1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains the base functions to manage periodic tick
4 * related events.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20
21 #include <asm/irq_regs.h>
22
23 #include "tick-internal.h"
24
25 /*
26 * Tick devices
27 */
28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
29 /*
30 * Tick next event: keeps track of the tick time. It's updated by the
31 * CPU which handles the tick and protected by jiffies_lock. There is
32 * no requirement to write hold the jiffies seqcount for it.
33 */
34 ktime_t tick_next_period;
35
36 /*
37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
39 * variable has two functions:
40 *
41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
42 * timekeeping lock all at once. Only the CPU which is assigned to do the
43 * update is handling it.
44 *
45 * 2) Hand off the duty in the NOHZ idle case by setting the value to
46 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
47 * at it will take over and keep the time keeping alive. The handover
48 * procedure also covers cpu hotplug.
49 */
50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
51 #ifdef CONFIG_NO_HZ_FULL
52 /*
53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
54 * tick_do_timer_cpu and it should be taken over by an eligible secondary
55 * when one comes online.
56 */
57 static int tick_do_timer_boot_cpu __read_mostly = -1;
58 #endif
59
60 /*
61 * Debugging: see timer_list.c
62 */
tick_get_device(int cpu)63 struct tick_device *tick_get_device(int cpu)
64 {
65 return &per_cpu(tick_cpu_device, cpu);
66 }
67
68 /**
69 * tick_is_oneshot_available - check for a oneshot capable event device
70 */
tick_is_oneshot_available(void)71 int tick_is_oneshot_available(void)
72 {
73 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
74
75 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
76 return 0;
77 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
78 return 1;
79 return tick_broadcast_oneshot_available();
80 }
81
82 /*
83 * Periodic tick
84 */
tick_periodic(int cpu)85 static void tick_periodic(int cpu)
86 {
87 if (tick_do_timer_cpu == cpu) {
88 raw_spin_lock(&jiffies_lock);
89 write_seqcount_begin(&jiffies_seq);
90
91 /* Keep track of the next tick event */
92 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
93
94 do_timer(1);
95 write_seqcount_end(&jiffies_seq);
96 raw_spin_unlock(&jiffies_lock);
97 update_wall_time();
98 }
99
100 update_process_times(user_mode(get_irq_regs()));
101 profile_tick(CPU_PROFILING);
102 }
103
104 /*
105 * Event handler for periodic ticks
106 */
tick_handle_periodic(struct clock_event_device * dev)107 void tick_handle_periodic(struct clock_event_device *dev)
108 {
109 int cpu = smp_processor_id();
110 ktime_t next = dev->next_event;
111
112 tick_periodic(cpu);
113
114 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
115 /*
116 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 * update_process_times() -> run_local_timers() ->
118 * hrtimer_run_queues().
119 */
120 if (dev->event_handler != tick_handle_periodic)
121 return;
122 #endif
123
124 if (!clockevent_state_oneshot(dev))
125 return;
126 for (;;) {
127 /*
128 * Setup the next period for devices, which do not have
129 * periodic mode:
130 */
131 next = ktime_add_ns(next, TICK_NSEC);
132
133 if (!clockevents_program_event(dev, next, false))
134 return;
135 /*
136 * Have to be careful here. If we're in oneshot mode,
137 * before we call tick_periodic() in a loop, we need
138 * to be sure we're using a real hardware clocksource.
139 * Otherwise we could get trapped in an infinite
140 * loop, as the tick_periodic() increments jiffies,
141 * which then will increment time, possibly causing
142 * the loop to trigger again and again.
