struct snd_ctl_elem_id snd_kctl_volume_id;
61 struct snd_ctl_elem_id snd_kctl_mute_id;
62 s16 volume_min, volume_max, volume_res;
63 s16 volume;
64 int mute;
65
66 struct snd_ctl_elem_id snd_kctl_rate_id; /* read-only current rate */
67 int srate; /* selected samplerate */
68 int active; /* playback/capture running */
69
70 spinlock_t lock; /* lock for control transfers */
71
72 };
73
74 struct snd_uac_chip {
75 struct g_audio *audio_dev;
76
77 struct uac_rtd_params p_prm;
78 struct uac_rtd_params c_prm;
79
80 struct snd_card *card;
81 struct snd_pcm *pcm;
82
83 /* pre-calculated values for playback iso completion */
84 unsigned long long p_residue_mil;
85 unsigned int p_interval;
86 unsigned int p_framesize;
87 };
88
89 static const struct snd_pcm_hardware uac_pcm_hardware = {
90 .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER
91 | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID
92 | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
93 .rates = SNDRV_PCM_RATE_CONTINUOUS,
94 .periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX,
95 .buffer_bytes_max = BUFF_SIZE_MAX,
96 .period_bytes_max = PRD_SIZE_MAX,
97 .periods_min = MIN_PERIODS,
98 };
99
u_audio_set_fback_frequency(enum usb_device_speed speed,struct usb_ep * out_ep,unsigned long long freq,unsigned int pitch,void * buf)100 static void u_audio_set_fback_frequency(enum usb_device_speed speed,
101 struct usb_ep *out_ep,
102 unsigned long long freq,
103 unsigned int pitch,
104 void *buf)
105 {
106 u32 ff = 0;
107 const struct usb_endpoint_descriptor *ep_desc;
108
109 /*
110 * Because the pitch base is 1000000, the final divider here
111 * will be 1000 * 1000000 = 1953125 << 9
112 *
113 * Instead of dealing with big numbers lets fold this 9 left shift
114 */
115
116 if (speed == USB_SPEED_FULL) {
117 /*
118 * Full-speed feedback endpoints report frequency
119 * in samples/frame
120 * Format is encoded in Q10.10 left-justified in the 24 bits,
121 * so that it has a Q10.14 format.
122 *
123 * ff = (freq << 14) / 1000
124 */
125 freq <<= 5;
126 } else {
127 /*
128 * High-speed feedback endpoints report frequency
129 * in samples/microframe.
130 * Format is encoded in Q12.13 fitted into four bytes so that
131 * the binary point is located between the second and the third
132 * byte fromat (that is Q16.16)
133 *
134 * ff = (freq << 16) / 8000
135 *
136 * Win10 and OSX UAC2 drivers require number of samples per packet
137 * in order to honor the feedback value.
138 * Linux snd-usb-audio detects the applied bit-shift automatically.
139 */
140 ep_desc = out_ep->desc;
141 freq <<= 4 + (ep_desc->bInterval - 1);
142 }
143
144 ff = DIV_ROUND_CLOSEST_ULL((freq * pitch), 1953125);
145
146 *(__le32 *)buf = cpu_to_le32(ff);
147 }
148
u_audio_iso_complete(struct usb_ep * ep,struct usb_request * req)149 static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req)
150 {
151 unsigned int pending;
152 unsigned int hw_ptr;
153 int status = req->status;
154 struct snd_pcm_substream *substream;
155 struct snd_pcm_runtime *runtime;
156 struct uac_rtd_params *prm = req->context;
157 struct snd_uac_chip *uac = prm->uac;
158 unsigned int frames, p_pktsize;
159 unsigned long long pitched_rate_mil, p_pktsize_residue_mil,
160 residue_frames_mil, div_result;
161
162 /* i/f shutting down */
163 if (!prm->ep_enabled) {
164 usb_ep_free_request(ep, req);
165 return;
166 }
167
168 if (req->status == -ESHUTDOWN)
169 return;
170
171 /*
172 * We can't really do much about bad xfers.
173 * Afterall, the ISOCH xfers could fail legitimately.
174 */
175 if (status)
176 pr_debug("%s: iso_complete status(%d) %d/%d\n",
177 __func__, status, req->actual, req->length);
178
179 substream = prm->ss;
180
181 /* Do nothing if ALSA isn't active */
182 if (!substream)
183 goto exit;
184
185 snd_pcm_stream_lock(substream);
186
187 runtime = substream->runtime;
188 if (!runtime || !snd_pcm_running(substream)) {
189 snd_pcm_stream_unlock(substream);
190 goto exit;
191 }
192
193 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
194 /*
195 * For each IN packet, take the quotient of the current data
196 * rate and the endpoint's interval as the base packet size.
197 * If there is a residue from this division, add it to the
198 * residue accumulator.
199 */
200 unsigned long long p_interval_mil = uac->p_interval * 1000000ULL;
201
202 pitched_rate_mil = (unsigned long long) prm->srate * prm->pitch;
203 div_result = pitched_rate_mil;
204 do_div(div_result, uac->p_interval);
205 do_div(div_result, 1000000);
206 frames = (unsigned int) div_result;
207
208 pr_debug("p_srate %d, pitch %d, interval_mil %llu, frames %d\n",
209 prm->srate, prm->pitch, p_interval_mil, frames);
210
211 p_pktsize = min_t(unsigned int,
212 uac->p_framesize * frames,
213 ep->maxpacket);
214
215 if (p_pktsize < ep->maxpacket) {
216 residue_frames_mil = pitched_rate_mil - frames * p_interval_mil;
217 p_pktsize_residue_mil = uac->p_framesize * residue_frames_mil;
218 } else
219 p_pktsize_residue_mil = 0;
220
221 req->length = p_pktsize;
222 uac->p_residue_mil += p_pktsize_residue_mil;
223
224 /*
225 * Whenever there are more bytes in the accumulator p_residue_mil than we
226 * need to add one more sample frame, increase this packet's
227 * size and decrease the accumulator.
