1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4 *
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43
44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */
48
49 #define TIPC_MAX_TFMS_DEF 10
50 #define TIPC_MAX_TFMS_LIM 1000
51
52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */
53
54 /*
55 * TIPC Key ids
56 */
57 enum {
58 KEY_MASTER = 0,
59 KEY_MIN = KEY_MASTER,
60 KEY_1 = 1,
61 KEY_2,
62 KEY_3,
63 KEY_MAX = KEY_3,
64 };
65
66 /*
67 * TIPC Crypto statistics
68 */
69 enum {
70 STAT_OK,
71 STAT_NOK,
72 STAT_ASYNC,
73 STAT_ASYNC_OK,
74 STAT_ASYNC_NOK,
75 STAT_BADKEYS, /* tx only */
76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 STAT_NOKEYS,
78 STAT_SWITCHES,
79
80 MAX_STATS,
81 };
82
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 "async_nok", "badmsgs", "nokeys",
86 "switches"};
87
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92
93 /*
94 * struct tipc_key - TIPC keys' status indicator
95 *
96 * 7 6 5 4 3 2 1 0
97 * +-----+-----+-----+-----+-----+-----+-----+-----+
98 * key: | (reserved)|passive idx| active idx|pending idx|
99 * +-----+-----+-----+-----+-----+-----+-----+-----+
100 */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 union {
105 struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 u8 pending:2,
108 active:2,
109 passive:2, /* rx only */
110 reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 u8 reserved:2,
113 passive:2, /* rx only */
114 active:2,
115 pending:2;
116 #else
117 #error "Please fix <asm/byteorder.h>"
118 #endif
119 } __packed;
120 u8 keys;
121 };
122 };
123
124 /**
125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126 * @tfm: cipher handle/key
127 * @list: linked list of TFMs
128 */
129 struct tipc_tfm {
130 struct crypto_aead *tfm;
131 struct list_head list;
132 };
133
134 /**
135 * struct tipc_aead - TIPC AEAD key structure
136 * @tfm_entry: per-cpu pointer to one entry in TFM list
137 * @crypto: TIPC crypto owns this key
138 * @cloned: reference to the source key in case cloning
139 * @users: the number of the key users (TX/RX)
140 * @salt: the key's SALT value
141 * @authsize: authentication tag size (max = 16)
142 * @mode: crypto mode is applied to the key
143 * @hint: a hint for user key
144 * @rcu: struct rcu_head
145 * @key: the aead key
146 * @gen: the key's generation
147 * @seqno: the key seqno (cluster scope)
148 * @refcnt: the key reference counter
149 */
150 struct tipc_aead {
151 #define TIPC_AEAD_HINT_LEN (5)
152 struct tipc_tfm * __percpu *tfm_entry;
153 struct tipc_crypto *crypto;
154 struct tipc_aead *cloned;
155 atomic_t users;
156 u32 salt;
157 u8 authsize;
158 u8 mode;
159 char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160 struct rcu_head rcu;
161 struct tipc_aead_key *key;
162 u16 gen;
163
164 atomic64_t seqno ____cacheline_aligned;
165 refcount_t refcnt ____cacheline_aligned;
166
167 } ____cacheline_aligned;
168
169 /**
170 * struct tipc_crypto_stats - TIPC Crypto statistics
171 * @stat: array of crypto statistics
172 */
173 struct tipc_crypto_stats {
174 unsigned int stat[MAX_STATS];
175 };
176
177 /**
178 * struct tipc_crypto - TIPC TX/RX crypto structure
179 * @net: struct net
180 * @node: TIPC node (RX)
181 * @aead: array of pointers to AEAD keys for encryption/decryption
182 * @peer_rx_active: replicated peer RX active key index
183 * @key_gen: TX/RX key generation
184 * @key: the key states
185 * @skey_mode: session key's mode
186 * @skey: received session key
187 * @wq: common workqueue on TX crypto
188 * @work: delayed work sched for TX/RX
189 * @key_distr: key distributing state
190 * @rekeying_intv: rekeying interval (in minutes)
191 * @stats: the crypto statistics
192 * @name: the crypto name
193 * @sndnxt: the per-peer sndnxt (TX)
194 * @timer1: general timer 1 (jiffies)
195 * @timer2: general timer 2 (jiffies)
196 * @working: the crypto is working or not
197 * @key_master: flag indicates if master key exists
198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199 * @nokey: no key indication
200 * @flags: combined flags field
201 * @lock: tipc_key lock
202 */
203 struct tipc_crypto {
204 struct net *net;
205 struct tipc_node *node;
206 struct tipc_aead __rcu *aead[KEY_MAX + 1];
207 atomic_t peer_rx_active;
208 u16 key_gen;
209 struct tipc_key key;
210 u8 skey_mode;
211 struct tipc_aead_key *skey;
212 struct workqueue_struct *wq;
213 struct delayed_work work;
214 #define KEY_DISTR_SCHED 1
215 #define KEY_DISTR_COMPL 2
216 atomic_t key_distr;
217 u32 rekeying_intv;
218
219 struct tipc_crypto_stats __percpu *stats;
220 char name[48];
221
222 atomic64_t sndnxt ____cacheline_aligned;
223 unsigned long timer1;
224 unsigned long timer2;
225 union {
226 struct {
227 u8 working:1;
228 u8 key_master:1;
229 u8 legacy_user:1;
230 u8 nokey: 1;
231 };
232 u8 flags;
233 };
234 spinlock_t lock; /* crypto lock */
235
236 } ____cacheline_aligned;
237
238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
239 struct tipc_crypto_tx_ctx {
240 struct tipc_aead *aead;
241 struct tipc_bearer *bearer;
242 struct tipc_media_addr dst;
243 };
244
245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
246 struct tipc_crypto_rx_ctx {
247 struct tipc_aead *aead;
248 struct tipc_bearer *bearer;
249 };
250
251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252 static inline void tipc_aead_put(struct tipc_aead *aead);
253 static void tipc_aead_free(struct rcu_head *rp);
254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260 u8 mode);
261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263 unsigned int crypto_ctx_size,
264 u8 **iv, struct aead_request **req,
265 struct scatterlist **sg, int nsg);
266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267 struct tipc_bearer *b,
268 struct tipc_media_addr *dst,
269 struct tipc_node *__dnode);
270 static void tipc_aead_encrypt_done(void *data, int err);
271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272 struct sk_buff *skb, struct tipc_bearer *b);
273 static void tipc_aead_decrypt_done(void *data, int err);
274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276 u8 tx_key, struct sk_buff *skb,
277 struct tipc_crypto *__rx);
278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279 u8 new_passive,
280 u8 new_active,
281 u8 new_pending);
282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
283 struct tipc_aead *aead, u8 pos,
284 bool master_key);
285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287 struct tipc_crypto *rx,
288 struct sk_buff *skb,
289 u8 tx_key);
290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293 struct tipc_bearer *b,
294 struct tipc_media_addr *dst,
295 struct tipc_node *__dnode, u8 type);
296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297 struct tipc_bearer *b,
298 struct sk_buff **skb, int err);
299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302 char *buf);
303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304 u16 gen, u8 mode, u32 dnode);
305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306 static void tipc_crypto_work_tx(struct work_struct *work);
307 static void tipc_crypto_work_rx(struct work_struct *work);
308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309
310 #define is_tx(crypto) (!(crypto)->node)
311 #define is_rx(crypto) (!is_tx(crypto))
312
313 #define key_next(cur) ((cur) % KEY_MAX + 1)
314
315 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \
316 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317
318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
319 do { \
320 struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \
321 lockdep_is_held(lock)); \
322 rcu_assign_pointer((rcu_ptr), (ptr)); \
323 tipc_aead_put(__tmp); \
324 } while (0)
325
326 #define tipc_crypto_key_detach(rcu_ptr, lock) \
327 tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328
329 /**
330 * tipc_aead_key_validate - Validate a AEAD user key
331 * @ukey: pointer to user key data
332 * @info: netlink info pointer
333 */
tipc_aead_key_validate(struct tipc_aead_key * ukey,struct genl_info * info)334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335 {
336 int keylen;
337
338 /* Check if algorithm exists */
339 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341 return -ENODEV;
342 }
343
344 /* Currently, we only support the "gcm(aes)" cipher algorithm */
345 if (strcmp(ukey->alg_name, "gcm(aes)")) {
346 GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347 return -ENOTSUPP;
348 }
349
350 /* Check if key size is correct */
351 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353 keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354 keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356 return -EKEYREJECTED;
357 }
358
359 return 0;
360 }
361
362 /**
363 * tipc_aead_key_generate - Generate new session key
364 * @skey: input/output key with new content
365 *
366 * Return: 0 in case of success, otherwise < 0
367 */
tipc_aead_key_generate(struct tipc_aead_key * skey)368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369 {
370 int rc = 0;
371
372 /* Fill the key's content with a random value via RNG cipher */
373 rc = crypto_get_default_rng();
374 if (likely(!rc)) {
375 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376 skey->keylen);
377 crypto_put_default_rng();
378 }
379
380 return rc;
381 }
382
tipc_aead_get(struct tipc_aead __rcu * aead)383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384 {
385 struct tipc_aead *tmp;
386
387 rcu_read_lock();
388 tmp = rcu_dereference(aead);
389 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390 tmp = NULL;
391 rcu_read_unlock();
392
393 return tmp;
394 }
395
tipc_aead_put(struct tipc_aead * aead)396 static inline void tipc_aead_put(struct tipc_aead *aead)
397 {
398 if (aead && refcount_dec_and_test(&aead->refcnt))
399 call_rcu(&aead->rcu, tipc_aead_free);
400 }
401
402 /**
403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404 * @rp: rcu head pointer
405 */
tipc_aead_free(struct rcu_head * rp)406 static void tipc_aead_free(struct rcu_head *rp)
407 {
