1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - ChipIdea UDC driver
4 *
5 * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6 *
7 * Author: David Lopo
8 */
9
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 #include "trace.h"
30
31 /* control endpoint description */
32 static const struct usb_endpoint_descriptor
33 ctrl_endpt_out_desc = {
34 .bLength = USB_DT_ENDPOINT_SIZE,
35 .bDescriptorType = USB_DT_ENDPOINT,
36
37 .bEndpointAddress = USB_DIR_OUT,
38 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
39 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
40 };
41
42 static const struct usb_endpoint_descriptor
43 ctrl_endpt_in_desc = {
44 .bLength = USB_DT_ENDPOINT_SIZE,
45 .bDescriptorType = USB_DT_ENDPOINT,
46
47 .bEndpointAddress = USB_DIR_IN,
48 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
49 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX),
50 };
51
52 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
53 struct td_node *node);
54 /**
55 * hw_ep_bit: calculates the bit number
56 * @num: endpoint number
57 * @dir: endpoint direction
58 *
59 * This function returns bit number
60 */
hw_ep_bit(int num,int dir)61 static inline int hw_ep_bit(int num, int dir)
62 {
63 return num + ((dir == TX) ? 16 : 0);
64 }
65
ep_to_bit(struct ci_hdrc * ci,int n)66 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
67 {
68 int fill = 16 - ci->hw_ep_max / 2;
69
70 if (n >= ci->hw_ep_max / 2)
71 n += fill;
72
73 return n;
74 }
75
76 /**
77 * hw_device_state: enables/disables interrupts (execute without interruption)
78 * @ci: the controller
79 * @dma: 0 => disable, !0 => enable and set dma engine
80 *
81 * This function returns an error code
82 */
hw_device_state(struct ci_hdrc * ci,u32 dma)83 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
84 {
85 if (dma) {
86 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
87 /* interrupt, error, port change, reset, sleep/suspend */
88 hw_write(ci, OP_USBINTR, ~0,
89 USBi_UI|USBi_UEI|USBi_PCI|USBi_URI);
90 } else {
91 hw_write(ci, OP_USBINTR, ~0, 0);
92 }
93 return 0;
94 }
95
96 /**
97 * hw_ep_flush: flush endpoint fifo (execute without interruption)
98 * @ci: the controller
99 * @num: endpoint number
100 * @dir: endpoint direction
101 *
102 * This function returns an error code
103 */
hw_ep_flush(struct ci_hdrc * ci,int num,int dir)104 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
105 {
106 int n = hw_ep_bit(num, dir);
107
108 do {
109 /* flush any pending transfer */
110 hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
111 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
112 cpu_relax();
113 } while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
114
115 return 0;
116 }
117
118 /**
119 * hw_ep_disable: disables endpoint (execute without interruption)
120 * @ci: the controller
121 * @num: endpoint number
122 * @dir: endpoint direction
123 *
124 * This function returns an error code
125 */
hw_ep_disable(struct ci_hdrc * ci,int num,int dir)126 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
127 {
128 hw_write(ci, OP_ENDPTCTRL + num,
129 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
130 return 0;
131 }
132
133 /**
134 * hw_ep_enable: enables endpoint (execute without interruption)
135 * @ci: the controller
136 * @num: endpoint number
137 * @dir: endpoint direction
138 * @type: endpoint type
139 *
140 * This function returns an error code
141 */
hw_ep_enable(struct ci_hdrc * ci,int num,int dir,int type)142 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
143 {
144 u32 mask, data;
145
146 if (dir == TX) {
147 mask = ENDPTCTRL_TXT; /* type */
148 data = type << __ffs(mask);
149
150 mask |= ENDPTCTRL_TXS; /* unstall */
151 mask |= ENDPTCTRL_TXR; /* reset data toggle */
152 data |= ENDPTCTRL_TXR;
153 mask |= ENDPTCTRL_TXE; /* enable */
154 data |= ENDPTCTRL_TXE;
155 } else {
156 mask = ENDPTCTRL_RXT; /* type */
157 data = type << __ffs(mask);
158
159 mask |= ENDPTCTRL_RXS; /* unstall */
160 mask |= ENDPTCTRL_RXR; /* reset data toggle */
161 data |= ENDPTCTRL_RXR;
162 mask |= ENDPTCTRL_RXE; /* enable */
163 data |= ENDPTCTRL_RXE;
164 }
165 hw_write(ci, OP_ENDPTCTRL + num, mask, data);
166 return 0;
167 }
168
169 /**
170 * hw_ep_get_halt: return endpoint halt status
171 * @ci: the controller
172 * @num: endpoint number
173 * @dir: endpoint direction
174 *
175 * This function returns 1 if endpoint halted
176 */
hw_ep_get_halt(struct ci_hdrc * ci,int num,int dir)177 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
178 {
179 u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
180
181 return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
182 }
183
184 /**
185 * hw_ep_prime: primes endpoint (execute without interruption)
186 * @ci: the controller
187 * @num: endpoint number
188 * @dir: endpoint direction
189 * @is_ctrl: true if control endpoint
190 *
191 * This function returns an error code
192 */
hw_ep_prime(struct ci_hdrc * ci,int num,int dir,int is_ctrl)193 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
194 {
195 int n = hw_ep_bit(num, dir);
196
197 /* Synchronize before ep prime */
198 wmb();
199
200 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
201 return -EAGAIN;
202
203 hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
204
205 while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
206 cpu_relax();
207 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
208 return -EAGAIN;
209
210 /* status shoult be tested according with manual but it doesn't work */
211 return 0;
212 }
213
214 /**
215 * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
216 * without interruption)
217 * @ci: the controller
218 * @num: endpoint number
219 * @dir: endpoint direction
220 * @value: true => stall, false => unstall
221 *
222 * This function returns an error code
223 */
hw_ep_set_halt(struct ci_hdrc * ci,int num,int dir,int value)224 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
225 {
226 if (value != 0 && value != 1)
227 return -EINVAL;
228
229 do {
230 enum ci_hw_regs reg = OP_ENDPTCTRL + num;
231 u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
232 u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
233
234 /* data toggle - reserved for EP0 but it's in ESS */
235 hw_write(ci, reg, mask_xs|mask_xr,
236 value ? mask_xs : mask_xr);
237 } while (value != hw_ep_get_halt(ci, num, dir));
238
239 return 0;
240 }
241
242 /**
243 * hw_port_is_high_speed: test if port is high speed
244 * @ci: the controller
245 *
246 * This function returns true if high speed port
247 */
hw_port_is_high_speed(struct ci_hdrc * ci)248 static int hw_port_is_high_speed(struct ci_hdrc *ci)
249 {
250 return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
251 hw_read(ci, OP_PORTSC, PORTSC_HSP);
252 }
253
254 /**
255 * hw_test_and_clear_complete: test & clear complete status (execute without
256 * interruption)
257 * @ci: the controller
258 * @n: endpoint number
259 *
260 * This function returns complete status
261 */
hw_test_and_clear_complete(struct ci_hdrc * ci,int n)262 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
263 {
264 n = ep_to_bit(ci, n);
265 return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
266 }
267
268 /**
269 * hw_test_and_clear_intr_active: test & clear active interrupts (execute
270 * without interruption)
271 * @ci: the controller
272 *
273 * This function returns active interrutps
274 */
hw_test_and_clear_intr_active(struct ci_hdrc * ci)275 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
276 {
277 u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
278
279 hw_write(ci, OP_USBSTS, ~0, reg);
280 return reg;
281 }
282
283 /**
284 * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
285 * interruption)
286 * @ci: the controller
287 *
288 * This function returns guard value
289 */
hw_test_and_clear_setup_guard(struct ci_hdrc * ci)290 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
291 {
292 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
293 }
294
295 /**
296 * hw_test_and_set_setup_guard: test & set setup guard (execute without
297 * interruption)
298 * @ci: the controller
299 *
300 * This function returns guard value
301 */
hw_test_and_set_setup_guard(struct ci_hdrc * ci)302 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
303 {
304 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
305 }
306
307 /**
308 * hw_usb_set_address: configures USB address (execute without interruption)
309 * @ci: the controller
310 * @value: new USB address
311 *
312 * This function explicitly sets the address, without the "USBADRA" (advance)
313 * feature, which is not supported by older versions of the controller.
