1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tegra20 External Memory Controller driver
4 *
5 * Author: Dmitry Osipenko <digetx@gmail.com>
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/clk.h>
10 #include <linux/clk/tegra.h>
11 #include <linux/debugfs.h>
12 #include <linux/devfreq.h>
13 #include <linux/err.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_opp.h>
24 #include <linux/slab.h>
25 #include <linux/sort.h>
26 #include <linux/types.h>
27
28 #include <soc/tegra/common.h>
29 #include <soc/tegra/fuse.h>
30
31 #include "../jedec_ddr.h"
32 #include "../of_memory.h"
33
34 #include "mc.h"
35
36 #define EMC_INTSTATUS 0x000
37 #define EMC_INTMASK 0x004
38 #define EMC_DBG 0x008
39 #define EMC_ADR_CFG_0 0x010
40 #define EMC_TIMING_CONTROL 0x028
41 #define EMC_RC 0x02c
42 #define EMC_RFC 0x030
43 #define EMC_RAS 0x034
44 #define EMC_RP 0x038
45 #define EMC_R2W 0x03c
46 #define EMC_W2R 0x040
47 #define EMC_R2P 0x044
48 #define EMC_W2P 0x048
49 #define EMC_RD_RCD 0x04c
50 #define EMC_WR_RCD 0x050
51 #define EMC_RRD 0x054
52 #define EMC_REXT 0x058
53 #define EMC_WDV 0x05c
54 #define EMC_QUSE 0x060
55 #define EMC_QRST 0x064
56 #define EMC_QSAFE 0x068
57 #define EMC_RDV 0x06c
58 #define EMC_REFRESH 0x070
59 #define EMC_BURST_REFRESH_NUM 0x074
60 #define EMC_PDEX2WR 0x078
61 #define EMC_PDEX2RD 0x07c
62 #define EMC_PCHG2PDEN 0x080
63 #define EMC_ACT2PDEN 0x084
64 #define EMC_AR2PDEN 0x088
65 #define EMC_RW2PDEN 0x08c
66 #define EMC_TXSR 0x090
67 #define EMC_TCKE 0x094
68 #define EMC_TFAW 0x098
69 #define EMC_TRPAB 0x09c
70 #define EMC_TCLKSTABLE 0x0a0
71 #define EMC_TCLKSTOP 0x0a4
72 #define EMC_TREFBW 0x0a8
73 #define EMC_QUSE_EXTRA 0x0ac
74 #define EMC_ODT_WRITE 0x0b0
75 #define EMC_ODT_READ 0x0b4
76 #define EMC_MRR 0x0ec
77 #define EMC_FBIO_CFG5 0x104
78 #define EMC_FBIO_CFG6 0x114
79 #define EMC_STAT_CONTROL 0x160
80 #define EMC_STAT_LLMC_CONTROL 0x178
81 #define EMC_STAT_PWR_CLOCK_LIMIT 0x198
82 #define EMC_STAT_PWR_CLOCKS 0x19c
83 #define EMC_STAT_PWR_COUNT 0x1a0
84 #define EMC_AUTO_CAL_INTERVAL 0x2a8
85 #define EMC_CFG_2 0x2b8
86 #define EMC_CFG_DIG_DLL 0x2bc
87 #define EMC_DLL_XFORM_DQS 0x2c0
88 #define EMC_DLL_XFORM_QUSE 0x2c4
89 #define EMC_ZCAL_REF_CNT 0x2e0
90 #define EMC_ZCAL_WAIT_CNT 0x2e4
91 #define EMC_CFG_CLKTRIM_0 0x2d0
92 #define EMC_CFG_CLKTRIM_1 0x2d4
93 #define EMC_CFG_CLKTRIM_2 0x2d8
94
95 #define EMC_CLKCHANGE_REQ_ENABLE BIT(0)
96 #define EMC_CLKCHANGE_PD_ENABLE BIT(1)
97 #define EMC_CLKCHANGE_SR_ENABLE BIT(2)
98
99 #define EMC_TIMING_UPDATE BIT(0)
100
101 #define EMC_REFRESH_OVERFLOW_INT BIT(3)
102 #define EMC_CLKCHANGE_COMPLETE_INT BIT(4)
103 #define EMC_MRR_DIVLD_INT BIT(5)
104
105 #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0)
106 #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1)
107 #define EMC_DBG_FORCE_UPDATE BIT(2)
108 #define EMC_DBG_READ_DQM_CTRL BIT(9)
109 #define EMC_DBG_CFG_PRIORITY BIT(24)
110
111 #define EMC_FBIO_CFG5_DRAM_WIDTH_X16 BIT(4)
112 #define EMC_FBIO_CFG5_DRAM_TYPE GENMASK(1, 0)
113
114 #define EMC_MRR_DEV_SELECTN GENMASK(31, 30)
115 #define EMC_MRR_MRR_MA GENMASK(23, 16)
116 #define EMC_MRR_MRR_DATA GENMASK(15, 0)
117
118 #define EMC_ADR_CFG_0_EMEM_NUMDEV GENMASK(25, 24)
119
120 #define EMC_PWR_GATHER_CLEAR (1 << 8)
121 #define EMC_PWR_GATHER_DISABLE (2 << 8)
122 #define EMC_PWR_GATHER_ENABLE (3 << 8)
123
124 enum emc_dram_type {
125 DRAM_TYPE_RESERVED,
126 DRAM_TYPE_DDR1,
127 DRAM_TYPE_LPDDR2,
128 DRAM_TYPE_DDR2,
129 };
130
131 static const u16 emc_timing_registers[] = {
132 EMC_RC,
133 EMC_RFC,
134 EMC_RAS,
135 EMC_RP,
136 EMC_R2W,
137 EMC_W2R,
138 EMC_R2P,
139 EMC_W2P,
140 EMC_RD_RCD,
141 EMC_WR_RCD,
142 EMC_RRD,
143 EMC_REXT,
144 EMC_WDV,
145 EMC_QUSE,
146 EMC_QRST,
147 EMC_QSAFE,
148 EMC_RDV,
149 EMC_REFRESH,
150 EMC_BURST_REFRESH_NUM,
151 EMC_PDEX2WR,
152 EMC_PDEX2RD,
153 EMC_PCHG2PDEN,
154 EMC_ACT2PDEN,
155 EMC_AR2PDEN,
156 EMC_RW2PDEN,
157 EMC_TXSR,
158 EMC_TCKE,
159 EMC_TFAW,
160 EMC_TRPAB,
161 EMC_TCLKSTABLE,
162 EMC_TCLKSTOP,
163 EMC_TREFBW,
164 EMC_QUSE_EXTRA,
165 EMC_FBIO_CFG6,