143 */
144 if (timekeeping_valid_for_hres())
145 tick_periodic(cpu);
146 }
147 }
148
149 /*
150 * Setup the device for a periodic tick
151 */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)152 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
153 {
154 tick_set_periodic_handler(dev, broadcast);
155
156 /* Broadcast setup ? */
157 if (!tick_device_is_functional(dev))
158 return;
159
160 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
161 !tick_broadcast_oneshot_active()) {
162 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
163 } else {
164 unsigned int seq;
165 ktime_t next;
166
167 do {
168 seq = read_seqcount_begin(&jiffies_seq);
169 next = tick_next_period;
170 } while (read_seqcount_retry(&jiffies_seq, seq));
171
172 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
173
174 for (;;) {
175 if (!clockevents_program_event(dev, next, false))
176 return;
177 next = ktime_add_ns(next, TICK_NSEC);
178 }
179 }
180 }
181
182 /*
183 * Setup the tick device
184 */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)185 static void tick_setup_device(struct tick_device *td,
186 struct clock_event_device *newdev, int cpu,
187 const struct cpumask *cpumask)
188 {
189 void (*handler)(struct clock_event_device *) = NULL;
190 ktime_t next_event = 0;
191
192 /*
193 * First device setup ?
194 */
195 if (!td->evtdev) {
196 /*
197 * If no cpu took the do_timer update, assign it to
198 * this cpu:
199 */
200 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
201 tick_do_timer_cpu = cpu;
202 tick_next_period = ktime_get();
203 #ifdef CONFIG_NO_HZ_FULL
204 /*
205 * The boot CPU may be nohz_full, in which case the
206 * first housekeeping secondary will take do_timer()
207 * from it.
208 */
209 if (tick_nohz_full_cpu(cpu))
210 tick_do_timer_boot_cpu = cpu;
211
212 } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
213 tick_do_timer_boot_cpu = -1;
214 /*
215 * The boot CPU will stay in periodic (NOHZ disabled)
216 * mode until clocksource_done_booting() called after
217 * smp_init() selects a high resolution clocksource and
218 * timekeeping_notify() kicks the NOHZ stuff alive.
219 *
220 * So this WRITE_ONCE can only race with the READ_ONCE
221 * check in tick_periodic() but this race is harmless.
222 */
223 WRITE_ONCE(tick_do_timer_cpu, cpu);
224 #endif
225 }
226
227 /*
228 * Startup in periodic mode first.
229 */
230 td->mode = TICKDEV_MODE_PERIODIC;
231 } else {
232 handler = td->evtdev->event_handler;
233 next_event = td->evtdev->next_event;
234 td->evtdev->event_handler = clockevents_handle_noop;
235 }
236
237 td->evtdev = newdev;
238
239 /*
240 * When the device is not per cpu, pin the interrupt to the
241 * current cpu:
242 */
243 if (!cpumask_equal(newdev->cpumask, cpumask))
244 irq_set_affinity(newdev->irq, cpumask);
245
246 /*
247 * When global broadcasting is active, check if the current
248 * device is registered as a placeholder for broadcast mode.
249 * This allows us to handle this x86 misfeature in a generic
250 * way. This function also returns !=0 when we keep the
251 * current active broadcast state for this CPU.
252 */
253 if (tick_device_uses_broadcast(newdev, cpu))
254 return;
255
256 if (td->mode == TICKDEV_MODE_PERIODIC)
257 tick_setup_periodic(newdev, 0);
258 else
259 tick_setup_oneshot(newdev, handler, next_event);
260 }
261
tick_install_replacement(struct clock_event_device * newdev)262 void tick_install_replacement(struct clock_event_device *newdev)
263 {
264 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
265 int cpu = smp_processor_id();
266
267 clockevents_exchange_device(td->evtdev, newdev);
268 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
269 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
270 tick_oneshot_notify();
271 }
272
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)273 static bool tick_check_percpu(struct clock_event_device *curdev,
274 struct clock_event_device *newdev, int cpu)
275 {
276 if (!cpumask_test_cpu(cpu, newdev->cpumask))
277 return false;
278 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
279 return true;
280 /* Check if irq affinity can be set */
281 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
282 return false;
283 /* Prefer an existing cpu local device */
284 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
285 return false;
286 return true;
287 }
288
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)289 static bool tick_check_preferred(struct clock_event_device *curdev,
290 struct clock_event_device *newdev)
291 {
292 /* Prefer oneshot capable device */
293 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
294 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
295 return false;
296 if (tick_oneshot_mode_active())
297 return false;
298 }
299
300 /*
301 * Use the higher rated one, but prefer a CPU local device with a lower
302 * rating than a non-CPU local device
303 */
304 return !curdev ||
305 newdev->rating > curdev->rating ||
306 !cpumask_equal(curdev->cpumask, newdev->cpumask);
307 }
308
309 /*
310 * Check whether the new device is a better fit than curdev. curdev
311 * can be NULL !