408 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409 struct tipc_tfm *tfm_entry, *head, *tmp;
410
411 if (aead->cloned) {
412 tipc_aead_put(aead->cloned);
413 } else {
414 head = *get_cpu_ptr(aead->tfm_entry);
415 put_cpu_ptr(aead->tfm_entry);
416 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417 crypto_free_aead(tfm_entry->tfm);
418 list_del(&tfm_entry->list);
419 kfree(tfm_entry);
420 }
421 /* Free the head */
422 crypto_free_aead(head->tfm);
423 list_del(&head->list);
424 kfree(head);
425 }
426 free_percpu(aead->tfm_entry);
427 kfree_sensitive(aead->key);
428 kfree(aead);
429 }
430
tipc_aead_users(struct tipc_aead __rcu * aead)431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
432 {
433 struct tipc_aead *tmp;
434 int users = 0;
435
436 rcu_read_lock();
437 tmp = rcu_dereference(aead);
438 if (tmp)
439 users = atomic_read(&tmp->users);
440 rcu_read_unlock();
441
442 return users;
443 }
444
tipc_aead_users_inc(struct tipc_aead __rcu * aead,int lim)445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446 {
447 struct tipc_aead *tmp;
448
449 rcu_read_lock();
450 tmp = rcu_dereference(aead);
451 if (tmp)
452 atomic_add_unless(&tmp->users, 1, lim);
453 rcu_read_unlock();
454 }
455
tipc_aead_users_dec(struct tipc_aead __rcu * aead,int lim)456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457 {
458 struct tipc_aead *tmp;
459
460 rcu_read_lock();
461 tmp = rcu_dereference(aead);
462 if (tmp)
463 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464 rcu_read_unlock();
465 }
466
tipc_aead_users_set(struct tipc_aead __rcu * aead,int val)467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468 {
469 struct tipc_aead *tmp;
470 int cur;
471
472 rcu_read_lock();
473 tmp = rcu_dereference(aead);
474 if (tmp) {
475 do {
476 cur = atomic_read(&tmp->users);
477 if (cur == val)
478 break;
479 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480 }
481 rcu_read_unlock();
482 }
483
484 /**
485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486 * @aead: the AEAD key pointer
487 */
tipc_aead_tfm_next(struct tipc_aead * aead)488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489 {
490 struct tipc_tfm **tfm_entry;
491 struct crypto_aead *tfm;
492
493 tfm_entry = get_cpu_ptr(aead->tfm_entry);
494 *tfm_entry = list_next_entry(*tfm_entry, list);
495 tfm = (*tfm_entry)->tfm;
496 put_cpu_ptr(tfm_entry);
497
498 return tfm;
499 }
500
501 /**
502 * tipc_aead_init - Initiate TIPC AEAD
503 * @aead: returned new TIPC AEAD key handle pointer
504 * @ukey: pointer to user key data
505 * @mode: the key mode
506 *
507 * Allocate a (list of) new cipher transformation (TFM) with the specific user
508 * key data if valid. The number of the allocated TFMs can be set via the sysfs
509 * "net/tipc/max_tfms" first.
510 * Also, all the other AEAD data are also initialized.
511 *
512 * Return: 0 if the initiation is successful, otherwise: < 0
513 */
tipc_aead_init(struct tipc_aead ** aead,struct tipc_aead_key * ukey,u8 mode)514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515 u8 mode)
516 {
517 struct tipc_tfm *tfm_entry, *head;
518 struct crypto_aead *tfm;
519 struct tipc_aead *tmp;
520 int keylen, err, cpu;
521 int tfm_cnt = 0;
522
523 if (unlikely(*aead))
524 return -EEXIST;
525
526 /* Allocate a new AEAD */
527 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528 if (unlikely(!tmp))
529 return -ENOMEM;
530
531 /* The key consists of two parts: [AES-KEY][SALT] */
532 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533
534 /* Allocate per-cpu TFM entry pointer */
535 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536 if (!tmp->tfm_entry) {
537 kfree_sensitive(tmp);
538 return -ENOMEM;
539 }
540
541 /* Make a list of TFMs with the user key data */
542 do {
543 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544 if (IS_ERR(tfm)) {
545 err = PTR_ERR(tfm);
546 break;
547 }
548
549 if (unlikely(!tfm_cnt &&
550 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551 crypto_free_aead(tfm);
552 err = -ENOTSUPP;
553 break;
554 }
555
556 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558 if (unlikely(err)) {
559 crypto_free_aead(tfm);
560 break;
561 }
562
563 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564 if (unlikely(!tfm_entry)) {
565 crypto_free_aead(tfm);
566 err = -ENOMEM;
567 break;
568 }
569 INIT_LIST_HEAD(&tfm_entry->list);
570 tfm_entry->tfm = tfm;
571
572 /* First entry? */
573 if (!tfm_cnt) {
574 head = tfm_entry;
575 for_each_possible_cpu(cpu) {
576 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577 }
578 } else {
579 list_add_tail(&tfm_entry->list, &head->list);
580 }
581
582 } while (++tfm_cnt < sysctl_tipc_max_tfms);
583
584 /* Not any TFM is allocated? */
585 if (!tfm_cnt) {
586 free_percpu(tmp->tfm_entry);
587 kfree_sensitive(tmp);
588 return err;
589 }
590
591 /* Form a hex string of some last bytes as the key's hint */
592 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593 TIPC_AEAD_HINT_LEN);
594
595 /* Initialize the other data */
596 tmp->mode = mode;
597 tmp->cloned = NULL;
598 tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600 if (!tmp->key) {
601 tipc_aead_free(&tmp->rcu);
602 return -ENOMEM;
603 }
604 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
605 atomic_set(&tmp->users, 0);
606 atomic64_set(&tmp->seqno, 0);
607 refcount_set(&tmp->refcnt, 1);
608
609 *aead = tmp;
610 return 0;
611 }
612
613 /**
614 * tipc_aead_clone - Clone a TIPC AEAD key
615 * @dst: dest key for the cloning
616 * @src: source key to clone from
617 *
618 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
619 * common for the keys.
620 * A reference to the source is hold in the "cloned" pointer for the later
621 * freeing purposes.
622 *
623 * Note: this must be done in cluster-key mode only!
624 * Return: 0 in case of success, otherwise < 0
625 */
tipc_aead_clone(struct tipc_aead ** dst,struct tipc_aead * src)626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
627 {
628 struct tipc_aead *aead;
629 int cpu;
630
631 if (!src)
632 return -ENOKEY;
633
634 if (src->mode != CLUSTER_KEY)
635 return -EINVAL;
636
637 if (unlikely(*dst))
638 return -EEXIST;
639
640 aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
641 if (unlikely(!aead))
642 return -ENOMEM;
643
644 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
645 if (unlikely(!aead->tfm_entry)) {
646 kfree_sensitive(aead);
647 return -ENOMEM;
648 }
649
650 for_each_possible_cpu(cpu) {
651 *per_cpu_ptr(aead->tfm_entry, cpu) =
652 *per_cpu_ptr(src->tfm_entry, cpu);
653 }
654
655 memcpy(aead->hint, src->hint, sizeof(src->hint));
656 aead->mode = src->mode;
657 aead->salt = src->salt;
658 aead->authsize = src->authsize;
659 atomic_set(&aead->users, 0);
660 atomic64_set(&aead->seqno, 0);
661 refcount_set(&aead->refcnt, 1);
662
663 WARN_ON(!refcount_inc_not_zero(&src->refcnt));
664 aead->cloned = src;
665
666 *dst = aead;
667 return 0;
668 }
669
670 /**
671 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
672 * @tfm: cipher handle to be registered with the request
673 * @crypto_ctx_size: size of crypto context for callback
674 * @iv: returned pointer to IV data
675 * @req: returned pointer to AEAD request data
676 * @sg: returned pointer to SG lists
677 * @nsg: number of SG lists to be allocated
678 *
679 * Allocate memory to store the crypto context data, AEAD request, IV and SG
680 * lists, the memory layout is as follows:
681 * crypto_ctx || iv || aead_req || sg[]
682 *
683 * Return: the pointer to the memory areas in case of success, otherwise NULL
684 */
tipc_aead_mem_alloc(struct crypto_aead * tfm,unsigned int crypto_ctx_size,u8 ** iv,struct aead_request ** req,struct scatterlist ** sg,int nsg)685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
686 unsigned int crypto_ctx_size,
687 u8 **iv, struct aead_request **req,
688 struct scatterlist **sg, int nsg)
689 {
690 unsigned int iv_size, req_size;
691 unsigned int len;
692 u8 *mem;
693
694 iv_size = crypto_aead_ivsize(tfm);
695 req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
696
697 len = crypto_ctx_size;
698 len += iv_size;
699 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
700 len = ALIGN(len, crypto_tfm_ctx_alignment());
701 len += req_size;
702 len = ALIGN(len, __alignof__(struct scatterlist));
703 len += nsg * sizeof(**sg);
704
705 mem = kmalloc(len, GFP_ATOMIC);
706 if (!mem)
707 return NULL;
708
709 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
710 crypto_aead_alignmask(tfm) + 1);
711 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
712 crypto_tfm_ctx_alignment());
713 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
714 __alignof__(struct scatterlist));
715
716 return (void *)mem;
717 }
718
719 /**
720 * tipc_aead_encrypt - Encrypt a message
721 * @aead: TIPC AEAD key for the message encryption
722 * @skb: the input/output skb
723 * @b: TIPC bearer where the message will be delivered after the encryption
724 * @dst: the destination media address
725 * @__dnode: TIPC dest node if "known"
726 *
727 * Return:
728 * * 0 : if the encryption has completed
729 * * -EINPROGRESS/-EBUSY : if a callback will be performed
730 * * < 0 : the encryption has failed
731 */
tipc_aead_encrypt(struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
733 struct tipc_bearer *b,
734 struct tipc_media_addr *dst,
735 struct tipc_node *__dnode)
736 {
737 struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
738 struct tipc_crypto_tx_ctx *tx_ctx;
739 struct aead_request *req;
740 struct sk_buff *trailer;
741 struct scatterlist *sg;
742 struct tipc_ehdr *ehdr;
743 int ehsz, len, tailen, nsg, rc;
744 void *ctx;
745 u32 salt;
746 u8 *iv;
747
748 /* Make sure message len at least 4-byte aligned */
749 len = ALIGN(skb->len, 4);
750 tailen = len - skb->len + aead->authsize;
751
752 /* Expand skb tail for authentication tag:
753 * As for simplicity, we'd have made sure skb having enough tailroom
754 * for authentication tag @skb allocation. Even when skb is nonlinear
755 * but there is no frag_list, it should be still fine!
