xref: /openbmc/qemu/hw/arm/boot.c (revision bc831f37398b51dfe65d99a67bcff9352f84a9d2)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "cpu.h"
18 #include "exec/tswap.h"
19 #include "exec/target_page.h"
20 #include "system/kvm.h"
21 #include "system/tcg.h"
22 #include "system/system.h"
23 #include "system/memory.h"
24 #include "system/numa.h"
25 #include "hw/boards.h"
26 #include "system/reset.h"
27 #include "hw/loader.h"
28 #include "hw/mem/memory-device.h"
29 #include "elf.h"
30 #include "system/device_tree.h"
31 #include "qemu/config-file.h"
32 #include "qemu/option.h"
33 #include "qemu/units.h"
34 #include "qemu/bswap.h"
35 
36 /* Kernel boot protocol is specified in the kernel docs
37  * Documentation/arm/Booting and Documentation/arm64/booting.txt
38  * They have different preferred image load offsets from system RAM base.
39  */
40 #define KERNEL_ARGS_ADDR   0x100
41 #define KERNEL_NOLOAD_ADDR 0x02000000
42 #define KERNEL_LOAD_ADDR   0x00010000
43 #define KERNEL64_LOAD_ADDR 0x00080000
44 
45 #define ARM64_TEXT_OFFSET_OFFSET    8
46 #define ARM64_MAGIC_OFFSET          56
47 
48 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
49 
50 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
51                                      const struct arm_boot_info *info)
52 {
53     /* Return the address space to use for bootloader reads and writes.
54      * We prefer the secure address space if the CPU has it and we're
55      * going to boot the guest into it.
56      */
57     int asidx;
58     CPUState *cs = CPU(cpu);
59 
60     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
61         asidx = ARMASIdx_S;
62     } else {
63         asidx = ARMASIdx_NS;
64     }
65 
66     return cpu_get_address_space(cs, asidx);
67 }
68 
69 static const ARMInsnFixup bootloader_aarch64[] = {
70     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
71     { 0xaa1f03e1 }, /* mov x1, xzr */
72     { 0xaa1f03e2 }, /* mov x2, xzr */
73     { 0xaa1f03e3 }, /* mov x3, xzr */
74     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
75     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
76     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
77     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
78     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
79     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
80     { 0, FIXUP_TERMINATOR }
81 };
82 
83 /* A very small bootloader: call the board-setup code (if needed),
84  * set r0-r2, then jump to the kernel.
85  * If we're not calling boot setup code then we don't copy across
86  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
87  */
88 
89 static const ARMInsnFixup bootloader[] = {
90     { 0xe28fe004 }, /* add     lr, pc, #4 */
91     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
92     { 0, FIXUP_BOARD_SETUP },
93 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
94     { 0xe3a00000 }, /* mov     r0, #0 */
95     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
96     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
97     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
98     { 0, FIXUP_BOARDID },
99     { 0, FIXUP_ARGPTR_LO },
100     { 0, FIXUP_ENTRYPOINT_LO },
101     { 0, FIXUP_TERMINATOR }
102 };
103 
104 /* Handling for secondary CPU boot in a multicore system.
105  * Unlike the uniprocessor/primary CPU boot, this is platform
106  * dependent. The default code here is based on the secondary
107  * CPU boot protocol used on realview/vexpress boards, with
108  * some parameterisation to increase its flexibility.
109  * QEMU platform models for which this code is not appropriate
110  * should override write_secondary_boot and secondary_cpu_reset_hook
111  * instead.
112  *
113  * This code enables the interrupt controllers for the secondary
114  * CPUs and then puts all the secondary CPUs into a loop waiting
115  * for an interprocessor interrupt and polling a configurable
116  * location for the kernel secondary CPU entry point.
117  */
118 #define DSB_INSN 0xf57ff04f
119 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
120 
121 static const ARMInsnFixup smpboot[] = {
122     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
123     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
124     { 0xe3a01001 }, /* mov r1, #1 */
125     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
126     { 0xe3a010ff }, /* mov r1, #0xff */
127     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
128     { 0, FIXUP_DSB },   /* dsb */
129     { 0xe320f003 }, /* wfi */
130     { 0xe5901000 }, /* ldr     r1, [r0] */
131     { 0xe1110001 }, /* tst     r1, r1 */
132     { 0x0afffffb }, /* beq     <wfi> */
133     { 0xe12fff11 }, /* bx      r1 */
134     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
135     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
136     { 0, FIXUP_TERMINATOR }
137 };
138 
139 void arm_write_bootloader(const char *name,
140                           AddressSpace *as, hwaddr addr,
141                           const ARMInsnFixup *insns,
142                           const uint32_t *fixupcontext)
143 {
144     /* Fix up the specified bootloader fragment and write it into
145      * guest memory using rom_add_blob_fixed(). fixupcontext is
146      * an array giving the values to write in for the fixup types
147      * which write a value into the code array.