228 */
229 div_result = uac->p_residue_mil;
230 do_div(div_result, uac->p_interval);
231 do_div(div_result, 1000000);
232 if ((unsigned int) div_result >= uac->p_framesize) {
233 req->length += uac->p_framesize;
234 uac->p_residue_mil -= uac->p_framesize * p_interval_mil;
235 pr_debug("increased req length to %d\n", req->length);
236 }
237 pr_debug("remains uac->p_residue_mil %llu\n", uac->p_residue_mil);
238
239 req->actual = req->length;
240 }
241
242 hw_ptr = prm->hw_ptr;
243
244 /* Pack USB load in ALSA ring buffer */
245 pending = runtime->dma_bytes - hw_ptr;
246
247 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
248 if (unlikely(pending < req->actual)) {
249 memcpy(req->buf, runtime->dma_area + hw_ptr, pending);
250 memcpy(req->buf + pending, runtime->dma_area,
251 req->actual - pending);
252 } else {
253 memcpy(req->buf, runtime->dma_area + hw_ptr,
254 req->actual);
255 }
256 } else {
257 if (unlikely(pending < req->actual)) {
258 memcpy(runtime->dma_area + hw_ptr, req->buf, pending);
259 memcpy(runtime->dma_area, req->buf + pending,
260 req->actual - pending);
261 } else {
262 memcpy(runtime->dma_area + hw_ptr, req->buf,
263 req->actual);
264 }
265 }
266
267 /* update hw_ptr after data is copied to memory */
268 prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes;
269 hw_ptr = prm->hw_ptr;
270 snd_pcm_stream_unlock(substream);
271
272 if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual)
273 snd_pcm_period_elapsed(substream);
274
275 exit:
276 if (usb_ep_queue(ep, req, GFP_ATOMIC))
277 dev_err(uac->card->dev, "%d Error!\n", __LINE__);
278 }
279
u_audio_iso_fback_complete(struct usb_ep * ep,struct usb_request * req)280 static void u_audio_iso_fback_complete(struct usb_ep *ep,
281 struct usb_request *req)
282 {
283 struct uac_rtd_params *prm = req->context;
284 struct snd_uac_chip *uac = prm->uac;
285 struct g_audio *audio_dev = uac->audio_dev;
286 int status = req->status;
287
288 /* i/f shutting down */
289 if (!prm->fb_ep_enabled) {
290 kfree(req->buf);
291 usb_ep_free_request(ep, req);
292 return;
293 }
294
295 if (req->status == -ESHUTDOWN)
296 return;
297
298 /*
299 * We can't really do much about bad xfers.
300 * Afterall, the ISOCH xfers could fail legitimately.
301 */
302 if (status)
303 pr_debug("%s: iso_complete status(%d) %d/%d\n",
304 __func__, status, req->actual, req->length);
305
306 u_audio_set_fback_frequency(audio_dev->gadget->speed, audio_dev->out_ep,
307 prm->srate, prm->pitch,
308 req->buf);
309
310 if (usb_ep_queue(ep, req, GFP_ATOMIC))
311 dev_err(uac->card->dev, "%d Error!\n", __LINE__);
312 }
313
uac_pcm_trigger(struct snd_pcm_substream * substream,int cmd)314 static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
315 {
316 struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
317 struct uac_rtd_params *prm;
318 struct g_audio *audio_dev;
319 struct uac_params *params;
320 int err = 0;
321
322 audio_dev = uac->audio_dev;
323 params = &audio_dev->params;
324
325 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
326 prm = &uac->p_prm;
327 else
328 prm = &uac->c_prm;
329
330 /* Reset */
331 prm->hw_ptr = 0;
332
333 switch (cmd) {
334 case SNDRV_PCM_TRIGGER_START:
335 case SNDRV_PCM_TRIGGER_RESUME:
336 prm->ss = substream;
337 break;
338 case SNDRV_PCM_TRIGGER_STOP:
339 case SNDRV_PCM_TRIGGER_SUSPEND:
340 prm->ss = NULL;
341 break;
342 default:
343 err = -EINVAL;
344 }
345
346 /* Clear buffer after Play stops */
347 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss)
348 memset(prm->rbuf, 0, prm->max_psize * params->req_number);
349
350 return err;
351 }
352
uac_pcm_pointer(struct snd_pcm_substream * substream)353 static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream)
354 {
355 struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
356 struct uac_rtd_params *prm;
357
358 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
359 prm = &uac->p_prm;
360 else
361 prm = &uac->c_prm;
362
363 return bytes_to_frames(substream->runtime, prm->hw_ptr);
364 }
365
uac_ssize_to_fmt(int ssize)366 static u64 uac_ssize_to_fmt(int ssize)
367 {
368 u64 ret;
369
370 switch (ssize) {
371 case 3:
372 ret = SNDRV_PCM_FMTBIT_S24_3LE;
373 break;
374 case 4:
375 ret = SNDRV_PCM_FMTBIT_S32_LE;
376 break;
377 default:
378 ret = SNDRV_PCM_FMTBIT_S16_LE;
379 break;
380 }
381
382 return ret;
383 }
384
uac_pcm_open(struct snd_pcm_substream * substream)385 static int uac_pcm_open(struct snd_pcm_substream *substream)
386 {
387 struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
388 struct snd_pcm_runtime *runtime = substream->runtime;
389 struct g_audio *audio_dev;
390 struct uac_params *params;
391 struct uac_rtd_params *prm;
392 int p_ssize, c_ssize;
393 int p_chmask, c_chmask;
394
395 audio_dev = uac->audio_dev;
396 params = &audio_dev->params;
397 p_ssize = params->p_ssize;
398 c_ssize = params->c_ssize;
399 p_chmask = params->p_chmask;
400 c_chmask = params->c_chmask;
401 uac->p_residue_mil = 0;
402
403 runtime->hw = uac_pcm_hardware;
404
405 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
406 runtime->hw.formats = uac_ssize_to_fmt(p_ssize);
407 runtime->hw.channels_min = num_channels(p_chmask);
408 prm = &uac->p_prm;
409 } else {
410 runtime->hw.formats = uac_ssize_to_fmt(c_ssize);
411 runtime->hw.channels_min = num_channels(c_chmask);
412 prm = &uac->c_prm;
413 }
414
415 runtime->hw.period_bytes_min = 2 * prm->max_psize
416 / runtime->hw.periods_min;
417 runtime->hw.rate_min = prm->srate;
418 runtime->hw.rate_max = runtime->hw.rate_min;
419 runtime->hw.channels_max = runtime->hw.channels_min;
420
421 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
422
423 return 0;
424 }
425
426 /* ALSA cries without these function pointers */
uac_pcm_null(struct snd_pcm_substream * substream)427 static int uac_pcm_null(struct snd_pcm_substream *substream)
428 {
429 return 0;
430 }
431
432 static const struct snd_pcm_ops uac_pcm_ops = {
433 .open = uac_pcm_open,
434 .close = uac_pcm_null,
435 .trigger = uac_pcm_trigger,
436 .pointer = uac_pcm_pointer,
437 .prepare = uac_pcm_null,
438 };
439
free_ep(struct uac_rtd_params * prm,struct usb_ep * ep)440 static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep)
441 {
442 struct snd_uac_chip *uac = prm->uac;
443 struct g_audio *audio_dev;
444 struct uac_params *params;
445 int i;
446
447 if (!prm->ep_enabled)
448 return;
449
450 audio_dev = uac->audio_dev;
451 params = &audio_dev->params;
452
453 for (i = 0; i < params->req_number; i++) {
454 if (prm->reqs[i]) {
455 if (usb_ep_dequeue(ep, prm->reqs[i]))
456 usb_ep_free_request(ep, prm->reqs[i]);
457 /*
458 * If usb_ep_dequeue() cannot successfully dequeue the
459 * request, the request will be freed by the completion
460 * callback.
