1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016, NVIDIA CORPORATION.
4 */
5
6 #include <common.h>
7 #include <asm/io.h>
8 #include <asm/arch-tegra/ivc.h>
9
10 #define TEGRA_IVC_ALIGN 64
11
12 /*
13 * IVC channel reset protocol.
14 *
15 * Each end uses its tx_channel.state to indicate its synchronization state.
16 */
17 enum ivc_state {
18 /*
19 * This value is zero for backwards compatibility with services that
20 * assume channels to be initially zeroed. Such channels are in an
21 * initially valid state, but cannot be asynchronously reset, and must
22 * maintain a valid state at all times.
23 *
24 * The transmitting end can enter the established state from the sync or
25 * ack state when it observes the receiving endpoint in the ack or
26 * established state, indicating that has cleared the counters in our
27 * rx_channel.
28 */
29 ivc_state_established = 0,
30
31 /*
32 * If an endpoint is observed in the sync state, the remote endpoint is
33 * allowed to clear the counters it owns asynchronously with respect to
34 * the current endpoint. Therefore, the current endpoint is no longer
35 * allowed to communicate.
36 */
37 ivc_state_sync,
38
39 /*
40 * When the transmitting end observes the receiving end in the sync
41 * state, it can clear the w_count and r_count and transition to the ack
42 * state. If the remote endpoint observes us in the ack state, it can
43 * return to the established state once it has cleared its counters.
44 */
45 ivc_state_ack
46 };
47
48 /*
49 * This structure is divided into two-cache aligned parts, the first is only
50 * written through the tx_channel pointer, while the second is only written
51 * through the rx_channel pointer. This delineates ownership of the cache lines,
52 * which is critical to performance and necessary in non-cache coherent
53 * implementations.
54 */
55 struct tegra_ivc_channel_header {
56 union {
57 /* fields owned by the transmitting end */
58 struct {
59 uint32_t w_count;
60 uint32_t state;
61 };
62 uint8_t w_align[TEGRA_IVC_ALIGN];
63 };
64 union {
65 /* fields owned by the receiving end */
66 uint32_t r_count;
67 uint8_t r_align[TEGRA_IVC_ALIGN];
68 };
69 };
70
tegra_ivc_invalidate_counter(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * h,ulong offset)71 static inline void tegra_ivc_invalidate_counter(struct tegra_ivc *ivc,
72 struct tegra_ivc_channel_header *h,
73 ulong offset)
74 {
75 ulong base = ((ulong)h) + offset;
76 invalidate_dcache_range(base, base + TEGRA_IVC_ALIGN);
77 }
78
tegra_ivc_flush_counter(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * h,ulong offset)79 static inline void tegra_ivc_flush_counter(struct tegra_ivc *ivc,
80 struct tegra_ivc_channel_header *h,
81 ulong offset)
82 {
83 ulong base = ((ulong)h) + offset;
84 flush_dcache_range(base, base + TEGRA_IVC_ALIGN);
85 }
86
tegra_ivc_frame_addr(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * h,uint32_t frame)87 static inline ulong tegra_ivc_frame_addr(struct tegra_ivc *ivc,
88 struct tegra_ivc_channel_header *h,
89 uint32_t frame)
90 {
91 BUG_ON(frame >= ivc->nframes);
92
93 return ((ulong)h) + sizeof(struct tegra_ivc_channel_header) +
94 (ivc->frame_size * frame);
95 }
96
tegra_ivc_frame_pointer(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * ch,uint32_t frame)97 static inline void *tegra_ivc_frame_pointer(struct tegra_ivc *ivc,
98 struct tegra_ivc_channel_header *ch,
99 uint32_t frame)
100 {
101 return (void *)tegra_ivc_frame_addr(ivc, ch, frame);
102 }
103
tegra_ivc_invalidate_frame(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * h,unsigned frame)104 static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
105 struct tegra_ivc_channel_header *h,
106 unsigned frame)
107 {
108 ulong base = tegra_ivc_frame_addr(ivc, h, frame);
109 invalidate_dcache_range(base, base + ivc->frame_size);
110 }
111
tegra_ivc_flush_frame(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * h,unsigned frame)112 static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
113 struct tegra_ivc_channel_header *h,
114 unsigned frame)
115 {
116 ulong base = tegra_ivc_frame_addr(ivc, h, frame);
117 flush_dcache_range(base, base + ivc->frame_size);
118 }
119
tegra_ivc_channel_empty(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * ch)120 static inline int tegra_ivc_channel_empty(struct tegra_ivc *ivc,
121 struct tegra_ivc_channel_header *ch)
122 {
123 /*
124 * This function performs multiple checks on the same values with
125 * security implications, so create snapshots with ACCESS_ONCE() to
126 * ensure that these checks use the same values.