314 */
hw_usb_set_address(struct ci_hdrc * ci,u8 value)315 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
316 {
317 hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
318 value << __ffs(DEVICEADDR_USBADR));
319 }
320
321 /**
322 * hw_usb_reset: restart device after a bus reset (execute without
323 * interruption)
324 * @ci: the controller
325 *
326 * This function returns an error code
327 */
hw_usb_reset(struct ci_hdrc * ci)328 static int hw_usb_reset(struct ci_hdrc *ci)
329 {
330 hw_usb_set_address(ci, 0);
331
332 /* ESS flushes only at end?!? */
333 hw_write(ci, OP_ENDPTFLUSH, ~0, ~0);
334
335 /* clear setup token semaphores */
336 hw_write(ci, OP_ENDPTSETUPSTAT, 0, 0);
337
338 /* clear complete status */
339 hw_write(ci, OP_ENDPTCOMPLETE, 0, 0);
340
341 /* wait until all bits cleared */
342 while (hw_read(ci, OP_ENDPTPRIME, ~0))
343 udelay(10); /* not RTOS friendly */
344
345 /* reset all endpoints ? */
346
347 /* reset internal status and wait for further instructions
348 no need to verify the port reset status (ESS does it) */
349
350 return 0;
351 }
352
353 /******************************************************************************
354 * UTIL block
355 *****************************************************************************/
356
add_td_to_list(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,unsigned int length,struct scatterlist * s)357 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
358 unsigned int length, struct scatterlist *s)
359 {
360 int i;
361 u32 temp;
362 struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
363 GFP_ATOMIC);
364
365 if (node == NULL)
366 return -ENOMEM;
367
368 node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
369 if (node->ptr == NULL) {
370 kfree(node);
371 return -ENOMEM;
372 }
373
374 node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
375 node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
376 node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
377 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
378 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
379
380 if (hwreq->req.length == 0
381 || hwreq->req.length % hwep->ep.maxpacket)
382 mul++;
383 node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
384 }
385
386 if (s) {
387 temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
388 node->td_remaining_size = CI_MAX_BUF_SIZE - length;
389 } else {
390 temp = (u32) (hwreq->req.dma + hwreq->req.actual);
391 }
392
393 if (length) {
394 node->ptr->page[0] = cpu_to_le32(temp);
395 for (i = 1; i < TD_PAGE_COUNT; i++) {
396 u32 page = temp + i * CI_HDRC_PAGE_SIZE;
397 page &= ~TD_RESERVED_MASK;
398 node->ptr->page[i] = cpu_to_le32(page);
399 }
400 }
401
402 hwreq->req.actual += length;
403
404 if (!list_empty(&hwreq->tds)) {
405 /* get the last entry */
406 lastnode = list_entry(hwreq->tds.prev,
407 struct td_node, td);
408 lastnode->ptr->next = cpu_to_le32(node->dma);
409 }
410
411 INIT_LIST_HEAD(&node->td);
412 list_add_tail(&node->td, &hwreq->tds);
413
414 return 0;
415 }
416
417 /**
418 * _usb_addr: calculates endpoint address from direction & number
419 * @ep: endpoint
420 */
_usb_addr(struct ci_hw_ep * ep)421 static inline u8 _usb_addr(struct ci_hw_ep *ep)
422 {
423 return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
424 }
425
prepare_td_for_non_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)426 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
427 struct ci_hw_req *hwreq)
428 {
429 unsigned int rest = hwreq->req.length;
430 int pages = TD_PAGE_COUNT;
431 int ret = 0;
432
433 if (rest == 0) {
434 ret = add_td_to_list(hwep, hwreq, 0, NULL);
435 if (ret < 0)
436 return ret;
437 }
438
439 /*
440 * The first buffer could be not page aligned.
441 * In that case we have to span into one extra td.
442 */
443 if (hwreq->req.dma % PAGE_SIZE)
444 pages--;
445
446 while (rest > 0) {
447 unsigned int count = min(hwreq->req.length - hwreq->req.actual,
448 (unsigned int)(pages * CI_HDRC_PAGE_SIZE));
449
450 ret = add_td_to_list(hwep, hwreq, count, NULL);
451 if (ret < 0)
452 return ret;
453
454 rest -= count;
455 }
456
457 if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
458 && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
459 ret = add_td_to_list(hwep, hwreq, 0, NULL);
460 if (ret < 0)
461 return ret;
462 }
463
464 return ret;
465 }
466
prepare_td_per_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq,struct scatterlist * s)467 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
468 struct scatterlist *s)
469 {
470 unsigned int rest = sg_dma_len(s);
471 int ret = 0;
472
473 hwreq->req.actual = 0;
474 while (rest > 0) {
475 unsigned int count = min_t(unsigned int, rest,
476 CI_MAX_BUF_SIZE);
477
478 ret = add_td_to_list(hwep, hwreq, count, s);
479 if (ret < 0)
480 return ret;
481
482 rest -= count;
483 }
484
485 return ret;
486 }
487
ci_add_buffer_entry(struct td_node * node,struct scatterlist * s)488 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
489 {
490 int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
491 / CI_HDRC_PAGE_SIZE;
492 int i;
493 u32 token;
494
495 token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
496 node->ptr->token = cpu_to_le32(token);
497
498 for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
499 u32 page = (u32) sg_dma_address(s) +
500 (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
501
502 page &= ~TD_RESERVED_MASK;
503 node->ptr->page[i] = cpu_to_le32(page);
504 }
505 }
506
prepare_td_for_sg(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)507 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
508 {
509 struct usb_request *req = &hwreq->req;
510 struct scatterlist *s = req->sg;
511 int ret = 0, i = 0;
512 struct td_node *node = NULL;
513
514 if (!s || req->zero || req->length == 0) {
515 dev_err(hwep->ci->dev, "not supported operation for sg\n");
516 return -EINVAL;
517 }
518
519 while (i++ < req->num_mapped_sgs) {
520 if (sg_dma_address(s) % PAGE_SIZE) {
521 dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
522 return -EINVAL;
523 }
524
525 if (node && (node->td_remaining_size >= sg_dma_len(s))) {
526 ci_add_buffer_entry(node, s);
527 node->td_remaining_size -= sg_dma_len(s);
528 } else {
529 ret = prepare_td_per_sg(hwep, hwreq, s);
530 if (ret)
531 return ret;
532
533 node = list_entry(hwreq->tds.prev,
534 struct td_node, td);
535 }
536
537 s = sg_next(s);
538 }
539
540 return ret;
541 }
542
543 /**
544 * _hardware_enqueue: configures a request at hardware level
545 * @hwep: endpoint
546 * @hwreq: request
547 *
548 * This function returns an error code
549 */
_hardware_enqueue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)550 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
551 {
552 struct ci_hdrc *ci = hwep->ci;
553 int ret = 0;
554 struct td_node *firstnode, *lastnode;
555
556 /* don't queue twice */
557 if (hwreq->req.status == -EALREADY)
558 return -EALREADY;
559
560 hwreq->req.status = -EALREADY;
561
562 ret = usb_gadget_map_request_by_dev(ci->dev->parent,
563 &hwreq->req, hwep->dir);
564 if (ret)
565 return ret;
566
567 if (hwreq->req.num_mapped_sgs)
568 ret = prepare_td_for_sg(hwep, hwreq);
569 else
570 ret = prepare_td_for_non_sg(hwep, hwreq);
571
572 if (ret)
573 return ret;
574
575 lastnode = list_entry(hwreq->tds.prev,
576 struct td_node, td);
577
578 lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
579 if (!hwreq->req.no_interrupt)
580 lastnode->ptr->token |= cpu_to_le32(TD_IOC);
581
582 list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td)
583 trace_ci_prepare_td(hwep, hwreq, firstnode);
584
585 firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
586
587 wmb();
588
589 hwreq->req.actual = 0;
590 if (!list_empty(&hwep->qh.queue)) {
591 struct ci_hw_req *hwreqprev;
592 int n = hw_ep_bit(hwep->num, hwep->dir);
593 int tmp_stat;
594 struct td_node *prevlastnode;
595 u32 next = firstnode->dma & TD_ADDR_MASK;
596
597 hwreqprev = list_entry(hwep->qh.queue.prev,
598 struct ci_hw_req, queue);
599 prevlastnode = list_entry(hwreqprev->tds.prev,
600 struct td_node, td);
601
602 prevlastnode->ptr->next = cpu_to_le32(next);
603 wmb();
604
605 if (ci->rev == CI_REVISION_22) {
606 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
607 reprime_dtd(ci, hwep, prevlastnode);
608 }
609
610 if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
611 goto done;
612 do {
613 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
614 tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
615 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
616 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
617 if (tmp_stat)
618 goto done;
619 }
620
621 /* QH configuration */
622 hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
623 hwep->qh.ptr->td.token &=
624 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
625