148      */
149     int i, len;
150     uint32_t *code;
151 
152     len = 0;
153     while (insns[len].fixup != FIXUP_TERMINATOR) {
154         len++;
155     }
156 
157     code = g_new0(uint32_t, len);
158 
159     for (i = 0; i < len; i++) {
160         uint32_t insn = insns[i].insn;
161         FixupType fixup = insns[i].fixup;
162 
163         switch (fixup) {
164         case FIXUP_NONE:
165             break;
166         case FIXUP_BOARDID:
167         case FIXUP_BOARD_SETUP:
168         case FIXUP_ARGPTR_LO:
169         case FIXUP_ARGPTR_HI:
170         case FIXUP_ENTRYPOINT_LO:
171         case FIXUP_ENTRYPOINT_HI:
172         case FIXUP_GIC_CPU_IF:
173         case FIXUP_BOOTREG:
174         case FIXUP_DSB:
175             insn = fixupcontext[fixup];
176             break;
177         default:
178             abort();
179         }
180         code[i] = tswap32(insn);
181     }
182 
183     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
184 
185     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
186 
187     g_free(code);
188 }
189 
190 static void default_write_secondary(ARMCPU *cpu,
191                                     const struct arm_boot_info *info)
192 {
193     uint32_t fixupcontext[FIXUP_MAX];
194     AddressSpace *as = arm_boot_address_space(cpu, info);
195 
196     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
197     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
198     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
199         fixupcontext[FIXUP_DSB] = DSB_INSN;
200     } else {
201         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
202     }
203 
204     arm_write_bootloader("smpboot", as, info->smp_loader_start,
205                          smpboot, fixupcontext);
206 }
207 
208 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
209                                             const struct arm_boot_info *info,
210                                             hwaddr mvbar_addr)
211 {
212     AddressSpace *as = arm_boot_address_space(cpu, info);
213     int n;
214     uint32_t mvbar_blob[] = {
215         /* mvbar_addr: secure monitor vectors
216          * Default unimplemented and unused vectors to spin. Makes it
217          * easier to debug (as opposed to the CPU running away).
218          */
219         0xeafffffe, /* (spin) */
220         0xeafffffe, /* (spin) */
221         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
222         0xeafffffe, /* (spin) */
223         0xeafffffe, /* (spin) */
224         0xeafffffe, /* (spin) */
225         0xeafffffe, /* (spin) */
226         0xeafffffe, /* (spin) */
227     };
228     uint32_t board_setup_blob[] = {
229         /* board setup addr */
230         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
231         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
232         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
233         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
234         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
235         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
236         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
237         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
238         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
239         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
240         0xe1a0f001, /* mov     pc, r1                 ;return */
241     };
242 
243     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
244     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
245 
246     /* check that these blobs don't overlap */
247     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
248           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
249 
250     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
251         mvbar_blob[n] = tswap32(mvbar_blob[n]);
252     }
253     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
254                           mvbar_addr, as);
255 
256     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
257         board_setup_blob[n] = tswap32(board_setup_blob[n]);
258     }
259     rom_add_blob_fixed_as("board-setup", board_setup_blob,
260                           sizeof(board_setup_blob), info->board_setup_addr, as);
261 }
262 
263 static void default_reset_secondary(ARMCPU *cpu,
264                                     const struct arm_boot_info *info)
265 {
266     AddressSpace *as = arm_boot_address_space(cpu, info);
267     CPUState *cs = CPU(cpu);
268 
269     address_space_stl_notdirty(as, info->smp_bootreg_addr,
270                                0, MEMTXATTRS_UNSPECIFIED, NULL);
271     cpu_set_pc(cs, info->smp_loader_start);
272 }
273 
274 static inline bool have_dtb(const struct arm_boot_info *info)
275 {
276     return info->dtb_filename || info->get_dtb;
277 }
278 
279 #define WRITE_WORD(p, value) do { \
280     address_space_stl_notdirty(as, p, value, \
281                                MEMTXATTRS_UNSPECIFIED, NULL);  \
282     p += 4;                       \
283 } while (0)
284 
285 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
286 {
287     int initrd_size = info->initrd_size;
288     hwaddr base = info->loader_start;
289     hwaddr p;
290 
291     p = base + KERNEL_ARGS_ADDR;
292     /* ATAG_CORE */
293     WRITE_WORD(p, 5);
294     WRITE_WORD(p, 0x54410001);
295     WRITE_WORD(p, 1);
296     WRITE_WORD(p, 0x1000);
297     WRITE_WORD(p, 0);
298     /* ATAG_MEM */
299     /* TODO: handle multiple chips on one ATAG list */
300     WRITE_WORD(p, 4);
301     WRITE_WORD(p, 0x54410002);
302     WRITE_WORD(p, info->ram_size);
303     WRITE_WORD(p, info->loader_start);
304     if (initrd_size) {
305         /* ATAG_INITRD2 */
306         WRITE_WORD(p, 4);
307         WRITE_WORD(p, 0x54420005);
308         WRITE_WORD(p, info->initrd_start);
309         WRITE_WORD(p, initrd_size);
310     }
311     if (info->kernel_cmdline && *info->kernel_cmdline) {
312         /* ATAG_CMDLINE */
313         int cmdline_size;
314 
315         cmdline_size = strlen(info->kernel_cmdline);
316         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
317                             info->kernel_cmdline, cmdline_size + 1);
318         cmdline_size = (cmdline_size >> 2) + 1;
319         WRITE_WORD(p, cmdline_size + 2);
320         WRITE_WORD(p, 0x54410009);
321         p += cmdline_size * 4;
322     }
323     if (info->atag_board) {
324         /* ATAG_BOARD */
325         int atag_board_len;
326         uint8_t atag_board_buf[0x1000];
327 
328         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
