xref: /openbmc/entity-manager/src/fru_utils.cpp (revision c3db2c3c)
1 /*
2 // Copyright (c) 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 /// \file fru_utils.cpp
17 
18 #include "fru_utils.hpp"
19 
20 #include <phosphor-logging/lg2.hpp>
21 
22 #include <array>
23 #include <cstddef>
24 #include <cstdint>
25 #include <filesystem>
26 #include <iomanip>
27 #include <iostream>
28 #include <numeric>
29 #include <set>
30 #include <sstream>
31 #include <string>
32 #include <vector>
33 
34 extern "C"
35 {
36 // Include for I2C_SMBUS_BLOCK_MAX
37 #include <linux/i2c.h>
38 }
39 
40 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
41 
intelEpoch()42 std::tm intelEpoch()
43 {
44     std::tm val = {};
45     val.tm_year = 1996 - 1900;
46     val.tm_mday = 1;
47     return val;
48 }
49 
sixBitToChar(uint8_t val)50 char sixBitToChar(uint8_t val)
51 {
52     return static_cast<char>((val & 0x3f) + ' ');
53 }
54 
bcdPlusToChar(uint8_t val)55 char bcdPlusToChar(uint8_t val)
56 {
57     val &= 0xf;
58     return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
59 }
60 
61 enum FRUDataEncoding
62 {
63     binary = 0x0,
64     bcdPlus = 0x1,
65     sixBitASCII = 0x2,
66     languageDependent = 0x3,
67 };
68 
69 enum MultiRecordType : uint8_t
70 {
71     powerSupplyInfo = 0x00,
72     dcOutput = 0x01,
73     dcLoad = 0x02,
74     managementAccessRecord = 0x03,
75     baseCompatibilityRecord = 0x04,
76     extendedCompatibilityRecord = 0x05,
77     resvASFSMBusDeviceRecord = 0x06,
78     resvASFLegacyDeviceAlerts = 0x07,
79     resvASFRemoteControl = 0x08,
80     extendedDCOutput = 0x09,
81     extendedDCLoad = 0x0A
82 };
83 
84 enum SubManagementAccessRecord : uint8_t
85 {
86     systemManagementURL = 0x01,
87     systemName = 0x02,
88     systemPingAddress = 0x03,
89     componentManagementURL = 0x04,
90     componentName = 0x05,
91     componentPingAddress = 0x06,
92     systemUniqueID = 0x07
93 };
94 
95 /* Decode FRU data into a std::string, given an input iterator and end. If the
96  * state returned is fruDataOk, then the resulting string is the decoded FRU
97  * data. The input iterator is advanced past the data consumed.
98  *
99  * On fruDataErr, we have lost synchronisation with the length bytes, so the
100  * iterator is no longer usable.
101  */
decodeFRUData(std::vector<uint8_t>::const_iterator & iter,const std::vector<uint8_t>::const_iterator & end,bool isLangEng)102 std::pair<DecodeState, std::string> decodeFRUData(
103     std::vector<uint8_t>::const_iterator& iter,
104     const std::vector<uint8_t>::const_iterator& end, bool isLangEng)
105 {
106     std::string value;
107     unsigned int i = 0;
108 
109     /* we need at least one byte to decode the type/len header */
110     if (iter == end)
111     {
112         std::cerr << "Truncated FRU data\n";
113         return make_pair(DecodeState::err, value);
114     }
115 
116     uint8_t c = *(iter++);
117 
118     /* 0xc1 is the end marker */
119     if (c == 0xc1)
120     {
121         return make_pair(DecodeState::end, value);
122     }
123 
124     /* decode type/len byte */
125     uint8_t type = static_cast<uint8_t>(c >> 6);
126     uint8_t len = static_cast<uint8_t>(c & 0x3f);
127 
128     /* we should have at least len bytes of data available overall */
129     if (iter + len > end)
130     {
131         std::cerr << "FRU data field extends past end of FRU area data\n";
132         return make_pair(DecodeState::err, value);
133     }
134 
135     switch (type)
136     {
137         case FRUDataEncoding::binary:
138         {
139             std::stringstream ss;
140             ss << std::hex << std::setfill('0');
141             for (i = 0; i < len; i++, iter++)
142             {
143                 uint8_t val = static_cast<uint8_t>(*iter);
144                 ss << std::setw(2) << static_cast<int>(val);
145             }
146             value = ss.str();
147             break;
148         }
149         case FRUDataEncoding::languageDependent:
150             /* For language-code dependent encodings, assume 8-bit ASCII */
151             value = std::string(iter, iter + len);
152             iter += len;
153 
154             /* English text is encoded in 8-bit ASCII + Latin 1. All other
155              * languages are required to use 2-byte unicode. FruDevice does not
156              * handle unicode.