626 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
627 u32 mul = hwreq->req.length / hwep->ep.maxpacket;
628
629 if (hwreq->req.length == 0
630 || hwreq->req.length % hwep->ep.maxpacket)
631 mul++;
632 hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
633 }
634
635 ret = hw_ep_prime(ci, hwep->num, hwep->dir,
636 hwep->type == USB_ENDPOINT_XFER_CONTROL);
637 done:
638 return ret;
639 }
640
641 /**
642 * free_pending_td: remove a pending request for the endpoint
643 * @hwep: endpoint
644 */
free_pending_td(struct ci_hw_ep * hwep)645 static void free_pending_td(struct ci_hw_ep *hwep)
646 {
647 struct td_node *pending = hwep->pending_td;
648
649 dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
650 hwep->pending_td = NULL;
651 kfree(pending);
652 }
653
reprime_dtd(struct ci_hdrc * ci,struct ci_hw_ep * hwep,struct td_node * node)654 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
655 struct td_node *node)
656 {
657 hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
658 hwep->qh.ptr->td.token &=
659 cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
660
661 return hw_ep_prime(ci, hwep->num, hwep->dir,
662 hwep->type == USB_ENDPOINT_XFER_CONTROL);
663 }
664
665 /**
666 * _hardware_dequeue: handles a request at hardware level
667 * @hwep: endpoint
668 * @hwreq: request
669 *
670 * This function returns an error code
671 */
_hardware_dequeue(struct ci_hw_ep * hwep,struct ci_hw_req * hwreq)672 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
673 {
674 u32 tmptoken;
675 struct td_node *node, *tmpnode;
676 unsigned remaining_length;
677 unsigned actual = hwreq->req.length;
678 struct ci_hdrc *ci = hwep->ci;
679
680 if (hwreq->req.status != -EALREADY)
681 return -EINVAL;
682
683 hwreq->req.status = 0;
684
685 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
686 tmptoken = le32_to_cpu(node->ptr->token);
687 trace_ci_complete_td(hwep, hwreq, node);
688 if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
689 int n = hw_ep_bit(hwep->num, hwep->dir);
690
691 if (ci->rev == CI_REVISION_24)
692 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
693 reprime_dtd(ci, hwep, node);
694 hwreq->req.status = -EALREADY;
695 return -EBUSY;
696 }
697
698 remaining_length = (tmptoken & TD_TOTAL_BYTES);
699 remaining_length >>= __ffs(TD_TOTAL_BYTES);
700 actual -= remaining_length;
701
702 hwreq->req.status = tmptoken & TD_STATUS;
703 if ((TD_STATUS_HALTED & hwreq->req.status)) {
704 hwreq->req.status = -EPIPE;
705 break;
706 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
707 hwreq->req.status = -EPROTO;
708 break;
709 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
710 hwreq->req.status = -EILSEQ;
711 break;
712 }
713
714 if (remaining_length) {
715 if (hwep->dir == TX) {
716 hwreq->req.status = -EPROTO;
717 break;
718 }
719 }
720 /*
721 * As the hardware could still address the freed td
722 * which will run the udc unusable, the cleanup of the
723 * td has to be delayed by one.
724 */
725 if (hwep->pending_td)
726 free_pending_td(hwep);
727
728 hwep->pending_td = node;
729 list_del_init(&node->td);
730 }
731
732 usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
733 &hwreq->req, hwep->dir);
734
735 hwreq->req.actual += actual;
736
737 if (hwreq->req.status)
738 return hwreq->req.status;
739
740 return hwreq->req.actual;
741 }
742
743 /**
744 * _ep_nuke: dequeues all endpoint requests
745 * @hwep: endpoint
746 *
747 * This function returns an error code
748 * Caller must hold lock
749 */
_ep_nuke(struct ci_hw_ep * hwep)750 static int _ep_nuke(struct ci_hw_ep *hwep)
751 __releases(hwep->lock)
752 __acquires(hwep->lock)
753 {
754 struct td_node *node, *tmpnode;
755 if (hwep == NULL)
756 return -EINVAL;
757
758 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
759
760 while (!list_empty(&hwep->qh.queue)) {
761
762 /* pop oldest request */
763 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
764 struct ci_hw_req, queue);
765
766 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
767 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
768 list_del_init(&node->td);
769 node->ptr = NULL;
770 kfree(node);
771 }
772
773 list_del_init(&hwreq->queue);
774 hwreq->req.status = -ESHUTDOWN;
775
776 if (hwreq->req.complete != NULL) {
777 spin_unlock(hwep->lock);
778 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
779 spin_lock(hwep->lock);
780 }
781 }
782
783 if (hwep->pending_td)
784 free_pending_td(hwep);
785
786 return 0;
787 }
788
_ep_set_halt(struct usb_ep * ep,int value,bool check_transfer)789 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
790 {
791 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
792 int direction, retval = 0;
793 unsigned long flags;
794
795 if (ep == NULL || hwep->ep.desc == NULL)
796 return -EINVAL;
797
798 if (usb_endpoint_xfer_isoc(hwep->ep.desc))
799 return -EOPNOTSUPP;
800
801 spin_lock_irqsave(hwep->lock, flags);
802
803 if (value && hwep->dir == TX && check_transfer &&
804 !list_empty(&hwep->qh.queue) &&
805 !usb_endpoint_xfer_control(hwep->ep.desc)) {
806 spin_unlock_irqrestore(hwep->lock, flags);
807 return -EAGAIN;
808 }
809
810 direction = hwep->dir;
811 do {
812 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
813
814 if (!value)
815 hwep->wedge = 0;
816
817 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
818 hwep->dir = (hwep->dir == TX) ? RX : TX;
819
820 } while (hwep->dir != direction);
821
822 spin_unlock_irqrestore(hwep->lock, flags);
823 return retval;
824 }
825
826
827 /**
828 * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
829 * @gadget: gadget
830 *
831 * This function returns an error code
832 */
_gadget_stop_activity(struct usb_gadget * gadget)833 static int _gadget_stop_activity(struct usb_gadget *gadget)
834 {
835 struct usb_ep *ep;
836 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
837 unsigned long flags;
838
839 /* flush all endpoints */
840 gadget_for_each_ep(ep, gadget) {
841 usb_ep_fifo_flush(ep);
842 }
843 usb_ep_fifo_flush(&ci->ep0out->ep);
844 usb_ep_fifo_flush(&ci->ep0in->ep);
845
846 /* make sure to disable all endpoints */
847 gadget_for_each_ep(ep, gadget) {
848 usb_ep_disable(ep);
849 }
850
851 if (ci->status != NULL) {
852 usb_ep_free_request(&ci->ep0in->ep, ci->status);
853 ci->status = NULL;
854 }
855
856 spin_lock_irqsave(&ci->lock, flags);
857 ci->gadget.speed = USB_SPEED_UNKNOWN;
858 ci->remote_wakeup = 0;
859 ci->suspended = 0;
860 spin_unlock_irqrestore(&ci->lock, flags);
861
862 return 0;
863 }
864
865 /******************************************************************************
866 * ISR block
867 *****************************************************************************/
868 /**
869 * isr_reset_handler: USB reset interrupt handler
870 * @ci: UDC device
871 *
872 * This function resets USB engine after a bus reset occurred
873 */
isr_reset_handler(struct ci_hdrc * ci)874 static void isr_reset_handler(struct ci_hdrc *ci)
875 __releases(ci->lock)
876 __acquires(ci->lock)
877 {
878 int retval;
879 u32 intr;
880
881 spin_unlock(&ci->lock);
882 if (ci->gadget.speed != USB_SPEED_UNKNOWN)
883 usb_gadget_udc_reset(&ci->gadget, ci->driver);
884
885 retval = _gadget_stop_activity(&ci->gadget);
886 if (retval)
887 goto done;
888
889 retval = hw_usb_reset(ci);
890 if (retval)
891 goto done;
892
893 /* clear SLI */
894 hw_write(ci, OP_USBSTS, USBi_SLI, USBi_SLI);
895 intr = hw_read(ci, OP_USBINTR, ~0);
896 hw_write(ci, OP_USBINTR, ~0, intr | USBi_SLI);
897
898 ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
899 if (ci->status == NULL)
900 retval = -ENOMEM;
901
902 done:
903 spin_lock(&ci->lock);
904
905 if (retval)
906 dev_err(ci->dev, "error: %i\n", retval);
907 }
908
909 /**
910 * isr_get_status_complete: get_status request complete function
911 * @ep: endpoint
912 * @req: request handled
913 *
914 * Caller must release lock
915 */
isr_get_status_complete(struct usb_ep * ep,struct usb_request * req)916 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
917 {
918 if (ep == NULL || req == NULL)
919 return;
920
921 kfree(req->buf);
922 usb_ep_free_request(ep, req);
923 }
924
925 /**
926 * _ep_queue: queues (submits) an I/O request to an endpoint
927 * @ep: endpoint
928 * @req: request
929 * @gfp_flags: GFP flags (not used)
930 *
931 * Caller must hold lock
932 * This function returns an error code
933 */
_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)934 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
935 gfp_t __maybe_unused gfp_flags)
936 {
937 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
938 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
939 struct ci_hdrc *ci = hwep->ci;
940 int retval = 0;
941
942 if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
943 return -EINVAL;
944
945 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
946 if (req->length)
947 hwep = (ci->ep0_dir == RX) ?