127 */
128 uint32_t w_count = ACCESS_ONCE(ch->w_count);
129 uint32_t r_count = ACCESS_ONCE(ch->r_count);
130
131 /*
132 * Perform an over-full check to prevent denial of service attacks where
133 * a server could be easily fooled into believing that there's an
134 * extremely large number of frames ready, since receivers are not
135 * expected to check for full or over-full conditions.
136 *
137 * Although the channel isn't empty, this is an invalid case caused by
138 * a potentially malicious peer, so returning empty is safer, because it
139 * gives the impression that the channel has gone silent.
140 */
141 if (w_count - r_count > ivc->nframes)
142 return 1;
143
144 return w_count == r_count;
145 }
146
tegra_ivc_channel_full(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * ch)147 static inline int tegra_ivc_channel_full(struct tegra_ivc *ivc,
148 struct tegra_ivc_channel_header *ch)
149 {
150 /*
151 * Invalid cases where the counters indicate that the queue is over
152 * capacity also appear full.
153 */
154 return (ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)) >=
155 ivc->nframes;
156 }
157
tegra_ivc_advance_rx(struct tegra_ivc * ivc)158 static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
159 {
160 ACCESS_ONCE(ivc->rx_channel->r_count) =
161 ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
162
163 if (ivc->r_pos == ivc->nframes - 1)
164 ivc->r_pos = 0;
165 else
166 ivc->r_pos++;
167 }
168
tegra_ivc_advance_tx(struct tegra_ivc * ivc)169 static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
170 {
171 ACCESS_ONCE(ivc->tx_channel->w_count) =
172 ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
173
174 if (ivc->w_pos == ivc->nframes - 1)
175 ivc->w_pos = 0;
176 else
177 ivc->w_pos++;
178 }
179
tegra_ivc_check_read(struct tegra_ivc * ivc)180 static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
181 {
182 ulong offset;
183
184 /*
185 * tx_channel->state is set locally, so it is not synchronized with
186 * state from the remote peer. The remote peer cannot reset its
187 * transmit counters until we've acknowledged its synchronization
188 * request, so no additional synchronization is required because an
189 * asynchronous transition of rx_channel->state to ivc_state_ack is not
190 * allowed.
191 */
192 if (ivc->tx_channel->state != ivc_state_established)
193 return -ECONNRESET;
194
195 /*
196 * Avoid unnecessary invalidations when performing repeated accesses to
197 * an IVC channel by checking the old queue pointers first.
198 * Synchronization is only necessary when these pointers indicate empty
199 * or full.
200 */
201 if (!tegra_ivc_channel_empty(ivc, ivc->rx_channel))
202 return 0;
203
204 offset = offsetof(struct tegra_ivc_channel_header, w_count);
205 tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
206 return tegra_ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
207 }
208
tegra_ivc_check_write(struct tegra_ivc * ivc)209 static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
210 {
211 ulong offset;
212
213 if (ivc->tx_channel->state != ivc_state_established)
214 return -ECONNRESET;
215
216 if (!tegra_ivc_channel_full(ivc, ivc->tx_channel))
217 return 0;
218
219 offset = offsetof(struct tegra_ivc_channel_header, r_count);
220 tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
221 return tegra_ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
222 }
223
tegra_ivc_channel_avail_count(struct tegra_ivc * ivc,struct tegra_ivc_channel_header * ch)224 static inline uint32_t tegra_ivc_channel_avail_count(struct tegra_ivc *ivc,
225 struct tegra_ivc_channel_header *ch)
226 {
227 /*
228 * This function isn't expected to be used in scenarios where an
229 * over-full situation can lead to denial of service attacks. See the
230 * comment in tegra_ivc_channel_empty() for an explanation about
231 * special over-full considerations.
232 */
233 return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
234 }
235
tegra_ivc_read_get_next_frame(struct tegra_ivc * ivc,void ** frame)236 int tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc, void **frame)
237 {
238 int result = tegra_ivc_check_read(ivc);
239 if (result < 0)
240 return result;
241
242 /*
243 * Order observation of w_pos potentially indicating new data before
244 * data read.
245 */
246 mb();
247
248 tegra_ivc_invalidate_frame(ivc, ivc->rx_channel, ivc->r_pos);
249 *frame = tegra_ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
250
251 return 0;
252 }
253
tegra_ivc_read_advance(struct tegra_ivc * ivc)254 int tegra_ivc_read_advance(struct tegra_ivc *ivc)
255 {
256 ulong offset;
257 int result;
258
259 /*
260 * No read barriers or synchronization here: the caller is expected to
261 * have already observed the channel non-empty. This check is just to
262 * catch programming errors.