157              */
158             if (!isLangEng)
159             {
160                 std::cerr << "Error: Non english string is not supported \n";
161                 return make_pair(DecodeState::err, value);
162             }
163 
164             break;
165 
166         case FRUDataEncoding::bcdPlus:
167             value = std::string();
168             for (i = 0; i < len; i++, iter++)
169             {
170                 uint8_t val = *iter;
171                 value.push_back(bcdPlusToChar(val >> 4));
172                 value.push_back(bcdPlusToChar(val & 0xf));
173             }
174             break;
175 
176         case FRUDataEncoding::sixBitASCII:
177         {
178             unsigned int accum = 0;
179             unsigned int accumBitLen = 0;
180             value = std::string();
181             for (i = 0; i < len; i++, iter++)
182             {
183                 accum |= *iter << accumBitLen;
184                 accumBitLen += 8;
185                 while (accumBitLen >= 6)
186                 {
187                     value.push_back(sixBitToChar(accum & 0x3f));
188                     accum >>= 6;
189                     accumBitLen -= 6;
190                 }
191             }
192         }
193         break;
194 
195         default:
196         {
197             return make_pair(DecodeState::err, value);
198         }
199     }
200 
201     return make_pair(DecodeState::ok, value);
202 }
203 
checkLangEng(uint8_t lang)204 bool checkLangEng(uint8_t lang)
205 {
206     // If Lang is not English then the encoding is defined as 2-byte UNICODE,
207     // but we don't support that.
208     if ((lang != 0U) && lang != 25)
209     {
210         std::cerr << "Warning: languages other than English is not "
211                      "supported\n";
212         // Return language flag as non english
213         return false;
214     }
215     return true;
216 }
217 
218 /* This function verifies for other offsets to check if they are not
219  * falling under other field area
220  *
221  * fruBytes:    Start of Fru data
222  * currentArea: Index of current area offset to be compared against all area
223  *              offset and it is a multiple of 8 bytes as per specification
224  * len:         Length of current area space and it is a multiple of 8 bytes
225  *              as per specification
226  */
verifyOffset(const std::vector<uint8_t> & fruBytes,fruAreas currentArea,uint8_t len)227 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea,
228                   uint8_t len)
229 {
230     unsigned int fruBytesSize = fruBytes.size();
231 
232     // check if Fru data has at least 8 byte header
233     if (fruBytesSize <= fruBlockSize)
234     {
235         std::cerr << "Error: trying to parse empty FRU\n";
236         return false;
237     }
238 
239     // Check range of passed currentArea value
240     if (currentArea > fruAreas::fruAreaMultirecord)
241     {
242         std::cerr << "Error: Fru area is out of range\n";
243         return false;
244     }
245 
246     unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
247     if (currentAreaIndex > fruBytesSize)
248     {
249         std::cerr << "Error: Fru area index is out of range\n";
250         return false;
251     }
252 
253     unsigned int start = fruBytes[currentAreaIndex];
254     unsigned int end = start + len;
255 
256     /* Verify each offset within the range of start and end */
257     for (fruAreas area = fruAreas::fruAreaInternal;
258          area <= fruAreas::fruAreaMultirecord; ++area)
259     {
260         // skip the current offset
261         if (area == currentArea)
262         {
263             continue;
264         }
265 
266         unsigned int areaIndex = getHeaderAreaFieldOffset(area);
267         if (areaIndex > fruBytesSize)
268         {
269             std::cerr << "Error: Fru area index is out of range\n";
270             return false;
271         }
272 
273         unsigned int areaOffset = fruBytes[areaIndex];
274         // if areaOffset is 0 means this area is not available so skip
275         if (areaOffset == 0)
276         {
277             continue;
278         }
279 
280         // check for overlapping of current offset with given areaoffset
281         if (areaOffset == start || (areaOffset > start && areaOffset < end))
282         {
283             std::cerr << getFruAreaName(currentArea)
284                       << " offset is overlapping with " << getFruAreaName(area)
285                       << " offset\n";
286             return false;
287         }
288     }
289     return true;
290 }
291 
parseMultirecordUUID(const std::vector<uint8_t> & device,boost::container::flat_map<std::string,std::string> & result)292 static void parseMultirecordUUID(
293     const std::vector<uint8_t>& device,
294     boost::container::flat_map<std::string, std::string>& result)
295 {
296     constexpr size_t uuidDataLen = 16;
297     constexpr size_t multiRecordHeaderLen = 5;
298     /* UUID record data, plus one to skip past the sub-record type byte */
299     constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
300     constexpr size_t multiRecordEndOfListMask = 0x80;
301     /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
302      * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
303      * 0xEE 0xFF
304      */
305     const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
306         3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
307     uint32_t areaOffset =
308         device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord));
309 
310     if (areaOffset == 0)
311     {
312         return;
313     }
314 
315     areaOffset *= fruBlockSize;
316     std::vector<uint8_t>::const_iterator fruBytesIter =
317         device.begin() + areaOffset;
318 
319     /* Verify area offset */
320     if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
321     {
322         return;
323     }
324     while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
325     {
326         if ((areaOffset < device.size()) &&
327             (device[areaOffset] ==
328              (uint8_t)MultiRecordType::managementAccessRecord))
329         {
330             if ((areaOffset + multiRecordHeaderLen < device.size()) &&
331                 (device[areaOffset + multiRecordHeaderLen] ==
332                  (uint8_t)SubManagementAccessRecord::systemUniqueID))
333             {
334                 /* Layout of UUID:
335                  * source: https://www.ietf.org/rfc/rfc4122.txt
336                  *
337                  * UUID binary format (16 bytes):
338                  * 4B-2B-2B-2B-6B (big endian)
339                  *
340                  * UUID string is 36 length of characters (36 bytes):
341                  * 0        9    14   19   24
342                  * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
343                  *    be     be   be   be       be
344                  * be means it should be converted to big endian.
