xref: /openbmc/linux/arch/parisc/kernel/irq.c (revision cbdac824)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Code to handle x86 style IRQs plus some generic interrupt stuff.
4  *
5  * Copyright (C) 1992 Linus Torvalds
6  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
7  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
8  * Copyright (C) 1999-2000 Grant Grundler
9  * Copyright (c) 2005 Matthew Wilcox
10  */
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/types.h>
18 #include <linux/sched/task_stack.h>
19 #include <asm/io.h>
20 
21 #include <asm/softirq_stack.h>
22 #include <asm/smp.h>
23 #include <asm/ldcw.h>
24 
25 #undef PARISC_IRQ_CR16_COUNTS
26 
27 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
28 
29 /* Bits in EIEM correlate with cpu_irq_action[].
30 ** Numbered *Big Endian*! (ie bit 0 is MSB)
31 */
32 static volatile unsigned long cpu_eiem = 0;
33 
34 /*
35 ** local ACK bitmap ... habitually set to 1, but reset to zero
36 ** between ->ack() and ->end() of the interrupt to prevent
37 ** re-interruption of a processing interrupt.
38 */
39 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
40 
cpu_mask_irq(struct irq_data * d)41 static void cpu_mask_irq(struct irq_data *d)
42 {
43 	unsigned long eirr_bit = EIEM_MASK(d->irq);
44 
45 	cpu_eiem &= ~eirr_bit;
46 	/* Do nothing on the other CPUs.  If they get this interrupt,
47 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
48 	 * handle it, and the set_eiem() at the bottom will ensure it
49 	 * then gets disabled */
50 }
51 
__cpu_unmask_irq(unsigned int irq)52 static void __cpu_unmask_irq(unsigned int irq)
53 {
54 	unsigned long eirr_bit = EIEM_MASK(irq);
55 
56 	cpu_eiem |= eirr_bit;
57 
58 	/* This is just a simple NOP IPI.  But what it does is cause
59 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
60 	 * of the interrupt handler */
61 	smp_send_all_nop();
62 }
63 
cpu_unmask_irq(struct irq_data * d)64 static void cpu_unmask_irq(struct irq_data *d)
65 {
66 	__cpu_unmask_irq(d->irq);
67 }
68 
cpu_ack_irq(struct irq_data * d)69 void cpu_ack_irq(struct irq_data *d)
70 {
71 	unsigned long mask = EIEM_MASK(d->irq);
72 	int cpu = smp_processor_id();
73 
74 	/* Clear in EIEM so we can no longer process */
75 	per_cpu(local_ack_eiem, cpu) &= ~mask;
76 
77 	/* disable the interrupt */
78 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
79 
80 	/* and now ack it */
81 	mtctl(mask, 23);
82 }
83 
cpu_eoi_irq(struct irq_data * d)84 void cpu_eoi_irq(struct irq_data *d)
85 {
86 	unsigned long mask = EIEM_MASK(d->irq);
87 	int cpu = smp_processor_id();
88 
89 	/* set it in the eiems---it's no longer in process */
90 	per_cpu(local_ack_eiem, cpu) |= mask;
91 
92 	/* enable the interrupt */
93 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
94 }
95 
96 #ifdef CONFIG_SMP
cpu_check_affinity(struct irq_data * d,const struct cpumask * dest)97 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
98 {
99 	int cpu_dest;
100 
101 	/* timer and ipi have to always be received on all CPUs */
102 	if (irqd_is_per_cpu(d))
103 		return -EINVAL;
104 
105 	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
106 	if (cpu_dest >= nr_cpu_ids)
107 		cpu_dest = cpumask_first(cpu_online_mask);
108 
109 	return cpu_dest;
110 }
111 #endif
112 
113 static struct irq_chip cpu_interrupt_type = {
114 	.name			= "CPU",
115 	.irq_mask		= cpu_mask_irq,
116 	.irq_unmask		= cpu_unmask_irq,
117 	.irq_ack		= cpu_ack_irq,
118 	.irq_eoi		= cpu_eoi_irq,
119 	/* XXX: Needs to be written.  We managed without it so far, but
120 	 * we really ought to write it.