263 */
264 result = tegra_ivc_check_read(ivc);
265 if (result)
266 return result;
267
268 tegra_ivc_advance_rx(ivc);
269 offset = offsetof(struct tegra_ivc_channel_header, r_count);
270 tegra_ivc_flush_counter(ivc, ivc->rx_channel, offset);
271
272 /*
273 * Ensure our write to r_pos occurs before our read from w_pos.
274 */
275 mb();
276
277 offset = offsetof(struct tegra_ivc_channel_header, w_count);
278 tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
279
280 if (tegra_ivc_channel_avail_count(ivc, ivc->rx_channel) ==
281 ivc->nframes - 1)
282 ivc->notify(ivc);
283
284 return 0;
285 }
286
tegra_ivc_write_get_next_frame(struct tegra_ivc * ivc,void ** frame)287 int tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc, void **frame)
288 {
289 int result = tegra_ivc_check_write(ivc);
290 if (result)
291 return result;
292
293 *frame = tegra_ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
294
295 return 0;
296 }
297
tegra_ivc_write_advance(struct tegra_ivc * ivc)298 int tegra_ivc_write_advance(struct tegra_ivc *ivc)
299 {
300 ulong offset;
301 int result;
302
303 result = tegra_ivc_check_write(ivc);
304 if (result)
305 return result;
306
307 tegra_ivc_flush_frame(ivc, ivc->tx_channel, ivc->w_pos);
308
309 /*
310 * Order any possible stores to the frame before update of w_pos.
311 */
312 mb();
313
314 tegra_ivc_advance_tx(ivc);
315 offset = offsetof(struct tegra_ivc_channel_header, w_count);
316 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
317
318 /*
319 * Ensure our write to w_pos occurs before our read from r_pos.
320 */
321 mb();
322
323 offset = offsetof(struct tegra_ivc_channel_header, r_count);
324 tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
325
326 if (tegra_ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
327 ivc->notify(ivc);
328
329 return 0;
330 }
331
332 /*
333 * ===============================================================
334 * IVC State Transition Table - see tegra_ivc_channel_notified()
335 * ===============================================================
336 *
337 * local remote action
338 * ----- ------ -----------------------------------
339 * SYNC EST <none>
340 * SYNC ACK reset counters; move to EST; notify
341 * SYNC SYNC reset counters; move to ACK; notify
342 * ACK EST move to EST; notify
343 * ACK ACK move to EST; notify
344 * ACK SYNC reset counters; move to ACK; notify
345 * EST EST <none>
346 * EST ACK <none>
347 * EST SYNC reset counters; move to ACK; notify
348 *
349 * ===============================================================
350 */
tegra_ivc_channel_notified(struct tegra_ivc * ivc)351 int tegra_ivc_channel_notified(struct tegra_ivc *ivc)
352 {
353 ulong offset;
354 enum ivc_state peer_state;
355
356 /* Copy the receiver's state out of shared memory. */
357 offset = offsetof(struct tegra_ivc_channel_header, w_count);
358 tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
359 peer_state = ACCESS_ONCE(ivc->rx_channel->state);
360
361 if (peer_state == ivc_state_sync) {
362 /*
363 * Order observation of ivc_state_sync before stores clearing
364 * tx_channel.
365 */
366 mb();
367
368 /*
369 * Reset tx_channel counters. The remote end is in the SYNC
370 * state and won't make progress until we change our state,
371 * so the counters are not in use at this time.
372 */
373 ivc->tx_channel->w_count = 0;
374 ivc->rx_channel->r_count = 0;
375
376 ivc->w_pos = 0;
377 ivc->r_pos = 0;
378
379 /*
380 * Ensure that counters appear cleared before new state can be
381 * observed.
382 */
383 mb();
384
385 /*
386 * Move to ACK state. We have just cleared our counters, so it
387 * is now safe for the remote end to start using these values.
388 */
389 ivc->tx_channel->state = ivc_state_ack;
390 offset = offsetof(struct tegra_ivc_channel_header, w_count);
391 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
392
393 /*
394 * Notify remote end to observe state transition.
395 */
396 ivc->notify(ivc);
397 } else if (ivc->tx_channel->state == ivc_state_sync &&
398 peer_state == ivc_state_ack) {
399 /*
400 * Order observation of ivc_state_sync before stores clearing
401 * tx_channel.
402 */
403 mb();
404
405 /*
406 * Reset tx_channel counters. The remote end is in the ACK
407 * state and won't make progress until we change our state,
408 * so the counters are not in use at this time.
409 */
410 ivc->tx_channel->w_count = 0;
411 ivc->rx_channel->r_count = 0;
412
413 ivc->w_pos = 0;
414 ivc->r_pos = 0;
415
416 /*
417 * Ensure that counters appear cleared before new state can be
418 * observed.