461 */
462
463 prm->reqs[i] = NULL;
464 }
465 }
466
467 prm->ep_enabled = false;
468
469 if (usb_ep_disable(ep))
470 dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
471 }
472
free_ep_fback(struct uac_rtd_params * prm,struct usb_ep * ep)473 static inline void free_ep_fback(struct uac_rtd_params *prm, struct usb_ep *ep)
474 {
475 struct snd_uac_chip *uac = prm->uac;
476
477 if (!prm->fb_ep_enabled)
478 return;
479
480 if (prm->req_fback) {
481 if (usb_ep_dequeue(ep, prm->req_fback)) {
482 kfree(prm->req_fback->buf);
483 usb_ep_free_request(ep, prm->req_fback);
484 }
485 prm->req_fback = NULL;
486 }
487
488 prm->fb_ep_enabled = false;
489
490 if (usb_ep_disable(ep))
491 dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
492 }
493
set_active(struct uac_rtd_params * prm,bool active)494 static void set_active(struct uac_rtd_params *prm, bool active)
495 {
496 // notifying through the Rate ctrl
497 unsigned long flags;
498
499 spin_lock_irqsave(&prm->lock, flags);
500 if (prm->active != active) {
501 prm->active = active;
502 snd_ctl_notify(prm->uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
503 &prm->snd_kctl_rate_id);
504 }
505 spin_unlock_irqrestore(&prm->lock, flags);
506 }
507
u_audio_set_capture_srate(struct g_audio * audio_dev,int srate)508 int u_audio_set_capture_srate(struct g_audio *audio_dev, int srate)
509 {
510 struct uac_params *params = &audio_dev->params;
511 struct snd_uac_chip *uac = audio_dev->uac;
512 struct uac_rtd_params *prm;
513 int i;
514 unsigned long flags;
515
516 dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate);
517 prm = &uac->c_prm;
518 for (i = 0; i < UAC_MAX_RATES; i++) {
519 if (params->c_srates[i] == srate) {
520 spin_lock_irqsave(&prm->lock, flags);
521 prm->srate = srate;
522 spin_unlock_irqrestore(&prm->lock, flags);
523 return 0;
524 }
525 if (params->c_srates[i] == 0)
526 break;
527 }
528
529 return -EINVAL;
530 }
531 EXPORT_SYMBOL_GPL(u_audio_set_capture_srate);
532
u_audio_get_capture_srate(struct g_audio * audio_dev,u32 * val)533 int u_audio_get_capture_srate(struct g_audio *audio_dev, u32 *val)
534 {
535 struct snd_uac_chip *uac = audio_dev->uac;
536 struct uac_rtd_params *prm;
537 unsigned long flags;
538
539 prm = &uac->c_prm;
540 spin_lock_irqsave(&prm->lock, flags);
541 *val = prm->srate;
542 spin_unlock_irqrestore(&prm->lock, flags);
543 return 0;
544 }
545 EXPORT_SYMBOL_GPL(u_audio_get_capture_srate);
546
u_audio_set_playback_srate(struct g_audio * audio_dev,int srate)547 int u_audio_set_playback_srate(struct g_audio *audio_dev, int srate)
548 {
549 struct uac_params *params = &audio_dev->params;
550 struct snd_uac_chip *uac = audio_dev->uac;
551 struct uac_rtd_params *prm;
552 int i;
553 unsigned long flags;
554
555 dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate);
556 prm = &uac->p_prm;
557 for (i = 0; i < UAC_MAX_RATES; i++) {
558 if (params->p_srates[i] == srate) {
559 spin_lock_irqsave(&prm->lock, flags);
560 prm->srate = srate;
561 spin_unlock_irqrestore(&prm->lock, flags);
562 return 0;
563 }
564 if (params->p_srates[i] == 0)
565 break;
566 }
567
568 return -EINVAL;
569 }
570 EXPORT_SYMBOL_GPL(u_audio_set_playback_srate);
571
u_audio_get_playback_srate(struct g_audio * audio_dev,u32 * val)572 int u_audio_get_playback_srate(struct g_audio *audio_dev, u32 *val)
573 {
574 struct snd_uac_chip *uac = audio_dev->uac;
575 struct uac_rtd_params *prm;
576 unsigned long flags;
577
578 prm = &uac->p_prm;
579 spin_lock_irqsave(&prm->lock, flags);
580 *val = prm->srate;
581 spin_unlock_irqrestore(&prm->lock, flags);
582 return 0;
583 }
584 EXPORT_SYMBOL_GPL(u_audio_get_playback_srate);
585
u_audio_start_capture(struct g_audio * audio_dev)586 int u_audio_start_capture(struct g_audio *audio_dev)
587 {
588 struct snd_uac_chip *uac = audio_dev->uac;
589 struct usb_gadget *gadget = audio_dev->gadget;
590 struct device *dev = &gadget->dev;
591 struct usb_request *req, *req_fback;
592 struct usb_ep *ep, *ep_fback;
593 struct uac_rtd_params *prm;
594 struct uac_params *params = &audio_dev->params;
595 int req_len, i, ret;
596
597 prm = &uac->c_prm;
598 dev_dbg(dev, "start capture with rate %d\n", prm->srate);
599 ep = audio_dev->out_ep;
600 ret = config_ep_by_speed(gadget, &audio_dev->func, ep);
601 if (ret < 0) {
602 dev_err(dev, "config_ep_by_speed for out_ep failed (%d)\n", ret);
603 return ret;
604 }
605
606 req_len = ep->maxpacket;
607
608 prm->ep_enabled = true;
609 ret = usb_ep_enable(ep);
610 if (ret < 0) {
611 dev_err(dev, "usb_ep_enable failed for out_ep (%d)\n", ret);
612 return ret;
613 }
614
615 for (i = 0; i < params->req_number; i++) {
616 if (!prm->reqs[i]) {
617 req = usb_ep_alloc_request(ep, GFP_ATOMIC);
618 if (req == NULL)
619 return -ENOMEM;
620
621 prm->reqs[i] = req;
622