166 EMC_ODT_WRITE,
167 EMC_ODT_READ,
168 EMC_FBIO_CFG5,
169 EMC_CFG_DIG_DLL,
170 EMC_DLL_XFORM_DQS,
171 EMC_DLL_XFORM_QUSE,
172 EMC_ZCAL_REF_CNT,
173 EMC_ZCAL_WAIT_CNT,
174 EMC_AUTO_CAL_INTERVAL,
175 EMC_CFG_CLKTRIM_0,
176 EMC_CFG_CLKTRIM_1,
177 EMC_CFG_CLKTRIM_2,
178 };
179
180 struct emc_timing {
181 unsigned long rate;
182 u32 data[ARRAY_SIZE(emc_timing_registers)];
183 };
184
185 enum emc_rate_request_type {
186 EMC_RATE_DEVFREQ,
187 EMC_RATE_DEBUG,
188 EMC_RATE_ICC,
189 EMC_RATE_TYPE_MAX,
190 };
191
192 struct emc_rate_request {
193 unsigned long min_rate;
194 unsigned long max_rate;
195 };
196
197 struct tegra_emc {
198 struct device *dev;
199 struct tegra_mc *mc;
200 struct icc_provider provider;
201 struct notifier_block clk_nb;
202 struct clk *clk;
203 void __iomem *regs;
204 unsigned int dram_bus_width;
205
206 struct emc_timing *timings;
207 unsigned int num_timings;
208
209 struct {
210 struct dentry *root;
211 unsigned long min_rate;
212 unsigned long max_rate;
213 } debugfs;
214
215 /*
216 * There are multiple sources in the EMC driver which could request
217 * a min/max clock rate, these rates are contained in this array.
218 */
219 struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
220
221 /* protect shared rate-change code path */
222 struct mutex rate_lock;
223
224 struct devfreq_simple_ondemand_data ondemand_data;
225
226 /* memory chip identity information */
227 union lpddr2_basic_config4 basic_conf4;
228 unsigned int manufacturer_id;
229 unsigned int revision_id1;
230 unsigned int revision_id2;
231
232 bool mrr_error;
233 };
234
tegra_emc_isr(int irq,void * data)235 static irqreturn_t tegra_emc_isr(int irq, void *data)
236 {
237 struct tegra_emc *emc = data;
238 u32 intmask = EMC_REFRESH_OVERFLOW_INT;
239 u32 status;
240
241 status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
242 if (!status)
243 return IRQ_NONE;
244
245 /* notify about HW problem */
246 if (status & EMC_REFRESH_OVERFLOW_INT)
247 dev_err_ratelimited(emc->dev,
248 "refresh request overflow timeout\n");
249
250 /* clear interrupts */
251 writel_relaxed(status, emc->regs + EMC_INTSTATUS);
252
253 return IRQ_HANDLED;
254 }
255
tegra_emc_find_timing(struct tegra_emc * emc,unsigned long rate)256 static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
257 unsigned long rate)
258 {
259 struct emc_timing *timing = NULL;
260 unsigned int i;
261
262 for (i = 0; i < emc->num_timings; i++) {
263 if (emc->timings[i].rate >= rate) {
264 timing = &emc->timings[i];
265 break;
266 }
267 }
268
269 if (!timing) {
270 dev_err(emc->dev, "no timing for rate %lu\n", rate);
271 return NULL;
272 }
273
274 return timing;
275 }
276
emc_prepare_timing_change(struct tegra_emc * emc,unsigned long rate)277 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
278 {
279 struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
280 unsigned int i;
281
282 if (!timing)
283 return -EINVAL;
284
285 dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
286 __func__, timing->rate, rate);
287
288 /* program shadow registers */
289 for (i = 0; i < ARRAY_SIZE(timing->data); i++)
290 writel_relaxed(timing->data[i],
291 emc->regs + emc_timing_registers[i]);
292
293 /* wait until programming has settled */
294 readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
295
296 return 0;
297 }
298
emc_complete_timing_change(struct tegra_emc * emc,bool flush)299 static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
300 {
301 int err;
302 u32 v;
303
304 dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
305
306 if (flush) {
307 /* manually initiate memory timing update */
308 writel_relaxed(EMC_TIMING_UPDATE,
309 emc->regs + EMC_TIMING_CONTROL);
310 return 0;
311 }
312
313 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
314 v & EMC_CLKCHANGE_COMPLETE_INT,
315 1, 100);
316 if (err) {
317 dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
318 return err;
319 }
320
321 return 0;
322 }
323
tegra_emc_clk_change_notify(struct notifier_block * nb,unsigned long msg,void * data)324 static int tegra_emc_clk_change_notify(struct notifier_block *nb,