329         WRITE_WORD(p, (atag_board_len + 8) >> 2);
330         WRITE_WORD(p, 0x414f4d50);
331         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
332                             atag_board_buf, atag_board_len);
333         p += atag_board_len;
334     }
335     /* ATAG_END */
336     WRITE_WORD(p, 0);
337     WRITE_WORD(p, 0);
338 }
339 
340 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
341                                uint32_t scells, hwaddr mem_len,
342                                int numa_node_id)
343 {
344     char *nodename;
345     int ret;
346 
347     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
348     qemu_fdt_add_subnode(fdt, nodename);
349     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
350     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
351                                        scells, mem_len);
352     if (ret < 0) {
353         goto out;
354     }
355 
356     /* only set the NUMA ID if it is specified */
357     if (numa_node_id >= 0) {
358         ret = qemu_fdt_setprop_cell(fdt, nodename,
359                                     "numa-node-id", numa_node_id);
360     }
361 out:
362     g_free(nodename);
363     return ret;
364 }
365 
366 static void fdt_add_psci_node(void *fdt, ARMCPU *armcpu)
367 {
368     uint32_t cpu_suspend_fn;
369     uint32_t cpu_off_fn;
370     uint32_t cpu_on_fn;
371     uint32_t migrate_fn;
372     const char *psci_method;
373     int64_t psci_conduit;
374     int rc;
375 
376     psci_conduit = object_property_get_int(OBJECT(armcpu),
377                                            "psci-conduit",
378                                            &error_abort);
379     switch (psci_conduit) {
380     case QEMU_PSCI_CONDUIT_DISABLED:
381         return;
382     case QEMU_PSCI_CONDUIT_HVC:
383         psci_method = "hvc";
384         break;
385     case QEMU_PSCI_CONDUIT_SMC:
386         psci_method = "smc";
387         break;
388     default:
389         g_assert_not_reached();
390     }
391 
392     /*
393      * A pre-existing /psci node might specify function ID values
394      * that don't match QEMU's PSCI implementation. Delete the whole
395      * node and put our own in instead.
396      */
397     rc = fdt_path_offset(fdt, "/psci");
398     if (rc >= 0) {
399         qemu_fdt_nop_node(fdt, "/psci");
400     }
401 
402     qemu_fdt_add_subnode(fdt, "/psci");
403     if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
404         if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
405             const char comp[] = "arm,psci-0.2\0arm,psci";
406             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
407         } else {
408             const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
409             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
410         }
411 
412         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
413         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
414             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
415             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
416             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
417         } else {
418             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
419             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
420             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
421         }
422     } else {
423         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
424 
425         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
426         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
427         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
428         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
429     }
430 
431     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
432      * to the instruction that should be used to invoke PSCI functions.
433      * However, the device tree binding uses 'method' instead, so that is
434      * what we should use here.
435      */
436     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
437 
438     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
439     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
440     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
441     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
442 }
443 
444 static int fdt_add_pmem_node(void *fdt, uint32_t acells, uint32_t scells,
445                              int64_t mem_base, int64_t size, int64_t node)
446 {
447     int ret;
448 
449     g_autofree char *nodename = g_strdup_printf("/pmem@%" PRIx64, mem_base);
450 
451     qemu_fdt_add_subnode(fdt, nodename);
452     qemu_fdt_setprop_string(fdt, nodename, "compatible", "pmem-region");
453     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells,
454                                        mem_base, scells, size);
455     if (ret) {
456         return ret;
457     }
458 
459     if (node >= 0) {
460         return qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id",
461                                      node);
462     }
463 
464     return 0;
465 }
466 
467 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
468                  hwaddr addr_limit, AddressSpace *as, MachineState *ms,
469                  ARMCPU *cpu)
470 {
471     void *fdt = NULL;
472     int size, rc, n = 0;
473     uint32_t acells, scells;
474     unsigned int i;
475     hwaddr mem_base, mem_len;
476     char **node_path;
477     g_autoptr(MemoryDeviceInfoList) md_list = NULL;
478     Error *err = NULL;
479 
480     if (binfo->dtb_filename) {
481         char *filename;
482         filename = qemu_find_file(QEMU_FILE_TYPE_DTB, binfo->dtb_filename);
483         if (!filename) {
484             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
485             goto fail;
486         }
487 
488         fdt = load_device_tree(filename, &size);
489         if (!fdt) {
490             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
491             g_free(filename);
492             goto fail;
493         }
494         g_free(filename);
495     } else {
496         fdt = binfo->get_dtb(binfo, &size);
497         if (!fdt) {
498             fprintf(stderr, "Board was unable to create a dtb blob\n");
499             goto fail;
500         }
501     }
502 
503     if (addr_limit > addr && size > (addr_limit - addr)) {
504         /* Installing the device tree blob at addr would exceed addr_limit.
505          * Whether this constitutes failure is up to the caller to decide,
506          * so just return 0 as size, i.e., no error.