623 req->zero = 0;
624 req->context = prm;
625 req->length = req_len;
626 req->complete = u_audio_iso_complete;
627 req->buf = prm->rbuf + i * ep->maxpacket;
628 }
629
630 if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC))
631 dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
632 }
633
634 set_active(&uac->c_prm, true);
635
636 ep_fback = audio_dev->in_ep_fback;
637 if (!ep_fback)
638 return 0;
639
640 /* Setup feedback endpoint */
641 ret = config_ep_by_speed(gadget, &audio_dev->func, ep_fback);
642 if (ret < 0) {
643 dev_err(dev, "config_ep_by_speed in_ep_fback failed (%d)\n", ret);
644 return ret; // TODO: Clean up out_ep
645 }
646
647 prm->fb_ep_enabled = true;
648 ret = usb_ep_enable(ep_fback);
649 if (ret < 0) {
650 dev_err(dev, "usb_ep_enable failed for in_ep_fback (%d)\n", ret);
651 return ret; // TODO: Clean up out_ep
652 }
653 req_len = ep_fback->maxpacket;
654
655 req_fback = usb_ep_alloc_request(ep_fback, GFP_ATOMIC);
656 if (req_fback == NULL)
657 return -ENOMEM;
658
659 prm->req_fback = req_fback;
660 req_fback->zero = 0;
661 req_fback->context = prm;
662 req_fback->length = req_len;
663 req_fback->complete = u_audio_iso_fback_complete;
664
665 req_fback->buf = kzalloc(req_len, GFP_ATOMIC);
666 if (!req_fback->buf)
667 return -ENOMEM;
668
669 /*
670 * Configure the feedback endpoint's reported frequency.
671 * Always start with original frequency since its deviation can't
672 * be meauserd at start of playback
673 */
674 prm->pitch = 1000000;
675 u_audio_set_fback_frequency(audio_dev->gadget->speed, ep,
676 prm->srate, prm->pitch,
677 req_fback->buf);
678
679 if (usb_ep_queue(ep_fback, req_fback, GFP_ATOMIC))
680 dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(u_audio_start_capture);
685
u_audio_stop_capture(struct g_audio * audio_dev)686 void u_audio_stop_capture(struct g_audio *audio_dev)
687 {
688 struct snd_uac_chip *uac = audio_dev->uac;
689
690 set_active(&uac->c_prm, false);
691 if (audio_dev->in_ep_fback)
692 free_ep_fback(&uac->c_prm, audio_dev->in_ep_fback);
693 free_ep(&uac->c_prm, audio_dev->out_ep);
694 }
695 EXPORT_SYMBOL_GPL(u_audio_stop_capture);
696
u_audio_start_playback(struct g_audio * audio_dev)697 int u_audio_start_playback(struct g_audio *audio_dev)
698 {
699 struct snd_uac_chip *uac = audio_dev->uac;
700 struct usb_gadget *gadget = audio_dev->gadget;
701 struct device *dev = &gadget->dev;
702 struct usb_request *req;
703 struct usb_ep *ep;
704 struct uac_rtd_params *prm;
705 struct uac_params *params = &audio_dev->params;
706 unsigned int factor;
707 const struct usb_endpoint_descriptor *ep_desc;
708 int req_len, i, ret;
709 unsigned int p_pktsize;
710
711 prm = &uac->p_prm;
712 dev_dbg(dev, "start playback with rate %d\n", prm->srate);
713 ep = audio_dev->in_ep;
714 ret = config_ep_by_speed(gadget, &audio_dev->func, ep);
715 if (ret < 0) {
716 dev_err(dev, "config_ep_by_speed for in_ep failed (%d)\n", ret);
717 return ret;
718 }
719
720 ep_desc = ep->desc;
721 /*
722 * Always start with original frequency
723 */
724 prm->pitch = 1000000;
725
726 /* pre-calculate the playback endpoint's interval */
727 if (gadget->speed == USB_SPEED_FULL)
728 factor = 1000;
729 else
730 factor = 8000;
731
732 /* pre-compute some values for iso_complete() */
733 uac->p_framesize = params->p_ssize *
734 num_channels(params->p_chmask);
735 uac->p_interval = factor / (1 << (ep_desc->bInterval - 1));
736 p_pktsize = min_t(unsigned int,
737 uac->p_framesize *
738 (prm->srate / uac->p_interval),
739 ep->maxpacket);
740
741 req_len = p_pktsize;
742 uac->p_residue_mil = 0;
743
744 prm->ep_enabled = true;
745 ret = usb_ep_enable(ep);
746 if (ret < 0) {
747 dev_err(dev, "usb_ep_enable failed for in_ep (%d)\n", ret);
748 return ret;
749 }
750
751 for (i = 0; i < params->req_number; i++) {
752 if (!prm->reqs[i]) {
753 req = usb_ep_alloc_request(ep, GFP_ATOMIC);
754 if (req == NULL)
755 return -ENOMEM;
756
757 prm->reqs[i] = req;
758
759 req->zero = 0;
760 req->context = prm;
761 req->length = req_len;
762 req->complete = u_audio_iso_complete;
763 req->buf = prm->rbuf + i * ep->maxpacket;
764 }
765
766 if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC))
767 dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
768 }
769
770 set_active(&uac->p_prm, true);
771
772 return 0;
773 }
774 EXPORT_SYMBOL_GPL(u_audio_start_playback);
775
u_audio_stop_playback(struct g_audio * audio_dev)776 void u_audio_stop_playback(struct g_audio *audio_dev)
777 {
778 struct snd_uac_chip *uac = audio_dev->uac;
779
780 set_active(&uac->p_prm, false);
781 free_ep(&uac->p_prm, audio_dev->in_ep);
782 }
783 EXPORT_SYMBOL_GPL(u_audio_stop_playback);
784
u_audio_suspend(struct g_audio * audio_dev)785 void u_audio_suspend(struct g_audio *audio_dev)
786 {