756 * Otherwise, we must cow it to be a writable buffer with the tailroom.
757 */
758 SKB_LINEAR_ASSERT(skb);
759 if (tailen > skb_tailroom(skb)) {
760 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
761 skb_tailroom(skb), tailen);
762 }
763
764 nsg = skb_cow_data(skb, tailen, &trailer);
765 if (unlikely(nsg < 0)) {
766 pr_err("TX: skb_cow_data() returned %d\n", nsg);
767 return nsg;
768 }
769
770 pskb_put(skb, trailer, tailen);
771
772 /* Allocate memory for the AEAD operation */
773 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
774 if (unlikely(!ctx))
775 return -ENOMEM;
776 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
777
778 /* Map skb to the sg lists */
779 sg_init_table(sg, nsg);
780 rc = skb_to_sgvec(skb, sg, 0, skb->len);
781 if (unlikely(rc < 0)) {
782 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
783 goto exit;
784 }
785
786 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
787 * In case we're in cluster-key mode, SALT is varied by xor-ing with
788 * the source address (or w0 of id), otherwise with the dest address
789 * if dest is known.
790 */
791 ehdr = (struct tipc_ehdr *)skb->data;
792 salt = aead->salt;
793 if (aead->mode == CLUSTER_KEY)
794 salt ^= __be32_to_cpu(ehdr->addr);
795 else if (__dnode)
796 salt ^= tipc_node_get_addr(__dnode);
797 memcpy(iv, &salt, 4);
798 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
799
800 /* Prepare request */
801 ehsz = tipc_ehdr_size(ehdr);
802 aead_request_set_tfm(req, tfm);
803 aead_request_set_ad(req, ehsz);
804 aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
805
806 /* Set callback function & data */
807 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
808 tipc_aead_encrypt_done, skb);
809 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
810 tx_ctx->aead = aead;
811 tx_ctx->bearer = b;
812 memcpy(&tx_ctx->dst, dst, sizeof(*dst));
813
814 /* Hold bearer */
815 if (unlikely(!tipc_bearer_hold(b))) {
816 rc = -ENODEV;
817 goto exit;
818 }
819
820 /* Get net to avoid freed tipc_crypto when delete namespace */
821 if (!maybe_get_net(aead->crypto->net)) {
822 tipc_bearer_put(b);
823 rc = -ENODEV;
824 goto exit;
825 }
826
827 /* Now, do encrypt */
828 rc = crypto_aead_encrypt(req);
829 if (rc == -EINPROGRESS || rc == -EBUSY)
830 return rc;
831
832 tipc_bearer_put(b);
833 put_net(aead->crypto->net);
834
835 exit:
836 kfree(ctx);
837 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
838 return rc;
839 }
840
tipc_aead_encrypt_done(void * data,int err)841 static void tipc_aead_encrypt_done(void *data, int err)
842 {
843 struct sk_buff *skb = data;
844 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
845 struct tipc_bearer *b = tx_ctx->bearer;
846 struct tipc_aead *aead = tx_ctx->aead;
847 struct tipc_crypto *tx = aead->crypto;
848 struct net *net = tx->net;
849
850 switch (err) {
851 case 0:
852 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
853 rcu_read_lock();
854 if (likely(test_bit(0, &b->up)))
855 b->media->send_msg(net, skb, b, &tx_ctx->dst);
856 else
857 kfree_skb(skb);
858 rcu_read_unlock();
859 break;
860 case -EINPROGRESS:
861 return;
862 default:
863 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
864 kfree_skb(skb);
865 break;
866 }
867
868 kfree(tx_ctx);
869 tipc_bearer_put(b);
870 tipc_aead_put(aead);
871 put_net(net);
872 }
873
874 /**
875 * tipc_aead_decrypt - Decrypt an encrypted message
876 * @net: struct net
877 * @aead: TIPC AEAD for the message decryption
878 * @skb: the input/output skb
879 * @b: TIPC bearer where the message has been received
880 *
881 * Return:
882 * * 0 : if the decryption has completed
883 * * -EINPROGRESS/-EBUSY : if a callback will be performed
884 * * < 0 : the decryption has failed
885 */
tipc_aead_decrypt(struct net * net,struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b)886 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
887 struct sk_buff *skb, struct tipc_bearer *b)
888 {
889 struct tipc_crypto_rx_ctx *rx_ctx;
890 struct aead_request *req;
891 struct crypto_aead *tfm;
892 struct sk_buff *unused;
893 struct scatterlist *sg;
894 struct tipc_ehdr *ehdr;
895 int ehsz, nsg, rc;
896 void *ctx;
897 u32 salt;
898 u8 *iv;
899
900 if (unlikely(!aead))
901 return -ENOKEY;
902
903 nsg = skb_cow_data(skb, 0, &unused);
904 if (unlikely(nsg < 0)) {
905 pr_err("RX: skb_cow_data() returned %d\n", nsg);
906 return nsg;
907 }
908
909 /* Allocate memory for the AEAD operation */
910 tfm = tipc_aead_tfm_next(aead);
911 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
912 if (unlikely(!ctx))
913 return -ENOMEM;
914 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
915
916 /* Map skb to the sg lists */
917 sg_init_table(sg, nsg);
918 rc = skb_to_sgvec(skb, sg, 0, skb->len);
919 if (unlikely(rc < 0)) {
920 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
921 goto exit;
922 }
923
924 /* Reconstruct IV: */
925 ehdr = (struct tipc_ehdr *)skb->data;
926 salt = aead->salt;
927 if (aead->mode == CLUSTER_KEY)
928 salt ^= __be32_to_cpu(ehdr->addr);
929 else if (ehdr->destined)
930 salt ^= tipc_own_addr(net);
931 memcpy(iv, &salt, 4);
932 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
933
934 /* Prepare request */
935 ehsz = tipc_ehdr_size(ehdr);
936 aead_request_set_tfm(req, tfm);
937 aead_request_set_ad(req, ehsz);
938 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
939
940 /* Set callback function & data */
941 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
942 tipc_aead_decrypt_done, skb);
943 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
944 rx_ctx->aead = aead;
945 rx_ctx->bearer = b;
946
947 /* Hold bearer */
948 if (unlikely(!tipc_bearer_hold(b))) {
949 rc = -ENODEV;
950 goto exit;
951 }
952
953 /* Now, do decrypt */
954 rc = crypto_aead_decrypt(req);
955 if (rc == -EINPROGRESS || rc == -EBUSY)
956 return rc;
957
958 tipc_bearer_put(b);
959
960 exit:
961 kfree(ctx);
962 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
963 return rc;
964 }
965
tipc_aead_decrypt_done(void * data,int err)966 static void tipc_aead_decrypt_done(void *data, int err)
967 {
968 struct sk_buff *skb = data;
969 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
970 struct tipc_bearer *b = rx_ctx->bearer;
971 struct tipc_aead *aead = rx_ctx->aead;
972 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
973 struct net *net = aead->crypto->net;
974
975 switch (err) {
976 case 0:
977 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
978 break;
979 case -EINPROGRESS:
980 return;
981 default:
982 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
983 break;
984 }
985
986 kfree(rx_ctx);
987 tipc_crypto_rcv_complete(net, aead, b, &skb, err);
988 if (likely(skb)) {
989 if (likely(test_bit(0, &b->up)))
990 tipc_rcv(net, skb, b);
991 else
992 kfree_skb(skb);
993 }
994
995 tipc_bearer_put(b);
996 }
997
tipc_ehdr_size(struct tipc_ehdr * ehdr)998 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
999 {
1000 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1001 }
1002
1003 /**
1004 * tipc_ehdr_validate - Validate an encryption message
1005 * @skb: the message buffer
1006 *
1007 * Return: "true" if this is a valid encryption message, otherwise "false"
1008 */
tipc_ehdr_validate(struct sk_buff * skb)1009 bool tipc_ehdr_validate(struct sk_buff *skb)
1010 {
1011 struct tipc_ehdr *ehdr;
1012 int ehsz;
1013
1014 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1015 return false;
1016
1017 ehdr = (struct tipc_ehdr *)skb->data;
1018 if (unlikely(ehdr->version != TIPC_EVERSION))
1019 return false;
1020 ehsz = tipc_ehdr_size(ehdr);
1021 if (unlikely(!pskb_may_pull(skb, ehsz)))
1022 return false;
1023 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1024 return false;
1025
1026 return true;
1027 }
1028
1029 /**
1030 * tipc_ehdr_build - Build TIPC encryption message header
1031 * @net: struct net
1032 * @aead: TX AEAD key to be used for the message encryption
1033 * @tx_key: key id used for the message encryption
1034 * @skb: input/output message skb
1035 * @__rx: RX crypto handle if dest is "known"
1036 *
1037 * Return: the header size if the building is successful, otherwise < 0
1038 */
tipc_ehdr_build(struct net * net,struct tipc_aead * aead,u8 tx_key,struct sk_buff * skb,struct tipc_crypto * __rx)1039 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1040 u8 tx_key, struct sk_buff *skb,
1041 struct tipc_crypto *__rx)
1042 {
1043 struct tipc_msg *hdr = buf_msg(skb);
1044 struct tipc_ehdr *ehdr;
1045 u32 user = msg_user(hdr);
1046 u64 seqno;
1047 int ehsz;
1048
1049 /* Make room for encryption header */
1050 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1051 WARN_ON(skb_headroom(skb) < ehsz);
1052 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1053
1054 /* Obtain a seqno first:
1055 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1056 * cluster key mode, otherwise it's better for a per-peer seqno!