312 */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)313 bool tick_check_replacement(struct clock_event_device *curdev,
314 struct clock_event_device *newdev)
315 {
316 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
317 return false;
318
319 return tick_check_preferred(curdev, newdev);
320 }
321
322 /*
323 * Check, if the new registered device should be used. Called with
324 * clockevents_lock held and interrupts disabled.
325 */
tick_check_new_device(struct clock_event_device * newdev)326 void tick_check_new_device(struct clock_event_device *newdev)
327 {
328 struct clock_event_device *curdev;
329 struct tick_device *td;
330 int cpu;
331
332 cpu = smp_processor_id();
333 td = &per_cpu(tick_cpu_device, cpu);
334 curdev = td->evtdev;
335
336 if (!tick_check_replacement(curdev, newdev))
337 goto out_bc;
338
339 if (!try_module_get(newdev->owner))
340 return;
341
342 /*
343 * Replace the eventually existing device by the new
344 * device. If the current device is the broadcast device, do
345 * not give it back to the clockevents layer !
346 */
347 if (tick_is_broadcast_device(curdev)) {
348 clockevents_shutdown(curdev);
349 curdev = NULL;
350 }
351 clockevents_exchange_device(curdev, newdev);
352 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
353 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
354 tick_oneshot_notify();
355 return;
356
357 out_bc:
358 /*
359 * Can the new device be used as a broadcast device ?
360 */
361 tick_install_broadcast_device(newdev, cpu);
362 }
363
364 /**
365 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
366 * @state: The target state (enter/exit)
367 *
368 * The system enters/leaves a state, where affected devices might stop
369 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
370 *
371 * Called with interrupts disabled, so clockevents_lock is not
372 * required here because the local clock event device cannot go away
373 * under us.
374 */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)375 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
376 {
377 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
378
379 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
380 return 0;
381
382 return __tick_broadcast_oneshot_control(state);
383 }
384 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
385
386 #ifdef CONFIG_HOTPLUG_CPU
387 /*
388 * Transfer the do_timer job away from a dying cpu.
389 *
390 * Called with interrupts disabled. No locking required. If
391 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
392 */
tick_handover_do_timer(void)393 void tick_handover_do_timer(void)
394 {
395 if (tick_do_timer_cpu == smp_processor_id())
396 tick_do_timer_cpu = cpumask_first(cpu_online_mask);
397 }
398
399 /*
400 * Shutdown an event device on a given cpu:
401 *
402 * This is called on a life CPU, when a CPU is dead. So we cannot
403 * access the hardware device itself.
404 * We just set the mode and remove it from the lists.
405 */
tick_shutdown(unsigned int cpu)406 void tick_shutdown(unsigned int cpu)
407 {
408 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
409 struct clock_event_device *dev = td->evtdev;
410
411 td->mode = TICKDEV_MODE_PERIODIC;
412 if (dev) {
413 /*
414 * Prevent that the clock events layer tries to call
415 * the set mode function!
416 */
417 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
418 clockevents_exchange_device(dev, NULL);
419 dev->event_handler = clockevents_handle_noop;
420 td->evtdev = NULL;
421 }
422 }
423 #endif
424
425 /**
426 * tick_suspend_local - Suspend the local tick device
427 *
428 * Called from the local cpu for freeze with interrupts disabled.
429 *
430 * No locks required. Nothing can change the per cpu device.