121 	 */
122 	.irq_retrigger	= NULL,
123 };
124 
125 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
126 #define irq_stats(x)		(&per_cpu(irq_stat, x))
127 
128 /*
129  * /proc/interrupts printing for arch specific interrupts
130  */
arch_show_interrupts(struct seq_file * p,int prec)131 int arch_show_interrupts(struct seq_file *p, int prec)
132 {
133 	int j;
134 
135 #ifdef CONFIG_DEBUG_STACKOVERFLOW
136 	seq_printf(p, "%*s: ", prec, "STK");
137 	for_each_online_cpu(j)
138 		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
139 	seq_puts(p, "  Kernel stack usage\n");
140 # ifdef CONFIG_IRQSTACKS
141 	seq_printf(p, "%*s: ", prec, "IST");
142 	for_each_online_cpu(j)
143 		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
144 	seq_puts(p, "  Interrupt stack usage\n");
145 # endif
146 #endif
147 #ifdef CONFIG_SMP
148 	if (num_online_cpus() > 1) {
149 		seq_printf(p, "%*s: ", prec, "RES");
150 		for_each_online_cpu(j)
151 			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
152 		seq_puts(p, "  Rescheduling interrupts\n");
153 		seq_printf(p, "%*s: ", prec, "CAL");
154 		for_each_online_cpu(j)
155 			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
156 		seq_puts(p, "  Function call interrupts\n");
157 	}
158 #endif
159 	seq_printf(p, "%*s: ", prec, "UAH");
160 	for_each_online_cpu(j)
161 		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
162 	seq_puts(p, "  Unaligned access handler traps\n");
163 	seq_printf(p, "%*s: ", prec, "FPA");
164 	for_each_online_cpu(j)
165 		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
166 	seq_puts(p, "  Floating point assist traps\n");
167 	seq_printf(p, "%*s: ", prec, "TLB");
168 	for_each_online_cpu(j)
169 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
170 	seq_puts(p, "  TLB shootdowns\n");
171 	return 0;
172 }
173 
show_interrupts(struct seq_file * p,void * v)174 int show_interrupts(struct seq_file *p, void *v)
175 {
176 	int i = *(loff_t *) v, j;
177 	unsigned long flags;
178 
179 	if (i == 0) {
180 		seq_puts(p, "    ");
181 		for_each_online_cpu(j)
182 			seq_printf(p, "       CPU%d", j);
183 
184 #ifdef PARISC_IRQ_CR16_COUNTS
185 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
186 #endif
187 		seq_putc(p, '\n');
188 	}
189 
190 	if (i < NR_IRQS) {
191 		struct irq_desc *desc = irq_to_desc(i);
192 		struct irqaction *action;
193 
194 		raw_spin_lock_irqsave(&desc->lock, flags);
195 		action = desc->action;
196 		if (!action)
197 			goto skip;
198 		seq_printf(p, "%3d: ", i);
199 
200 		for_each_online_cpu(j)
201 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
202 
203 		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
204 #ifndef PARISC_IRQ_CR16_COUNTS
205 		seq_printf(p, "  %s", action->name);
206 
207 		while ((action = action->next))
208 			seq_printf(p, ", %s", action->name);
209 #else
210 		for ( ;action; action = action->next) {
211 			unsigned int k, avg, min, max;
212 
213 			min = max = action->cr16_hist[0];
214 
215 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
216 				int hist = action->cr16_hist[k];
217 
218 				if (hist) {
219 					avg += hist;
220 				} else
221 					break;
222 
223 				if (hist > max) max = hist;
224 				if (hist < min) min = hist;
225 			}
226 
227 			avg /= k;
228 			seq_printf(p, " %s[%d/%d/%d]", action->name,
229 					min,avg,max);
230 		}
231 #endif
232 
233 		seq_putc(p, '\n');
234  skip:
235 		raw_spin_unlock_irqrestore(&desc->lock, flags);
236 	}
237 
238 	if (i == NR_IRQS)
239 		arch_show_interrupts(p, 3);
240 
241 	return 0;
242 }
243 
244 
245 
246 /*
247 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
248 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
249 **
250 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
251 ** Then use that to get the Transaction address and data.
252 */
253 
cpu_claim_irq(unsigned int irq,struct irq_chip * type,void * data)254 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
255 {
256 	if (irq_has_action(irq))
257 		return -EBUSY;
258 	if (irq_get_chip(irq) != &cpu_interrupt_type)
259 		return -EBUSY;
260 
261 	/* for iosapic interrupts */
262 	if (type) {
263 		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
264 		irq_set_chip_data(irq, data);
265 		__cpu_unmask_irq(irq);
266 	}
267 	return 0;
268 }
269 
txn_claim_irq(int irq)270 int txn_claim_irq(int irq)
271 {
272 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
273 }
274 
275 /*
276  * The bits_wide parameter accommodates the limitations of the HW/SW which
277  * use these bits:
278  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
279  * V-class (EPIC):          6 bits
280  * N/L/A-class (iosapic):   8 bits
281  * PCI 2.2 MSI:            16 bits
282  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
283  *
284  * On the service provider side:
285  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
286  * o PA 2.0 wide mode                   6-bits (per processor)
287  * o IA64                               8-bits (0-256 total)
288  *
289  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
290  * by the processor...and the N/L-class I/O subsystem supports more bits than
291  * PA2.0 has. The first case is the problem.