1057 */
1058 if (!__rx || aead->mode == CLUSTER_KEY)
1059 seqno = atomic64_inc_return(&aead->seqno);
1060 else
1061 seqno = atomic64_inc_return(&__rx->sndnxt);
1062
1063 /* Revoke the key if seqno is wrapped around */
1064 if (unlikely(!seqno))
1065 return tipc_crypto_key_revoke(net, tx_key);
1066
1067 /* Word 1-2 */
1068 ehdr->seqno = cpu_to_be64(seqno);
1069
1070 /* Words 0, 3- */
1071 ehdr->version = TIPC_EVERSION;
1072 ehdr->user = 0;
1073 ehdr->keepalive = 0;
1074 ehdr->tx_key = tx_key;
1075 ehdr->destined = (__rx) ? 1 : 0;
1076 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1077 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1078 ehdr->master_key = aead->crypto->key_master;
1079 ehdr->reserved_1 = 0;
1080 ehdr->reserved_2 = 0;
1081
1082 switch (user) {
1083 case LINK_CONFIG:
1084 ehdr->user = LINK_CONFIG;
1085 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1086 break;
1087 default:
1088 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1089 ehdr->user = LINK_PROTOCOL;
1090 ehdr->keepalive = msg_is_keepalive(hdr);
1091 }
1092 ehdr->addr = hdr->hdr[3];
1093 break;
1094 }
1095
1096 return ehsz;
1097 }
1098
tipc_crypto_key_set_state(struct tipc_crypto * c,u8 new_passive,u8 new_active,u8 new_pending)1099 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1100 u8 new_passive,
1101 u8 new_active,
1102 u8 new_pending)
1103 {
1104 struct tipc_key old = c->key;
1105 char buf[32];
1106
1107 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1108 ((new_active & KEY_MASK) << (KEY_BITS)) |
1109 ((new_pending & KEY_MASK));
1110
1111 pr_debug("%s: key changing %s ::%pS\n", c->name,
1112 tipc_key_change_dump(old, c->key, buf),
1113 __builtin_return_address(0));
1114 }
1115
1116 /**
1117 * tipc_crypto_key_init - Initiate a new user / AEAD key
1118 * @c: TIPC crypto to which new key is attached
1119 * @ukey: the user key
1120 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1121 * @master_key: specify this is a cluster master key
1122 *
1123 * A new TIPC AEAD key will be allocated and initiated with the specified user
1124 * key, then attached to the TIPC crypto.
1125 *
1126 * Return: new key id in case of success, otherwise: < 0
1127 */
tipc_crypto_key_init(struct tipc_crypto * c,struct tipc_aead_key * ukey,u8 mode,bool master_key)1128 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1129 u8 mode, bool master_key)
1130 {
1131 struct tipc_aead *aead = NULL;
1132 int rc = 0;
1133
1134 /* Initiate with the new user key */
1135 rc = tipc_aead_init(&aead, ukey, mode);
1136
1137 /* Attach it to the crypto */
1138 if (likely(!rc)) {
1139 rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1140 if (rc < 0)
1141 tipc_aead_free(&aead->rcu);
1142 }
1143
1144 return rc;
1145 }
1146
1147 /**
1148 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1149 * @c: TIPC crypto to which the new AEAD key is attached
1150 * @aead: the new AEAD key pointer
1151 * @pos: desired slot in the crypto key array, = 0 if any!
1152 * @master_key: specify this is a cluster master key
1153 *
1154 * Return: new key id in case of success, otherwise: -EBUSY
1155 */
tipc_crypto_key_attach(struct tipc_crypto * c,struct tipc_aead * aead,u8 pos,bool master_key)1156 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1157 struct tipc_aead *aead, u8 pos,
1158 bool master_key)
1159 {
1160 struct tipc_key key;
1161 int rc = -EBUSY;
1162 u8 new_key;
1163
1164 spin_lock_bh(&c->lock);
1165 key = c->key;
1166 if (master_key) {
1167 new_key = KEY_MASTER;
1168 goto attach;
1169 }
1170 if (key.active && key.passive)
1171 goto exit;
1172 if (key.pending) {
1173 if (tipc_aead_users(c->aead[key.pending]) > 0)
1174 goto exit;
1175 /* if (pos): ok with replacing, will be aligned when needed */
1176 /* Replace it */
1177 new_key = key.pending;
1178 } else {
1179 if (pos) {
1180 if (key.active && pos != key_next(key.active)) {
1181 key.passive = pos;
1182 new_key = pos;
1183 goto attach;
1184 } else if (!key.active && !key.passive) {
1185 key.pending = pos;
1186 new_key = pos;
1187 goto attach;
1188 }
1189 }
1190 key.pending = key_next(key.active ?: key.passive);
1191 new_key = key.pending;
1192 }
1193
1194 attach:
1195 aead->crypto = c;
1196 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1197 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1198 if (likely(c->key.keys != key.keys))
1199 tipc_crypto_key_set_state(c, key.passive, key.active,
1200 key.pending);
1201 c->working = 1;
1202 c->nokey = 0;
1203 c->key_master |= master_key;
1204 rc = new_key;
1205
1206 exit:
1207 spin_unlock_bh(&c->lock);
1208 return rc;
1209 }
1210
tipc_crypto_key_flush(struct tipc_crypto * c)1211 void tipc_crypto_key_flush(struct tipc_crypto *c)
1212 {
1213 struct tipc_crypto *tx, *rx;
1214 int k;
1215
1216 spin_lock_bh(&c->lock);
1217 if (is_rx(c)) {
1218 /* Try to cancel pending work */
1219 rx = c;
1220 tx = tipc_net(rx->net)->crypto_tx;
1221 if (cancel_delayed_work(&rx->work)) {
1222 kfree(rx->skey);
1223 rx->skey = NULL;
1224 atomic_xchg(&rx->key_distr, 0);
1225 tipc_node_put(rx->node);
1226 }
1227 /* RX stopping => decrease TX key users if any */
1228 k = atomic_xchg(&rx->peer_rx_active, 0);
1229 if (k) {
1230 tipc_aead_users_dec(tx->aead[k], 0);
1231 /* Mark the point TX key users changed */
1232 tx->timer1 = jiffies;
1233 }
1234 }
1235
1236 c->flags = 0;
1237 tipc_crypto_key_set_state(c, 0, 0, 0);
1238 for (k = KEY_MIN; k <= KEY_MAX; k++)
1239 tipc_crypto_key_detach(c->aead[k], &c->lock);
1240 atomic64_set(&c->sndnxt, 0);
1241 spin_unlock_bh(&c->lock);
1242 }
1243
1244 /**
1245 * tipc_crypto_key_try_align - Align RX keys if possible
1246 * @rx: RX crypto handle
1247 * @new_pending: new pending slot if aligned (= TX key from peer)
1248 *
1249 * Peer has used an unknown key slot, this only happens when peer has left and
1250 * rejoned, or we are newcomer.
1251 * That means, there must be no active key but a pending key at unaligned slot.
1252 * If so, we try to move the pending key to the new slot.
1253 * Note: A potential passive key can exist, it will be shifted correspondingly!
1254 *
1255 * Return: "true" if key is successfully aligned, otherwise "false"
1256 */
tipc_crypto_key_try_align(struct tipc_crypto * rx,u8 new_pending)1257 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1258 {
1259 struct tipc_aead *tmp1, *tmp2 = NULL;
1260 struct tipc_key key;
1261 bool aligned = false;
1262 u8 new_passive = 0;
1263 int x;
1264
1265 spin_lock(&rx->lock);
1266 key = rx->key;
1267 if (key.pending == new_pending) {
1268 aligned = true;
1269 goto exit;
1270 }
1271 if (key.active)
1272 goto exit;
1273 if (!key.pending)
1274 goto exit;
1275 if (tipc_aead_users(rx->aead[key.pending]) > 0)
1276 goto exit;
1277
1278 /* Try to "isolate" this pending key first */
1279 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1280 if (!refcount_dec_if_one(&tmp1->refcnt))
1281 goto exit;
1282 rcu_assign_pointer(rx->aead[key.pending], NULL);
1283
1284 /* Move passive key if any */
1285 if (key.passive) {
1286 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1287 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1288 new_passive = (x <= 0) ? x + KEY_MAX : x;
1289 }
1290
1291 /* Re-allocate the key(s) */
1292 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1293 rcu_assign_pointer(rx->aead[new_pending], tmp1);
1294 if (new_passive)
1295 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1296 refcount_set(&tmp1->refcnt, 1);
1297 aligned = true;
1298 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1299 new_pending);
1300
1301 exit:
1302 spin_unlock(&rx->lock);
1303 return aligned;
1304 }
1305
1306 /**
1307 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1308 * @tx: TX crypto handle
1309 * @rx: RX crypto handle (can be NULL)
1310 * @skb: the message skb which will be decrypted later
1311 * @tx_key: peer TX key id
1312 *
1313 * This function looks up the existing TX keys and pick one which is suitable
1314 * for the message decryption, that must be a cluster key and not used before
1315 * on the same message (i.e. recursive).
