1 /*
2 * QEMU block layer thread pool
3 *
4 * Copyright IBM, Corp. 2008
5 * Copyright Red Hat, Inc. 2012
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Paolo Bonzini <pbonzini@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2. See
12 * the COPYING file in the top-level directory.
13 *
14 * Contributions after 2012-01-13 are licensed under the terms of the
15 * GNU GPL, version 2 or (at your option) any later version.
16 */
17 #include "qemu/osdep.h"
18 #include "qemu/defer-call.h"
19 #include "qemu/queue.h"
20 #include "qemu/thread.h"
21 #include "qemu/coroutine.h"
22 #include "trace.h"
23 #include "block/thread-pool.h"
24 #include "qemu/main-loop.h"
25
26 static void do_spawn_thread(ThreadPool *pool);
27
28 typedef struct ThreadPoolElement ThreadPoolElement;
29
30 enum ThreadState {
31 THREAD_QUEUED,
32 THREAD_ACTIVE,
33 THREAD_DONE,
34 };
35
36 struct ThreadPoolElement {
37 BlockAIOCB common;
38 ThreadPool *pool;
39 ThreadPoolFunc *func;
40 void *arg;
41
42 /* Moving state out of THREAD_QUEUED is protected by lock. After
43 * that, only the worker thread can write to it. Reads and writes
44 * of state and ret are ordered with memory barriers.
45 */
46 enum ThreadState state;
47 int ret;
48
49 /* Access to this list is protected by lock. */
50 QTAILQ_ENTRY(ThreadPoolElement) reqs;
51
52 /* This list is only written by the thread pool's mother thread. */
53 QLIST_ENTRY(ThreadPoolElement) all;
54 };
55
56 struct ThreadPool {
57 AioContext *ctx;
58 QEMUBH *completion_bh;
59 QemuMutex lock;
60 QemuCond worker_stopped;
61 QemuCond request_cond;
62 QEMUBH *new_thread_bh;
63
64 /* The following variables are only accessed from one AioContext. */
65 QLIST_HEAD(, ThreadPoolElement) head;
66
67 /* The following variables are protected by lock. */
68 QTAILQ_HEAD(, ThreadPoolElement) request_list;
69 int cur_threads;
70 int idle_threads;
71 int new_threads; /* backlog of threads we need to create */
72 int pending_threads; /* threads created but not running yet */
73 int min_threads;
74 int max_threads;
75 };
76
worker_thread(void * opaque)77 static void *worker_thread(void *opaque)
78 {
79 ThreadPool *pool = opaque;
80
81 qemu_mutex_lock(&pool->lock);
82 pool->pending_threads--;
83 do_spawn_thread(pool);
84
85 while (pool->cur_threads <= pool->max_threads) {
86 ThreadPoolElement *req;
87 int ret;
88
89 if (QTAILQ_EMPTY(&pool->request_list)) {
90 pool->idle_threads++;
91 ret = qemu_cond_timedwait(&pool->request_cond, &pool->lock, 10000);
92 pool->idle_threads--;
93 if (ret == 0 &&
94 QTAILQ_EMPTY(&pool->request_list) &&
95 pool->cur_threads > pool->min_threads) {
96 /* Timed out + no work to do + no need for warm threads = exit. */
97 break;
98 }
99 /*
100 * Even if there was some work to do, check if there aren't
101 * too many worker threads before picking it up.
102 */
103 continue;
104 }
105
106 req = QTAILQ_FIRST(&pool->request_list);
107 QTAILQ_REMOVE(&pool->request_list, req, reqs);
108 req->state = THREAD_ACTIVE;
109 qemu_mutex_unlock(&pool->lock);
110
111 ret = req->func(req->arg);
112
113 req->ret = ret;
114 /* Write ret before state. */
115 smp_wmb();
116 req->state = THREAD_DONE;
117
118 qemu_bh_schedule(pool->completion_bh);
119 qemu_mutex_lock(&pool->lock);
120 }
121
122 pool->cur_threads--;
123 qemu_cond_signal(&pool->worker_stopped);
124
125 /*
126 * Wake up another thread, in case we got a wakeup but decided
127 * to exit due to pool->cur_threads > pool->max_threads.