325 unsigned long msg, void *data)
326 {
327 struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
328 struct clk_notifier_data *cnd = data;
329 int err;
330
331 switch (msg) {
332 case PRE_RATE_CHANGE:
333 err = emc_prepare_timing_change(emc, cnd->new_rate);
334 break;
335
336 case ABORT_RATE_CHANGE:
337 err = emc_prepare_timing_change(emc, cnd->old_rate);
338 if (err)
339 break;
340
341 err = emc_complete_timing_change(emc, true);
342 break;
343
344 case POST_RATE_CHANGE:
345 err = emc_complete_timing_change(emc, false);
346 break;
347
348 default:
349 return NOTIFY_DONE;
350 }
351
352 return notifier_from_errno(err);
353 }
354
load_one_timing_from_dt(struct tegra_emc * emc,struct emc_timing * timing,struct device_node * node)355 static int load_one_timing_from_dt(struct tegra_emc *emc,
356 struct emc_timing *timing,
357 struct device_node *node)
358 {
359 u32 rate;
360 int err;
361
362 if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
363 dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
364 return -EINVAL;
365 }
366
367 err = of_property_read_u32(node, "clock-frequency", &rate);
368 if (err) {
369 dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
370 node, err);
371 return err;
372 }
373
374 err = of_property_read_u32_array(node, "nvidia,emc-registers",
375 timing->data,
376 ARRAY_SIZE(emc_timing_registers));
377 if (err) {
378 dev_err(emc->dev,
379 "timing %pOF: failed to read emc timing data: %d\n",
380 node, err);
381 return err;
382 }
383
384 /*
385 * The EMC clock rate is twice the bus rate, and the bus rate is
386 * measured in kHz.
387 */
388 timing->rate = rate * 2 * 1000;
389
390 dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
391 __func__, node, timing->rate);
392
393 return 0;
394 }
395
cmp_timings(const void * _a,const void * _b)396 static int cmp_timings(const void *_a, const void *_b)
397 {
398 const struct emc_timing *a = _a;
399 const struct emc_timing *b = _b;
400
401 if (a->rate < b->rate)
402 return -1;
403
404 if (a->rate > b->rate)
405 return 1;
406
407 return 0;
408 }
409
tegra_emc_load_timings_from_dt(struct tegra_emc * emc,struct device_node * node)410 static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
411 struct device_node *node)
412 {
413 struct device_node *child;
414 struct emc_timing *timing;
415 int child_count;
416 int err;
417
418 child_count = of_get_child_count(node);
419 if (!child_count) {
420 dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
421 return -EINVAL;
422 }
423
424 emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
425 GFP_KERNEL);
426 if (!emc->timings)
427 return -ENOMEM;
428
429 timing = emc->timings;
430
431 for_each_child_of_node(node, child) {
432 if (of_node_name_eq(child, "lpddr2"))
433 continue;
434
435 err = load_one_timing_from_dt(emc, timing++, child);
436 if (err) {
437 of_node_put(child);
438 return err;
439 }
440
441 emc->num_timings++;
442 }
443
444 sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
445 NULL);
446
447 dev_info_once(emc->dev,
448 "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
449 emc->num_timings,
450 tegra_read_ram_code(),
451 emc->timings[0].rate / 1000000,
452 emc->timings[emc->num_timings - 1].rate / 1000000);
453
454 return 0;
455 }
456
457 static struct device_node *
tegra_emc_find_node_by_ram_code(struct tegra_emc * emc)458 tegra_emc_find_node_by_ram_code(struct tegra_emc *emc)
459 {
460 struct device *dev = emc->dev;
461 struct device_node *np;
462 u32 value, ram_code;
463 int err;
464
465 if (emc->mrr_error) {
466 dev_warn(dev, "memory timings skipped due to MRR error\n");
467 return NULL;
468 }
469
470 if (of_get_child_count(dev->of_node) == 0) {
471 dev_info_once(dev, "device-tree doesn't have memory timings\n");
472 return NULL;
473 }
474
475 if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
476 return of_node_get(dev->of_node);
477
478 ram_code = tegra_read_ram_code();
479
480 for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