1316 *
1317 * Return: the TX AEAD key handle in case of success, otherwise NULL
1318 */
tipc_crypto_key_pick_tx(struct tipc_crypto * tx,struct tipc_crypto * rx,struct sk_buff * skb,u8 tx_key)1319 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1320 struct tipc_crypto *rx,
1321 struct sk_buff *skb,
1322 u8 tx_key)
1323 {
1324 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1325 struct tipc_aead *aead = NULL;
1326 struct tipc_key key = tx->key;
1327 u8 k, i = 0;
1328
1329 /* Initialize data if not yet */
1330 if (!skb_cb->tx_clone_deferred) {
1331 skb_cb->tx_clone_deferred = 1;
1332 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1333 }
1334
1335 skb_cb->tx_clone_ctx.rx = rx;
1336 if (++skb_cb->tx_clone_ctx.recurs > 2)
1337 return NULL;
1338
1339 /* Pick one TX key */
1340 spin_lock(&tx->lock);
1341 if (tx_key == KEY_MASTER) {
1342 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1343 goto done;
1344 }
1345 do {
1346 k = (i == 0) ? key.pending :
1347 ((i == 1) ? key.active : key.passive);
1348 if (!k)
1349 continue;
1350 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1351 if (!aead)
1352 continue;
1353 if (aead->mode != CLUSTER_KEY ||
1354 aead == skb_cb->tx_clone_ctx.last) {
1355 aead = NULL;
1356 continue;
1357 }
1358 /* Ok, found one cluster key */
1359 skb_cb->tx_clone_ctx.last = aead;
1360 WARN_ON(skb->next);
1361 skb->next = skb_clone(skb, GFP_ATOMIC);
1362 if (unlikely(!skb->next))
1363 pr_warn("Failed to clone skb for next round if any\n");
1364 break;
1365 } while (++i < 3);
1366
1367 done:
1368 if (likely(aead))
1369 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1370 spin_unlock(&tx->lock);
1371
1372 return aead;
1373 }
1374
1375 /**
1376 * tipc_crypto_key_synch: Synch own key data according to peer key status
1377 * @rx: RX crypto handle
1378 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1379 *
1380 * This function updates the peer node related data as the peer RX active key
1381 * has changed, so the number of TX keys' users on this node are increased and
1382 * decreased correspondingly.
1383 *
1384 * It also considers if peer has no key, then we need to make own master key
1385 * (if any) taking over i.e. starting grace period and also trigger key
1386 * distributing process.
1387 *
1388 * The "per-peer" sndnxt is also reset when the peer key has switched.
1389 */
tipc_crypto_key_synch(struct tipc_crypto * rx,struct sk_buff * skb)1390 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1391 {
1392 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1393 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1394 struct tipc_msg *hdr = buf_msg(skb);
1395 u32 self = tipc_own_addr(rx->net);
1396 u8 cur, new;
1397 unsigned long delay;
1398
1399 /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1400 * a peer has no master key.
1401 */
1402 rx->key_master = ehdr->master_key;
1403 if (!rx->key_master)
1404 tx->legacy_user = 1;
1405
1406 /* For later cases, apply only if message is destined to this node */
1407 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1408 return;
1409
1410 /* Case 1: Peer has no keys, let's make master key take over */
1411 if (ehdr->rx_nokey) {
1412 /* Set or extend grace period */
1413 tx->timer2 = jiffies;
1414 /* Schedule key distributing for the peer if not yet */
1415 if (tx->key.keys &&
1416 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1417 get_random_bytes(&delay, 2);
1418 delay %= 5;
1419 delay = msecs_to_jiffies(500 * ++delay);
1420 if (queue_delayed_work(tx->wq, &rx->work, delay))
1421 tipc_node_get(rx->node);
1422 }
1423 } else {
1424 /* Cancel a pending key distributing if any */
1425 atomic_xchg(&rx->key_distr, 0);
1426 }
1427
1428 /* Case 2: Peer RX active key has changed, let's update own TX users */
1429 cur = atomic_read(&rx->peer_rx_active);
1430 new = ehdr->rx_key_active;
1431 if (tx->key.keys &&
1432 cur != new &&
1433 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1434 if (new)
1435 tipc_aead_users_inc(tx->aead[new], INT_MAX);
1436 if (cur)
1437 tipc_aead_users_dec(tx->aead[cur], 0);
1438
1439 atomic64_set(&rx->sndnxt, 0);
1440 /* Mark the point TX key users changed */
1441 tx->timer1 = jiffies;
1442
1443 pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1444 tx->name, cur, new, rx->name);
1445 }
1446 }
1447
tipc_crypto_key_revoke(struct net * net,u8 tx_key)1448 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1449 {
1450 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1451 struct tipc_key key;
1452
1453 spin_lock_bh(&tx->lock);
1454 key = tx->key;
1455 WARN_ON(!key.active || tx_key != key.active);
1456
1457 /* Free the active key */
1458 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1459 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1460 spin_unlock_bh(&tx->lock);
1461
1462 pr_warn("%s: key is revoked\n", tx->name);
1463 return -EKEYREVOKED;
1464 }
1465
tipc_crypto_start(struct tipc_crypto ** crypto,struct net * net,struct tipc_node * node)1466 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1467 struct tipc_node *node)
1468 {
1469 struct tipc_crypto *c;
1470
1471 if (*crypto)
1472 return -EEXIST;
1473
1474 /* Allocate crypto */
1475 c = kzalloc(sizeof(*c), GFP_ATOMIC);
1476 if (!c)
1477 return -ENOMEM;
1478
1479 /* Allocate workqueue on TX */
1480 if (!node) {
1481 c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1482 if (!c->wq) {
1483 kfree(c);
1484 return -ENOMEM;
1485 }
1486 }
1487
1488 /* Allocate statistic structure */
1489 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1490 if (!c->stats) {
1491 if (c->wq)
1492 destroy_workqueue(c->wq);
1493 kfree_sensitive(c);
1494 return -ENOMEM;
1495 }
1496
1497 c->flags = 0;
1498 c->net = net;
1499 c->node = node;
1500 get_random_bytes(&c->key_gen, 2);
1501 tipc_crypto_key_set_state(c, 0, 0, 0);
1502 atomic_set(&c->key_distr, 0);
1503 atomic_set(&c->peer_rx_active, 0);
1504 atomic64_set(&c->sndnxt, 0);
1505 c->timer1 = jiffies;
1506 c->timer2 = jiffies;
1507 c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1508 spin_lock_init(&c->lock);
1509 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1510 (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1511 tipc_own_id_string(c->net));
1512
1513 if (is_rx(c))
1514 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1515 else
1516 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1517
1518 *crypto = c;
1519 return 0;
1520 }
1521
tipc_crypto_stop(struct tipc_crypto ** crypto)1522 void tipc_crypto_stop(struct tipc_crypto **crypto)
1523 {
1524 struct tipc_crypto *c = *crypto;
1525 u8 k;
1526
1527 if (!c)
1528 return;
1529
1530 /* Flush any queued works & destroy wq */
1531 if (is_tx(c)) {
1532 c->rekeying_intv = 0;
1533 cancel_delayed_work_sync(&c->work);
1534 destroy_workqueue(c->wq);
1535 }
1536
1537 /* Release AEAD keys */
1538 rcu_read_lock();
1539 for (k = KEY_MIN; k <= KEY_MAX; k++)
1540 tipc_aead_put(rcu_dereference(c->aead[k]));
1541 rcu_read_unlock();
1542 pr_debug("%s: has been stopped\n", c->name);
1543
1544 /* Free this crypto statistics */
1545 free_percpu(c->stats);
1546
1547 *crypto = NULL;
1548 kfree_sensitive(c);
1549 }
1550
tipc_crypto_timeout(struct tipc_crypto * rx)1551 void tipc_crypto_timeout(struct tipc_crypto *rx)
1552 {
1553 struct tipc_net *tn = tipc_net(rx->net);
1554 struct tipc_crypto *tx = tn->crypto_tx;
1555 struct tipc_key key;
1556 int cmd;
1557
1558 /* TX pending: taking all users & stable -> active */
1559 spin_lock(&tx->lock);
1560 key = tx->key;
1561 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1562 goto s1;
1563 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1564 goto s1;
1565 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1566 goto s1;
1567
1568 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1569 if (key.active)
1570 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1571 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1572 pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1573
1574 s1:
1575 spin_unlock(&tx->lock);
1576
1577 /* RX pending: having user -> active */
1578 spin_lock(&rx->lock);
1579 key = rx->key;
1580 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1581 goto s2;
1582
1583 if (key.active)
1584 key.passive = key.active;
1585 key.active = key.pending;
1586 rx->timer2 = jiffies;
1587 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1588 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1589 pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1590 goto s5;
1591
1592 s2:
1593 /* RX pending: not working -> remove */
1594 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1595 goto s3;
1596
1597 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1598 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1599 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1600 goto s5;
1601
1602 s3:
1603 /* RX active: timed out or no user -> pending */
1604 if (!key.active)
1605 goto s4;
1606 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1607 tipc_aead_users(rx->aead[key.active]) > 0)
1608 goto s4;
1609
1610 if (key.pending)
1611 key.passive = key.active;
1612 else
1613 key.pending = key.active;
1614 rx->timer2 = jiffies;
1615 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1616 tipc_aead_users_set(rx->aead[key.pending], 0);
1617 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1618 goto s5;
1619
1620 s4:
1621 /* RX passive: outdated or not working -> free */
1622 if (!key.passive)
1623 goto s5;
1624 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1625 tipc_aead_users(rx->aead[key.passive]) > -10)
1626 goto s5;
1627
1628 tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1629 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1630 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1631
1632 s5:
1633 spin_unlock(&rx->lock);
1634
1635 /* Relax it here, the flag will be set again if it really is, but only
1636 * when we are not in grace period for safety!