345                  */
346                 /* Get UUID bytes to UUID string */
347                 std::stringstream tmp;
348                 tmp << std::hex << std::setfill('0');
349                 for (size_t i = 0; i < uuidDataLen; i++)
350                 {
351                     tmp << std::setw(2)
352                         << static_cast<uint16_t>(
353                                device[areaOffset + uuidRecordData +
354                                       uuidCharOrder[i]]);
355                 }
356                 std::string uuidStr = tmp.str();
357                 result["MULTIRECORD_UUID"] =
358                     uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
359                     uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
360                     uuidStr.substr(20, 12);
361                 break;
362             }
363         }
364         if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
365         {
366             break;
367         }
368         areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
369     }
370 }
371 
372 resCodes
formatIPMIFRU(const std::vector<uint8_t> & fruBytes,boost::container::flat_map<std::string,std::string> & result)373     formatIPMIFRU(const std::vector<uint8_t>& fruBytes,
374                   boost::container::flat_map<std::string, std::string>& result)
375 {
376     resCodes ret = resCodes::resOK;
377     if (fruBytes.size() <= fruBlockSize)
378     {
379         std::cerr << "Error: trying to parse empty FRU \n";
380         return resCodes::resErr;
381     }
382     result["Common_Format_Version"] =
383         std::to_string(static_cast<int>(*fruBytes.begin()));
384 
385     const std::vector<std::string>* fruAreaFieldNames = nullptr;
386 
387     // Don't parse Internal and Multirecord areas
388     for (fruAreas area = fruAreas::fruAreaChassis;
389          area <= fruAreas::fruAreaProduct; ++area)
390     {
391         size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
392         if (offset == 0)
393         {
394             continue;
395         }
396         offset *= fruBlockSize;
397         std::vector<uint8_t>::const_iterator fruBytesIter =
398             fruBytes.begin() + offset;
399         if (fruBytesIter + fruBlockSize >= fruBytes.end())
400         {
401             std::cerr << "Not enough data to parse \n";
402             return resCodes::resErr;
403         }
404         // check for format version 1
405         if (*fruBytesIter != 0x01)
406         {
407             std::cerr << "Unexpected version " << *fruBytesIter << "\n";
408             return resCodes::resErr;
409         }
410         ++fruBytesIter;
411 
412         /* Verify other area offset for overlap with current area by passing
413          * length of current area offset pointed by *fruBytesIter
414          */
415         if (!verifyOffset(fruBytes, area, *fruBytesIter))
416         {
417             return resCodes::resErr;
418         }
419 
420         size_t fruAreaSize = *fruBytesIter * fruBlockSize;
421         std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
422             fruBytes.begin() + offset + fruAreaSize - 1;
423         ++fruBytesIter;
424 
425         uint8_t fruComputedChecksum =
426             calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
427         if (fruComputedChecksum != *fruBytesIterEndArea)
428         {
429             std::stringstream ss;
430             ss << std::hex << std::setfill('0');
431             ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
432             ss << "\tComputed checksum: 0x" << std::setw(2)
433                << static_cast<int>(fruComputedChecksum) << "\n";
434             ss << "\tThe read checksum: 0x" << std::setw(2)
435                << static_cast<int>(*fruBytesIterEndArea) << "\n";
436             std::cerr << ss.str();
437             ret = resCodes::resWarn;
438         }
439 
440         /* Set default language flag to true as Chassis Fru area are always
441          * encoded in English defined in Section 10 of Fru specification
442          */
443 
444         bool isLangEng = true;
445         switch (area)
446         {
447             case fruAreas::fruAreaChassis:
448             {
449                 result["CHASSIS_TYPE"] =
450                     std::to_string(static_cast<int>(*fruBytesIter));
451                 fruBytesIter += 1;
452                 fruAreaFieldNames = &chassisFruAreas;
453                 break;
454             }
455             case fruAreas::fruAreaBoard:
456             {
457                 uint8_t lang = *fruBytesIter;
458                 result["BOARD_LANGUAGE_CODE"] =
459                     std::to_string(static_cast<int>(lang));
460                 isLangEng = checkLangEng(lang);
461                 fruBytesIter += 1;
462 
463                 unsigned int minutes =