787 struct snd_uac_chip *uac = audio_dev->uac;
788
789 set_active(&uac->p_prm, false);
790 set_active(&uac->c_prm, false);
791 }
792 EXPORT_SYMBOL_GPL(u_audio_suspend);
793
u_audio_get_volume(struct g_audio * audio_dev,int playback,s16 * val)794 int u_audio_get_volume(struct g_audio *audio_dev, int playback, s16 *val)
795 {
796 struct snd_uac_chip *uac = audio_dev->uac;
797 struct uac_rtd_params *prm;
798 unsigned long flags;
799
800 if (playback)
801 prm = &uac->p_prm;
802 else
803 prm = &uac->c_prm;
804
805 spin_lock_irqsave(&prm->lock, flags);
806 *val = prm->volume;
807 spin_unlock_irqrestore(&prm->lock, flags);
808
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(u_audio_get_volume);
812
u_audio_set_volume(struct g_audio * audio_dev,int playback,s16 val)813 int u_audio_set_volume(struct g_audio *audio_dev, int playback, s16 val)
814 {
815 struct snd_uac_chip *uac = audio_dev->uac;
816 struct uac_rtd_params *prm;
817 unsigned long flags;
818 int change = 0;
819
820 if (playback)
821 prm = &uac->p_prm;
822 else
823 prm = &uac->c_prm;
824
825 spin_lock_irqsave(&prm->lock, flags);
826 val = clamp(val, prm->volume_min, prm->volume_max);
827 if (prm->volume != val) {
828 prm->volume = val;
829 change = 1;
830 }
831 spin_unlock_irqrestore(&prm->lock, flags);
832
833 if (change)
834 snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
835 &prm->snd_kctl_volume_id);
836
837 return 0;
838 }
839 EXPORT_SYMBOL_GPL(u_audio_set_volume);
840
u_audio_get_mute(struct g_audio * audio_dev,int playback,int * val)841 int u_audio_get_mute(struct g_audio *audio_dev, int playback, int *val)
842 {
843 struct snd_uac_chip *uac = audio_dev->uac;
844 struct uac_rtd_params *prm;
845 unsigned long flags;
846
847 if (playback)
848 prm = &uac->p_prm;
849 else
850 prm = &uac->c_prm;
851
852 spin_lock_irqsave(&prm->lock, flags);
853 *val = prm->mute;
854 spin_unlock_irqrestore(&prm->lock, flags);
855
856 return 0;
857 }
858 EXPORT_SYMBOL_GPL(u_audio_get_mute);
859
u_audio_set_mute(struct g_audio * audio_dev,int playback,int val)860 int u_audio_set_mute(struct g_audio *audio_dev, int playback, int val)
861 {
862 struct snd_uac_chip *uac = audio_dev->uac;
863 struct uac_rtd_params *prm;
864 unsigned long flags;
865 int change = 0;
866 int mute;
867
868 if (playback)
869 prm = &uac->p_prm;
870 else
871 prm = &uac->c_prm;
872
873 mute = val ? 1 : 0;
874
875 spin_lock_irqsave(&prm->lock, flags);
876 if (prm->mute != mute) {
877 prm->mute = mute;
878 change = 1;
879 }
880 spin_unlock_irqrestore(&prm->lock, flags);
881
882 if (change)
883 snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
884 &prm->snd_kctl_mute_id);
885
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(u_audio_set_mute);
889
890
u_audio_pitch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)891 static int u_audio_pitch_info(struct snd_kcontrol *kcontrol,
892 struct snd_ctl_elem_info *uinfo)
893 {
894 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
895 struct snd_uac_chip *uac = prm->uac;
896 struct g_audio *audio_dev = uac->audio_dev;
897 struct uac_params *params = &audio_dev->params;
898 unsigned int pitch_min, pitch_max;
899
900 pitch_min = (1000 - FBACK_SLOW_MAX) * 1000;
901 pitch_max = (1000 + params->fb_max) * 1000;
902
903 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
904 uinfo->count = 1;
905 uinfo->value.integer.min = pitch_min;
906 uinfo->value.integer.max = pitch_max;
907 uinfo->value.integer.step = 1;
908 return 0;
909 }
910
u_audio_pitch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)911 static int u_audio_pitch_get(struct snd_kcontrol *kcontrol,
912 struct snd_ctl_elem_value *ucontrol)
913 {
914 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
915
916 ucontrol->value.integer.value[0] = prm->pitch;
917
918 return 0;
919 }
920
u_audio_pitch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)921 static int u_audio_pitch_put(struct snd_kcontrol *kcontrol,
922 struct snd_ctl_elem_value *ucontrol)
923 {
924 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
925 struct snd_uac_chip *uac = prm->uac;
926 struct g_audio *audio_dev = uac->audio_dev;
927 struct uac_params *params = &audio_dev->params;
928 unsigned int val;
929 unsigned int pitch_min, pitch_max;
930 int change = 0;
931
932 pitch_min = (1000 - FBACK_SLOW_MAX) * 1000;
933 pitch_max = (1000 + params->fb_max) * 1000;
934
935 val = ucontrol->value.integer.value[0];
936
937 if (val < pitch_min)
938 val = pitch_min;
939 if (val > pitch_max)
940 val = pitch_max;
941
942 if (prm->pitch != val) {
943 prm->pitch = val;
944 change = 1;
945 }
946
947 return change;
948 }
949
u_audio_mute_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)950 static int u_audio_mute_info(struct snd_kcontrol *kcontrol,
951 struct snd_ctl_elem_info *uinfo)