948 ci->ep0out : ci->ep0in;
949 if (!list_empty(&hwep->qh.queue)) {
950 _ep_nuke(hwep);
951 dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
952 _usb_addr(hwep));
953 }
954 }
955
956 if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
957 hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
958 dev_err(hwep->ci->dev, "request length too big for isochronous\n");
959 return -EMSGSIZE;
960 }
961
962 /* first nuke then test link, e.g. previous status has not sent */
963 if (!list_empty(&hwreq->queue)) {
964 dev_err(hwep->ci->dev, "request already in queue\n");
965 return -EBUSY;
966 }
967
968 /* push request */
969 hwreq->req.status = -EINPROGRESS;
970 hwreq->req.actual = 0;
971
972 retval = _hardware_enqueue(hwep, hwreq);
973
974 if (retval == -EALREADY)
975 retval = 0;
976 if (!retval)
977 list_add_tail(&hwreq->queue, &hwep->qh.queue);
978
979 return retval;
980 }
981
982 /**
983 * isr_get_status_response: get_status request response
984 * @ci: ci struct
985 * @setup: setup request packet
986 *
987 * This function returns an error code
988 */
isr_get_status_response(struct ci_hdrc * ci,struct usb_ctrlrequest * setup)989 static int isr_get_status_response(struct ci_hdrc *ci,
990 struct usb_ctrlrequest *setup)
991 __releases(hwep->lock)
992 __acquires(hwep->lock)
993 {
994 struct ci_hw_ep *hwep = ci->ep0in;
995 struct usb_request *req = NULL;
996 gfp_t gfp_flags = GFP_ATOMIC;
997 int dir, num, retval;
998
999 if (hwep == NULL || setup == NULL)
1000 return -EINVAL;
1001
1002 spin_unlock(hwep->lock);
1003 req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
1004 spin_lock(hwep->lock);
1005 if (req == NULL)
1006 return -ENOMEM;
1007
1008 req->complete = isr_get_status_complete;
1009 req->length = 2;
1010 req->buf = kzalloc(req->length, gfp_flags);
1011 if (req->buf == NULL) {
1012 retval = -ENOMEM;
1013 goto err_free_req;
1014 }
1015
1016 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1017 *(u16 *)req->buf = (ci->remote_wakeup << 1) |
1018 ci->gadget.is_selfpowered;
1019 } else if ((setup->bRequestType & USB_RECIP_MASK) \
1020 == USB_RECIP_ENDPOINT) {
1021 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1022 TX : RX;
1023 num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1024 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1025 }
1026 /* else do nothing; reserved for future use */
1027
1028 retval = _ep_queue(&hwep->ep, req, gfp_flags);
1029 if (retval)
1030 goto err_free_buf;
1031
1032 return 0;
1033
1034 err_free_buf:
1035 kfree(req->buf);
1036 err_free_req:
1037 spin_unlock(hwep->lock);
1038 usb_ep_free_request(&hwep->ep, req);
1039 spin_lock(hwep->lock);
1040 return retval;
1041 }
1042
1043 /**
1044 * isr_setup_status_complete: setup_status request complete function
1045 * @ep: endpoint
1046 * @req: request handled
1047 *
1048 * Caller must release lock. Put the port in test mode if test mode
1049 * feature is selected.
1050 */
1051 static void
isr_setup_status_complete(struct usb_ep * ep,struct usb_request * req)1052 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1053 {
1054 struct ci_hdrc *ci = req->context;
1055 unsigned long flags;
1056
1057 if (req->status < 0)
1058 return;
1059
1060 if (ci->setaddr) {
1061 hw_usb_set_address(ci, ci->address);
1062 ci->setaddr = false;
1063 if (ci->address)
1064 usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1065 }
1066
1067 spin_lock_irqsave(&ci->lock, flags);
1068 if (ci->test_mode)
1069 hw_port_test_set(ci, ci->test_mode);
1070 spin_unlock_irqrestore(&ci->lock, flags);
1071 }
1072
1073 /**
1074 * isr_setup_status_phase: queues the status phase of a setup transation
1075 * @ci: ci struct
1076 *
1077 * This function returns an error code
1078 */
isr_setup_status_phase(struct ci_hdrc * ci)1079 static int isr_setup_status_phase(struct ci_hdrc *ci)
1080 {
1081 struct ci_hw_ep *hwep;
1082
1083 /*
1084 * Unexpected USB controller behavior, caused by bad signal integrity
1085 * or ground reference problems, can lead to isr_setup_status_phase
1086 * being called with ci->status equal to NULL.
1087 * If this situation occurs, you should review your USB hardware design.
1088 */
1089 if (WARN_ON_ONCE(!ci->status))
1090 return -EPIPE;
1091
1092 hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1093 ci->status->context = ci;
1094 ci->status->complete = isr_setup_status_complete;
1095
1096 return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1097 }
1098
1099 /**
1100 * isr_tr_complete_low: transaction complete low level handler
1101 * @hwep: endpoint
1102 *
1103 * This function returns an error code
1104 * Caller must hold lock
1105 */
isr_tr_complete_low(struct ci_hw_ep * hwep)1106 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1107 __releases(hwep->lock)
1108 __acquires(hwep->lock)
1109 {
1110 struct ci_hw_req *hwreq, *hwreqtemp;
1111 struct ci_hw_ep *hweptemp = hwep;
1112 int retval = 0;
1113
1114 list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1115 queue) {
1116 retval = _hardware_dequeue(hwep, hwreq);
1117 if (retval < 0)
1118 break;
1119 list_del_init(&hwreq->queue);
1120 if (hwreq->req.complete != NULL) {
1121 spin_unlock(hwep->lock);
1122 if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1123 hwreq->req.length)
1124 hweptemp = hwep->ci->ep0in;
1125 usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1126 spin_lock(hwep->lock);
1127 }
1128 }
1129
1130 if (retval == -EBUSY)
1131 retval = 0;
1132
1133 return retval;
1134 }
1135
otg_a_alt_hnp_support(struct ci_hdrc * ci)1136 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1137 {
1138 dev_warn(&ci->gadget.dev,
1139 "connect the device to an alternate port if you want HNP\n");
1140 return isr_setup_status_phase(ci);
1141 }
1142
1143 /**
1144 * isr_setup_packet_handler: setup packet handler
1145 * @ci: UDC descriptor
1146 *
1147 * This function handles setup packet
1148 */
isr_setup_packet_handler(struct ci_hdrc * ci)1149 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1150 __releases(ci->lock)
1151 __acquires(ci->lock)
1152 {
1153 struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1154 struct usb_ctrlrequest req;
1155 int type, num, dir, err = -EINVAL;
1156 u8 tmode = 0;
1157
1158 /*
1159 * Flush data and handshake transactions of previous
1160 * setup packet.