481 np = of_find_node_by_name(np, "emc-tables")) {
482 err = of_property_read_u32(np, "nvidia,ram-code", &value);
483 if (err || value != ram_code) {
484 struct device_node *lpddr2_np;
485 bool cfg_mismatches = false;
486
487 lpddr2_np = of_find_node_by_name(np, "lpddr2");
488 if (lpddr2_np) {
489 const struct lpddr2_info *info;
490
491 info = of_lpddr2_get_info(lpddr2_np, dev);
492 if (info) {
493 if (info->manufacturer_id >= 0 &&
494 info->manufacturer_id != emc->manufacturer_id)
495 cfg_mismatches = true;
496
497 if (info->revision_id1 >= 0 &&
498 info->revision_id1 != emc->revision_id1)
499 cfg_mismatches = true;
500
501 if (info->revision_id2 >= 0 &&
502 info->revision_id2 != emc->revision_id2)
503 cfg_mismatches = true;
504
505 if (info->density != emc->basic_conf4.density)
506 cfg_mismatches = true;
507
508 if (info->io_width != emc->basic_conf4.io_width)
509 cfg_mismatches = true;
510
511 if (info->arch_type != emc->basic_conf4.arch_type)
512 cfg_mismatches = true;
513 } else {
514 dev_err(dev, "failed to parse %pOF\n", lpddr2_np);
515 cfg_mismatches = true;
516 }
517
518 of_node_put(lpddr2_np);
519 } else {
520 cfg_mismatches = true;
521 }
522
523 if (cfg_mismatches) {
524 of_node_put(np);
525 continue;
526 }
527 }
528
529 return np;
530 }
531
532 dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
533 ram_code);
534
535 return NULL;
536 }
537
emc_read_lpddr_mode_register(struct tegra_emc * emc,unsigned int emem_dev,unsigned int register_addr,unsigned int * register_data)538 static int emc_read_lpddr_mode_register(struct tegra_emc *emc,
539 unsigned int emem_dev,
540 unsigned int register_addr,
541 unsigned int *register_data)
542 {
543 u32 memory_dev = emem_dev ? 1 : 2;
544 u32 val, mr_mask = 0xff;
545 int err;
546
547 /* clear data-valid interrupt status */
548 writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS);
549
550 /* issue mode register read request */
551 val = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev);
552 val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr);
553
554 writel_relaxed(val, emc->regs + EMC_MRR);
555
556 /* wait for the LPDDR2 data-valid interrupt */
557 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val,
558 val & EMC_MRR_DIVLD_INT,
559 1, 100);
560 if (err) {
561 dev_err(emc->dev, "mode register %u read failed: %d\n",
562 register_addr, err);
563 emc->mrr_error = true;
564 return err;
565 }
566
567 /* read out mode register data */
568 val = readl_relaxed(emc->regs + EMC_MRR);
569 *register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask;
570
571 return 0;
572 }
573
emc_read_lpddr_sdram_info(struct tegra_emc * emc,unsigned int emem_dev,bool print_out)574 static void emc_read_lpddr_sdram_info(struct tegra_emc *emc,
575 unsigned int emem_dev,
576 bool print_out)
577 {
578 /* these registers are standard for all LPDDR JEDEC memory chips */
579 emc_read_lpddr_mode_register(emc, emem_dev, 5, &emc->manufacturer_id);
580 emc_read_lpddr_mode_register(emc, emem_dev, 6, &emc->revision_id1);
581 emc_read_lpddr_mode_register(emc, emem_dev, 7, &emc->revision_id2);
582 emc_read_lpddr_mode_register(emc, emem_dev, 8, &emc->basic_conf4.value);
583
584 if (!print_out)
585 return;
586
587 dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n",
588 emem_dev, emc->manufacturer_id,
589 lpddr2_jedec_manufacturer(emc->manufacturer_id),
590 emc->revision_id1, emc->revision_id2,
591 4 >> emc->basic_conf4.arch_type,
592 64 << emc->basic_conf4.density,
593 32 >> emc->basic_conf4.io_width);
594 }
595
emc_setup_hw(struct tegra_emc * emc)596 static int emc_setup_hw(struct tegra_emc *emc)
597 {
598 u32 emc_cfg, emc_dbg, emc_fbio, emc_adr_cfg;
599 u32 intmask = EMC_REFRESH_OVERFLOW_INT;
600 static bool print_sdram_info_once;
601 enum emc_dram_type dram_type;
602 const char *dram_type_str;
603 unsigned int emem_numdev;
604
605 emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
606
607 /*
608 * Depending on a memory type, DRAM should enter either self-refresh
609 * or power-down state on EMC clock change.