507          */
508         g_free(fdt);
509         return 0;
510     }
511 
512     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
513                                    NULL, &error_fatal);
514     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
515                                    NULL, &error_fatal);
516     if (acells == 0 || scells == 0) {
517         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
518         goto fail;
519     }
520 
521     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
522         /* This is user error so deserves a friendlier error message
523          * than the failure of setprop_sized_cells would provide
524          */
525         fprintf(stderr, "qemu: dtb file not compatible with "
526                 "RAM size > 4GB\n");
527         goto fail;
528     }
529 
530     /* nop all root nodes matching /memory or /memory@unit-address */
531     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
532     if (err) {
533         error_report_err(err);
534         goto fail;
535     }
536     while (node_path[n]) {
537         if (g_str_has_prefix(node_path[n], "/memory")) {
538             qemu_fdt_nop_node(fdt, node_path[n]);
539         }
540         n++;
541     }
542     g_strfreev(node_path);
543 
544     /*
545      * We drop all the memory nodes which correspond to empty NUMA nodes
546      * from the device tree, because the Linux NUMA binding document
547      * states they should not be generated. Linux will get the NUMA node
548      * IDs of the empty NUMA nodes from the distance map if they are needed.
549      * This means QEMU users may be obliged to provide command lines which
550      * configure distance maps when the empty NUMA node IDs are needed and
551      * Linux's default distance map isn't sufficient.
552      */
553     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
554         mem_base = binfo->loader_start;
555         for (i = 0; i < ms->numa_state->num_nodes; i++) {
556             mem_len = ms->numa_state->nodes[i].node_mem;
557             if (!mem_len) {
558                 continue;
559             }
560 
561             rc = fdt_add_memory_node(fdt, acells, mem_base,
562                                      scells, mem_len, i);
563             if (rc < 0) {
564                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
565                         mem_base);
566                 goto fail;
567             }
568 
569             mem_base += mem_len;
570         }
571     } else {
572         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
573                                  scells, binfo->ram_size, -1);
574         if (rc < 0) {
575             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
576                     binfo->loader_start);
577             goto fail;
578         }
579     }
580 
581     md_list = qmp_memory_device_list();
582     for (MemoryDeviceInfoList *m = md_list; m != NULL; m = m->next) {
583         MemoryDeviceInfo *mi = m->value;
584 
585         if (mi->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) {
586             PCDIMMDeviceInfo *di = mi->u.nvdimm.data;
587 
588             rc = fdt_add_pmem_node(fdt, acells, scells,
589                                    di->addr, di->size, di->node);
590             if (rc < 0) {
591                 fprintf(stderr, "couldn't add NVDIMM /pmem@%"PRIx64" node\n",
592                         di->addr);
593                 goto fail;
594             }
595         }
596     }
597 
598     rc = fdt_path_offset(fdt, "/chosen");
599     if (rc < 0) {
600         qemu_fdt_add_subnode(fdt, "/chosen");
601     }
602 
603     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
604         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
605                                      ms->kernel_cmdline);
606         if (rc < 0) {
607             fprintf(stderr, "couldn't set /chosen/bootargs\n");
608             goto fail;
609         }
610     }
611 
612     if (binfo->initrd_size) {
613         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
614                                           acells, binfo->initrd_start);
615         if (rc < 0) {
616             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
617             goto fail;
618         }
619 
620         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
621                                           acells,
622                                           binfo->initrd_start +
623                                           binfo->initrd_size);
624         if (rc < 0) {
625             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
626             goto fail;
627         }
628     }
629 
630     fdt_add_psci_node(fdt, cpu);
631 
632     if (binfo->modify_dtb) {
633         binfo->modify_dtb(binfo, fdt);
634     }
635 
636     /* Put the DTB into the memory map as a ROM image: this will ensure
637      * the DTB is copied again upon reset, even if addr points into RAM.
638      */
639     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
640     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
641                                        rom_ptr_for_as(as, addr, size));
642 
643     if (fdt != ms->fdt) {
644         g_free(ms->fdt);
645         ms->fdt = fdt;
646     }
647 
648     return size;
649 
650 fail:
651     g_free(fdt);
652     return -1;
653 }
654 
655 static void do_cpu_reset(void *opaque)
656 {
657     ARMCPU *cpu = opaque;
658     CPUState *cs = CPU(cpu);
659     CPUARMState *env = &cpu->env;
660     const struct arm_boot_info *info = env->boot_info;
661 
662     cpu_reset(cs);
663     if (info) {
664         if (!info->is_linux) {
665             int i;
666             /* Jump to the entry point.  */
667             uint64_t entry = info->entry;
668 
669             switch (info->endianness) {
670             case ARM_ENDIANNESS_LE:
671                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
672                 for (i = 1; i < 4; ++i) {
673                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
674                 }
675                 env->uncached_cpsr &= ~CPSR_E;
676                 break;
677             case ARM_ENDIANNESS_BE8:
678                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
679                 for (i = 1; i < 4; ++i) {
680                     env->cp15.sctlr_el[i] |= SCTLR_EE;
681                 }
682                 env->uncached_cpsr |= CPSR_E;
683                 break;
684             case ARM_ENDIANNESS_BE32:
685                 env->cp15.sctlr_el[1] |= SCTLR_B;
686                 break;
687             case ARM_ENDIANNESS_UNKNOWN:
688                 break; /* Board's decision */
689             default:
690                 g_assert_not_reached();
691             }
692 
693             cpu_set_pc(cs, entry);
694         } else {
695             /*
696              * If we are booting Linux then we might need to do so at:
697              *  - AArch64 NS EL2 or NS EL1
698              *  - AArch32 Secure SVC (EL3)
699              *  - AArch32 NS Hyp (EL2)
700              *  - AArch32 NS SVC (EL1)
701              * Configure the CPU in the way boot firmware would do to
702              * drop us down to the appropriate level.