128 */
129 qemu_cond_signal(&pool->request_cond);
130 qemu_mutex_unlock(&pool->lock);
131 return NULL;
132 }
133
do_spawn_thread(ThreadPool * pool)134 static void do_spawn_thread(ThreadPool *pool)
135 {
136 QemuThread t;
137
138 /* Runs with lock taken. */
139 if (!pool->new_threads) {
140 return;
141 }
142
143 pool->new_threads--;
144 pool->pending_threads++;
145
146 qemu_thread_create(&t, "worker", worker_thread, pool, QEMU_THREAD_DETACHED);
147 }
148
spawn_thread_bh_fn(void * opaque)149 static void spawn_thread_bh_fn(void *opaque)
150 {
151 ThreadPool *pool = opaque;
152
153 qemu_mutex_lock(&pool->lock);
154 do_spawn_thread(pool);
155 qemu_mutex_unlock(&pool->lock);
156 }
157
spawn_thread(ThreadPool * pool)158 static void spawn_thread(ThreadPool *pool)
159 {
160 pool->cur_threads++;
161 pool->new_threads++;
162 /* If there are threads being created, they will spawn new workers, so
163 * we don't spend time creating many threads in a loop holding a mutex or
164 * starving the current vcpu.
165 *
166 * If there are no idle threads, ask the main thread to create one, so we
167 * inherit the correct affinity instead of the vcpu affinity.
168 */
169 if (!pool->pending_threads) {
170 qemu_bh_schedule(pool->new_thread_bh);
171 }
172 }
173
thread_pool_completion_bh(void * opaque)174 static void thread_pool_completion_bh(void *opaque)
175 {
176 ThreadPool *pool = opaque;
177 ThreadPoolElement *elem, *next;
178
179 defer_call_begin(); /* cb() may use defer_call() to coalesce work */
180
181 restart:
182 QLIST_FOREACH_SAFE(elem, &pool->head, all, next) {
183 if (elem->state != THREAD_DONE) {
184 continue;
185 }
186
187 trace_thread_pool_complete(pool, elem, elem->common.opaque,
188 elem->ret);
189 QLIST_REMOVE(elem, all);
190
191 if (elem->common.cb) {
192 /* Read state before ret. */
193 smp_rmb();
194
195 /* Schedule ourselves in case elem->common.cb() calls aio_poll() to
196 * wait for another request that completed at the same time.
197 */
198 qemu_bh_schedule(pool->completion_bh);
199
200 elem->common.cb(elem->common.opaque, elem->ret);
201
202 /* We can safely cancel the completion_bh here regardless of someone
203 * else having scheduled it meanwhile because we reenter the
204 * completion function anyway (goto restart).
205 */
206 qemu_bh_cancel(pool->completion_bh);
207
208 qemu_aio_unref(elem);
209 goto restart;
210 } else {
211 qemu_aio_unref(elem);
212 }
213 }
214
215 defer_call_end();
216 }
217
thread_pool_cancel(BlockAIOCB * acb)218 static void thread_pool_cancel(BlockAIOCB *acb)
219 {
220 ThreadPoolElement *elem = (ThreadPoolElement *)acb;
221 ThreadPool *pool = elem->pool;
222
223 trace_thread_pool_cancel(elem, elem->common.opaque);
224
225 QEMU_LOCK_GUARD(&pool->lock);
226 if (elem->state == THREAD_QUEUED) {
227 QTAILQ_REMOVE(&pool->request_list, elem, reqs);
228 qemu_bh_schedule(pool->completion_bh);
229
230 elem->state = THREAD_DONE;
231 elem->ret = -ECANCELED;
232 }
233
234 }
235
236 static const AIOCBInfo thread_pool_aiocb_info = {
237 .aiocb_size = sizeof(ThreadPoolElement),
238 .cancel_async = thread_pool_cancel,
239 };
240
thread_pool_submit_aio(ThreadPoolFunc * func,void * arg,BlockCompletionFunc * cb,void * opaque)241 BlockAIOCB *thread_pool_submit_aio(ThreadPoolFunc *func, void *arg,
242 BlockCompletionFunc *cb, void *opaque)
243 {
244 ThreadPoolElement *req;
245 AioContext *ctx = qemu_get_current_aio_context();
246 ThreadPool *pool = aio_get_thread_pool(ctx);
247
248 /* Assert that the thread submitting work is the same running the pool */
249 assert(pool->ctx == qemu_get_current_aio_context());
250
251 req = qemu_aio_get(&thread_pool_aiocb_info, NULL, cb, opaque);
252 req->func = func;
253 req->arg = arg;
254 req->state = THREAD_QUEUED;
255 req->pool = pool;
256