610 */
611 if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
612 !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
613 dev_err(emc->dev,
614 "bootloader didn't specify DRAM auto-suspend mode\n");
615 return -EINVAL;
616 }
617
618 /* enable EMC and CAR to handshake on PLL divider/source changes */
619 emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
620 writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
621
622 /* initialize interrupt */
623 writel_relaxed(intmask, emc->regs + EMC_INTMASK);
624 writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
625
626 /* ensure that unwanted debug features are disabled */
627 emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
628 emc_dbg |= EMC_DBG_CFG_PRIORITY;
629 emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
630 emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
631 emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
632 writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
633
634 emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
635
636 if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
637 emc->dram_bus_width = 16;
638 else
639 emc->dram_bus_width = 32;
640
641 dram_type = FIELD_GET(EMC_FBIO_CFG5_DRAM_TYPE, emc_fbio);
642
643 switch (dram_type) {
644 case DRAM_TYPE_RESERVED:
645 dram_type_str = "INVALID";
646 break;
647 case DRAM_TYPE_DDR1:
648 dram_type_str = "DDR1";
649 break;
650 case DRAM_TYPE_LPDDR2:
651 dram_type_str = "LPDDR2";
652 break;
653 case DRAM_TYPE_DDR2:
654 dram_type_str = "DDR2";
655 break;
656 }
657
658 emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG_0);
659 emem_numdev = FIELD_GET(EMC_ADR_CFG_0_EMEM_NUMDEV, emc_adr_cfg) + 1;
660
661 dev_info_once(emc->dev, "%ubit DRAM bus, %u %s %s attached\n",
662 emc->dram_bus_width, emem_numdev, dram_type_str,
663 emem_numdev == 2 ? "devices" : "device");
664
665 if (dram_type == DRAM_TYPE_LPDDR2) {
666 while (emem_numdev--)
667 emc_read_lpddr_sdram_info(emc, emem_numdev,
668 !print_sdram_info_once);
669 print_sdram_info_once = true;
670 }
671
672 return 0;
673 }
674
emc_round_rate(unsigned long rate,unsigned long min_rate,unsigned long max_rate,void * arg)675 static long emc_round_rate(unsigned long rate,
676 unsigned long min_rate,
677 unsigned long max_rate,
678 void *arg)
679 {
680 struct emc_timing *timing = NULL;
681 struct tegra_emc *emc = arg;
682 unsigned int i;
683
684 if (!emc->num_timings)
685 return clk_get_rate(emc->clk);
686
687 min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
688
689 for (i = 0; i < emc->num_timings; i++) {
690 if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
691 continue;
692
693 if (emc->timings[i].rate > max_rate) {
694 i = max(i, 1u) - 1;
695
696 if (emc->timings[i].rate < min_rate)
697 break;
698 }
699
700 if (emc->timings[i].rate < min_rate)
701 continue;
702
703 timing = &emc->timings[i];
704 break;
705 }
706
707 if (!timing) {
708 dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
709 rate, min_rate, max_rate);
710 return -EINVAL;
711 }
712
713 return timing->rate;
714 }
715
tegra_emc_rate_requests_init(struct tegra_emc * emc)716 static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
717 {
718 unsigned int i;
719
720 for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
721 emc->requested_rate[i].min_rate = 0;
722 emc->requested_rate[i].max_rate = ULONG_MAX;
723 }
724 }
725
emc_request_rate(struct tegra_emc * emc,unsigned long new_min_rate,unsigned long new_max_rate,enum emc_rate_request_type type)726 static int emc_request_rate(struct tegra_emc *emc,
727 unsigned long new_min_rate,
728 unsigned long new_max_rate,
729 enum emc_rate_request_type type)
730 {
731 struct emc_rate_request *req = emc->requested_rate;
732 unsigned long min_rate = 0, max_rate = ULONG_MAX;
733 unsigned int i;
734 int err;
735
736 /* select minimum and maximum rates among the requested rates */
737 for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
738 if (i == type) {
739 min_rate = max(new_min_rate, min_rate);
740 max_rate = min(new_max_rate, max_rate);
741 } else {
742 min_rate = max(req->min_rate, min_rate);
743 max_rate = min(req->max_rate, max_rate);
744 }
745 }
746
747 if (min_rate > max_rate) {
748 dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
749 __func__, type, min_rate, max_rate);
750 return -ERANGE;
751 }
752
753 /*
754 * EMC rate-changes should go via OPP API because it manages voltage
755 * changes.
756 */
757 err = dev_pm_opp_set_rate(emc->dev, min_rate);
758 if (err)
759 return err;
760
761 emc->requested_rate[type].min_rate = new_min_rate;
762 emc->requested_rate[type].max_rate = new_max_rate;
763
764 return 0;
765 }
766
emc_set_min_rate(struct tegra_emc * emc,unsigned long rate,enum emc_rate_request_type type)767 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
768 enum emc_rate_request_type type)
769 {
770 struct emc_rate_request *req = &emc->requested_rate[type];
771 int ret;
772
773 mutex_lock(&emc->rate_lock);
774 ret = emc_request_rate(emc, rate, req->max_rate, type);
775 mutex_unlock(&emc->rate_lock);
776
777 return ret;
778 }
779
emc_set_max_rate(struct tegra_emc * emc,unsigned long rate,enum emc_rate_request_type type)780 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
781 enum emc_rate_request_type type)
782 {
783 struct emc_rate_request *req = &emc->requested_rate[type];
784 int ret;
785
786 mutex_lock(&emc->rate_lock);
787 ret = emc_request_rate(emc, req->min_rate, rate, type);
788 mutex_unlock(&emc->rate_lock);
789
790 return ret;
791 }
792
793 /*
794 * debugfs interface
795 *
796 * The memory controller driver exposes some files in debugfs that can be used
797 * to control the EMC frequency. The top-level directory can be found here:
798 *
799 * /sys/kernel/debug/emc
800 *
801 * It contains the following files:
802 *
803 * - available_rates: This file contains a list of valid, space-separated
804 * EMC frequencies.