292  */
txn_alloc_irq(unsigned int bits_wide)293 int txn_alloc_irq(unsigned int bits_wide)
294 {
295 	int irq;
296 
297 	/* never return irq 0 cause that's the interval timer */
298 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
299 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
300 			continue;
301 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
302 			continue;
303 		return irq;
304 	}
305 
306 	/* unlikely, but be prepared */
307 	return -1;
308 }
309 
310 
txn_affinity_addr(unsigned int irq,int cpu)311 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
312 {
313 #ifdef CONFIG_SMP
314 	struct irq_data *d = irq_get_irq_data(irq);
315 	irq_data_update_affinity(d, cpumask_of(cpu));
316 #endif
317 
318 	return per_cpu(cpu_data, cpu).txn_addr;
319 }
320 
321 
txn_alloc_addr(unsigned int virt_irq)322 unsigned long txn_alloc_addr(unsigned int virt_irq)
323 {
324 	static int next_cpu = -1;
325 
326 	next_cpu++; /* assign to "next" CPU we want this bugger on */
327 
328 	/* validate entry */
329 	while ((next_cpu < nr_cpu_ids) &&
330 		(!per_cpu(cpu_data, next_cpu).txn_addr ||
331 		 !cpu_online(next_cpu)))
332 		next_cpu++;
333 
334 	if (next_cpu >= nr_cpu_ids)
335 		next_cpu = 0;	/* nothing else, assign monarch */
336 
337 	return txn_affinity_addr(virt_irq, next_cpu);
338 }
339 
340 
txn_alloc_data(unsigned int virt_irq)341 unsigned int txn_alloc_data(unsigned int virt_irq)
342 {
343 	return virt_irq - CPU_IRQ_BASE;
344 }
345 
eirr_to_irq(unsigned long eirr)346 static inline int eirr_to_irq(unsigned long eirr)
347 {
348 	int bit = fls_long(eirr);
349 	return (BITS_PER_LONG - bit) + TIMER_IRQ;
350 }
351 
352 #ifdef CONFIG_IRQSTACKS
353 /*
354  * IRQ STACK - used for irq handler
355  */
356 #ifdef CONFIG_64BIT
357 #define IRQ_STACK_SIZE      (4096 << 4) /* 64k irq stack size */
358 #else
359 #define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
360 #endif
361 
362 union irq_stack_union {
363 	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
364 	volatile unsigned int slock[4];
365 	volatile unsigned int lock[1];
366 };
367 
368 static DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
369 		.slock = { 1,1,1,1 },
370 	};
371 #endif
372 
373 
374 int sysctl_panic_on_stackoverflow = 1;
375 
stack_overflow_check(struct pt_regs * regs)376 static inline void stack_overflow_check(struct pt_regs *regs)
377 {
378 #ifdef CONFIG_DEBUG_STACKOVERFLOW
379 	#define STACK_MARGIN	(256*6)
380 
381 	unsigned long stack_start = (unsigned long) task_stack_page(current);
382 	unsigned long sp = regs->gr[30];
383 	unsigned long stack_usage;
384 	unsigned int *last_usage;
385 	int cpu = smp_processor_id();
386 
387 	/* if sr7 != 0, we interrupted a userspace process which we do not want
388 	 * to check for stack overflow. We will only check the kernel stack. */
389 	if (regs->sr[7])
390 		return;
391 
392 	/* exit if already in panic */
393 	if (sysctl_panic_on_stackoverflow < 0)
394 		return;
395 
396 	/* calculate kernel stack usage */
397 	stack_usage = sp - stack_start;
398 #ifdef CONFIG_IRQSTACKS
399 	if (likely(stack_usage <= THREAD_SIZE))
400 		goto check_kernel_stack; /* found kernel stack */
401 
402 	/* check irq stack usage */
403 	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
404 	stack_usage = sp - stack_start;
405 
406 	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
407 	if (unlikely(stack_usage > *last_usage))
408 		*last_usage = stack_usage;
409 
410 	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
411 		return;
412 
413 	pr_emerg("stackcheck: %s will most likely overflow irq stack "
414 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
415 		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
416 	goto panic_check;
417 
418 check_kernel_stack:
419 #endif
420 
421 	/* check kernel stack usage */
422 	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
423 
424 	if (unlikely(stack_usage > *last_usage))
425 		*last_usage = stack_usage;
426 
427 	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
428 		return;
429 
430 	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
431 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
432 		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
433 
434 #ifdef CONFIG_IRQSTACKS
435 panic_check:
436 #endif
437 	if (sysctl_panic_on_stackoverflow) {
438 		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
439 		panic("low stack detected by irq handler - check messages\n");
440 	}
441 #endif
442 }
443 
444 #ifdef CONFIG_IRQSTACKS
445 /* in entry.S: */
446 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
447 
execute_on_irq_stack(void * func,unsigned long param1)448 static void execute_on_irq_stack(void *func, unsigned long param1)
449 {
450 	union irq_stack_union *union_ptr;
451 	unsigned long irq_stack;
452 	volatile unsigned int *irq_stack_in_use;
453 
454 	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
455 	irq_stack = (unsigned long) &union_ptr->stack;
456 	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
457 			FRAME_ALIGN); /* align for stack frame usage */
458 
459 	/* We may be called recursive. If we are already using the irq stack,
460 	 * just continue to use it. Use spinlocks to serialize
461 	 * the irq stack usage.