952 {
953 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
954 uinfo->count = 1;
955 uinfo->value.integer.min = 0;
956 uinfo->value.integer.max = 1;
957 uinfo->value.integer.step = 1;
958
959 return 0;
960 }
961
u_audio_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)962 static int u_audio_mute_get(struct snd_kcontrol *kcontrol,
963 struct snd_ctl_elem_value *ucontrol)
964 {
965 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
966 unsigned long flags;
967
968 spin_lock_irqsave(&prm->lock, flags);
969 ucontrol->value.integer.value[0] = !prm->mute;
970 spin_unlock_irqrestore(&prm->lock, flags);
971
972 return 0;
973 }
974
u_audio_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)975 static int u_audio_mute_put(struct snd_kcontrol *kcontrol,
976 struct snd_ctl_elem_value *ucontrol)
977 {
978 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
979 struct snd_uac_chip *uac = prm->uac;
980 struct g_audio *audio_dev = uac->audio_dev;
981 unsigned int val;
982 unsigned long flags;
983 int change = 0;
984
985 val = !ucontrol->value.integer.value[0];
986
987 spin_lock_irqsave(&prm->lock, flags);
988 if (val != prm->mute) {
989 prm->mute = val;
990 change = 1;
991 }
992 spin_unlock_irqrestore(&prm->lock, flags);
993
994 if (change && audio_dev->notify)
995 audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_MUTE);
996
997 return change;
998 }
999
1000 /*
1001 * TLV callback for mixer volume controls
1002 */
u_audio_volume_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * _tlv)1003 static int u_audio_volume_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1004 unsigned int size, unsigned int __user *_tlv)
1005 {
1006 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1007 DECLARE_TLV_DB_MINMAX(scale, 0, 0);
1008
1009 if (size < sizeof(scale))
1010 return -ENOMEM;
1011
1012 /* UAC volume resolution is 1/256 dB, TLV is 1/100 dB */
1013 scale[2] = (prm->volume_min * 100) / 256;
1014 scale[3] = (prm->volume_max * 100) / 256;
1015 if (copy_to_user(_tlv, scale, sizeof(scale)))
1016 return -EFAULT;
1017
1018 return 0;
1019 }
1020
u_audio_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1021 static int u_audio_volume_info(struct snd_kcontrol *kcontrol,
1022 struct snd_ctl_elem_info *uinfo)
1023 {
1024 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1025
1026 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1027 uinfo->count = 1;
1028 uinfo->value.integer.min = 0;
1029 uinfo->value.integer.max =
1030 (prm->volume_max - prm->volume_min + prm->volume_res - 1)
1031 / prm->volume_res;
1032 uinfo->value.integer.step = 1;
1033
1034 return 0;
1035 }
1036
u_audio_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1037 static int u_audio_volume_get(struct snd_kcontrol *kcontrol,
1038 struct snd_ctl_elem_value *ucontrol)
1039 {
1040 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&prm->lock, flags);
1044 ucontrol->value.integer.value[0] =
1045 (prm->volume - prm->volume_min) / prm->volume_res;
1046 spin_unlock_irqrestore(&prm->lock, flags);
1047
1048 return 0;
1049 }
1050
u_audio_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1051 static int u_audio_volume_put(struct snd_kcontrol *kcontrol,
1052 struct snd_ctl_elem_value *ucontrol)
1053 {
1054 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1055 struct snd_uac_chip *uac = prm->uac;
1056 struct g_audio *audio_dev = uac->audio_dev;
1057 unsigned int val;
1058 s16 volume;
1059 unsigned long flags;
1060 int change = 0;
1061
1062 val = ucontrol->value.integer.value[0];
1063
1064 spin_lock_irqsave(&prm->lock, flags);
1065 volume = (val * prm->volume_res) + prm->volume_min;
1066 volume = clamp(volume, prm->volume_min, prm->volume_max);
1067 if (volume != prm->volume) {
1068 prm->volume = volume;
1069 change = 1;
1070 }
1071 spin_unlock_irqrestore(&prm->lock, flags);
1072
1073 if (change && audio_dev->notify)
1074 audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_VOLUME);
1075
1076 return change;
1077 }
1078
get_max_srate(const int * srates)1079 static int get_max_srate(const int *srates)
1080 {
1081 int i, max_srate = 0;
1082
1083 for (i = 0; i < UAC_MAX_RATES; i++) {
1084 if (srates[i] == 0)
1085 break;
1086 if (srates[i] > max_srate)
1087 max_srate = srates[i];
1088 }
1089 return max_srate;
1090 }
1091
get_min_srate(const int * srates)1092 static int get_min_srate(const int *srates)
1093 {
1094 int i, min_srate = INT_MAX;
1095
1096 for (i = 0; i < UAC_MAX_RATES; i++) {
1097 if (srates[i] == 0)
1098 break;
1099 if (srates[i] < min_srate)
1100 min_srate = srates[i];
1101 }
1102 return min_srate;
1103 }
1104
u_audio_rate_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1105 static int u_audio_rate_info(struct snd_kcontrol *kcontrol,
1106 struct snd_ctl_elem_info *uinfo)