805 *
806 * - min_rate: Writing a value to this file sets the given frequency as the
807 * floor of the permitted range. If this is higher than the currently
808 * configured EMC frequency, this will cause the frequency to be
809 * increased so that it stays within the valid range.
810 *
811 * - max_rate: Similarily to the min_rate file, writing a value to this file
812 * sets the given frequency as the ceiling of the permitted range. If
813 * the value is lower than the currently configured EMC frequency, this
814 * will cause the frequency to be decreased so that it stays within the
815 * valid range.
816 */
817
tegra_emc_validate_rate(struct tegra_emc * emc,unsigned long rate)818 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
819 {
820 unsigned int i;
821
822 for (i = 0; i < emc->num_timings; i++)
823 if (rate == emc->timings[i].rate)
824 return true;
825
826 return false;
827 }
828
tegra_emc_debug_available_rates_show(struct seq_file * s,void * data)829 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
830 {
831 struct tegra_emc *emc = s->private;
832 const char *prefix = "";
833 unsigned int i;
834
835 for (i = 0; i < emc->num_timings; i++) {
836 seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
837 prefix = " ";
838 }
839
840 seq_puts(s, "\n");
841
842 return 0;
843 }
844 DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates);
845
tegra_emc_debug_min_rate_get(void * data,u64 * rate)846 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
847 {
848 struct tegra_emc *emc = data;
849
850 *rate = emc->debugfs.min_rate;
851
852 return 0;
853 }
854
tegra_emc_debug_min_rate_set(void * data,u64 rate)855 static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
856 {
857 struct tegra_emc *emc = data;
858 int err;
859
860 if (!tegra_emc_validate_rate(emc, rate))
861 return -EINVAL;
862
863 err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
864 if (err < 0)
865 return err;
866
867 emc->debugfs.min_rate = rate;
868
869 return 0;
870 }
871
872 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
873 tegra_emc_debug_min_rate_get,
874 tegra_emc_debug_min_rate_set, "%llu\n");
875
tegra_emc_debug_max_rate_get(void * data,u64 * rate)876 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
877 {
878 struct tegra_emc *emc = data;
879
880 *rate = emc->debugfs.max_rate;
881
882 return 0;
883 }
884
tegra_emc_debug_max_rate_set(void * data,u64 rate)885 static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
886 {
887 struct tegra_emc *emc = data;
888 int err;
889
890 if (!tegra_emc_validate_rate(emc, rate))
891 return -EINVAL;
892
893 err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
894 if (err < 0)
895 return err;
896
897 emc->debugfs.max_rate = rate;
898
899 return 0;
900 }
901
902 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
903 tegra_emc_debug_max_rate_get,
904 tegra_emc_debug_max_rate_set, "%llu\n");
905
tegra_emc_debugfs_init(struct tegra_emc * emc)906 static void tegra_emc_debugfs_init(struct tegra_emc *emc)
907 {
908 struct device *dev = emc->dev;
909 unsigned int i;
910 int err;
911
912 emc->debugfs.min_rate = ULONG_MAX;
913 emc->debugfs.max_rate = 0;
914
915 for (i = 0; i < emc->num_timings; i++) {
916 if (emc->timings[i].rate < emc->debugfs.min_rate)
917 emc->debugfs.min_rate = emc->timings[i].rate;
918
919 if (emc->timings[i].rate > emc->debugfs.max_rate)
920 emc->debugfs.max_rate = emc->timings[i].rate;
921 }
922
923 if (!emc->num_timings) {
924 emc->debugfs.min_rate = clk_get_rate(emc->clk);
925 emc->debugfs.max_rate = emc->debugfs.min_rate;
926 }
927
928 err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
929 emc->debugfs.max_rate);
930 if (err < 0) {
931 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
932 emc->debugfs.min_rate, emc->debugfs.max_rate,
933 emc->clk);
934 }
935
936 emc->debugfs.root = debugfs_create_dir("emc", NULL);
937
938 debugfs_create_file("available_rates", 0444, emc->debugfs.root,
939 emc, &tegra_emc_debug_available_rates_fops);
940 debugfs_create_file("min_rate", 0644, emc->debugfs.root,
941 emc, &tegra_emc_debug_min_rate_fops);
942 debugfs_create_file("max_rate", 0644, emc->debugfs.root,
943 emc, &tegra_emc_debug_max_rate_fops);
944 }
945
946 static inline struct tegra_emc *
to_tegra_emc_provider(struct icc_provider * provider)947 to_tegra_emc_provider(struct icc_provider *provider)
948 {
949 return container_of(provider, struct tegra_emc, provider);
950 }
951
952 static struct icc_node_data *
emc_of_icc_xlate_extended(struct of_phandle_args * spec,void * data)953 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
954 {
955 struct icc_provider *provider = data;
956 struct icc_node_data *ndata;
957 struct icc_node *node;
958
959 /* External Memory is the only possible ICC route */
960 list_for_each_entry(node, &provider->nodes, node_list) {
961 if (node->id != TEGRA_ICC_EMEM)
962 continue;
963
964 ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
965 if (!ndata)
966 return ERR_PTR(-ENOMEM);
967
968 /*
969 * SRC and DST nodes should have matching TAG in order to have
970 * it set by default for a requested path.