1161 */
1162 _ep_nuke(ci->ep0out);
1163 _ep_nuke(ci->ep0in);
1164
1165 /* read_setup_packet */
1166 do {
1167 hw_test_and_set_setup_guard(ci);
1168 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1169 } while (!hw_test_and_clear_setup_guard(ci));
1170
1171 type = req.bRequestType;
1172
1173 ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1174
1175 switch (req.bRequest) {
1176 case USB_REQ_CLEAR_FEATURE:
1177 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1178 le16_to_cpu(req.wValue) ==
1179 USB_ENDPOINT_HALT) {
1180 if (req.wLength != 0)
1181 break;
1182 num = le16_to_cpu(req.wIndex);
1183 dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1184 num &= USB_ENDPOINT_NUMBER_MASK;
1185 if (dir == TX)
1186 num += ci->hw_ep_max / 2;
1187 if (!ci->ci_hw_ep[num].wedge) {
1188 spin_unlock(&ci->lock);
1189 err = usb_ep_clear_halt(
1190 &ci->ci_hw_ep[num].ep);
1191 spin_lock(&ci->lock);
1192 if (err)
1193 break;
1194 }
1195 err = isr_setup_status_phase(ci);
1196 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1197 le16_to_cpu(req.wValue) ==
1198 USB_DEVICE_REMOTE_WAKEUP) {
1199 if (req.wLength != 0)
1200 break;
1201 ci->remote_wakeup = 0;
1202 err = isr_setup_status_phase(ci);
1203 } else {
1204 goto delegate;
1205 }
1206 break;
1207 case USB_REQ_GET_STATUS:
1208 if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1209 le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1210 type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1211 type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1212 goto delegate;
1213 if (le16_to_cpu(req.wLength) != 2 ||
1214 le16_to_cpu(req.wValue) != 0)
1215 break;
1216 err = isr_get_status_response(ci, &req);
1217 break;
1218 case USB_REQ_SET_ADDRESS:
1219 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1220 goto delegate;
1221 if (le16_to_cpu(req.wLength) != 0 ||
1222 le16_to_cpu(req.wIndex) != 0)
1223 break;
1224 ci->address = (u8)le16_to_cpu(req.wValue);
1225 ci->setaddr = true;
1226 err = isr_setup_status_phase(ci);
1227 break;
1228 case USB_REQ_SET_FEATURE:
1229 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1230 le16_to_cpu(req.wValue) ==
1231 USB_ENDPOINT_HALT) {
1232 if (req.wLength != 0)
1233 break;
1234 num = le16_to_cpu(req.wIndex);
1235 dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1236 num &= USB_ENDPOINT_NUMBER_MASK;
1237 if (dir == TX)
1238 num += ci->hw_ep_max / 2;
1239
1240 spin_unlock(&ci->lock);
1241 err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1242 spin_lock(&ci->lock);
1243 if (!err)
1244 isr_setup_status_phase(ci);
1245 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1246 if (req.wLength != 0)
1247 break;
1248 switch (le16_to_cpu(req.wValue)) {
1249 case USB_DEVICE_REMOTE_WAKEUP:
1250 ci->remote_wakeup = 1;
1251 err = isr_setup_status_phase(ci);
1252 break;
1253 case USB_DEVICE_TEST_MODE:
1254 tmode = le16_to_cpu(req.wIndex) >> 8;
1255 switch (tmode) {
1256 case USB_TEST_J:
1257 case USB_TEST_K:
1258 case USB_TEST_SE0_NAK:
1259 case USB_TEST_PACKET:
1260 case USB_TEST_FORCE_ENABLE:
1261 ci->test_mode = tmode;
1262 err = isr_setup_status_phase(
1263 ci);
1264 break;
1265 default:
1266 break;
1267 }
1268 break;
1269 case USB_DEVICE_B_HNP_ENABLE:
1270 if (ci_otg_is_fsm_mode(ci)) {
1271 ci->gadget.b_hnp_enable = 1;
1272 err = isr_setup_status_phase(
1273 ci);
1274 }
1275 break;
1276 case USB_DEVICE_A_ALT_HNP_SUPPORT:
1277 if (ci_otg_is_fsm_mode(ci))
1278 err = otg_a_alt_hnp_support(ci);
1279 break;
1280 case USB_DEVICE_A_HNP_SUPPORT:
1281 if (ci_otg_is_fsm_mode(ci)) {
1282 ci->gadget.a_hnp_support = 1;
1283 err = isr_setup_status_phase(
1284 ci);
1285 }
1286 break;
1287 default:
1288 goto delegate;
1289 }
1290 } else {
1291 goto delegate;
1292 }
1293 break;
1294 default:
1295 delegate:
1296 if (req.wLength == 0) /* no data phase */
1297 ci->ep0_dir = TX;
1298
1299 spin_unlock(&ci->lock);
1300 err = ci->driver->setup(&ci->gadget, &req);
1301 spin_lock(&ci->lock);
1302 break;
1303 }
1304
1305 if (err < 0) {
1306 spin_unlock(&ci->lock);
1307 if (_ep_set_halt(&hwep->ep, 1, false))
1308 dev_err(ci->dev, "error: _ep_set_halt\n");
1309 spin_lock(&ci->lock);
1310 }
1311 }
1312
1313 /**
1314 * isr_tr_complete_handler: transaction complete interrupt handler
1315 * @ci: UDC descriptor
1316 *
1317 * This function handles traffic events
1318 */
isr_tr_complete_handler(struct ci_hdrc * ci)1319 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1320 __releases(ci->lock)
1321 __acquires(ci->lock)
1322 {
1323 unsigned i;
1324 int err;
1325
1326 for (i = 0; i < ci->hw_ep_max; i++) {
1327 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1328
1329 if (hwep->ep.desc == NULL)
1330 continue; /* not configured */
1331
1332 if (hw_test_and_clear_complete(ci, i)) {
1333 err = isr_tr_complete_low(hwep);
1334 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1335 if (err > 0) /* needs status phase */
1336 err = isr_setup_status_phase(ci);
1337 if (err < 0) {
1338 spin_unlock(&ci->lock);
1339 if (_ep_set_halt(&hwep->ep, 1, false))
1340 dev_err(ci->dev,
1341 "error: _ep_set_halt\n");
1342 spin_lock(&ci->lock);
1343 }
1344 }
1345 }
1346
1347 /* Only handle setup packet below */
1348 if (i == 0 &&
1349 hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1350 isr_setup_packet_handler(ci);
1351 }
1352 }
1353
1354 /******************************************************************************
1355 * ENDPT block
1356 *****************************************************************************/
1357 /*
1358 * ep_enable: configure endpoint, making it usable
1359 *
1360 * Check usb_ep_enable() at "usb_gadget.h" for details
1361 */
ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)1362 static int ep_enable(struct usb_ep *ep,
1363 const struct usb_endpoint_descriptor *desc)
1364 {
1365 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1366 int retval = 0;
1367 unsigned long flags;
1368 u32 cap = 0;
1369
1370 if (ep == NULL || desc == NULL)
1371 return -EINVAL;
1372
1373 spin_lock_irqsave(hwep->lock, flags);
1374
1375 /* only internal SW should enable ctrl endpts */
1376
1377 if (!list_empty(&hwep->qh.queue)) {
1378 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1379 spin_unlock_irqrestore(hwep->lock, flags);
1380 return -EBUSY;
1381 }
1382
1383 hwep->ep.desc = desc;
1384
1385 hwep->dir = usb_endpoint_dir_in(desc) ? TX : RX;
1386 hwep->num = usb_endpoint_num(desc);
1387 hwep->type = usb_endpoint_type(desc);
1388
1389 hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1390 hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1391
1392 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1393 cap |= QH_IOS;
1394
1395 cap |= QH_ZLT;
1396 cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1397 /*
1398 * For ISO-TX, we set mult at QH as the largest value, and use
1399 * MultO at TD as real mult value.
