xref: /openbmc/linux/kernel/time/tick-common.c (revision 93d61e1b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 
21 #include <asm/irq_regs.h>
22 
23 #include "tick-internal.h"
24 
25 /*
26  * Tick devices
27  */
28 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
29 /*
30  * Tick next event: keeps track of the tick time. It's updated by the
31  * CPU which handles the tick and protected by jiffies_lock. There is
32  * no requirement to write hold the jiffies seqcount for it.
33  */
34 ktime_t tick_next_period;
35 
36 /*
37  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
38  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
39  * variable has two functions:
40  *
41  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
42  *    timekeeping lock all at once. Only the CPU which is assigned to do the
43  *    update is handling it.
44  *
45  * 2) Hand off the duty in the NOHZ idle case by setting the value to
46  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
47  *    at it will take over and keep the time keeping alive.  The handover
48  *    procedure also covers cpu hotplug.
49  */
50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
51 #ifdef CONFIG_NO_HZ_FULL
52 /*
53  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
54  * tick_do_timer_cpu and it should be taken over by an eligible secondary
55  * when one comes online.
56  */
57 static int tick_do_timer_boot_cpu __read_mostly = -1;
58 #endif
59 
60 /*
61  * Debugging: see timer_list.c
62  */
tick_get_device(int cpu)63 struct tick_device *tick_get_device(int cpu)
64 {
65 	return &per_cpu(tick_cpu_device, cpu);
66 }
67 
68 /**
69  * tick_is_oneshot_available - check for a oneshot capable event device
70  */
tick_is_oneshot_available(void)71 int tick_is_oneshot_available(void)
72 {
73 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
74 
75 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
76 		return 0;
77 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
78 		return 1;
79 	return tick_broadcast_oneshot_available();
80 }
81 
82 /*
83  * Periodic tick
84  */
tick_periodic(int cpu)85 static void tick_periodic(int cpu)
86 {
87 	if (tick_do_timer_cpu == cpu) {
88 		raw_spin_lock(&jiffies_lock);
89 		write_seqcount_begin(&jiffies_seq);
90 
91 		/* Keep track of the next tick event */
92 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
93 
94 		do_timer(1);
95 		write_seqcount_end(&jiffies_seq);
96 		raw_spin_unlock(&jiffies_lock);
97 		update_wall_time();
98 	}
99 
100 	update_process_times(user_mode(get_irq_regs()));
101 	profile_tick(CPU_PROFILING);
102 }
103 
104 /*
105  * Event handler for periodic ticks
106  */
tick_handle_periodic(struct clock_event_device * dev)107 void tick_handle_periodic(struct clock_event_device *dev)
108 {
109 	int cpu = smp_processor_id();
110 	ktime_t next = dev->next_event;
111 
112 	tick_periodic(cpu);
113 
114 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
115 	/*
116 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 	 * update_process_times() -> run_local_timers() ->
118 	 * hrtimer_run_queues().
119 	 */
120 	if (dev->event_handler != tick_handle_periodic)
121 		return;
122 #endif
123 
124 	if (!clockevent_state_oneshot(dev))
125 		return;
126 	for (;;) {
127 		/*
128 		 * Setup the next period for devices, which do not have
129 		 * periodic mode:
130 		 */
131 		next = ktime_add_ns(next, TICK_NSEC);
132 
133 		if (!clockevents_program_event(dev, next, false))
134 			return;
135 		/*
136 		 * Have to be careful here. If we're in oneshot mode,
137 		 * before we call tick_periodic() in a loop, we need
138 		 * to be sure we're using a real hardware clocksource.
139 		 * Otherwise we could get trapped in an infinite
140 		 * loop, as the tick_periodic() increments jiffies,
141 		 * which then will increment time, possibly causing
142 		 * the loop to trigger again and again.