971 */
972 ndata->tag = TEGRA_MC_ICC_TAG_ISO;
973 ndata->node = node;
974
975 return ndata;
976 }
977
978 return ERR_PTR(-EPROBE_DEFER);
979 }
980
emc_icc_set(struct icc_node * src,struct icc_node * dst)981 static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
982 {
983 struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
984 unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
985 unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
986 unsigned long long rate = max(avg_bw, peak_bw);
987 unsigned int dram_data_bus_width_bytes;
988 int err;
989
990 /*
991 * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data
992 * is sampled on both clock edges. This means that EMC clock rate
993 * equals to the peak data-rate.
994 */
995 dram_data_bus_width_bytes = emc->dram_bus_width / 8;
996 do_div(rate, dram_data_bus_width_bytes);
997 rate = min_t(u64, rate, U32_MAX);
998
999 err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
1000 if (err)
1001 return err;
1002
1003 return 0;
1004 }
1005
tegra_emc_interconnect_init(struct tegra_emc * emc)1006 static int tegra_emc_interconnect_init(struct tegra_emc *emc)
1007 {
1008 const struct tegra_mc_soc *soc;
1009 struct icc_node *node;
1010 int err;
1011
1012 emc->mc = devm_tegra_memory_controller_get(emc->dev);
1013 if (IS_ERR(emc->mc))
1014 return PTR_ERR(emc->mc);
1015
1016 soc = emc->mc->soc;
1017
1018 emc->provider.dev = emc->dev;
1019 emc->provider.set = emc_icc_set;
1020 emc->provider.data = &emc->provider;
1021 emc->provider.aggregate = soc->icc_ops->aggregate;
1022 emc->provider.xlate_extended = emc_of_icc_xlate_extended;
1023
1024 icc_provider_init(&emc->provider);
1025
1026 /* create External Memory Controller node */
1027 node = icc_node_create(TEGRA_ICC_EMC);
1028 if (IS_ERR(node)) {
1029 err = PTR_ERR(node);
1030 goto err_msg;
1031 }
1032
1033 node->name = "External Memory Controller";
1034 icc_node_add(node, &emc->provider);
1035
1036 /* link External Memory Controller to External Memory (DRAM) */
1037 err = icc_link_create(node, TEGRA_ICC_EMEM);
1038 if (err)
1039 goto remove_nodes;
1040
1041 /* create External Memory node */
1042 node = icc_node_create(TEGRA_ICC_EMEM);
1043 if (IS_ERR(node)) {
1044 err = PTR_ERR(node);
1045 goto remove_nodes;
1046 }
1047
1048 node->name = "External Memory (DRAM)";
1049 icc_node_add(node, &emc->provider);
1050
1051 err = icc_provider_register(&emc->provider);
1052 if (err)
1053 goto remove_nodes;
1054
1055 return 0;
1056
1057 remove_nodes:
1058 icc_nodes_remove(&emc->provider);
1059 err_msg:
1060 dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
1061
1062 return err;
1063 }
1064
devm_tegra_emc_unset_callback(void * data)1065 static void devm_tegra_emc_unset_callback(void *data)
1066 {
1067 tegra20_clk_set_emc_round_callback(NULL, NULL);
1068 }
1069
devm_tegra_emc_unreg_clk_notifier(void * data)1070 static void devm_tegra_emc_unreg_clk_notifier(void *data)
1071 {
1072 struct tegra_emc *emc = data;
1073
1074 clk_notifier_unregister(emc->clk, &emc->clk_nb);
1075 }
1076
tegra_emc_init_clk(struct tegra_emc * emc)1077 static int tegra_emc_init_clk(struct tegra_emc *emc)
1078 {
1079 int err;
1080
1081 tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
1082
1083 err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
1084 NULL);
1085 if (err)
1086 return err;
1087
1088 emc->clk = devm_clk_get(emc->dev, NULL);
1089 if (IS_ERR(emc->clk)) {
1090 dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
1091 return PTR_ERR(emc->clk);
1092 }
1093
1094 err = clk_notifier_register(emc->clk, &emc->clk_nb);
1095 if (err) {
1096 dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
1097 return err;
1098 }
1099
1100 err = devm_add_action_or_reset(emc->dev,
1101 devm_tegra_emc_unreg_clk_notifier, emc);
1102 if (err)
1103 return err;
1104
1105 return 0;
1106 }
1107
tegra_emc_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1108 static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
1109 u32 flags)
1110 {
1111 struct tegra_emc *emc = dev_get_drvdata(dev);
1112 struct dev_pm_opp *opp;
1113 unsigned long rate;
1114
1115 opp = devfreq_recommended_opp(dev, freq, flags);
1116 if (IS_ERR(opp)) {
1117 dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
1118 return PTR_ERR(opp);
1119 }
1120
1121 rate = dev_pm_opp_get_freq(opp);
1122 dev_pm_opp_put(opp);
1123
1124 return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
1125 }
1126
tegra_emc_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1127 static int tegra_emc_devfreq_get_dev_status(struct device *dev,
1128 struct devfreq_dev_status *stat)
1129 {
1130 struct tegra_emc *emc = dev_get_drvdata(dev);