1637 */
1638 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1639 tx->legacy_user = 0;
1640
1641 /* Limit max_tfms & do debug commands if needed */
1642 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1643 return;
1644
1645 cmd = sysctl_tipc_max_tfms;
1646 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1647 tipc_crypto_do_cmd(rx->net, cmd);
1648 }
1649
tipc_crypto_clone_msg(struct net * net,struct sk_buff * _skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode,u8 type)1650 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1651 struct tipc_bearer *b,
1652 struct tipc_media_addr *dst,
1653 struct tipc_node *__dnode, u8 type)
1654 {
1655 struct sk_buff *skb;
1656
1657 skb = skb_clone(_skb, GFP_ATOMIC);
1658 if (skb) {
1659 TIPC_SKB_CB(skb)->xmit_type = type;
1660 tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1661 if (skb)
1662 b->media->send_msg(net, skb, b, dst);
1663 }
1664 }
1665
1666 /**
1667 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1668 * @net: struct net
1669 * @skb: input/output message skb pointer
1670 * @b: bearer used for xmit later
1671 * @dst: destination media address
1672 * @__dnode: destination node for reference if any
1673 *
1674 * First, build an encryption message header on the top of the message, then
1675 * encrypt the original TIPC message by using the pending, master or active
1676 * key with this preference order.
1677 * If the encryption is successful, the encrypted skb is returned directly or
1678 * via the callback.
1679 * Otherwise, the skb is freed!
1680 *
1681 * Return:
1682 * * 0 : the encryption has succeeded (or no encryption)
1683 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1684 * * -ENOKEK : the encryption has failed due to no key
1685 * * -EKEYREVOKED : the encryption has failed due to key revoked
1686 * * -ENOMEM : the encryption has failed due to no memory
1687 * * < 0 : the encryption has failed due to other reasons
1688 */
tipc_crypto_xmit(struct net * net,struct sk_buff ** skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)1689 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1690 struct tipc_bearer *b, struct tipc_media_addr *dst,
1691 struct tipc_node *__dnode)
1692 {
1693 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1694 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1695 struct tipc_crypto_stats __percpu *stats = tx->stats;
1696 struct tipc_msg *hdr = buf_msg(*skb);
1697 struct tipc_key key = tx->key;
1698 struct tipc_aead *aead = NULL;
1699 u32 user = msg_user(hdr);
1700 u32 type = msg_type(hdr);
1701 int rc = -ENOKEY;
1702 u8 tx_key = 0;
1703
1704 /* No encryption? */
1705 if (!tx->working)
1706 return 0;
1707
1708 /* Pending key if peer has active on it or probing time */
1709 if (unlikely(key.pending)) {
1710 tx_key = key.pending;
1711 if (!tx->key_master && !key.active)
1712 goto encrypt;
1713 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1714 goto encrypt;
1715 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1716 pr_debug("%s: probing for key[%d]\n", tx->name,
1717 key.pending);
1718 goto encrypt;
1719 }
1720 if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1721 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1722 SKB_PROBING);
1723 }
1724
1725 /* Master key if this is a *vital* message or in grace period */
1726 if (tx->key_master) {
1727 tx_key = KEY_MASTER;
1728 if (!key.active)
1729 goto encrypt;
1730 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1731 pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1732 user, type);
1733 goto encrypt;
1734 }
1735 if (user == LINK_CONFIG ||
1736 (user == LINK_PROTOCOL && type == RESET_MSG) ||
1737 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1738 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1739 if (__rx && __rx->key_master &&
1740 !atomic_read(&__rx->peer_rx_active))
1741 goto encrypt;
1742 if (!__rx) {
1743 if (likely(!tx->legacy_user))
1744 goto encrypt;
1745 tipc_crypto_clone_msg(net, *skb, b, dst,
1746 __dnode, SKB_GRACING);
1747 }
1748 }
1749 }
1750
1751 /* Else, use the active key if any */
1752 if (likely(key.active)) {
1753 tx_key = key.active;
1754 goto encrypt;
1755 }
1756
1757 goto exit;
1758
1759 encrypt:
1760 aead = tipc_aead_get(tx->aead[tx_key]);
1761 if (unlikely(!aead))
1762 goto exit;
1763 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1764 if (likely(rc > 0))
1765 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1766
1767 exit:
1768 switch (rc) {
1769 case 0:
1770 this_cpu_inc(stats->stat[STAT_OK]);
1771 break;
1772 case -EINPROGRESS:
1773 case -EBUSY:
1774 this_cpu_inc(stats->stat[STAT_ASYNC]);
1775 *skb = NULL;
1776 return rc;
1777 default:
1778 this_cpu_inc(stats->stat[STAT_NOK]);
1779 if (rc == -ENOKEY)
1780 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1781 else if (rc == -EKEYREVOKED)
1782 this_cpu_inc(stats->stat[STAT_BADKEYS]);
1783 kfree_skb(*skb);
1784 *skb = NULL;
1785 break;
1786 }
1787
1788 tipc_aead_put(aead);
1789 return rc;
1790 }
1791
1792 /**
1793 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1794 * @net: struct net
1795 * @rx: RX crypto handle
1796 * @skb: input/output message skb pointer
1797 * @b: bearer where the message has been received
1798 *
1799 * If the decryption is successful, the decrypted skb is returned directly or
1800 * as the callback, the encryption header and auth tag will be trimed out
1801 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1802 * Otherwise, the skb will be freed!
1803 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1804 * cluster key(s) can be taken for decryption (- recursive).
1805 *
1806 * Return:
1807 * * 0 : the decryption has successfully completed
1808 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1809 * * -ENOKEY : the decryption has failed due to no key
1810 * * -EBADMSG : the decryption has failed due to bad message
1811 * * -ENOMEM : the decryption has failed due to no memory
1812 * * < 0 : the decryption has failed due to other reasons
1813 */
tipc_crypto_rcv(struct net * net,struct tipc_crypto * rx,struct sk_buff ** skb,struct tipc_bearer * b)1814 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1815 struct sk_buff **skb, struct tipc_bearer *b)
1816 {
1817 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1818 struct tipc_crypto_stats __percpu *stats;
1819 struct tipc_aead *aead = NULL;
1820 struct tipc_key key;
1821 int rc = -ENOKEY;
1822 u8 tx_key, n;
1823
1824 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1825
1826 /* New peer?
1827 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1828 */
1829 if (unlikely(!rx || tx_key == KEY_MASTER))
1830 goto pick_tx;
1831
1832 /* Pick RX key according to TX key if any */
1833 key = rx->key;
1834 if (tx_key == key.active || tx_key == key.pending ||
1835 tx_key == key.passive)
1836 goto decrypt;
1837
1838 /* Unknown key, let's try to align RX key(s) */
1839 if (tipc_crypto_key_try_align(rx, tx_key))
1840 goto decrypt;
1841
1842 pick_tx:
1843 /* No key suitable? Try to pick one from TX... */
1844 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1845 if (aead)
1846 goto decrypt;
1847 goto exit;
1848
1849 decrypt:
1850 rcu_read_lock();
1851 if (!aead)
1852 aead = tipc_aead_get(rx->aead[tx_key]);
1853 rc = tipc_aead_decrypt(net, aead, *skb, b);
1854 rcu_read_unlock();
1855
1856 exit:
1857 stats = ((rx) ?: tx)->stats;
1858 switch (rc) {
1859 case 0:
1860 this_cpu_inc(stats->stat[STAT_OK]);
1861 break;
1862 case -EINPROGRESS:
1863 case -EBUSY:
1864 this_cpu_inc(stats->stat[STAT_ASYNC]);
1865 *skb = NULL;
1866 return rc;
1867 default:
1868 this_cpu_inc(stats->stat[STAT_NOK]);
1869 if (rc == -ENOKEY) {
1870 kfree_skb(*skb);
1871 *skb = NULL;
1872 if (rx) {
1873 /* Mark rx->nokey only if we dont have a
1874 * pending received session key, nor a newer
1875 * one i.e. in the next slot.