143 		 */
144 		if (timekeeping_valid_for_hres())
145 			tick_periodic(cpu);
146 	}
147 }
148 
149 /*
150  * Setup the device for a periodic tick
151  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)152 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
153 {
154 	tick_set_periodic_handler(dev, broadcast);
155 
156 	/* Broadcast setup ? */
157 	if (!tick_device_is_functional(dev))
158 		return;
159 
160 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
161 	    !tick_broadcast_oneshot_active()) {
162 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
163 	} else {
164 		unsigned int seq;
165 		ktime_t next;
166 
167 		do {
168 			seq = read_seqcount_begin(&jiffies_seq);
169 			next = tick_next_period;
170 		} while (read_seqcount_retry(&jiffies_seq, seq));
171 
172 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
173 
174 		for (;;) {
175 			if (!clockevents_program_event(dev, next, false))
176 				return;
177 			next = ktime_add_ns(next, TICK_NSEC);
178 		}
179 	}
180 }
181 
182 /*
183  * Setup the tick device
184  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)185 static void tick_setup_device(struct tick_device *td,
186 			      struct clock_event_device *newdev, int cpu,
187 			      const struct cpumask *cpumask)
188 {
189 	void (*handler)(struct clock_event_device *) = NULL;
190 	ktime_t next_event = 0;
191 
192 	/*
193 	 * First device setup ?
194 	 */
195 	if (!td->evtdev) {
196 		/*
197 		 * If no cpu took the do_timer update, assign it to
198 		 * this cpu:
199 		 */
200 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
201 			tick_do_timer_cpu = cpu;
202 			tick_next_period = ktime_get();
203 #ifdef CONFIG_NO_HZ_FULL
204 			/*
205 			 * The boot CPU may be nohz_full, in which case the
206 			 * first housekeeping secondary will take do_timer()
207 			 * from it.
208 			 */
209 			if (tick_nohz_full_cpu(cpu))
210 				tick_do_timer_boot_cpu = cpu;
211 
212 		} else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
213 			tick_do_timer_boot_cpu = -1;
214 			/*
215 			 * The boot CPU will stay in periodic (NOHZ disabled)
216 			 * mode until clocksource_done_booting() called after
217 			 * smp_init() selects a high resolution clocksource and
218 			 * timekeeping_notify() kicks the NOHZ stuff alive.
219 			 *
220 			 * So this WRITE_ONCE can only race with the READ_ONCE
221 			 * check in tick_periodic() but this race is harmless.
222 			 */
223 			WRITE_ONCE(tick_do_timer_cpu, cpu);
224 #endif
225 		}
226 
227 		/*
228 		 * Startup in periodic mode first.
229 		 */
230 		td->mode = TICKDEV_MODE_PERIODIC;
231 	} else {
232 		handler = td->evtdev->event_handler;
233 		next_event = td->evtdev->next_event;
234 		td->evtdev->event_handler = clockevents_handle_noop;
235 	}
236 
237 	td->evtdev = newdev;
238 
239 	/*
240 	 * When the device is not per cpu, pin the interrupt to the
241 	 * current cpu:
242 	 */
243 	if (!cpumask_equal(newdev->cpumask, cpumask))
244 		irq_set_affinity(newdev->irq, cpumask);
245 
246 	/*
247 	 * When global broadcasting is active, check if the current
248 	 * device is registered as a placeholder for broadcast mode.
249 	 * This allows us to handle this x86 misfeature in a generic
250 	 * way. This function also returns !=0 when we keep the
251 	 * current active broadcast state for this CPU.
252 	 */
253 	if (tick_device_uses_broadcast(newdev, cpu))
254 		return;
255 
256 	if (td->mode == TICKDEV_MODE_PERIODIC)
257 		tick_setup_periodic(newdev, 0);
258 	else
259 		tick_setup_oneshot(newdev, handler, next_event);
260 }
261 
tick_install_replacement(struct clock_event_device * newdev)262 void tick_install_replacement(struct clock_event_device *newdev)
263 {
264 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
265 	int cpu = smp_processor_id();
266 
267 	clockevents_exchange_device(td->evtdev, newdev);
268 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
269 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
270 		tick_oneshot_notify();
271 }
272 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)273 static bool tick_check_percpu(struct clock_event_device *curdev,
274 			      struct clock_event_device *newdev, int cpu)
275 {
276 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
277 		return false;
278 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
279 		return true;
280 	/* Check if irq affinity can be set */
281 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
282 		return false;
283 	/* Prefer an existing cpu local device */
284 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
285 		return false;
286 	return true;
287 }
288 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)289 static bool tick_check_preferred(struct clock_event_device *curdev,
290 				 struct clock_event_device *newdev)
291 {
292 	/* Prefer oneshot capable device */
293 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
294 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
295 			return false;
296 		if (tick_oneshot_mode_active())
297 			return false;
298 	}
299 
300 	/*
301 	 * Use the higher rated one, but prefer a CPU local device with a lower
302 	 * rating than a non-CPU local device
303 	 */
304 	return !curdev ||
305 		newdev->rating > curdev->rating ||
306 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
307 }
308 
309 /*
310  * Check whether the new device is a better fit than curdev. curdev
311  * can be NULL !