1400 */
1401 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1402 cap |= 3 << __ffs(QH_MULT);
1403
1404 hwep->qh.ptr->cap = cpu_to_le32(cap);
1405
1406 hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE); /* needed? */
1407
1408 if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1409 dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1410 retval = -EINVAL;
1411 }
1412
1413 /*
1414 * Enable endpoints in the HW other than ep0 as ep0
1415 * is always enabled
1416 */
1417 if (hwep->num)
1418 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1419 hwep->type);
1420
1421 spin_unlock_irqrestore(hwep->lock, flags);
1422 return retval;
1423 }
1424
1425 /*
1426 * ep_disable: endpoint is no longer usable
1427 *
1428 * Check usb_ep_disable() at "usb_gadget.h" for details
1429 */
ep_disable(struct usb_ep * ep)1430 static int ep_disable(struct usb_ep *ep)
1431 {
1432 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1433 int direction, retval = 0;
1434 unsigned long flags;
1435
1436 if (ep == NULL)
1437 return -EINVAL;
1438 else if (hwep->ep.desc == NULL)
1439 return -EBUSY;
1440
1441 spin_lock_irqsave(hwep->lock, flags);
1442 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1443 spin_unlock_irqrestore(hwep->lock, flags);
1444 return 0;
1445 }
1446
1447 /* only internal SW should disable ctrl endpts */
1448
1449 direction = hwep->dir;
1450 do {
1451 retval |= _ep_nuke(hwep);
1452 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1453
1454 if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1455 hwep->dir = (hwep->dir == TX) ? RX : TX;
1456
1457 } while (hwep->dir != direction);
1458
1459 hwep->ep.desc = NULL;
1460
1461 spin_unlock_irqrestore(hwep->lock, flags);
1462 return retval;
1463 }
1464
1465 /*
1466 * ep_alloc_request: allocate a request object to use with this endpoint
1467 *
1468 * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1469 */
ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1470 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1471 {
1472 struct ci_hw_req *hwreq;
1473
1474 if (ep == NULL)
1475 return NULL;
1476
1477 hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1478 if (hwreq != NULL) {
1479 INIT_LIST_HEAD(&hwreq->queue);
1480 INIT_LIST_HEAD(&hwreq->tds);
1481 }
1482
1483 return (hwreq == NULL) ? NULL : &hwreq->req;
1484 }
1485
1486 /*
1487 * ep_free_request: frees a request object
1488 *
1489 * Check usb_ep_free_request() at "usb_gadget.h" for details
1490 */
ep_free_request(struct usb_ep * ep,struct usb_request * req)1491 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1492 {
1493 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1494 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1495 struct td_node *node, *tmpnode;
1496 unsigned long flags;
1497
1498 if (ep == NULL || req == NULL) {
1499 return;
1500 } else if (!list_empty(&hwreq->queue)) {
1501 dev_err(hwep->ci->dev, "freeing queued request\n");
1502 return;
1503 }
1504
1505 spin_lock_irqsave(hwep->lock, flags);
1506
1507 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1508 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1509 list_del_init(&node->td);
1510 node->ptr = NULL;
1511 kfree(node);
1512 }
1513
1514 kfree(hwreq);
1515
1516 spin_unlock_irqrestore(hwep->lock, flags);
1517 }
1518
1519 /*
1520 * ep_queue: queues (submits) an I/O request to an endpoint
1521 *
1522 * Check usb_ep_queue()* at usb_gadget.h" for details
1523 */
ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t __maybe_unused gfp_flags)1524 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1525 gfp_t __maybe_unused gfp_flags)
1526 {
1527 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1528 int retval = 0;
1529 unsigned long flags;
1530
1531 if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1532 return -EINVAL;
1533
1534 spin_lock_irqsave(hwep->lock, flags);
1535 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1536 spin_unlock_irqrestore(hwep->lock, flags);
1537 return 0;
1538 }
1539 retval = _ep_queue(ep, req, gfp_flags);
1540 spin_unlock_irqrestore(hwep->lock, flags);
1541 return retval;
1542 }
1543
1544 /*
1545 * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1546 *
1547 * Check usb_ep_dequeue() at "usb_gadget.h" for details
1548 */
ep_dequeue(struct usb_ep * ep,struct usb_request * req)1549 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1550 {
1551 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1552 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1553 unsigned long flags;
1554 struct td_node *node, *tmpnode;
1555
1556 if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1557 hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1558 list_empty(&hwep->qh.queue))
1559 return -EINVAL;
1560
1561 spin_lock_irqsave(hwep->lock, flags);
1562 if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1563 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1564
1565 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1566 dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1567 list_del(&node->td);
1568 kfree(node);
1569 }
1570
1571 /* pop request */
1572 list_del_init(&hwreq->queue);
1573
1574 usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1575
1576 req->status = -ECONNRESET;
1577
1578 if (hwreq->req.complete != NULL) {
1579 spin_unlock(hwep->lock);
1580 usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1581 spin_lock(hwep->lock);
1582 }
1583
1584 spin_unlock_irqrestore(hwep->lock, flags);
1585 return 0;
1586 }
1587
1588 /*
1589 * ep_set_halt: sets the endpoint halt feature
1590 *
1591 * Check usb_ep_set_halt() at "usb_gadget.h" for details
1592 */
ep_set_halt(struct usb_ep * ep,int value)1593 static int ep_set_halt(struct usb_ep *ep, int value)
1594 {
1595 return _ep_set_halt(ep, value, true);
1596 }
1597
1598 /*
1599 * ep_set_wedge: sets the halt feature and ignores clear requests
1600 *
1601 * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1602 */
ep_set_wedge(struct usb_ep * ep)1603 static int ep_set_wedge(struct usb_ep *ep)
1604 {
1605 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1606 unsigned long flags;
1607
1608 if (ep == NULL || hwep->ep.desc == NULL)
1609 return -EINVAL;
1610
1611 spin_lock_irqsave(hwep->lock, flags);
1612 hwep->wedge = 1;
1613 spin_unlock_irqrestore(hwep->lock, flags);
1614
1615 return usb_ep_set_halt(ep);
1616 }
1617
1618 /*
1619 * ep_fifo_flush: flushes contents of a fifo
1620 *
1621 * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1622 */
ep_fifo_flush(struct usb_ep * ep)1623 static void ep_fifo_flush(struct usb_ep *ep)
1624 {
1625 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1626 unsigned long flags;
1627
1628 if (ep == NULL) {
1629 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1630 return;
1631 }
1632
1633 spin_lock_irqsave(hwep->lock, flags);
1634 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1635 spin_unlock_irqrestore(hwep->lock, flags);
1636 return;
1637 }
1638
1639 hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1640
1641 spin_unlock_irqrestore(hwep->lock, flags);
1642 }
1643
1644 /*
1645 * Endpoint-specific part of the API to the USB controller hardware
1646 * Check "usb_gadget.h" for details
1647 */
1648 static const struct usb_ep_ops usb_ep_ops = {
1649 .enable = ep_enable,
1650 .disable = ep_disable,
1651 .alloc_request = ep_alloc_request,
1652 .free_request = ep_free_request,
1653 .queue = ep_queue,
1654 .dequeue = ep_dequeue,
1655 .set_halt = ep_set_halt,
1656 .set_wedge = ep_set_wedge,
1657 .fifo_flush = ep_fifo_flush,
1658 };
1659
1660 /******************************************************************************
1661 * GADGET block
1662 *****************************************************************************/
1663
ci_udc_get_frame(struct usb_gadget * _gadget)1664 static int ci_udc_get_frame(struct usb_gadget *_gadget)
1665 {
1666 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1667 unsigned long flags;
1668 int ret;
1669
1670 spin_lock_irqsave(&ci->lock, flags);
1671 ret = hw_read(ci, OP_FRINDEX, 0x3fff);
1672 spin_unlock_irqrestore(&ci->lock, flags);
1673 return ret >> 3;
1674 }
1675
1676 /*
1677 * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1678 */
ci_hdrc_gadget_connect(struct usb_gadget * _gadget,int is_active)1679 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1680 {
1681 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1682
1683 if (is_active) {
1684 pm_runtime_get_sync(ci->dev);
1685 hw_device_reset(ci);
1686 spin_lock_irq(&ci->lock);
1687 if (ci->driver) {
1688 hw_device_state(ci, ci->ep0out->qh.dma);
1689 usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1690 spin_unlock_irq(&ci->lock);
1691 usb_udc_vbus_handler(_gadget, true);
1692 } else {
1693 spin_unlock_irq(&ci->lock);
1694 }
1695 } else {
1696 usb_udc_vbus_handler(_gadget, false);
1697 if (ci->driver)
1698 ci->driver->disconnect(&ci->gadget);
1699 hw_device_state(ci, 0);
1700 if (ci->platdata->notify_event)
1701 ci->platdata->notify_event(ci,
1702 CI_HDRC_CONTROLLER_STOPPED_EVENT);
1703 _gadget_stop_activity(&ci->gadget);
1704 pm_runtime_put_sync(ci->dev);
1705 usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1706 }
1707 }
1708
ci_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1709 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1710 {
1711 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1712 unsigned long flags;
1713 int ret = 0;
1714
1715 spin_lock_irqsave(&ci->lock, flags);
1716 ci->vbus_active = is_active;
1717 spin_unlock_irqrestore(&ci->lock, flags);
1718
1719 if (ci->usb_phy)
1720 usb_phy_set_charger_state(ci->usb_phy, is_active ?