1876 */
1877 n = key_next(tx_key);
1878 rx->nokey = !(rx->skey ||
1879 rcu_access_pointer(rx->aead[n]));
1880 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1881 rx->name, rx->nokey,
1882 tx_key, rx->key.keys);
1883 tipc_node_put(rx->node);
1884 }
1885 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1886 return rc;
1887 } else if (rc == -EBADMSG) {
1888 this_cpu_inc(stats->stat[STAT_BADMSGS]);
1889 }
1890 break;
1891 }
1892
1893 tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1894 return rc;
1895 }
1896
tipc_crypto_rcv_complete(struct net * net,struct tipc_aead * aead,struct tipc_bearer * b,struct sk_buff ** skb,int err)1897 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1898 struct tipc_bearer *b,
1899 struct sk_buff **skb, int err)
1900 {
1901 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1902 struct tipc_crypto *rx = aead->crypto;
1903 struct tipc_aead *tmp = NULL;
1904 struct tipc_ehdr *ehdr;
1905 struct tipc_node *n;
1906
1907 /* Is this completed by TX? */
1908 if (unlikely(is_tx(aead->crypto))) {
1909 rx = skb_cb->tx_clone_ctx.rx;
1910 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1911 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1912 (*skb)->next, skb_cb->flags);
1913 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1914 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1915 aead->crypto->aead[1], aead->crypto->aead[2],
1916 aead->crypto->aead[3]);
1917 if (unlikely(err)) {
1918 if (err == -EBADMSG && (*skb)->next)
1919 tipc_rcv(net, (*skb)->next, b);
1920 goto free_skb;
1921 }
1922
1923 if (likely((*skb)->next)) {
1924 kfree_skb((*skb)->next);
1925 (*skb)->next = NULL;
1926 }
1927 ehdr = (struct tipc_ehdr *)(*skb)->data;
1928 if (!rx) {
1929 WARN_ON(ehdr->user != LINK_CONFIG);
1930 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1931 true);
1932 rx = tipc_node_crypto_rx(n);
1933 if (unlikely(!rx))
1934 goto free_skb;
1935 }
1936
1937 /* Ignore cloning if it was TX master key */
1938 if (ehdr->tx_key == KEY_MASTER)
1939 goto rcv;
1940 if (tipc_aead_clone(&tmp, aead) < 0)
1941 goto rcv;
1942 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1943 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1944 tipc_aead_free(&tmp->rcu);
1945 goto rcv;
1946 }
1947 tipc_aead_put(aead);
1948 aead = tmp;
1949 }
1950
1951 if (unlikely(err)) {
1952 tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1953 goto free_skb;
1954 }
1955
1956 /* Set the RX key's user */
1957 tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1958
1959 /* Mark this point, RX works */
1960 rx->timer1 = jiffies;
1961
1962 rcv:
1963 /* Remove ehdr & auth. tag prior to tipc_rcv() */
1964 ehdr = (struct tipc_ehdr *)(*skb)->data;
1965
1966 /* Mark this point, RX passive still works */
1967 if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1968 rx->timer2 = jiffies;
1969
1970 skb_reset_network_header(*skb);
1971 skb_pull(*skb, tipc_ehdr_size(ehdr));
1972 if (pskb_trim(*skb, (*skb)->len - aead->authsize))
1973 goto free_skb;
1974
1975 /* Validate TIPCv2 message */
1976 if (unlikely(!tipc_msg_validate(skb))) {
1977 pr_err_ratelimited("Packet dropped after decryption!\n");
1978 goto free_skb;
1979 }
1980
1981 /* Ok, everything's fine, try to synch own keys according to peers' */
1982 tipc_crypto_key_synch(rx, *skb);
1983
1984 /* Re-fetch skb cb as skb might be changed in tipc_msg_validate */
1985 skb_cb = TIPC_SKB_CB(*skb);
1986
1987 /* Mark skb decrypted */
1988 skb_cb->decrypted = 1;
1989
1990 /* Clear clone cxt if any */
1991 if (likely(!skb_cb->tx_clone_deferred))
1992 goto exit;
1993 skb_cb->tx_clone_deferred = 0;
1994 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1995 goto exit;
1996
1997 free_skb:
1998 kfree_skb(*skb);
1999 *skb = NULL;
2000
2001 exit:
2002 tipc_aead_put(aead);
2003 if (rx)
2004 tipc_node_put(rx->node);
2005 }
2006
tipc_crypto_do_cmd(struct net * net,int cmd)2007 static void tipc_crypto_do_cmd(struct net *net, int cmd)
2008 {
2009 struct tipc_net *tn = tipc_net(net);
2010 struct tipc_crypto *tx = tn->crypto_tx, *rx;
2011 struct list_head *p;
2012 unsigned int stat;
2013 int i, j, cpu;
2014 char buf[200];
2015
2016 /* Currently only one command is supported */
2017 switch (cmd) {
2018 case 0xfff1:
2019 goto print_stats;
2020 default:
2021 return;
2022 }
2023
2024 print_stats:
2025 /* Print a header */
2026 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2027
2028 /* Print key status */
2029 pr_info("Key status:\n");
2030 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2031 tipc_crypto_key_dump(tx, buf));
2032
2033 rcu_read_lock();
2034 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2035 rx = tipc_node_crypto_rx_by_list(p);
2036 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2037 tipc_crypto_key_dump(rx, buf));
2038 }
2039 rcu_read_unlock();
2040
2041 /* Print crypto statistics */
2042 for (i = 0, j = 0; i < MAX_STATS; i++)
2043 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2044 pr_info("Counter %s", buf);
2045
2046 memset(buf, '-', 115);
2047 buf[115] = '\0';
2048 pr_info("%s\n", buf);
2049
2050 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2051 for_each_possible_cpu(cpu) {
2052 for (i = 0; i < MAX_STATS; i++) {
2053 stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2054 j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2055 }
2056 pr_info("%s", buf);
2057 j = scnprintf(buf, 200, "%12s", " ");
2058 }
2059
2060 rcu_read_lock();
2061 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2062 rx = tipc_node_crypto_rx_by_list(p);
2063 j = scnprintf(buf, 200, "RX(%7.7s) ",
2064 tipc_node_get_id_str(rx->node));
2065 for_each_possible_cpu(cpu) {
2066 for (i = 0; i < MAX_STATS; i++) {
2067 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2068 j += scnprintf(buf + j, 200 - j, "|%11d ",
2069 stat);
2070 }
2071 pr_info("%s", buf);
2072 j = scnprintf(buf, 200, "%12s", " ");
2073 }
2074 }
2075 rcu_read_unlock();
2076
2077 pr_info("\n======================== Done ========================\n");
2078 }
2079
tipc_crypto_key_dump(struct tipc_crypto * c,char * buf)2080 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2081 {
2082 struct tipc_key key = c->key;
2083 struct tipc_aead *aead;
2084 int k, i = 0;
2085 char *s;
2086
2087 for (k = KEY_MIN; k <= KEY_MAX; k++) {
2088 if (k == KEY_MASTER) {
2089 if (is_rx(c))
2090 continue;
2091 if (time_before(jiffies,
2092 c->timer2 + TIPC_TX_GRACE_PERIOD))
2093 s = "ACT";
2094 else
2095 s = "PAS";
2096 } else {
2097 if (k == key.passive)
2098 s = "PAS";
2099 else if (k == key.active)
2100 s = "ACT";
2101 else if (k == key.pending)
2102 s = "PEN";
2103 else
2104 s = "-";
2105 }
2106 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2107
2108 rcu_read_lock();
2109 aead = rcu_dereference(c->aead[k]);
2110 if (aead)
2111 i += scnprintf(buf + i, 200 - i,
2112 "{\"0x...%s\", \"%s\"}/%d:%d",
2113 aead->hint,
2114 (aead->mode == CLUSTER_KEY) ? "c" : "p",
2115 atomic_read(&aead->users),
2116 refcount_read(&aead->refcnt));
2117 rcu_read_unlock();
2118 i += scnprintf(buf + i, 200 - i, "\n");
2119 }
2120
2121 if (is_rx(c))
2122 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2123 atomic_read(&c->peer_rx_active));
2124
2125 return buf;
2126 }
2127
tipc_key_change_dump(struct tipc_key old,struct tipc_key new,char * buf)2128 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2129 char *buf)
2130 {
2131 struct tipc_key *key = &old;
2132 int k, i = 0;
2133 char *s;
2134
2135 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2136 again:
2137 i += scnprintf(buf + i, 32 - i, "[");
2138 for (k = KEY_1; k <= KEY_3; k++) {
2139 if (k == key->passive)
2140 s = "pas";
2141 else if (k == key->active)
2142 s = "act";
2143 else if (k == key->pending)
2144 s = "pen";
2145 else
2146 s = "-";
2147 i += scnprintf(buf + i, 32 - i,
2148 (k != KEY_3) ? "%s " : "%s", s);
2149 }
2150 if (key != &new) {
2151 i += scnprintf(buf + i, 32 - i, "] -> ");
2152 key = &new;
2153 goto again;
2154 }
2155 i += scnprintf(buf + i, 32 - i, "]");
2156 return buf;
2157 }
2158
2159 /**
2160 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2161 * @net: the struct net
2162 * @skb: the receiving message buffer
2163 */
tipc_crypto_msg_rcv(struct net * net,struct sk_buff * skb)2164 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2165 {
2166 struct tipc_crypto *rx;
2167 struct tipc_msg *hdr;
2168
2169 if (unlikely(skb_linearize(skb)))
2170 goto exit;
2171
2172 hdr = buf_msg(skb);
2173 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2174 if (unlikely(!rx))
2175 goto exit;
2176
2177 switch (msg_type(hdr)) {
2178 case KEY_DISTR_MSG:
2179 if (tipc_crypto_key_rcv(rx, hdr))
2180 goto exit;
2181 break;
2182 default:
2183 break;
2184 }
2185
2186 tipc_node_put(rx->node);
2187
2188 exit:
2189 kfree_skb(skb);
2190 }
2191
2192 /**
2193 * tipc_crypto_key_distr - Distribute a TX key
2194 * @tx: the TX crypto
2195 * @key: the key's index
2196 * @dest: the destination tipc node, = NULL if distributing to all nodes
2197 *
2198 * Return: 0 in case of success, otherwise < 0
2199 */
tipc_crypto_key_distr(struct tipc_crypto * tx,u8 key,struct tipc_node * dest)2200 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2201 struct tipc_node *dest)
2202 {
2203 struct tipc_aead *aead;
2204 u32 dnode = tipc_node_get_addr(dest);
2205 int rc = -ENOKEY;
2206
2207 if (!sysctl_tipc_key_exchange_enabled)
2208 return 0;
2209
2210 if (key) {
2211 rcu_read_lock();
2212 aead = tipc_aead_get(tx->aead[key]);
2213 if (likely(aead)) {
2214 rc = tipc_crypto_key_xmit(tx->net, aead->key,
2215 aead->gen, aead->mode,
2216 dnode);
2217 tipc_aead_put(aead);
2218 }
2219 rcu_read_unlock();
2220 }
2221
2222 return rc;
2223 }
2224
2225 /**
2226 * tipc_crypto_key_xmit - Send a session key
2227 * @net: the struct net
2228 * @skey: the session key to be sent
2229 * @gen: the key's generation
2230 * @mode: the key's mode
2231 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2232 *
2233 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2234 * as its data section, then xmit-ed through the uc/bc link.