312  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)313 bool tick_check_replacement(struct clock_event_device *curdev,
314 			    struct clock_event_device *newdev)
315 {
316 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
317 		return false;
318 
319 	return tick_check_preferred(curdev, newdev);
320 }
321 
322 /*
323  * Check, if the new registered device should be used. Called with
324  * clockevents_lock held and interrupts disabled.
325  */
tick_check_new_device(struct clock_event_device * newdev)326 void tick_check_new_device(struct clock_event_device *newdev)
327 {
328 	struct clock_event_device *curdev;
329 	struct tick_device *td;
330 	int cpu;
331 
332 	cpu = smp_processor_id();
333 	td = &per_cpu(tick_cpu_device, cpu);
334 	curdev = td->evtdev;
335 
336 	if (!tick_check_replacement(curdev, newdev))
337 		goto out_bc;
338 
339 	if (!try_module_get(newdev->owner))
340 		return;
341 
342 	/*
343 	 * Replace the eventually existing device by the new
344 	 * device. If the current device is the broadcast device, do
345 	 * not give it back to the clockevents layer !
346 	 */
347 	if (tick_is_broadcast_device(curdev)) {
348 		clockevents_shutdown(curdev);
349 		curdev = NULL;
350 	}
351 	clockevents_exchange_device(curdev, newdev);
352 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
353 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
354 		tick_oneshot_notify();
355 	return;
356 
357 out_bc:
358 	/*
359 	 * Can the new device be used as a broadcast device ?
360 	 */
361 	tick_install_broadcast_device(newdev, cpu);
362 }
363 
364 /**
365  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
366  * @state:	The target state (enter/exit)
367  *
368  * The system enters/leaves a state, where affected devices might stop
369  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
370  *
371  * Called with interrupts disabled, so clockevents_lock is not
372  * required here because the local clock event device cannot go away
373  * under us.
374  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)375 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
376 {
377 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
378 
379 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
380 		return 0;
381 
382 	return __tick_broadcast_oneshot_control(state);
383 }
384 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
385 
386 #ifdef CONFIG_HOTPLUG_CPU
387 /*
388  * Transfer the do_timer job away from a dying cpu.
389  *
390  * Called with interrupts disabled. No locking required. If
391  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
392  */
tick_handover_do_timer(void)393 void tick_handover_do_timer(void)
394 {
395 	if (tick_do_timer_cpu == smp_processor_id())
396 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
397 }
398 
399 /*
400  * Shutdown an event device on a given cpu:
401  *
402  * This is called on a life CPU, when a CPU is dead. So we cannot
403  * access the hardware device itself.
404  * We just set the mode and remove it from the lists.
405  */
tick_shutdown(unsigned int cpu)406 void tick_shutdown(unsigned int cpu)
407 {
408 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
409 	struct clock_event_device *dev = td->evtdev;
410 
411 	td->mode = TICKDEV_MODE_PERIODIC;
412 	if (dev) {
413 		/*
414 		 * Prevent that the clock events layer tries to call
415 		 * the set mode function!
416 		 */
417 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
418 		clockevents_exchange_device(dev, NULL);
419 		dev->event_handler = clockevents_handle_noop;
420 		td->evtdev = NULL;
421 	}
422 }
423 #endif
424 
425 /**
426  * tick_suspend_local - Suspend the local tick device
427  *
428  * Called from the local cpu for freeze with interrupts disabled.