1721 USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1722
1723 if (ci->platdata->notify_event)
1724 ret = ci->platdata->notify_event(ci,
1725 CI_HDRC_CONTROLLER_VBUS_EVENT);
1726
1727 if (ci->usb_phy) {
1728 if (is_active)
1729 usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS);
1730 else
1731 usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE);
1732 }
1733
1734 if (ci->driver)
1735 ci_hdrc_gadget_connect(_gadget, is_active);
1736
1737 return ret;
1738 }
1739
ci_udc_wakeup(struct usb_gadget * _gadget)1740 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1741 {
1742 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1743 unsigned long flags;
1744 int ret = 0;
1745
1746 spin_lock_irqsave(&ci->lock, flags);
1747 if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1748 spin_unlock_irqrestore(&ci->lock, flags);
1749 return 0;
1750 }
1751 if (!ci->remote_wakeup) {
1752 ret = -EOPNOTSUPP;
1753 goto out;
1754 }
1755 if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1756 ret = -EINVAL;
1757 goto out;
1758 }
1759 hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1760 out:
1761 spin_unlock_irqrestore(&ci->lock, flags);
1762 return ret;
1763 }
1764
ci_udc_vbus_draw(struct usb_gadget * _gadget,unsigned ma)1765 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1766 {
1767 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1768
1769 if (ci->usb_phy)
1770 return usb_phy_set_power(ci->usb_phy, ma);
1771 return -ENOTSUPP;
1772 }
1773
ci_udc_selfpowered(struct usb_gadget * _gadget,int is_on)1774 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1775 {
1776 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1777 struct ci_hw_ep *hwep = ci->ep0in;
1778 unsigned long flags;
1779
1780 spin_lock_irqsave(hwep->lock, flags);
1781 _gadget->is_selfpowered = (is_on != 0);
1782 spin_unlock_irqrestore(hwep->lock, flags);
1783
1784 return 0;
1785 }
1786
1787 /* Change Data+ pullup status
1788 * this func is used by usb_gadget_connect/disconnect
1789 */
ci_udc_pullup(struct usb_gadget * _gadget,int is_on)1790 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1791 {
1792 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1793
1794 /*
1795 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1796 * and don't touch Data+ in host mode for dual role config.
1797 */
1798 if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1799 return 0;
1800
1801 pm_runtime_get_sync(ci->dev);
1802 if (is_on)
1803 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1804 else
1805 hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1806 pm_runtime_put_sync(ci->dev);
1807
1808 return 0;
1809 }
1810
1811 static int ci_udc_start(struct usb_gadget *gadget,
1812 struct usb_gadget_driver *driver);
1813 static int ci_udc_stop(struct usb_gadget *gadget);
1814
1815 /* Match ISOC IN from the highest endpoint */
ci_udc_match_ep(struct usb_gadget * gadget,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * comp_desc)1816 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1817 struct usb_endpoint_descriptor *desc,
1818 struct usb_ss_ep_comp_descriptor *comp_desc)
1819 {
1820 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1821 struct usb_ep *ep;
1822
1823 if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1824 list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1825 if (ep->caps.dir_in && !ep->claimed)
1826 return ep;
1827 }
1828 }
1829
1830 return NULL;
1831 }
1832
1833 /*
1834 * Device operations part of the API to the USB controller hardware,
1835 * which don't involve endpoints (or i/o)
1836 * Check "usb_gadget.h" for details
1837 */
1838 static const struct usb_gadget_ops usb_gadget_ops = {
1839 .get_frame = ci_udc_get_frame,
1840 .vbus_session = ci_udc_vbus_session,
1841 .wakeup = ci_udc_wakeup,
1842 .set_selfpowered = ci_udc_selfpowered,
1843 .pullup = ci_udc_pullup,
1844 .vbus_draw = ci_udc_vbus_draw,
1845 .udc_start = ci_udc_start,
1846 .udc_stop = ci_udc_stop,
1847 .match_ep = ci_udc_match_ep,
1848 };
1849
init_eps(struct ci_hdrc * ci)1850 static int init_eps(struct ci_hdrc *ci)
1851 {
1852 int retval = 0, i, j;
1853
1854 for (i = 0; i < ci->hw_ep_max/2; i++)
1855 for (j = RX; j <= TX; j++) {
1856 int k = i + j * ci->hw_ep_max/2;
1857 struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1858
1859 scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1860 (j == TX) ? "in" : "out");
1861
1862 hwep->ci = ci;
1863 hwep->lock = &ci->lock;
1864 hwep->td_pool = ci->td_pool;
1865
1866 hwep->ep.name = hwep->name;
1867 hwep->ep.ops = &usb_ep_ops;
1868
1869 if (i == 0) {
1870 hwep->ep.caps.type_control = true;
1871 } else {
1872 hwep->ep.caps.type_iso = true;
1873 hwep->ep.caps.type_bulk = true;
1874 hwep->ep.caps.type_int = true;
1875 }
1876
1877 if (j == TX)
1878 hwep->ep.caps.dir_in = true;
1879 else
1880 hwep->ep.caps.dir_out = true;
1881
1882 /*
1883 * for ep0: maxP defined in desc, for other
1884 * eps, maxP is set by epautoconfig() called
1885 * by gadget layer
1886 */
1887 usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1888
1889 INIT_LIST_HEAD(&hwep->qh.queue);
1890 hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1891 &hwep->qh.dma);
1892 if (hwep->qh.ptr == NULL)
1893 retval = -ENOMEM;
1894
1895 /*
1896 * set up shorthands for ep0 out and in endpoints,
1897 * don't add to gadget's ep_list
1898 */
1899 if (i == 0) {
1900 if (j == RX)
1901 ci->ep0out = hwep;
1902 else
1903 ci->ep0in = hwep;
1904
1905 usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1906 continue;
1907 }
1908
1909 list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1910 }
1911
1912 return retval;
1913 }
1914
destroy_eps(struct ci_hdrc * ci)1915 static void destroy_eps(struct ci_hdrc *ci)
1916 {
1917 int i;
1918
1919 for (i = 0; i < ci->hw_ep_max; i++) {
1920 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1921
1922 if (hwep->pending_td)
1923 free_pending_td(hwep);
1924 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1925 }
1926 }
1927
1928 /**
1929 * ci_udc_start: register a gadget driver
1930 * @gadget: our gadget
1931 * @driver: the driver being registered
1932 *
1933 * Interrupts are enabled here.
1934 */
ci_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1935 static int ci_udc_start(struct usb_gadget *gadget,
1936 struct usb_gadget_driver *driver)
1937 {
1938 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1939 int retval;
1940
1941 if (driver->disconnect == NULL)
1942 return -EINVAL;
1943
1944 ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1945 retval = usb_ep_enable(&ci->ep0out->ep);
1946 if (retval)
1947 return retval;
1948
1949 ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1950 retval = usb_ep_enable(&ci->ep0in->ep);
1951 if (retval)
1952 return retval;
1953
1954 ci->driver = driver;
1955
1956 /* Start otg fsm for B-device */
1957 if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1958 ci_hdrc_otg_fsm_start(ci);
1959 return retval;
1960 }
1961
1962 if (ci->vbus_active)
1963 ci_hdrc_gadget_connect(gadget, 1);
1964 else
1965 usb_udc_vbus_handler(&ci->gadget, false);
1966
1967 return retval;
1968 }
1969
ci_udc_stop_for_otg_fsm(struct ci_hdrc * ci)1970 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1971 {
1972 if (!ci_otg_is_fsm_mode(ci))
1973 return;
1974
1975 mutex_lock(&ci->fsm.lock);
1976 if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1977 ci->fsm.a_bidl_adis_tmout = 1;
1978 ci_hdrc_otg_fsm_start(ci);
1979 } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1980 ci->fsm.protocol = PROTO_UNDEF;
1981 ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1982 }
1983 mutex_unlock(&ci->fsm.lock);
1984 }
1985
1986 /*
1987 * ci_udc_stop: unregister a gadget driver
1988 */
ci_udc_stop(struct usb_gadget * gadget)1989 static int ci_udc_stop(struct usb_gadget *gadget)
1990 {
1991 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1992 unsigned long flags;
1993
1994 spin_lock_irqsave(&ci->lock, flags);
1995 ci->driver = NULL;
1996
1997 if (ci->vbus_active) {
1998 hw_device_state(ci, 0);
1999 spin_unlock_irqrestore(&ci->lock, flags);
2000 if (ci->platdata->notify_event)
2001 ci->platdata->notify_event(ci,
2002 CI_HDRC_CONTROLLER_STOPPED_EVENT);
2003 _gadget_stop_activity(&ci->gadget);
2004 spin_lock_irqsave(&ci->lock, flags);
2005 pm_runtime_put(ci->dev);
2006 }
2007
2008 spin_unlock_irqrestore(&ci->lock, flags);
2009
2010 ci_udc_stop_for_otg_fsm(ci);
2011 return 0;
2012 }
2013
2014 /******************************************************************************
2015 * BUS block
2016 *****************************************************************************/
2017 /*
2018 * udc_irq: ci interrupt handler
2019 *
2020 * This function returns IRQ_HANDLED if the IRQ has been handled
2021 * It locks access to registers
2022 */
udc_irq(struct ci_hdrc * ci)2023 static irqreturn_t udc_irq(struct ci_hdrc *ci)
2024 {
2025 irqreturn_t retval;
2026 u32 intr;
2027
2028 if (ci == NULL)
2029 return IRQ_HANDLED;
2030
2031 spin_lock(&ci->lock);
2032
2033 if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
2034 if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
2035 USBMODE_CM_DC) {
2036 spin_unlock(&ci->lock);
2037 return IRQ_NONE;
2038 }
2039 }
2040 intr = hw_test_and_clear_intr_active(ci);
2041
2042 if (intr) {
2043 /* order defines priority - do NOT change it */
2044 if (USBi_URI & intr)
2045 isr_reset_handler(ci);
2046
2047 if (USBi_PCI & intr) {
2048 ci->gadget.speed = hw_port_is_high_speed(ci) ?