419 */
420 mb();
421
422 /*
423 * Move to ESTABLISHED state. We know that the remote end has
424 * already cleared its counters, so it is safe to start
425 * writing/reading on this channel.
426 */
427 ivc->tx_channel->state = ivc_state_established;
428 offset = offsetof(struct tegra_ivc_channel_header, w_count);
429 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
430
431 /*
432 * Notify remote end to observe state transition.
433 */
434 ivc->notify(ivc);
435 } else if (ivc->tx_channel->state == ivc_state_ack) {
436 /*
437 * At this point, we have observed the peer to be in either
438 * the ACK or ESTABLISHED state. Next, order observation of
439 * peer state before storing to tx_channel.
440 */
441 mb();
442
443 /*
444 * Move to ESTABLISHED state. We know that we have previously
445 * cleared our counters, and we know that the remote end has
446 * cleared its counters, so it is safe to start writing/reading
447 * on this channel.
448 */
449 ivc->tx_channel->state = ivc_state_established;
450 offset = offsetof(struct tegra_ivc_channel_header, w_count);
451 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
452
453 /*
454 * Notify remote end to observe state transition.
455 */
456 ivc->notify(ivc);
457 } else {
458 /*
459 * There is no need to handle any further action. Either the
460 * channel is already fully established, or we are waiting for
461 * the remote end to catch up with our current state. Refer
462 * to the diagram in "IVC State Transition Table" above.
463 */
464 }
465
466 if (ivc->tx_channel->state != ivc_state_established)
467 return -EAGAIN;
468
469 return 0;
470 }
471
tegra_ivc_channel_reset(struct tegra_ivc * ivc)472 void tegra_ivc_channel_reset(struct tegra_ivc *ivc)
473 {
474 ulong offset;
475
476 ivc->tx_channel->state = ivc_state_sync;
477 offset = offsetof(struct tegra_ivc_channel_header, w_count);
478 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
479 ivc->notify(ivc);
480 }
481
check_ivc_params(ulong qbase1,ulong qbase2,uint32_t nframes,uint32_t frame_size)482 static int check_ivc_params(ulong qbase1, ulong qbase2, uint32_t nframes,
483 uint32_t frame_size)
484 {
485 int ret = 0;
486
487 BUG_ON(offsetof(struct tegra_ivc_channel_header, w_count) &
488 (TEGRA_IVC_ALIGN - 1));
489 BUG_ON(offsetof(struct tegra_ivc_channel_header, r_count) &
490 (TEGRA_IVC_ALIGN - 1));
491 BUG_ON(sizeof(struct tegra_ivc_channel_header) &
492 (TEGRA_IVC_ALIGN - 1));
493
494 if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
495 pr_err("tegra_ivc: nframes * frame_size overflows\n");
496 return -EINVAL;
497 }
498
499 /*
500 * The headers must at least be aligned enough for counters
501 * to be accessed atomically.
502 */
503 if ((qbase1 & (TEGRA_IVC_ALIGN - 1)) ||
504 (qbase2 & (TEGRA_IVC_ALIGN - 1))) {
505 pr_err("tegra_ivc: channel start not aligned\n");
506 return -EINVAL;
507 }
508
509 if (frame_size & (TEGRA_IVC_ALIGN - 1)) {
510 pr_err("tegra_ivc: frame size not adequately aligned\n");
511 return -EINVAL;
512 }
513
514 if (qbase1 < qbase2) {
515 if (qbase1 + frame_size * nframes > qbase2)
516 ret = -EINVAL;
517 } else {
518 if (qbase2 + frame_size * nframes > qbase1)
519 ret = -EINVAL;
520 }
521
522 if (ret) {
523 pr_err("tegra_ivc: queue regions overlap\n");
524 return ret;
525 }
526
527 return 0;
528 }
529
tegra_ivc_init(struct tegra_ivc * ivc,ulong rx_base,ulong tx_base,uint32_t nframes,uint32_t frame_size,void (* notify)(struct tegra_ivc *))530 int tegra_ivc_init(struct tegra_ivc *ivc, ulong rx_base, ulong tx_base,
531 uint32_t nframes, uint32_t frame_size,
532 void (*notify)(struct tegra_ivc *))
533 {
534 int ret;
535
536 if (!ivc)
537 return -EINVAL;
538
539 ret = check_ivc_params(rx_base, tx_base, nframes, frame_size);
540 if (ret)
541 return ret;
542
543 ivc->rx_channel = (struct tegra_ivc_channel_header *)rx_base;
544 ivc->tx_channel = (struct tegra_ivc_channel_header *)tx_base;
545 ivc->w_pos = 0;
546 ivc->r_pos = 0;
547 ivc->nframes = nframes;
548 ivc->frame_size = frame_size;
549 ivc->notify = notify;
550
551 return 0;
552 }
553