462 	 */
463 	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
464 	if (!__ldcw(irq_stack_in_use)) {
465 		void (*direct_call)(unsigned long p1) = func;
466 
467 		/* We are using the IRQ stack already.
468 		 * Do direct call on current stack. */
469 		direct_call(param1);
470 		return;
471 	}
472 
473 	/* This is where we switch to the IRQ stack. */
474 	call_on_stack(param1, func, irq_stack);
475 
476 	/* free up irq stack usage. */
477 	*irq_stack_in_use = 1;
478 }
479 
480 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
do_softirq_own_stack(void)481 void do_softirq_own_stack(void)
482 {
483 	execute_on_irq_stack(__do_softirq, 0);
484 }
485 #endif
486 #endif /* CONFIG_IRQSTACKS */
487 
488 /* ONLY called from entry.S:intr_extint() */
do_cpu_irq_mask(struct pt_regs * regs)489 asmlinkage void do_cpu_irq_mask(struct pt_regs *regs)
490 {
491 	struct pt_regs *old_regs;
492 	unsigned long eirr_val;
493 	int irq, cpu = smp_processor_id();
494 	struct irq_data *irq_data;
495 #ifdef CONFIG_SMP
496 	cpumask_t dest;
497 #endif
498 
499 	old_regs = set_irq_regs(regs);
500 	local_irq_disable();
501 	irq_enter_rcu();
502 
503 	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
504 	if (!eirr_val)
505 		goto set_out;
506 	irq = eirr_to_irq(eirr_val);
507 
508 	irq_data = irq_get_irq_data(irq);
509 
510 	/* Filter out spurious interrupts, mostly from serial port at bootup */
511 	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
512 		goto set_out;
513 
514 #ifdef CONFIG_SMP
515 	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
516 	if (irqd_is_per_cpu(irq_data) &&
517 	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
518 		int cpu = cpumask_first(&dest);
519 
520 		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
521 		       irq, smp_processor_id(), cpu);
522 		gsc_writel(irq + CPU_IRQ_BASE,
523 			   per_cpu(cpu_data, cpu).hpa);
524 		goto set_out;
525 	}
526 #endif
527 	stack_overflow_check(regs);
528 
529 #ifdef CONFIG_IRQSTACKS
530 	execute_on_irq_stack(&generic_handle_irq, irq);
531 #else
532 	generic_handle_irq(irq);
533 #endif /* CONFIG_IRQSTACKS */
534 
535  out:
536 	irq_exit_rcu();
537 	set_irq_regs(old_regs);
538 	return;
539 
540  set_out:
541 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
542 	goto out;
543 }
544 
claim_cpu_irqs(void)545 static void claim_cpu_irqs(void)
546 {
547 	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
548 	int i;
549 
550 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
551 		irq_set_chip_and_handler(i, &cpu_interrupt_type,
552 					 handle_percpu_irq);
553 	}
554 
555 	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
556 	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
557 		pr_err("Failed to register timer interrupt\n");
558 #ifdef CONFIG_SMP
559 	irq_set_handler(IPI_IRQ, handle_percpu_irq);
560 	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
561 		pr_err("Failed to register IPI interrupt\n");
562 #endif
563 }
564 
init_IRQ(void)565 void init_IRQ(void)
566 {
567 	local_irq_disable();	/* PARANOID - should already be disabled */
568 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
569 #ifdef CONFIG_SMP
570 	if (!cpu_eiem) {
571 		claim_cpu_irqs();
572 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
573 	}
574 #else
575 	claim_cpu_irqs();
576 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
577 #endif
578         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
579 }
580