464                     *fruBytesIter | *(fruBytesIter + 1) << 8 |
465                     *(fruBytesIter + 2) << 16;
466                 std::tm fruTime = intelEpoch();
467                 std::time_t timeValue = timegm(&fruTime);
468                 timeValue += static_cast<long>(minutes) * 60;
469                 fruTime = *std::gmtime(&timeValue);
470 
471                 // Tue Nov 20 23:08:00 2018
472                 std::array<char, 32> timeString = {};
473                 auto bytes = std::strftime(timeString.data(), timeString.size(),
474                                            "%Y%m%dT%H%M%SZ", &fruTime);
475                 if (bytes == 0)
476                 {
477                     std::cerr << "invalid time string encountered\n";
478                     return resCodes::resErr;
479                 }
480 
481                 result["BOARD_MANUFACTURE_DATE"] =
482                     std::string_view(timeString.data(), bytes);
483                 fruBytesIter += 3;
484                 fruAreaFieldNames = &boardFruAreas;
485                 break;
486             }
487             case fruAreas::fruAreaProduct:
488             {
489                 uint8_t lang = *fruBytesIter;
490                 result["PRODUCT_LANGUAGE_CODE"] =
491                     std::to_string(static_cast<int>(lang));
492                 isLangEng = checkLangEng(lang);
493                 fruBytesIter += 1;
494                 fruAreaFieldNames = &productFruAreas;
495                 break;
496             }
497             default:
498             {
499                 std::cerr << "Internal error: unexpected FRU area index: "
500                           << static_cast<int>(area) << " \n";
501                 return resCodes::resErr;
502             }
503         }
504         size_t fieldIndex = 0;
505         DecodeState state = DecodeState::ok;
506         do
507         {
508             auto res =
509                 decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng);
510             state = res.first;
511             std::string value = res.second;
512             std::string name;
513             if (fieldIndex < fruAreaFieldNames->size())
514             {
515                 name = std::string(getFruAreaName(area)) + "_" +
516                        fruAreaFieldNames->at(fieldIndex);
517             }
518             else
519             {
520                 name =
521                     std::string(getFruAreaName(area)) + "_" +
522                     fruCustomFieldName +
523                     std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
524             }
525 
526             if (state == DecodeState::ok)
527             {
528                 // Strip non null characters from the end
529                 value.erase(std::find_if(value.rbegin(), value.rend(),
530                                          [](char ch) { return ch != 0; })
531                                 .base(),
532                             value.end());
533 
534                 result[name] = std::move(value);
535                 ++fieldIndex;
536             }
537             else if (state == DecodeState::err)
538             {
539                 std::cerr << "Error while parsing " << name << "\n";
540                 ret = resCodes::resWarn;
541                 // Cancel decoding if failed to parse any of mandatory
542                 // fields
543                 if (fieldIndex < fruAreaFieldNames->size())
544                 {
545                     std::cerr << "Failed to parse mandatory field \n";
546                     return resCodes::resErr;
547                 }
548             }
549             else
550             {
551                 if (fieldIndex < fruAreaFieldNames->size())
552                 {
553                     std::cerr
554                         << "Mandatory fields absent in FRU area "
555                         << getFruAreaName(area) << " after " << name << "\n";
556                     ret = resCodes::resWarn;
557                 }
558             }
559         } while (state == DecodeState::ok);
560         for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
561         {
562             uint8_t c = *fruBytesIter;
563             if (c != 0U)
564             {
565                 std::cerr << "Non-zero byte after EndOfFields in FRU area "
566                           << getFruAreaName(area) << "\n";
567                 ret = resCodes::resWarn;
568                 break;
569             }
570         }
571     }
572 
573     /* Parsing the Multirecord UUID */
574     parseMultirecordUUID(fruBytes, result);
575 
576     return ret;
577 }
578 
579 // Calculate new checksum for fru info area
calculateChecksum(std::vector<uint8_t>::const_iterator iter,std::vector<uint8_t>::const_iterator end)580 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
581                           std::vector<uint8_t>::const_iterator end)