431 */
tick_suspend_local(void)432 void tick_suspend_local(void)
433 {
434 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
435
436 clockevents_shutdown(td->evtdev);
437 }
438
439 /**
440 * tick_resume_local - Resume the local tick device
441 *
442 * Called from the local CPU for unfreeze or XEN resume magic.
443 *
444 * No locks required. Nothing can change the per cpu device.
445 */
tick_resume_local(void)446 void tick_resume_local(void)
447 {
448 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
449 bool broadcast = tick_resume_check_broadcast();
450
451 clockevents_tick_resume(td->evtdev);
452 if (!broadcast) {
453 if (td->mode == TICKDEV_MODE_PERIODIC)
454 tick_setup_periodic(td->evtdev, 0);
455 else
456 tick_resume_oneshot();
457 }
458
459 /*
460 * Ensure that hrtimers are up to date and the clockevents device
461 * is reprogrammed correctly when high resolution timers are
462 * enabled.
463 */
464 hrtimers_resume_local();
465 }
466
467 /**
468 * tick_suspend - Suspend the tick and the broadcast device
469 *
470 * Called from syscore_suspend() via timekeeping_suspend with only one
471 * CPU online and interrupts disabled or from tick_unfreeze() under
472 * tick_freeze_lock.
473 *
474 * No locks required. Nothing can change the per cpu device.
475 */
tick_suspend(void)476 void tick_suspend(void)
477 {
478 tick_suspend_local();
479 tick_suspend_broadcast();
480 }
481
482 /**
483 * tick_resume - Resume the tick and the broadcast device
484 *
485 * Called from syscore_resume() via timekeeping_resume with only one
486 * CPU online and interrupts disabled.
487 *
488 * No locks required. Nothing can change the per cpu device.
489 */
tick_resume(void)490 void tick_resume(void)
491 {
492 tick_resume_broadcast();
493 tick_resume_local();
494 }
495
496 #ifdef CONFIG_SUSPEND
497 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
498 static unsigned int tick_freeze_depth;
499
500 /**
501 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
502 *
503 * Check if this is the last online CPU executing the function and if so,
504 * suspend timekeeping. Otherwise suspend the local tick.
505 *
506 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
507 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
508 */
tick_freeze(void)509 void tick_freeze(void)
510 {
511 raw_spin_lock(&tick_freeze_lock);
512
513 tick_freeze_depth++;
514 if (tick_freeze_depth == num_online_cpus()) {
515 trace_suspend_resume(TPS("timekeeping_freeze"),
516 smp_processor_id(), true);
517 system_state = SYSTEM_SUSPEND;
518 sched_clock_suspend();
519 timekeeping_suspend();
520 } else {
521 tick_suspend_local();
522 }
523
524 raw_spin_unlock(&tick_freeze_lock);
525 }
526
527 /**
528 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
529 *
530 * Check if this is the first CPU executing the function and if so, resume
531 * timekeeping. Otherwise resume the local tick.
532 *
533 * Call with interrupts disabled. Must be balanced with %tick_freeze().
534 * Interrupts must not be enabled after the preceding %tick_freeze().
535 */
tick_unfreeze(void)536 void tick_unfreeze(void)
537 {
538 raw_spin_lock(&tick_freeze_lock);
539
540 if (tick_freeze_depth == num_online_cpus()) {
541 timekeeping_resume();
542 sched_clock_resume();
543 system_state = SYSTEM_RUNNING;
544 trace_suspend_resume(TPS("timekeeping_freeze"),
545 smp_processor_id(), false);
546 } else {
547 touch_softlockup_watchdog();
548 tick_resume_local();
549 }
550
551 tick_freeze_depth--;
552
553 raw_spin_unlock(&tick_freeze_lock);
554 }
555 #endif /* CONFIG_SUSPEND */
556
557 /**
558 * tick_init - initialize the tick control
559 */
tick_init(void)560 void __init tick_init(void)
561 {
562 tick_broadcast_init();
563 tick_nohz_init();
564 }
565