257 QLIST_INSERT_HEAD(&pool->head, req, all);
258
259 trace_thread_pool_submit(pool, req, arg);
260
261 qemu_mutex_lock(&pool->lock);
262 if (pool->idle_threads == 0 && pool->cur_threads < pool->max_threads) {
263 spawn_thread(pool);
264 }
265 QTAILQ_INSERT_TAIL(&pool->request_list, req, reqs);
266 qemu_mutex_unlock(&pool->lock);
267 qemu_cond_signal(&pool->request_cond);
268 return &req->common;
269 }
270
271 typedef struct ThreadPoolCo {
272 Coroutine *co;
273 int ret;
274 } ThreadPoolCo;
275
thread_pool_co_cb(void * opaque,int ret)276 static void thread_pool_co_cb(void *opaque, int ret)
277 {
278 ThreadPoolCo *co = opaque;
279
280 co->ret = ret;
281 aio_co_wake(co->co);
282 }
283
thread_pool_submit_co(ThreadPoolFunc * func,void * arg)284 int coroutine_fn thread_pool_submit_co(ThreadPoolFunc *func, void *arg)
285 {
286 ThreadPoolCo tpc = { .co = qemu_coroutine_self(), .ret = -EINPROGRESS };
287 assert(qemu_in_coroutine());
288 thread_pool_submit_aio(func, arg, thread_pool_co_cb, &tpc);
289 qemu_coroutine_yield();
290 return tpc.ret;
291 }
292
thread_pool_submit(ThreadPoolFunc * func,void * arg)293 void thread_pool_submit(ThreadPoolFunc *func, void *arg)
294 {
295 thread_pool_submit_aio(func, arg, NULL, NULL);
296 }
297
thread_pool_update_params(ThreadPool * pool,AioContext * ctx)298 void thread_pool_update_params(ThreadPool *pool, AioContext *ctx)
299 {
300 qemu_mutex_lock(&pool->lock);
301
302 pool->min_threads = ctx->thread_pool_min;
303 pool->max_threads = ctx->thread_pool_max;
304
305 /*
306 * We either have to:
307 * - Increase the number available of threads until over the min_threads
308 * threshold.
309 * - Bump the worker threads so that they exit, until under the max_threads
310 * threshold.
311 * - Do nothing. The current number of threads fall in between the min and
312 * max thresholds. We'll let the pool manage itself.
313 */
314 for (int i = pool->cur_threads; i < pool->min_threads; i++) {
315 spawn_thread(pool);
316 }
317
318 for (int i = pool->cur_threads; i > pool->max_threads; i--) {
319 qemu_cond_signal(&pool->request_cond);
320 }
321
322 qemu_mutex_unlock(&pool->lock);
323 }
324
thread_pool_init_one(ThreadPool * pool,AioContext * ctx)325 static void thread_pool_init_one(ThreadPool *pool, AioContext *ctx)
326 {
327 if (!ctx) {
328 ctx = qemu_get_aio_context();
329 }
330
331 memset(pool, 0, sizeof(*pool));
332 pool->ctx = ctx;
333 pool->completion_bh = aio_bh_new(ctx, thread_pool_completion_bh, pool);
334 qemu_mutex_init(&pool->lock);
335 qemu_cond_init(&pool->worker_stopped);
336 qemu_cond_init(&pool->request_cond);
337 pool->new_thread_bh = aio_bh_new(ctx, spawn_thread_bh_fn, pool);
338
339 QLIST_INIT(&pool->head);
340 QTAILQ_INIT(&pool->request_list);
341
342 thread_pool_update_params(pool, ctx);
343 }
344
thread_pool_new(AioContext * ctx)345 ThreadPool *thread_pool_new(AioContext *ctx)
346 {
347 ThreadPool *pool = g_new(ThreadPool, 1);
348 thread_pool_init_one(pool, ctx);
349 return pool;
350 }
351
thread_pool_free(ThreadPool * pool)352 void thread_pool_free(ThreadPool *pool)
353 {
354 if (!pool) {
355 return;
356 }
357
358 assert(QLIST_EMPTY(&pool->head));
359
360 qemu_mutex_lock(&pool->lock);
361
362 /* Stop new threads from spawning */
363 qemu_bh_delete(pool->new_thread_bh);
364 pool->cur_threads -= pool->new_threads;
365 pool->new_threads = 0;
366
367 /* Wait for worker threads to terminate */
368 pool->max_threads = 0;
369 qemu_cond_broadcast(&pool->request_cond);
370 while (pool->cur_threads > 0) {
371 qemu_cond_wait(&pool->worker_stopped, &pool->lock);
372 }
373
374 qemu_mutex_unlock(&pool->lock);
375
376 qemu_bh_delete(pool->completion_bh);
377 qemu_cond_destroy(&pool->request_cond);
378 qemu_cond_destroy(&pool->worker_stopped);
379 qemu_mutex_destroy(&pool->lock);
380 g_free(pool);
381 }
382