703              */
704             int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
705 
706             if (env->aarch64) {
707                 /*
708                  * AArch64 kernels never boot in secure mode, and we don't
709                  * support the secure_board_setup hook for AArch64.
710                  */
711                 assert(!info->secure_boot);
712                 assert(!info->secure_board_setup);
713             } else {
714                 if (arm_feature(env, ARM_FEATURE_EL3) &&
715                     (info->secure_boot ||
716                      (info->secure_board_setup && cpu == info->primary_cpu))) {
717                     /* Start this CPU in Secure SVC */
718                     target_el = 3;
719                 }
720             }
721 
722             arm_emulate_firmware_reset(cs, target_el);
723 
724             if (cpu == info->primary_cpu) {
725                 AddressSpace *as = arm_boot_address_space(cpu, info);
726 
727                 cpu_set_pc(cs, info->loader_start);
728 
729                 if (!have_dtb(info)) {
730                     set_kernel_args(info, as);
731                 }
732             } else if (info->secondary_cpu_reset_hook) {
733                 info->secondary_cpu_reset_hook(cpu, info);
734             }
735         }
736 
737         if (tcg_enabled()) {
738             arm_rebuild_hflags(env);
739         }
740     }
741 }
742 
743 static int do_arm_linux_init(Object *obj, void *opaque)
744 {
745     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
746         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
747         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
748         struct arm_boot_info *info = opaque;
749 
750         if (albifc->arm_linux_init) {
751             albifc->arm_linux_init(albif, info->secure_boot);
752         }
753     }
754     return 0;
755 }
756 
757 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
758                             uint64_t *lowaddr, uint64_t *highaddr,
759                             int elf_machine, AddressSpace *as)
760 {
761     bool elf_is64;
762     union {
763         Elf32_Ehdr h32;
764         Elf64_Ehdr h64;
765     } elf_header;
766     int data_swab = 0;
767     int elf_data_order;
768     ssize_t ret;
769     Error *err = NULL;
770 
771 
772     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
773     if (err) {
774         /*
775          * If the file is not an ELF file we silently return.
776          * The caller will fall back to try other formats.
777          */
778         error_free(err);
779         return -1;
780     }
781 
782     if (elf_is64) {
783         elf_data_order = elf_header.h64.e_ident[EI_DATA];
784         info->endianness = elf_data_order == ELFDATA2MSB ? ARM_ENDIANNESS_BE8
785                                                          : ARM_ENDIANNESS_LE;
786     } else {
787         elf_data_order = elf_header.h32.e_ident[EI_DATA];
788         if (elf_data_order == ELFDATA2MSB) {
789             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
790                 info->endianness = ARM_ENDIANNESS_BE8;
791             } else {
792                 info->endianness = ARM_ENDIANNESS_BE32;
793                 /* In BE32, the CPU has a different view of the per-byte
794                  * address map than the rest of the system. BE32 ELF files
795                  * are organised such that they can be programmed through
796                  * the CPU's per-word byte-reversed view of the world. QEMU
797                  * however loads ELF files independently of the CPU. So
798                  * tell the ELF loader to byte reverse the data for us.
799                  */
800                 data_swab = 2;
801             }
802         } else {
803             info->endianness = ARM_ENDIANNESS_LE;
804         }
805     }
806 
807     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
808                       pentry, lowaddr, highaddr, NULL, elf_data_order,
809                       elf_machine, 1, data_swab, as);
810     if (ret <= 0) {
811         /* The header loaded but the image didn't */
812         error_report("Couldn't load elf '%s': %s",
813                      info->kernel_filename, load_elf_strerror(ret));
814         exit(1);
815     }
816 
817     return ret;
818 }
819 
820 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
821                                    hwaddr *entry, AddressSpace *as)
822 {
823     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
824     uint64_t kernel_size = 0;
825     uint8_t *buffer;
826     ssize_t size;
827 
828     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
829     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
830                                      &buffer);
831 
832     if (size < 0) {
833         gsize len;
834 
835         /* Load as raw file otherwise */
836         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
837             return -1;
838         }
839         size = len;
840 
841         /* Unpack the image if it is a EFI zboot image */
842         if (unpack_efi_zboot_image(&buffer, &size) < 0) {
843             g_free(buffer);
844             return -1;
845         }
846     }
847 
848     /* check the arm64 magic header value -- very old kernels may not have it */
849     if (size > ARM64_MAGIC_OFFSET + 4 &&
850         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
851         uint64_t hdrvals[2];
852 
853         /* The arm64 Image header has text_offset and image_size fields at 8 and
854          * 16 bytes into the Image header, respectively. The text_offset field
855          * is only valid if the image_size is non-zero.