1107 {
1108 const int *srates;
1109 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1110 struct snd_uac_chip *uac = prm->uac;
1111 struct g_audio *audio_dev = uac->audio_dev;
1112 struct uac_params *params = &audio_dev->params;
1113
1114 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1115 uinfo->count = 1;
1116
1117 if (prm == &uac->c_prm)
1118 srates = params->c_srates;
1119 else
1120 srates = params->p_srates;
1121 uinfo->value.integer.min = get_min_srate(srates);
1122 uinfo->value.integer.max = get_max_srate(srates);
1123 return 0;
1124 }
1125
u_audio_rate_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1126 static int u_audio_rate_get(struct snd_kcontrol *kcontrol,
1127 struct snd_ctl_elem_value *ucontrol)
1128 {
1129 struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1130 unsigned long flags;
1131
1132 spin_lock_irqsave(&prm->lock, flags);
1133 if (prm->active)
1134 ucontrol->value.integer.value[0] = prm->srate;
1135 else
1136 /* not active: reporting zero rate */
1137 ucontrol->value.integer.value[0] = 0;
1138 spin_unlock_irqrestore(&prm->lock, flags);
1139 return 0;
1140 }
1141
1142 static struct snd_kcontrol_new u_audio_controls[] = {
1143 [UAC_FBACK_CTRL] {
1144 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1145 .name = "Capture Pitch 1000000",
1146 .info = u_audio_pitch_info,
1147 .get = u_audio_pitch_get,
1148 .put = u_audio_pitch_put,
1149 },
1150 [UAC_P_PITCH_CTRL] {
1151 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1152 .name = "Playback Pitch 1000000",
1153 .info = u_audio_pitch_info,
1154 .get = u_audio_pitch_get,
1155 .put = u_audio_pitch_put,
1156 },
1157 [UAC_MUTE_CTRL] {
1158 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1159 .name = "", /* will be filled later */
1160 .info = u_audio_mute_info,
1161 .get = u_audio_mute_get,
1162 .put = u_audio_mute_put,
1163 },
1164 [UAC_VOLUME_CTRL] {
1165 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1166 .name = "", /* will be filled later */
1167 .info = u_audio_volume_info,
1168 .get = u_audio_volume_get,
1169 .put = u_audio_volume_put,
1170 },
1171 [UAC_RATE_CTRL] {
1172 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1173 .name = "", /* will be filled later */
1174 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1175 .info = u_audio_rate_info,
1176 .get = u_audio_rate_get,
1177 },
1178 };
1179
g_audio_setup(struct g_audio * g_audio,const char * pcm_name,const char * card_name)1180 int g_audio_setup(struct g_audio *g_audio, const char *pcm_name,
1181 const char *card_name)
1182 {
1183 struct snd_uac_chip *uac;
1184 struct snd_card *card;
1185 struct snd_pcm *pcm;
1186 struct snd_kcontrol *kctl;
1187 struct uac_params *params;
1188 int p_chmask, c_chmask;
1189 int i, err;
1190
1191 if (!g_audio)
1192 return -EINVAL;
1193
1194 uac = kzalloc(sizeof(*uac), GFP_KERNEL);
1195 if (!uac)
1196 return -ENOMEM;
1197 g_audio->uac = uac;
1198 uac->audio_dev = g_audio;
1199
1200 params = &g_audio->params;
1201 p_chmask = params->p_chmask;
1202 c_chmask = params->c_chmask;
1203
1204 if (c_chmask) {
1205 struct uac_rtd_params *prm = &uac->c_prm;
1206
1207 spin_lock_init(&prm->lock);
1208 uac->c_prm.uac = uac;
1209 prm->max_psize = g_audio->out_ep_maxpsize;
1210 prm->srate = params->c_srates[0];
1211
1212 prm->reqs = kcalloc(params->req_number,
1213 sizeof(struct usb_request *),
1214 GFP_KERNEL);
1215 if (!prm->reqs) {
1216 err = -ENOMEM;
1217 goto fail;
1218 }
1219
1220 prm->rbuf = kcalloc(params->req_number, prm->max_psize,
1221 GFP_KERNEL);
1222 if (!prm->rbuf) {
1223 prm->max_psize = 0;
1224 err = -ENOMEM;
1225 goto fail;
1226 }
1227 }
1228
1229 if (p_chmask) {
1230 struct uac_rtd_params *prm = &uac->p_prm;
1231
1232 spin_lock_init(&prm->lock);
1233 uac->p_prm.uac = uac;
1234 prm->max_psize = g_audio->in_ep_maxpsize;
1235 prm->srate = params->p_srates[0];
1236
1237 prm->reqs = kcalloc(params->req_number,
1238 sizeof(struct usb_request *),
1239 GFP_KERNEL);
1240 if (!prm->reqs) {
1241 err = -ENOMEM;
1242 goto fail;
1243 }
1244
1245 prm->rbuf = kcalloc(params->req_number, prm->max_psize,
1246 GFP_KERNEL);
1247 if (!prm->rbuf) {
1248 prm->max_psize = 0;
1249 err = -ENOMEM;
1250 goto fail;
1251 }
1252 }
1253
1254 /* Choose any slot, with no id */
1255 err = snd_card_new(&g_audio->gadget->dev,
1256 -1, NULL, THIS_MODULE, 0, &card);
1257 if (err < 0)
1258 goto fail;
1259
1260 uac->card = card;
1261
1262 /*
1263 * Create first PCM device
1264 * Create a substream only for non-zero channel streams
1265 */
1266 err = snd_pcm_new(uac->card, pcm_name, 0,
1267 p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm);
1268 if (err < 0)
1269 goto snd_fail;
1270
1271 strscpy(pcm->name, pcm_name, sizeof(pcm->name));
1272 pcm->private_data = uac;