2049 USB_SPEED_HIGH : USB_SPEED_FULL;
2050 if (ci->usb_phy)
2051 usb_phy_set_event(ci->usb_phy,
2052 USB_EVENT_ENUMERATED);
2053 if (ci->suspended) {
2054 if (ci->driver->resume) {
2055 spin_unlock(&ci->lock);
2056 ci->driver->resume(&ci->gadget);
2057 spin_lock(&ci->lock);
2058 }
2059 ci->suspended = 0;
2060 usb_gadget_set_state(&ci->gadget,
2061 ci->resume_state);
2062 }
2063 }
2064
2065 if (USBi_UI & intr)
2066 isr_tr_complete_handler(ci);
2067
2068 if ((USBi_SLI & intr) && !(ci->suspended)) {
2069 ci->suspended = 1;
2070 ci->resume_state = ci->gadget.state;
2071 if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2072 ci->driver->suspend) {
2073 spin_unlock(&ci->lock);
2074 ci->driver->suspend(&ci->gadget);
2075 spin_lock(&ci->lock);
2076 }
2077 usb_gadget_set_state(&ci->gadget,
2078 USB_STATE_SUSPENDED);
2079 }
2080 retval = IRQ_HANDLED;
2081 } else {
2082 retval = IRQ_NONE;
2083 }
2084 spin_unlock(&ci->lock);
2085
2086 return retval;
2087 }
2088
2089 /**
2090 * udc_start: initialize gadget role
2091 * @ci: chipidea controller
2092 */
udc_start(struct ci_hdrc * ci)2093 static int udc_start(struct ci_hdrc *ci)
2094 {
2095 struct device *dev = ci->dev;
2096 struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2097 int retval = 0;
2098
2099 ci->gadget.ops = &usb_gadget_ops;
2100 ci->gadget.speed = USB_SPEED_UNKNOWN;
2101 ci->gadget.max_speed = USB_SPEED_HIGH;
2102 ci->gadget.name = ci->platdata->name;
2103 ci->gadget.otg_caps = otg_caps;
2104 ci->gadget.sg_supported = 1;
2105 ci->gadget.irq = ci->irq;
2106
2107 if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2108 ci->gadget.quirk_avoids_skb_reserve = 1;
2109
2110 if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2111 otg_caps->adp_support))
2112 ci->gadget.is_otg = 1;
2113
2114 INIT_LIST_HEAD(&ci->gadget.ep_list);
2115
2116 /* alloc resources */
2117 ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2118 sizeof(struct ci_hw_qh),
2119 64, CI_HDRC_PAGE_SIZE);
2120 if (ci->qh_pool == NULL)
2121 return -ENOMEM;
2122
2123 ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2124 sizeof(struct ci_hw_td),
2125 64, CI_HDRC_PAGE_SIZE);
2126 if (ci->td_pool == NULL) {
2127 retval = -ENOMEM;
2128 goto free_qh_pool;
2129 }
2130
2131 retval = init_eps(ci);
2132 if (retval)
2133 goto free_pools;
2134
2135 ci->gadget.ep0 = &ci->ep0in->ep;
2136
2137 retval = usb_add_gadget_udc(dev, &ci->gadget);
2138 if (retval)
2139 goto destroy_eps;
2140
2141 return retval;
2142
2143 destroy_eps:
2144 destroy_eps(ci);
2145 free_pools:
2146 dma_pool_destroy(ci->td_pool);
2147 free_qh_pool:
2148 dma_pool_destroy(ci->qh_pool);
2149 return retval;
2150 }
2151
2152 /*
2153 * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2154 *
2155 * No interrupts active, the IRQ has been released
2156 */
ci_hdrc_gadget_destroy(struct ci_hdrc * ci)2157 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2158 {
2159 if (!ci->roles[CI_ROLE_GADGET])
2160 return;
2161
2162 usb_del_gadget_udc(&ci->gadget);
2163
2164 destroy_eps(ci);
2165
2166 dma_pool_destroy(ci->td_pool);
2167 dma_pool_destroy(ci->qh_pool);
2168 }
2169
udc_id_switch_for_device(struct ci_hdrc * ci)2170 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2171 {
2172 if (ci->platdata->pins_device)
2173 pinctrl_select_state(ci->platdata->pctl,
2174 ci->platdata->pins_device);
2175
2176 if (ci->is_otg)
2177 /* Clear and enable BSV irq */
2178 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2179 OTGSC_BSVIS | OTGSC_BSVIE);
2180
2181 return 0;
2182 }
2183
udc_id_switch_for_host(struct ci_hdrc * ci)2184 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2185 {
2186 /*
2187 * host doesn't care B_SESSION_VALID event
2188 * so clear and disable BSV irq
2189 */
2190 if (ci->is_otg)
2191 hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2192
2193 ci->vbus_active = 0;
2194
2195 if (ci->platdata->pins_device && ci->platdata->pins_default)
2196 pinctrl_select_state(ci->platdata->pctl,
2197 ci->platdata->pins_default);
2198 }
2199
2200 #ifdef CONFIG_PM_SLEEP
udc_suspend(struct ci_hdrc * ci)2201 static void udc_suspend(struct ci_hdrc *ci)
2202 {
2203 /*
2204 * Set OP_ENDPTLISTADDR to be non-zero for
2205 * checking if controller resume from power lost
2206 * in non-host mode.
2207 */
2208 if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0)
2209 hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0);
2210 }
2211
udc_resume(struct ci_hdrc * ci,bool power_lost)2212 static void udc_resume(struct ci_hdrc *ci, bool power_lost)
2213 {
2214 if (power_lost) {
2215 if (ci->is_otg)
2216 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2217 OTGSC_BSVIS | OTGSC_BSVIE);
2218 if (ci->vbus_active)
2219 usb_gadget_vbus_disconnect(&ci->gadget);
2220 }
2221
2222 /* Restore value 0 if it was set for power lost check */
2223 if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF)
2224 hw_write(ci, OP_ENDPTLISTADDR, ~0, 0);
2225 }
2226 #endif
2227
2228 /**
2229 * ci_hdrc_gadget_init - initialize device related bits
2230 * @ci: the controller
2231 *
2232 * This function initializes the gadget, if the device is "device capable".
2233 */
ci_hdrc_gadget_init(struct ci_hdrc * ci)2234 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2235 {
2236 struct ci_role_driver *rdrv;
2237 int ret;
2238
2239 if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2240 return -ENXIO;
2241
2242 rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2243 if (!rdrv)
2244 return -ENOMEM;
2245
2246 rdrv->start = udc_id_switch_for_device;
2247 rdrv->stop = udc_id_switch_for_host;
2248 #ifdef CONFIG_PM_SLEEP
2249 rdrv->suspend = udc_suspend;
2250 rdrv->resume = udc_resume;
2251 #endif
2252 rdrv->irq = udc_irq;
2253 rdrv->name = "gadget";
2254
2255 ret = udc_start(ci);
2256 if (!ret)
2257 ci->roles[CI_ROLE_GADGET] = rdrv;
2258
2259 return ret;
2260 }
2261