856          */
857         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
858 
859         kernel_size = le64_to_cpu(hdrvals[1]);
860 
861         if (kernel_size != 0) {
862             kernel_load_offset = le64_to_cpu(hdrvals[0]);
863 
864             /*
865              * We write our startup "bootloader" at the very bottom of RAM,
866              * so that bit can't be used for the image. Luckily the Image
867              * format specification is that the image requests only an offset
868              * from a 2MB boundary, not an absolute load address. So if the
869              * image requests an offset that might mean it overlaps with the
870              * bootloader, we can just load it starting at 2MB+offset rather
871              * than 0MB + offset.
872              */
873             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
874                 kernel_load_offset += 2 * MiB;
875             }
876         }
877     }
878 
879     /*
880      * Kernels before v3.17 don't populate the image_size field, and
881      * raw images have no header. For those our best guess at the size
882      * is the size of the Image file itself.
883      */
884     if (kernel_size == 0) {
885         kernel_size = size;
886     }
887 
888     *entry = mem_base + kernel_load_offset;
889     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
890 
891     g_free(buffer);
892 
893     return kernel_size;
894 }
895 
896 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
897                                          struct arm_boot_info *info)
898 {
899     /* Set up for a direct boot of a kernel image file. */
900     CPUState *cs;
901     AddressSpace *as = arm_boot_address_space(cpu, info);
902     ssize_t kernel_size;
903     int initrd_size;
904     int is_linux = 0;
905     uint64_t elf_entry;
906     /* Addresses of first byte used and first byte not used by the image */
907     uint64_t image_low_addr = 0, image_high_addr = 0;
908     int elf_machine;
909     hwaddr entry;
910     static const ARMInsnFixup *primary_loader;
911     uint64_t ram_end = info->loader_start + info->ram_size;
912 
913     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
914         primary_loader = bootloader_aarch64;
915         elf_machine = EM_AARCH64;
916     } else {
917         primary_loader = bootloader;
918         if (!info->write_board_setup) {
919             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
920         }
921         elf_machine = EM_ARM;
922     }
923 
924     /* Assume that raw images are linux kernels, and ELF images are not.  */
925     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
926                                &image_high_addr, elf_machine, as);
927     if (kernel_size > 0 && have_dtb(info)) {
928         /*
929          * If there is still some room left at the base of RAM, try and put
930          * the DTB there like we do for images loaded with -bios or -pflash.
931          */
932         if (image_low_addr > info->loader_start
933             || image_high_addr < info->loader_start) {
934             /*
935              * Set image_low_addr as address limit for arm_load_dtb if it may be
936              * pointing into RAM, otherwise pass '0' (no limit)
937              */
938             if (image_low_addr < info->loader_start) {
939                 image_low_addr = 0;
940             }
941             info->dtb_start = info->loader_start;
942             info->dtb_limit = image_low_addr;
943         }
944     }
945     entry = elf_entry;
946     if (kernel_size < 0) {
947         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
948         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
949                                      &is_linux, NULL, NULL, as);
950         if (kernel_size >= 0) {
951             image_low_addr = loadaddr;
952             image_high_addr = image_low_addr + kernel_size;
953         }
954     }
955     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
956         kernel_size = load_aarch64_image(info->kernel_filename,
957                                          info->loader_start, &entry, as);
958         is_linux = 1;
959         if (kernel_size >= 0) {
960             image_low_addr = entry;
961             image_high_addr = image_low_addr + kernel_size;
962         }
963     } else if (kernel_size < 0) {
964         /* 32-bit ARM */
965         entry = info->loader_start + KERNEL_LOAD_ADDR;
966         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
967                                              ram_end - KERNEL_LOAD_ADDR, as,
968                                              NULL);
969         is_linux = 1;
970         if (kernel_size >= 0) {
971             image_low_addr = entry;
972             image_high_addr = image_low_addr + kernel_size;
973         }
974     }
975     if (kernel_size < 0) {
976         error_report("could not load kernel '%s'", info->kernel_filename);
977         exit(1);
978     }
979 
980     if (kernel_size > info->ram_size) {
981         error_report("kernel '%s' is too large to fit in RAM "
982                      "(kernel size %zd, RAM size %" PRId64 ")",
983                      info->kernel_filename, kernel_size, info->ram_size);
984         exit(1);
985     }
986 
987     info->entry = entry;
988 
989     /*
990      * We want to put the initrd far enough into RAM that when the
991      * kernel is uncompressed it will not clobber the initrd. However
992      * on boards without much RAM we must ensure that we still leave
993      * enough room for a decent sized initrd, and on boards with large
994      * amounts of RAM we must avoid the initrd being so far up in RAM
995      * that it is outside lowmem and inaccessible to the kernel.
996      * So for boards with less  than 256MB of RAM we put the initrd
997      * halfway into RAM, and for boards with 256MB of RAM or more we put
998      * the initrd at 128MB.
999      * We also refuse to put the initrd somewhere that will definitely
1000      * overlay the kernel we just loaded, though for kernel formats which
1001      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1002      * we might still make a bad choice here.