429  *
430  * No locks required. Nothing can change the per cpu device.
431  */
tick_suspend_local(void)432 void tick_suspend_local(void)
433 {
434 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
435 
436 	clockevents_shutdown(td->evtdev);
437 }
438 
439 /**
440  * tick_resume_local - Resume the local tick device
441  *
442  * Called from the local CPU for unfreeze or XEN resume magic.
443  *
444  * No locks required. Nothing can change the per cpu device.
445  */
tick_resume_local(void)446 void tick_resume_local(void)
447 {
448 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
449 	bool broadcast = tick_resume_check_broadcast();
450 
451 	clockevents_tick_resume(td->evtdev);
452 	if (!broadcast) {
453 		if (td->mode == TICKDEV_MODE_PERIODIC)
454 			tick_setup_periodic(td->evtdev, 0);
455 		else
456 			tick_resume_oneshot();
457 	}
458 
459 	/*
460 	 * Ensure that hrtimers are up to date and the clockevents device
461 	 * is reprogrammed correctly when high resolution timers are
462 	 * enabled.
463 	 */
464 	hrtimers_resume_local();
465 }
466 
467 /**
468  * tick_suspend - Suspend the tick and the broadcast device
469  *
470  * Called from syscore_suspend() via timekeeping_suspend with only one
471  * CPU online and interrupts disabled or from tick_unfreeze() under
472  * tick_freeze_lock.
473  *
474  * No locks required. Nothing can change the per cpu device.
475  */
tick_suspend(void)476 void tick_suspend(void)
477 {
478 	tick_suspend_local();
479 	tick_suspend_broadcast();
480 }
481 
482 /**
483  * tick_resume - Resume the tick and the broadcast device
484  *
485  * Called from syscore_resume() via timekeeping_resume with only one
486  * CPU online and interrupts disabled.
487  *
488  * No locks required. Nothing can change the per cpu device.
489  */
tick_resume(void)490 void tick_resume(void)
491 {
492 	tick_resume_broadcast();
493 	tick_resume_local();
494 }
495 
496 #ifdef CONFIG_SUSPEND
497 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
498 static unsigned int tick_freeze_depth;
499 
500 /**
501  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
502  *
503  * Check if this is the last online CPU executing the function and if so,
504  * suspend timekeeping.  Otherwise suspend the local tick.
505  *
506  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
507  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
508  */
tick_freeze(void)509 void tick_freeze(void)
510 {
511 	raw_spin_lock(&tick_freeze_lock);
512 
513 	tick_freeze_depth++;
514 	if (tick_freeze_depth == num_online_cpus()) {
515 		trace_suspend_resume(TPS("timekeeping_freeze"),
516 				     smp_processor_id(), true);
517 		system_state = SYSTEM_SUSPEND;
518 		sched_clock_suspend();
519 		timekeeping_suspend();
520 	} else {
521 		tick_suspend_local();
522 	}
523 
524 	raw_spin_unlock(&tick_freeze_lock);
525 }
526 
527 /**
528  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
529  *
530  * Check if this is the first CPU executing the function and if so, resume
531  * timekeeping.  Otherwise resume the local tick.
532  *
533  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
534  * Interrupts must not be enabled after the preceding %tick_freeze().
535  */
tick_unfreeze(void)536 void tick_unfreeze(void)
537 {
538 	raw_spin_lock(&tick_freeze_lock);
539 
540 	if (tick_freeze_depth == num_online_cpus()) {
541 		timekeeping_resume();
542 		sched_clock_resume();
543 		system_state = SYSTEM_RUNNING;
544 		trace_suspend_resume(TPS("timekeeping_freeze"),
545 				     smp_processor_id(), false);
546 	} else {
547 		touch_softlockup_watchdog();
548 		tick_resume_local();
549 	}
550 
551 	tick_freeze_depth--;
552 
553 	raw_spin_unlock(&tick_freeze_lock);
554 }
555 #endif /* CONFIG_SUSPEND */
556 
557 /**
558  * tick_init - initialize the tick control
559  */
tick_init(void)560 void __init tick_init(void)
561 {
562 	tick_broadcast_init();
563 	tick_nohz_init();
564 }
565