2235 *
2236 * Return: 0 in case of success, otherwise < 0
2237 */
tipc_crypto_key_xmit(struct net * net,struct tipc_aead_key * skey,u16 gen,u8 mode,u32 dnode)2238 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2239 u16 gen, u8 mode, u32 dnode)
2240 {
2241 struct sk_buff_head pkts;
2242 struct tipc_msg *hdr;
2243 struct sk_buff *skb;
2244 u16 size, cong_link_cnt;
2245 u8 *data;
2246 int rc;
2247
2248 size = tipc_aead_key_size(skey);
2249 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2250 if (!skb)
2251 return -ENOMEM;
2252
2253 hdr = buf_msg(skb);
2254 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2255 INT_H_SIZE, dnode);
2256 msg_set_size(hdr, INT_H_SIZE + size);
2257 msg_set_key_gen(hdr, gen);
2258 msg_set_key_mode(hdr, mode);
2259
2260 data = msg_data(hdr);
2261 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2262 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2263 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2264 skey->keylen);
2265
2266 __skb_queue_head_init(&pkts);
2267 __skb_queue_tail(&pkts, skb);
2268 if (dnode)
2269 rc = tipc_node_xmit(net, &pkts, dnode, 0);
2270 else
2271 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2272
2273 return rc;
2274 }
2275
2276 /**
2277 * tipc_crypto_key_rcv - Receive a session key
2278 * @rx: the RX crypto
2279 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2280 *
2281 * This function retrieves the session key in the message from peer, then
2282 * schedules a RX work to attach the key to the corresponding RX crypto.
2283 *
2284 * Return: "true" if the key has been scheduled for attaching, otherwise
2285 * "false".
2286 */
tipc_crypto_key_rcv(struct tipc_crypto * rx,struct tipc_msg * hdr)2287 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2288 {
2289 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2290 struct tipc_aead_key *skey = NULL;
2291 u16 key_gen = msg_key_gen(hdr);
2292 u32 size = msg_data_sz(hdr);
2293 u8 *data = msg_data(hdr);
2294 unsigned int keylen;
2295
2296 /* Verify whether the size can exist in the packet */
2297 if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2298 pr_debug("%s: message data size is too small\n", rx->name);
2299 goto exit;
2300 }
2301
2302 keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2303
2304 /* Verify the supplied size values */
2305 if (unlikely(keylen > TIPC_AEAD_KEY_SIZE_MAX ||
2306 size != keylen + sizeof(struct tipc_aead_key))) {
2307 pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2308 goto exit;
2309 }
2310
2311 spin_lock(&rx->lock);
2312 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2313 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2314 rx->skey, key_gen, rx->key_gen);
2315 goto exit_unlock;
2316 }
2317
2318 /* Allocate memory for the key */
2319 skey = kmalloc(size, GFP_ATOMIC);
2320 if (unlikely(!skey)) {
2321 pr_err("%s: unable to allocate memory for skey\n", rx->name);
2322 goto exit_unlock;
2323 }
2324
2325 /* Copy key from msg data */
2326 skey->keylen = keylen;
2327 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2328 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2329 skey->keylen);
2330
2331 rx->key_gen = key_gen;
2332 rx->skey_mode = msg_key_mode(hdr);
2333 rx->skey = skey;
2334 rx->nokey = 0;
2335 mb(); /* for nokey flag */
2336
2337 exit_unlock:
2338 spin_unlock(&rx->lock);
2339
2340 exit:
2341 /* Schedule the key attaching on this crypto */
2342 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2343 return true;
2344
2345 return false;
2346 }
2347
2348 /**
2349 * tipc_crypto_work_rx - Scheduled RX works handler
2350 * @work: the struct RX work
2351 *
2352 * The function processes the previous scheduled works i.e. distributing TX key
2353 * or attaching a received session key on RX crypto.
2354 */
tipc_crypto_work_rx(struct work_struct * work)2355 static void tipc_crypto_work_rx(struct work_struct *work)
2356 {
2357 struct delayed_work *dwork = to_delayed_work(work);
2358 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2359 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2360 unsigned long delay = msecs_to_jiffies(5000);
2361 bool resched = false;
2362 u8 key;
2363 int rc;
2364
2365 /* Case 1: Distribute TX key to peer if scheduled */
2366 if (atomic_cmpxchg(&rx->key_distr,
2367 KEY_DISTR_SCHED,
2368 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2369 /* Always pick the newest one for distributing */
2370 key = tx->key.pending ?: tx->key.active;
2371 rc = tipc_crypto_key_distr(tx, key, rx->node);
2372 if (unlikely(rc))
2373 pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2374 tx->name, key, tipc_node_get_id_str(rx->node),
2375 rc);
2376
2377 /* Sched for key_distr releasing */
2378 resched = true;
2379 } else {
2380 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2381 }
2382
2383 /* Case 2: Attach a pending received session key from peer if any */
2384 if (rx->skey) {
2385 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2386 if (unlikely(rc < 0))
2387 pr_warn("%s: unable to attach received skey, err %d\n",
2388 rx->name, rc);
2389 switch (rc) {
2390 case -EBUSY:
2391 case -ENOMEM:
2392 /* Resched the key attaching */
2393 resched = true;
2394 break;
2395 default:
2396 synchronize_rcu();
2397 kfree(rx->skey);
2398 rx->skey = NULL;
2399 break;
2400 }
2401 }
2402
2403 if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2404 return;
2405
2406 tipc_node_put(rx->node);
2407 }
2408
2409 /**
2410 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2411 * @tx: TX crypto
2412 * @changed: if the rekeying needs to be rescheduled with new interval
2413 * @new_intv: new rekeying interval (when "changed" = true)
2414 */
tipc_crypto_rekeying_sched(struct tipc_crypto * tx,bool changed,u32 new_intv)2415 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2416 u32 new_intv)
2417 {
2418 unsigned long delay;
2419 bool now = false;
2420
2421 if (changed) {
2422 if (new_intv == TIPC_REKEYING_NOW)
2423 now = true;
2424 else
2425 tx->rekeying_intv = new_intv;
2426 cancel_delayed_work_sync(&tx->work);
2427 }
2428
2429 if (tx->rekeying_intv || now) {
2430 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2431 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2432 }
2433 }
2434
2435 /**
2436 * tipc_crypto_work_tx - Scheduled TX works handler
2437 * @work: the struct TX work
2438 *
2439 * The function processes the previous scheduled work, i.e. key rekeying, by
2440 * generating a new session key based on current one, then attaching it to the
2441 * TX crypto and finally distributing it to peers. It also re-schedules the
2442 * rekeying if needed.
2443 */
tipc_crypto_work_tx(struct work_struct * work)2444 static void tipc_crypto_work_tx(struct work_struct *work)
2445 {
2446 struct delayed_work *dwork = to_delayed_work(work);
2447 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2448 struct tipc_aead_key *skey = NULL;
2449 struct tipc_key key = tx->key;
2450 struct tipc_aead *aead;
2451 int rc = -ENOMEM;
2452
2453 if (unlikely(key.pending))
2454 goto resched;
2455
2456 /* Take current key as a template */
2457 rcu_read_lock();
2458 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2459 if (unlikely(!aead)) {
2460 rcu_read_unlock();
2461 /* At least one key should exist for securing */
2462 return;
2463 }
2464
2465 /* Lets duplicate it first */
2466 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2467 rcu_read_unlock();
2468
2469 /* Now, generate new key, initiate & distribute it */
2470 if (likely(skey)) {
2471 rc = tipc_aead_key_generate(skey) ?:
2472 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2473 if (likely(rc > 0))
2474 rc = tipc_crypto_key_distr(tx, rc, NULL);
2475 kfree_sensitive(skey);
2476 }
2477
2478 if (unlikely(rc))
2479 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2480
2481 resched:
2482 /* Re-schedule rekeying if any */
2483 tipc_crypto_rekeying_sched(tx, false, 0);
2484 }
2485