1003      */
1004     info->initrd_start = info->loader_start +
1005         MIN(info->ram_size / 2, 128 * MiB);
1006     if (image_high_addr) {
1007         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1008     }
1009     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1010 
1011     if (is_linux) {
1012         uint32_t fixupcontext[FIXUP_MAX];
1013 
1014         if (info->initrd_filename) {
1015 
1016             if (info->initrd_start >= ram_end) {
1017                 error_report("not enough space after kernel to load initrd");
1018                 exit(1);
1019             }
1020 
1021             initrd_size = load_ramdisk_as(info->initrd_filename,
1022                                           info->initrd_start,
1023                                           ram_end - info->initrd_start, as);
1024             if (initrd_size < 0) {
1025                 initrd_size = load_image_targphys_as(info->initrd_filename,
1026                                                      info->initrd_start,
1027                                                      ram_end -
1028                                                      info->initrd_start,
1029                                                      as, NULL);
1030             }
1031             if (initrd_size < 0) {
1032                 error_report("could not load initrd '%s'",
1033                              info->initrd_filename);
1034                 exit(1);
1035             }
1036             if (info->initrd_start + initrd_size > ram_end) {
1037                 error_report("could not load initrd '%s': "
1038                              "too big to fit into RAM after the kernel",
1039                              info->initrd_filename);
1040                 exit(1);
1041             }
1042         } else {
1043             initrd_size = 0;
1044         }
1045         info->initrd_size = initrd_size;
1046 
1047         fixupcontext[FIXUP_BOARDID] = info->board_id;
1048         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1049 
1050         /*
1051          * for device tree boot, we pass the DTB directly in r2. Otherwise
1052          * we point to the kernel args.
1053          */
1054         if (have_dtb(info)) {
1055             hwaddr align;
1056 
1057             if (elf_machine == EM_AARCH64) {
1058                 /*
1059                  * Some AArch64 kernels on early bootup map the fdt region as
1060                  *
1061                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1062                  *
1063                  * Let's play safe and prealign it to 2MB to give us some space.
1064                  */
1065                 align = 2 * MiB;
1066             } else {
1067                 /*
1068                  * Some 32bit kernels will trash anything in the 4K page the
1069                  * initrd ends in, so make sure the DTB isn't caught up in that.
1070                  */
1071                 align = 4 * KiB;
1072             }
1073 
1074             /* Place the DTB after the initrd in memory with alignment. */
1075             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1076                                            align);
1077             if (info->dtb_start >= ram_end) {
1078                 error_report("Not enough space for DTB after kernel/initrd");
1079                 exit(1);
1080             }
1081             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1082             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1083         } else {
1084             fixupcontext[FIXUP_ARGPTR_LO] =
1085                 info->loader_start + KERNEL_ARGS_ADDR;
1086             fixupcontext[FIXUP_ARGPTR_HI] =
1087                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1088             if (info->ram_size >= 4 * GiB) {
1089                 error_report("RAM size must be less than 4GB to boot"
1090                              " Linux kernel using ATAGS (try passing a device tree"
1091                              " using -dtb)");
1092                 exit(1);
1093             }
1094         }
1095         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1096         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1097 
1098         arm_write_bootloader("bootloader", as, info->loader_start,
1099                              primary_loader, fixupcontext);
1100 
1101         if (info->write_board_setup) {
1102             info->write_board_setup(cpu, info);
1103         }
1104 
1105         /*
1106          * Notify devices which need to fake up firmware initialization
1107          * that we're doing a direct kernel boot.
1108          */
1109         object_child_foreach_recursive(object_get_root(),
1110                                        do_arm_linux_init, info);
1111     }
1112     info->is_linux = is_linux;
1113 
1114     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1115         ARM_CPU(cs)->env.boot_info = info;
1116     }
1117 }
1118 
1119 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1120 {
1121     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1122 
1123     if (have_dtb(info)) {
1124         /*
1125          * If we have a device tree blob, but no kernel to supply it to (or
1126          * the kernel is supposed to be loaded by the bootloader), copy the
1127          * DTB to the base of RAM for the bootloader to pick up.
1128          */
1129         info->dtb_start = info->loader_start;
1130     }
1131 
1132     if (info->kernel_filename) {
1133         FWCfgState *fw_cfg;
1134         bool try_decompressing_kernel;
1135 
1136         fw_cfg = fw_cfg_find();
1137 
1138         if (!fw_cfg) {
1139             error_report("This machine type does not support loading both "
1140                          "a guest firmware/BIOS image and a guest kernel at "
1141                          "the same time. You should change your QEMU command "
1142                          "line to specify one or the other, but not both.");
1143             exit(1);
1144         }
1145 
1146         try_decompressing_kernel = arm_feature(&cpu->env,
1147                                                ARM_FEATURE_AARCH64);
1148 
1149         /*
1150          * Expose the kernel, the command line, and the initrd in fw_cfg.
1151          * We don't process them here at all, it's all left to the
1152          * firmware.