582 {
583     constexpr int checksumMod = 256;
584     uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
585     return (checksumMod - sum) % checksumMod;
586 }
587 
calculateChecksum(std::vector<uint8_t> & fruAreaData)588 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
589 {
590     return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
591 }
592 
593 // Update new fru area length &
594 // Update checksum at new checksum location
595 // Return the offset of the area checksum byte
updateFRUAreaLenAndChecksum(std::vector<uint8_t> & fruData,size_t fruAreaStart,size_t fruAreaEndOfFieldsOffset,size_t fruAreaEndOffset)596 unsigned int updateFRUAreaLenAndChecksum(
597     std::vector<uint8_t>& fruData, size_t fruAreaStart,
598     size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset)
599 {
600     size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
601 
602     // fill zeros for any remaining unused space
603     std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
604               fruData.begin() + fruAreaEndOffset, 0);
605 
606     size_t mod = traverseFRUAreaIndex % fruBlockSize;
607     size_t checksumLoc = 0;
608     if (mod == 0U)
609     {
610         traverseFRUAreaIndex += (fruBlockSize);
611         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
612     }
613     else
614     {
615         traverseFRUAreaIndex += (fruBlockSize - mod);
616         checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
617     }
618 
619     size_t newFRUAreaLen =
620         (traverseFRUAreaIndex / fruBlockSize) +
621         static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
622     size_t fruAreaLengthLoc = fruAreaStart + 1;
623     fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
624 
625     // Calculate new checksum
626     std::vector<uint8_t> finalFRUData;
627     std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
628                 std::back_inserter(finalFRUData));
629 
630     fruData[checksumLoc] = calculateChecksum(finalFRUData);
631     return checksumLoc;
632 }
633 
getFieldLength(uint8_t fruFieldTypeLenValue)634 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
635 {
636     constexpr uint8_t typeLenMask = 0x3F;
637     constexpr uint8_t endOfFields = 0xC1;
638     if (fruFieldTypeLenValue == endOfFields)
639     {
640         return -1;
641     }
642     return fruFieldTypeLenValue & typeLenMask;
643 }
644 
validateHeader(const std::array<uint8_t,I2C_SMBUS_BLOCK_MAX> & blockData)645 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
646 {
647     // ipmi spec format version number is currently at 1, verify it
648     if (blockData[0] != fruVersion)
649     {
650         lg2::debug(
651             "FRU spec version {VERSION} not supported. Supported version is {SUPPORTED_VERSION}",
652             "VERSION", lg2::hex, blockData[0], "SUPPORTED_VERSION", lg2::hex,
653             fruVersion);
654         return false;
655     }
656 
657     // verify pad is set to 0
658     if (blockData[6] != 0x0)
659     {
660         lg2::debug("Pad value in header is non zero, value is {VALUE}", "VALUE",
661                    lg2::hex, blockData[6]);
662         return false;
663     }
664 
665     // verify offsets are 0, or don't point to another offset
666     std::set<uint8_t> foundOffsets;
667     for (int ii = 1; ii < 6; ii++)
668     {
669         if (blockData[ii] == 0)
670         {
671             continue;
672         }
673         auto inserted = foundOffsets.insert(blockData[ii]);
674         if (!inserted.second)
675         {
676             return false;
677         }
678     }
679 
680     // validate checksum
681     size_t sum = 0;
682     for (int jj = 0; jj < 7; jj++)
683     {
684         sum += blockData[jj];
685     }
686     sum = (256 - sum) & 0xFF;
687 
688     if (sum != blockData[7])
689     {
690         lg2::debug(
691             "Checksum {CHECKSUM} is invalid. calculated checksum is {CALCULATED_CHECKSUM}",
692             "CHECKSUM", lg2::hex, blockData[7], "CALCULATED_CHECKSUM", lg2::hex,
693             sum);
694         return false;
695     }
696     return true;
697 }
698 
findFRUHeader(FRUReader & reader,const std::string & errorHelp,std::array<uint8_t,I2C_SMBUS_BLOCK_MAX> & blockData,off_t & baseOffset)699 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp,
700                    std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData,
701                    off_t& baseOffset)
702 {
703     if (reader.read(baseOffset, 0x8, blockData.data()) < 0)
704     {
705         std::cerr << "failed to read " << errorHelp << " base offset "
706                   << baseOffset << "\n";
707         return false;
708     }
709 
710     // check the header checksum
711     if (validateHeader(blockData))
712     {
713         return true;
714     }
715 
716     // only continue the search if we just looked at 0x0.