1273 uac->pcm = pcm;
1274
1275 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops);
1276 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops);
1277
1278 /*
1279 * Create mixer and controls
1280 * Create only if it's required on USB side
1281 */
1282 if ((c_chmask && g_audio->in_ep_fback)
1283 || (p_chmask && params->p_fu.id)
1284 || (c_chmask && params->c_fu.id))
1285 strscpy(card->mixername, card_name, sizeof(card->driver));
1286
1287 if (c_chmask && g_audio->in_ep_fback) {
1288 kctl = snd_ctl_new1(&u_audio_controls[UAC_FBACK_CTRL],
1289 &uac->c_prm);
1290 if (!kctl) {
1291 err = -ENOMEM;
1292 goto snd_fail;
1293 }
1294
1295 kctl->id.device = pcm->device;
1296 kctl->id.subdevice = 0;
1297
1298 err = snd_ctl_add(card, kctl);
1299 if (err < 0)
1300 goto snd_fail;
1301 }
1302
1303 if (p_chmask) {
1304 kctl = snd_ctl_new1(&u_audio_controls[UAC_P_PITCH_CTRL],
1305 &uac->p_prm);
1306 if (!kctl) {
1307 err = -ENOMEM;
1308 goto snd_fail;
1309 }
1310
1311 kctl->id.device = pcm->device;
1312 kctl->id.subdevice = 0;
1313
1314 err = snd_ctl_add(card, kctl);
1315 if (err < 0)
1316 goto snd_fail;
1317 }
1318
1319 for (i = 0; i <= SNDRV_PCM_STREAM_LAST; i++) {
1320 struct uac_rtd_params *prm;
1321 struct uac_fu_params *fu;
1322 char ctrl_name[24];
1323 char *direction;
1324
1325 if (!pcm->streams[i].substream_count)
1326 continue;
1327
1328 if (i == SNDRV_PCM_STREAM_PLAYBACK) {
1329 prm = &uac->p_prm;
1330 fu = ¶ms->p_fu;
1331 direction = "Playback";
1332 } else {
1333 prm = &uac->c_prm;
1334 fu = ¶ms->c_fu;
1335 direction = "Capture";
1336 }
1337
1338 prm->fu_id = fu->id;
1339
1340 if (fu->mute_present) {
1341 snprintf(ctrl_name, sizeof(ctrl_name),
1342 "PCM %s Switch", direction);
1343
1344 u_audio_controls[UAC_MUTE_CTRL].name = ctrl_name;
1345
1346 kctl = snd_ctl_new1(&u_audio_controls[UAC_MUTE_CTRL],
1347 prm);
1348 if (!kctl) {
1349 err = -ENOMEM;
1350 goto snd_fail;
1351 }
1352
1353 kctl->id.device = pcm->device;
1354 kctl->id.subdevice = 0;
1355
1356 err = snd_ctl_add(card, kctl);
1357 if (err < 0)
1358 goto snd_fail;
1359 prm->snd_kctl_mute_id = kctl->id;
1360 prm->mute = 0;
1361 }
1362
1363 if (fu->volume_present) {
1364 snprintf(ctrl_name, sizeof(ctrl_name),
1365 "PCM %s Volume", direction);
1366
1367 u_audio_controls[UAC_VOLUME_CTRL].name = ctrl_name;
1368
1369 kctl = snd_ctl_new1(&u_audio_controls[UAC_VOLUME_CTRL],
1370 prm);
1371 if (!kctl) {
1372 err = -ENOMEM;
1373 goto snd_fail;
1374 }
1375
1376 kctl->id.device = pcm->device;
1377 kctl->id.subdevice = 0;
1378
1379
1380 kctl->tlv.c = u_audio_volume_tlv;
1381 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ |
1382 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
1383
1384 err = snd_ctl_add(card, kctl);
1385 if (err < 0)
1386 goto snd_fail;
1387 prm->snd_kctl_volume_id = kctl->id;
1388 prm->volume = fu->volume_max;
1389 prm->volume_max = fu->volume_max;
1390 prm->volume_min = fu->volume_min;
1391 prm->volume_res = fu->volume_res;
1392 }
1393
1394 /* Add rate control */
1395 snprintf(ctrl_name, sizeof(ctrl_name),
1396 "%s Rate", direction);
1397 u_audio_controls[UAC_RATE_CTRL].name = ctrl_name;
1398
1399 kctl = snd_ctl_new1(&u_audio_controls[UAC_RATE_CTRL], prm);
1400 if (!kctl) {
1401 err = -ENOMEM;
1402 goto snd_fail;
1403 }
1404
1405 kctl->id.device = pcm->device;
1406 kctl->id.subdevice = 0;
1407
1408 err = snd_ctl_add(card, kctl);
1409 if (err < 0)
1410 goto snd_fail;
1411 prm->snd_kctl_rate_id = kctl->id;
1412 }
1413
1414 strscpy(card->driver, card_name, sizeof(card->driver));
1415 strscpy(card->shortname, card_name, sizeof(card->shortname));
1416 sprintf(card->longname, "%s %i", card_name, card->dev->id);
1417
1418 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1419 NULL, 0, BUFF_SIZE_MAX);
1420
1421 err = snd_card_register(card);
1422
1423 if (!err)
1424 return 0;
1425
1426 snd_fail:
1427 snd_card_free(card);
1428 fail:
1429 kfree(uac->p_prm.reqs);
1430 kfree(uac->c_prm.reqs);
1431 kfree(uac->p_prm.rbuf);
1432 kfree(uac->c_prm.rbuf);
1433 kfree(uac);
1434
1435 return err;
1436 }
1437 EXPORT_SYMBOL_GPL(g_audio_setup);
1438
g_audio_cleanup(struct g_audio * g_audio)1439 void g_audio_cleanup(struct g_audio *g_audio)
1440 {
1441 struct snd_uac_chip *uac;
1442 struct snd_card *card;
1443
1444 if (!g_audio || !g_audio->uac)
1445 return;
1446
1447 uac = g_audio->uac;
1448 g_audio->uac = NULL;
1449
1450 card = uac->card;
1451 if (card)
1452 snd_card_free_when_closed(card);
1453
1454 kfree(uac->p_prm.reqs);
1455 kfree(uac->c_prm.reqs);
1456 kfree(uac->p_prm.rbuf);
1457 kfree(uac->c_prm.rbuf);
1458 kfree(uac);
1459 }
1460 EXPORT_SYMBOL_GPL(g_audio_cleanup);
1461
1462 MODULE_LICENSE("GPL");
1463 MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities");
1464 MODULE_AUTHOR("Ruslan Bilovol");
1465