1153          */
1154         load_image_to_fw_cfg(fw_cfg,
1155                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1156                              info->kernel_filename,
1157                              try_decompressing_kernel);
1158         load_image_to_fw_cfg(fw_cfg,
1159                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1160                              info->initrd_filename, false);
1161 
1162         if (info->kernel_cmdline) {
1163             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1164                            strlen(info->kernel_cmdline) + 1);
1165             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1166                               info->kernel_cmdline);
1167         }
1168     }
1169 
1170     /*
1171      * We will start from address 0 (typically a boot ROM image) in the
1172      * same way as hardware. Leave env->boot_info NULL, so that
1173      * do_cpu_reset() knows it does not need to alter the PC on reset.
1174      */
1175 }
1176 
1177 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1178 {
1179     CPUState *cs;
1180     AddressSpace *as = arm_boot_address_space(cpu, info);
1181     int boot_el;
1182     CPUARMState *env = &cpu->env;
1183     int nb_cpus = 0;
1184 
1185     /*
1186      * CPU objects (unlike devices) are not automatically reset on system
1187      * reset, so we must always register a handler to do so. If we're
1188      * actually loading a kernel, the handler is also responsible for
1189      * arranging that we start it correctly.
1190      */
1191     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1192         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1193         nb_cpus++;
1194     }
1195 
1196     /*
1197      * The board code is not supposed to set secure_board_setup unless
1198      * running its code in secure mode is actually possible, and KVM
1199      * doesn't support secure.
1200      */
1201     assert(!(info->secure_board_setup && kvm_enabled()));
1202     info->kernel_filename = ms->kernel_filename;
1203     info->kernel_cmdline = ms->kernel_cmdline;
1204     info->initrd_filename = ms->initrd_filename;
1205     info->dtb_filename = ms->dtb;
1206     info->dtb_limit = 0;
1207 
1208     /* We assume the CPU passed as argument is the primary CPU.  */
1209     info->primary_cpu = cpu;
1210 
1211     /* Load the kernel.  */
1212     if (!info->kernel_filename || info->firmware_loaded) {
1213         arm_setup_firmware_boot(cpu, info);
1214     } else {
1215         arm_setup_direct_kernel_boot(cpu, info);
1216     }
1217 
1218     /*
1219      * Disable the PSCI conduit if it is set up to target the same
1220      * or a lower EL than the one we're going to start the guest code in.
1221      * This logic needs to agree with the code in do_cpu_reset() which
1222      * decides whether we're going to boot the guest in the highest
1223      * supported exception level or in a lower one.
1224      */
1225 
1226     /*
1227      * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1228      * are never emulated to trap into guest code. It therefore does not
1229      * make sense for the board to have a setup code fragment that runs
1230      * in Secure, because this will probably need to itself issue an SMC of some
1231      * kind as part of its operation.
1232      */
1233     assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1234            !info->secure_board_setup);
1235 
1236     /* Boot into highest supported EL ... */
1237     if (arm_feature(env, ARM_FEATURE_EL3)) {
1238         boot_el = 3;
1239     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1240         boot_el = 2;
1241     } else {
1242         boot_el = 1;
1243     }
1244     /* ...except that if we're booting Linux we adjust the EL we boot into */
1245     if (info->is_linux && !info->secure_boot) {
1246         boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1247     }
1248 
1249     if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1250         (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1251         info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1252     }
1253 
1254     if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1255         for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1256             Object *cpuobj = OBJECT(cs);
1257 
1258             object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1259                                     &error_abort);
1260             /* Secondary CPUs start in PSCI powered-down state.  */
1261             if (ARM_CPU(cs) != info->primary_cpu) {
1262                 object_property_set_bool(cpuobj, "start-powered-off", true,
1263                                          &error_abort);
1264             }
1265         }
1266     }
1267 
1268     if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1269         info->is_linux && nb_cpus > 1) {
1270         /*
1271          * We're booting Linux but not using PSCI, so for SMP we need
1272          * to write a custom secondary CPU boot loader stub, and arrange
1273          * for the secondary CPU reset to make the accompanying initialization.
1274          */
1275         if (!info->secondary_cpu_reset_hook) {
1276             info->secondary_cpu_reset_hook = default_reset_secondary;
1277         }
1278         if (!info->write_secondary_boot) {
1279             info->write_secondary_boot = default_write_secondary;
1280         }
1281         info->write_secondary_boot(cpu, info);
1282     } else {
1283         /*
1284          * No secondary boot stub; don't use the reset hook that would
1285          * have set the CPU up to call it
1286          */
1287         info->write_secondary_boot = NULL;
1288         info->secondary_cpu_reset_hook = NULL;
1289     }
1290 
1291     /*
1292      * arm_load_dtb() may add a PSCI node so it must be called after we have
1293      * decided whether to enable PSCI and set the psci-conduit CPU properties.
1294      */
1295     if (!info->skip_dtb_autoload && have_dtb(info)) {
1296         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit,
1297                          as, ms, cpu) < 0) {
1298             exit(1);
1299         }
1300     }
1301 }
1302 
1303 static const TypeInfo arm_linux_boot_if_info = {
1304     .name = TYPE_ARM_LINUX_BOOT_IF,
1305     .parent = TYPE_INTERFACE,
1306     .class_size = sizeof(ARMLinuxBootIfClass),
1307 };
1308 
1309 static void arm_linux_boot_register_types(void)
1310 {
1311     type_register_static(&arm_linux_boot_if_info);
1312 }
1313 
1314 type_init(arm_linux_boot_register_types)
1315