717     if (baseOffset != 0)
718     {
719         return false;
720     }
721 
722     // now check for special cases where the IPMI data is at an offset
723 
724     // check if blockData starts with tyanHeader
725     const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
726     if (blockData.size() >= tyanHeader.size() &&
727         std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
728     {
729         // look for the FRU header at offset 0x6000
730         baseOffset = 0x6000;
731         return findFRUHeader(reader, errorHelp, blockData, baseOffset);
732     }
733 
734     lg2::debug("Illegal header {HEADER} base offset {OFFSET}", "HEADER",
735                errorHelp, "OFFSET", baseOffset);
736 
737     return false;
738 }
739 
740 std::pair<std::vector<uint8_t>, bool>
readFRUContents(FRUReader & reader,const std::string & errorHelp)741     readFRUContents(FRUReader& reader, const std::string& errorHelp)
742 {
743     std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
744     off_t baseOffset = 0x0;
745 
746     if (!findFRUHeader(reader, errorHelp, blockData, baseOffset))
747     {
748         return {{}, false};
749     }
750 
751     std::vector<uint8_t> device;
752     device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
753 
754     bool hasMultiRecords = false;
755     size_t fruLength = fruBlockSize; // At least FRU header is present
756     unsigned int prevOffset = 0;
757     for (fruAreas area = fruAreas::fruAreaInternal;
758          area <= fruAreas::fruAreaMultirecord; ++area)
759     {
760         // Offset value can be 255.
761         unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
762         if (areaOffset == 0)
763         {
764             continue;
765         }
766 
767         /* Check for offset order, as per Section 17 of FRU specification, FRU
768          * information areas are required to be in order in FRU data layout
769          * which means all offset value should be in increasing order or can be
770          * 0 if that area is not present
771          */
772         if (areaOffset <= prevOffset)
773         {
774             std::cerr << "Fru area offsets are not in required order as per "
775                          "Section 17 of Fru specification\n";
776             return {{}, true};
777         }
778         prevOffset = areaOffset;
779 
780         // MultiRecords are different. area is not tracking section, it's
781         // walking the common header.
782         if (area == fruAreas::fruAreaMultirecord)
783         {
784             hasMultiRecords = true;
785             break;
786         }
787 
788         areaOffset *= fruBlockSize;
789 
790         if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
791         {
792             std::cerr << "failed to read " << errorHelp << " base offset "
793                       << baseOffset << "\n";
794             return {{}, true};
795         }
796 
797         // Ignore data type (blockData is already unsigned).
798         size_t length = blockData[1] * fruBlockSize;
799         areaOffset += length;
800         fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
801     }
802 
803     if (hasMultiRecords)
804     {
805         // device[area count] is the index to the last area because the 0th
806         // entry is not an offset in the common header.
807         unsigned int areaOffset =
808             device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
809         areaOffset *= fruBlockSize;
810 
811         // the multi-area record header is 5 bytes long.
812         constexpr size_t multiRecordHeaderSize = 5;
813         constexpr uint8_t multiRecordEndOfListMask = 0x80;
814 
815         // Sanity hard-limit to 64KB.
816         while (areaOffset < std::numeric_limits<uint16_t>::max())
817         {
818             // In multi-area, the area offset points to the 0th record, each
819             // record has 3 bytes of the header we care about.
820             if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
821             {
822                 std::cerr << "failed to read " << errorHelp << " base offset "
823                           << baseOffset << "\n";
824                 return {{}, true};
825             }
826 
827             // Ok, let's check the record length, which is in bytes (unsigned,
828             // up to 255, so blockData should hold uint8_t not char)
829             size_t recordLength = blockData[2];
830             areaOffset += (recordLength + multiRecordHeaderSize);
831             fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
832 
833             // If this is the end of the list bail.
834             if ((blockData[1] & multiRecordEndOfListMask) != 0)
835             {
836                 break;
837             }
838         }
839     }
840 
841     // You already copied these first 8 bytes (the ipmi fru header size)
842     fruLength -= std::min(fruBlockSize, fruLength);
843 
844     int readOffset = fruBlockSize;
845 
846     while (fruLength > 0)
847     {
848         size_t requestLength =
849             std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
850 
851         if (reader.read(baseOffset + readOffset, requestLength,
852                         blockData.data()) < 0)
853         {
854             std::cerr << "failed to read " << errorHelp << " base offset "
855                       << baseOffset << "\n";
856             return {{}, true};
857         }
858 
859         device.insert(device.end(), blockData.begin(),
860                       blockData.begin() + requestLength);
861 
862         readOffset += requestLength;
863         fruLength -= std::min(requestLength, fruLength);
864     }
865 
866     return {device, true};
867 }
868 
getHeaderAreaFieldOffset(fruAreas area)869 unsigned int getHeaderAreaFieldOffset(fruAreas area)
870 {
871     return static_cast<unsigned int>(area) + 1;
872 }
873 
getFRUInfo(const uint16_t & bus,const uint8_t & address)874 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
875 {
876     auto deviceMap = busMap.find(bus);
877     if (deviceMap == busMap.end())
878     {
879         throw std::invalid_argument("Invalid Bus.");
880     }
881     auto device = deviceMap->second->find(address);
882     if (device == deviceMap->second->end())
883     {
884         throw std::invalid_argument("Invalid Address.");
885     }
886     std::vector<uint8_t>& ret = device->second;
887 
888     return ret;
889 }
890 
891 // Iterate FruArea Names and find start and size of the fru area that contains
892 // the propertyName and the field start location for the property. fruAreaParams
893 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
894 // updated/returned if successful.