1131
1132 /* freeze counters */
1133 writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
1134
1135 /*
1136 * busy_time: number of clocks EMC request was accepted
1137 * total_time: number of clocks PWR_GATHER control was set to ENABLE
1138 */
1139 stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
1140 stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
1141 stat->current_frequency = clk_get_rate(emc->clk);
1142
1143 /* clear counters and restart */
1144 writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
1145 writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
1146
1147 return 0;
1148 }
1149
1150 static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
1151 .polling_ms = 30,
1152 .target = tegra_emc_devfreq_target,
1153 .get_dev_status = tegra_emc_devfreq_get_dev_status,
1154 };
1155
tegra_emc_devfreq_init(struct tegra_emc * emc)1156 static int tegra_emc_devfreq_init(struct tegra_emc *emc)
1157 {
1158 struct devfreq *devfreq;
1159
1160 /*
1161 * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold
1162 * should be less than 50. Secondly, multiple active memory clients
1163 * may cause over 20% of lost clock cycles due to stalls caused by
1164 * competing memory accesses. This means that threshold should be
1165 * set to a less than 30 in order to have a properly working governor.
1166 */
1167 emc->ondemand_data.upthreshold = 20;
1168
1169 /*
1170 * Reset statistic gathers state, select global bandwidth for the
1171 * statistics collection mode and set clocks counter saturation
1172 * limit to maximum.
1173 */
1174 writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
1175 writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
1176 writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
1177
1178 devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
1179 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1180 &emc->ondemand_data);
1181 if (IS_ERR(devfreq)) {
1182 dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
1183 return PTR_ERR(devfreq);
1184 }
1185
1186 return 0;
1187 }
1188
tegra_emc_probe(struct platform_device * pdev)1189 static int tegra_emc_probe(struct platform_device *pdev)
1190 {
1191 struct tegra_core_opp_params opp_params = {};
1192 struct device_node *np;
1193 struct tegra_emc *emc;
1194 int irq, err;
1195
1196 irq = platform_get_irq(pdev, 0);
1197 if (irq < 0) {
1198 dev_err(&pdev->dev, "please update your device tree\n");
1199 return irq;
1200 }
1201
1202 emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1203 if (!emc)
1204 return -ENOMEM;
1205
1206 mutex_init(&emc->rate_lock);
1207 emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
1208 emc->dev = &pdev->dev;
1209
1210 emc->regs = devm_platform_ioremap_resource(pdev, 0);
1211 if (IS_ERR(emc->regs))
1212 return PTR_ERR(emc->regs);
1213
1214 err = emc_setup_hw(emc);
1215 if (err)
1216 return err;
1217
1218 np = tegra_emc_find_node_by_ram_code(emc);
1219 if (np) {
1220 err = tegra_emc_load_timings_from_dt(emc, np);
1221 of_node_put(np);
1222 if (err)
1223 return err;
1224 }
1225
1226 err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
1227 dev_name(&pdev->dev), emc);
1228 if (err) {
1229 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
1230 return err;
1231 }
1232
1233 err = tegra_emc_init_clk(emc);
1234 if (err)
1235 return err;
1236
1237 opp_params.init_state = true;
1238
1239 err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
1240 if (err)
1241 return err;
1242
1243 platform_set_drvdata(pdev, emc);
1244 tegra_emc_rate_requests_init(emc);
1245 tegra_emc_debugfs_init(emc);
1246 tegra_emc_interconnect_init(emc);
1247 tegra_emc_devfreq_init(emc);
1248
1249 /*
1250 * Don't allow the kernel module to be unloaded. Unloading adds some
1251 * extra complexity which doesn't really worth the effort in a case of
1252 * this driver.
1253 */
1254 try_module_get(THIS_MODULE);
1255
1256 return 0;
1257 }
1258
1259 static const struct of_device_id tegra_emc_of_match[] = {
1260 { .compatible = "nvidia,tegra20-emc", },
1261 {},
1262 };
1263 MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
1264
1265 static struct platform_driver tegra_emc_driver = {
1266 .probe = tegra_emc_probe,
1267 .driver = {
1268 .name = "tegra20-emc",
1269 .of_match_table = tegra_emc_of_match,
1270 .suppress_bind_attrs = true,
1271 .sync_state = icc_sync_state,
1272 },
1273 };
1274 module_platform_driver(tegra_emc_driver);
1275
1276 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
1277 MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
1278 MODULE_SOFTDEP("pre: governor_simpleondemand");
1279 MODULE_LICENSE("GPL v2");
1280