895 
findFruAreaLocationAndField(std::vector<uint8_t> & fruData,const std::string & propertyName,struct FruArea & fruAreaParams)896 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
897                                  const std::string& propertyName,
898                                  struct FruArea& fruAreaParams)
899 {
900     const std::vector<std::string>* fruAreaFieldNames = nullptr;
901 
902     uint8_t fruAreaOffsetFieldValue = 0;
903     size_t offset = 0;
904     std::string areaName = propertyName.substr(0, propertyName.find('_'));
905     std::string propertyNamePrefix = areaName + "_";
906     auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
907     if (it == fruAreaNames.end())
908     {
909         std::cerr << "Can't parse area name for property " << propertyName
910                   << " \n";
911         return false;
912     }
913     fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
914     fruAreaOffsetFieldValue =
915         fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
916     switch (fruAreaToUpdate)
917     {
918         case fruAreas::fruAreaChassis:
919             offset = 3; // chassis part number offset. Skip fixed first 3 bytes
920             fruAreaFieldNames = &chassisFruAreas;
921             break;
922         case fruAreas::fruAreaBoard:
923             offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
924             fruAreaFieldNames = &boardFruAreas;
925             break;
926         case fruAreas::fruAreaProduct:
927             // Manufacturer name offset. Skip fixed first 3 product fru bytes
928             // i.e. version, area length and language code
929             offset = 3;
930             fruAreaFieldNames = &productFruAreas;
931             break;
932         default:
933             std::cerr << "Invalid PropertyName " << propertyName << " \n";
934             return false;
935     }
936     if (fruAreaOffsetFieldValue == 0)
937     {
938         std::cerr << "FRU Area for " << propertyName << " not present \n";
939         return false;
940     }
941 
942     fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
943     fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
944     fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
945     size_t fruDataIter = fruAreaParams.start + offset;
946     size_t skipToFRUUpdateField = 0;
947     ssize_t fieldLength = 0;
948 
949     bool found = false;
950     for (const auto& field : *fruAreaFieldNames)
951     {
952         skipToFRUUpdateField++;
953         if (propertyName == propertyNamePrefix + field)
954         {
955             found = true;
956             break;
957         }
958     }
959     if (!found)
960     {
961         std::size_t pos = propertyName.find(fruCustomFieldName);
962         if (pos == std::string::npos)
963         {
964             std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
965                       << propertyName << "\n";
966             return false;
967         }
968         std::string fieldNumStr =
969             propertyName.substr(pos + fruCustomFieldName.length());
970         size_t fieldNum = std::stoi(fieldNumStr);
971         if (fieldNum == 0)
972         {
973             std::cerr << "PropertyName not recognized: " << propertyName
974                       << "\n";
975             return false;
976         }
977         skipToFRUUpdateField += fieldNum;
978     }
979 
980     for (size_t i = 1; i < skipToFRUUpdateField; i++)
981     {
982         if (fruDataIter < fruData.size())
983         {
984             fieldLength = getFieldLength(fruData[fruDataIter]);
985 
986             if (fieldLength < 0)
987             {
988                 break;
989             }
990             fruDataIter += 1 + fieldLength;
991         }
992     }
993     fruAreaParams.updateFieldLoc = fruDataIter;
994 
995     return true;
996 }
997 
998 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
999 // Return true for success and false for failure.
1000 
copyRestFRUArea(std::vector<uint8_t> & fruData,const std::string & propertyName,struct FruArea & fruAreaParams,std::vector<uint8_t> & restFRUAreaFieldsData)1001 bool copyRestFRUArea(std::vector<uint8_t>& fruData,
1002                      const std::string& propertyName,
1003                      struct FruArea& fruAreaParams,
1004                      std::vector<uint8_t>& restFRUAreaFieldsData)
1005 {
1006     size_t fieldLoc = fruAreaParams.updateFieldLoc;
1007     size_t start = fruAreaParams.start;
1008     size_t fruAreaSize = fruAreaParams.size;
1009 
1010     // Push post update fru field bytes to a vector
1011     ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
1012     if (fieldLength < 0)
1013     {
1014         std::cerr << "Property " << propertyName << " not present \n";
1015         return false;
1016     }
1017 
1018     size_t fruDataIter = 0;
1019     fruDataIter = fieldLoc;
1020     fruDataIter += 1 + fieldLength;
1021     size_t restFRUFieldsLoc = fruDataIter;
1022     size_t endOfFieldsLoc = 0;
1023 
1024     if (fruDataIter < fruData.size())
1025     {
1026         while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
1027         {
1028             if (fruDataIter >= (start + fruAreaSize))
1029             {
1030                 fruDataIter = start + fruAreaSize;
1031                 break;
1032             }
1033             fruDataIter += 1 + fieldLength;
1034         }
1035         endOfFieldsLoc = fruDataIter;
1036     }
1037 
1038     std::copy_n(fruData.begin() + restFRUFieldsLoc,
1039                 endOfFieldsLoc - restFRUFieldsLoc + 1,
1040                 std::back_inserter(restFRUAreaFieldsData));
1041 
1042     fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
1043     fruAreaParams.restFieldsEnd = endOfFieldsLoc;
1044 
1045     return true;
1046 }
1047 
1048 // Get all device dbus path and match path with product name using
1049 // regular expression and find the device index for all devices.
1050 
findIndexForFRU(boost::container::flat_map<std::pair<size_t,size_t>,std::shared_ptr<sdbusplus::asio::dbus_interface>> & dbusInterfaceMap,std::string & productName)1051 std::optional<int> findIndexForFRU(
1052     boost::container::flat_map<
1053         std::pair<size_t, size_t>,
1054         std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
1055     std::string& productName)
1056 {
1057     int highest = -1;
1058     bool found = false;
1059 
1060     for (const auto& busIface : dbusInterfaceMap)
1061     {
1062         std::string path = busIface.second->get_object_path();
1063         if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
1064         {
1065             // Check if the match named has extra information.
1066             found = true;
1067             std::smatch baseMatch;
1068 
1069             bool match = std::regex_match(path, baseMatch,
1070                                           std::regex(productName + "_(\\d+)$"));
1071             if (match)
1072             {
1073                 if (baseMatch.size() == 2)
1074                 {
1075                     std::ssub_match baseSubMatch = baseMatch[1];
1076                     std::string base = baseSubMatch.str();
1077 
1078                     int value = std::stoi(base);
1079                     highest = (value > highest) ? value : highest;
1080                 }
1081             }
1082         }
1083     } // end searching objects
1084 
1085     if (!found)
1086     {
1087         return std::nullopt;
1088     }
1089     return highest;
1090 }
1091 
1092 // This function does format fru data as per IPMI format and find the
1093 // productName in the formatted fru data, get that productName and return
1094 // productName if found or return NULL.
1095 
getProductName(std::vector<uint8_t> & device,boost::container::flat_map<std::string,std::string> & formattedFRU,uint32_t bus,uint32_t address,size_t & unknownBusObjectCount)1096 std::optional<std::string> getProductName(
1097     std::vector<uint8_t>& device,
1098     boost::container::flat_map<std::string, std::string>& formattedFRU,
1099     uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
1100 {
1101     std::string productName;
1102 
1103     resCodes res = formatIPMIFRU(device, formattedFRU);
1104     if (res == resCodes::resErr)
1105     {
1106         std::cerr << "failed to parse FRU for device at bus " << bus
1107                   << " address " << address << "\n";
1108         return std::nullopt;
1109     }
1110     if (res == resCodes::resWarn)
1111     {
1112         std::cerr << "Warnings while parsing FRU for device at bus " << bus
1113                   << " address " << address << "\n";
1114     }
1115 
1116     auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
1117     // Not found under Board section or an empty string.
1118     if (productNameFind == formattedFRU.end() ||
1119         productNameFind->second.empty())
1120     {
1121         productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
1122     }
1123     // Found under Product section and not an empty string.
1124     if (productNameFind != formattedFRU.end() &&
1125         !productNameFind->second.empty())
1126     {
1127         productName = productNameFind->second;
1128         std::regex illegalObject("[^A-Za-z0-9_]");
1129         productName = std::regex_replace(productName, illegalObject, "_");
1130     }
1131     else
1132     {
1133         productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
1134         unknownBusObjectCount++;
1135     }
1136     return productName;
1137 }
1138 
getFruData(std::vector<uint8_t> & fruData,uint32_t bus,uint32_t address)1139 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
1140 {
1141     try
1142     {
1143         fruData = getFRUInfo(static_cast<uint16_t>(bus),
1144                              static_cast<uint8_t>(address));
1145     }
1146     catch (const std::invalid_argument& e)
1147     {
1148         std::cerr << "Failure getting FRU Info" << e.what() << "\n";
1149         return false;
1150     }
1151 
1152     return !fruData.empty();
1153 }
1154