1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 #include <net/xfrm.h>
44
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
56
57 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS 48
60 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61
62 /*
63 * Never offer a window over 32767 without using window scaling. Some
64 * poor stacks do signed 16bit maths!
65 */
66 #define MAX_TCP_WINDOW 32767U
67
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS 88U
70
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS 1024
73
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL 600
76
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD 8
79
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
82
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS 16U
85
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE 14U
88
89 /* urg_data states */
90 #define TCP_URG_VALID 0x0100
91 #define TCP_URG_NOTYET 0x0200
92 #define TCP_URG_READ 0x0400
93
94 #define TCP_RETR1 3 /*
95 * This is how many retries it does before it
96 * tries to figure out if the gateway is
97 * down. Minimal RFC value is 3; it corresponds
98 * to ~3sec-8min depending on RTO.
99 */
100
101 #define TCP_RETR2 15 /*
102 * This should take at least
103 * 90 minutes to time out.
104 * RFC1122 says that the limit is 100 sec.
105 * 15 is ~13-30min depending on RTO.
106 */
107
108 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
109 * when active opening a connection.
110 * RFC1122 says the minimum retry MUST
111 * be at least 180secs. Nevertheless
112 * this value is corresponding to
113 * 63secs of retransmission with the
114 * current initial RTO.
115 */
116
117 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
118 * when passive opening a connection.
119 * This is corresponding to 31secs of
120 * retransmission with the current
121 * initial RTO.
122 */
123
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 * state, about 60 seconds */
126 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
127 /* BSD style FIN_WAIT2 deadlock breaker.
128 * It used to be 3min, new value is 60sec,
129 * to combine FIN-WAIT-2 timeout with
130 * TIME-WAIT timer.
131 */
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133
134 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
135 #if HZ >= 100
136 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
137 #define TCP_ATO_MIN ((unsigned)(HZ/25))
138 #else
139 #define TCP_DELACK_MIN 4U
140 #define TCP_ATO_MIN 4U
141 #endif
142 #define TCP_RTO_MAX ((unsigned)(120*HZ))
143 #define TCP_RTO_MIN ((unsigned)(HZ/5))
144 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
145
146 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
147
148 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
149 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
150 * used as a fallback RTO for the
151 * initial data transmission if no
152 * valid RTT sample has been acquired,
153 * most likely due to retrans in 3WHS.
154 */
155
156 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
157 * for local resources.
158 */
159 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
160 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
161 #define TCP_KEEPALIVE_INTVL (75*HZ)
162
163 #define MAX_TCP_KEEPIDLE 32767
164 #define MAX_TCP_KEEPINTVL 32767
165 #define MAX_TCP_KEEPCNT 127
166 #define MAX_TCP_SYNCNT 127
167
168 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
169 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
170 * after this time. It should be equal
171 * (or greater than) TCP_TIMEWAIT_LEN
172 * to provide reliability equal to one
173 * provided by timewait state.
174 */
175 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
176 * timestamps. It must be less than
177 * minimal timewait lifetime.
178 */
179 /*
180 * TCP option
181 */
182
183 #define TCPOPT_NOP 1 /* Padding */
184 #define TCPOPT_EOL 0 /* End of options */
185 #define TCPOPT_MSS 2 /* Segment size negotiating */
186 #define TCPOPT_WINDOW 3 /* Window scaling */
187 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
188 #define TCPOPT_SACK 5 /* SACK Block */
189 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
190 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
191 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
192 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
193 #define TCPOPT_EXP 254 /* Experimental */
194 /* Magic number to be after the option value for sharing TCP
195 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
196 */
197 #define TCPOPT_FASTOPEN_MAGIC 0xF989
198 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
199
200 /*
201 * TCP option lengths
202 */
203
204 #define TCPOLEN_MSS 4
205 #define TCPOLEN_WINDOW 3
206 #define TCPOLEN_SACK_PERM 2
207 #define TCPOLEN_TIMESTAMP 10
208 #define TCPOLEN_MD5SIG 18
209 #define TCPOLEN_FASTOPEN_BASE 2
210 #define TCPOLEN_EXP_FASTOPEN_BASE 4
211 #define TCPOLEN_EXP_SMC_BASE 6
212
213 /* But this is what stacks really send out. */
214 #define TCPOLEN_TSTAMP_ALIGNED 12
215 #define TCPOLEN_WSCALE_ALIGNED 4
216 #define TCPOLEN_SACKPERM_ALIGNED 4
217 #define TCPOLEN_SACK_BASE 2
218 #define TCPOLEN_SACK_BASE_ALIGNED 4
219 #define TCPOLEN_SACK_PERBLOCK 8
220 #define TCPOLEN_MD5SIG_ALIGNED 20
221 #define TCPOLEN_MSS_ALIGNED 4
222 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
223
224 /* Flags in tp->nonagle */
225 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
226 #define TCP_NAGLE_CORK 2 /* Socket is corked */
227 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
228
229 /* TCP thin-stream limits */
230 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
231
232 /* TCP initial congestion window as per rfc6928 */
233 #define TCP_INIT_CWND 10
234
235 /* Bit Flags for sysctl_tcp_fastopen */
236 #define TFO_CLIENT_ENABLE 1
237 #define TFO_SERVER_ENABLE 2
238 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
239
240 /* Accept SYN data w/o any cookie option */
241 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
242
243 /* Force enable TFO on all listeners, i.e., not requiring the
244 * TCP_FASTOPEN socket option.
245 */
246 #define TFO_SERVER_WO_SOCKOPT1 0x400
247
248
249 /* sysctl variables for tcp */
250 extern int sysctl_tcp_max_orphans;
251 extern long sysctl_tcp_mem[3];
252
253 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
254 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
255 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
256
257 extern atomic_long_t tcp_memory_allocated;
258 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
259
260 extern struct percpu_counter tcp_sockets_allocated;
261 extern unsigned long tcp_memory_pressure;
262
263 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)264 static inline bool tcp_under_memory_pressure(const struct sock *sk)
265 {
266 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
267 mem_cgroup_under_socket_pressure(sk->sk_memcg))
268 return true;
269
270 return READ_ONCE(tcp_memory_pressure);
271 }
272 /*
273 * The next routines deal with comparing 32 bit unsigned ints
274 * and worry about wraparound (automatic with unsigned arithmetic).
275 */
276
before(__u32 seq1,__u32 seq2)277 static inline bool before(__u32 seq1, __u32 seq2)
278 {
279 return (__s32)(seq1-seq2) < 0;
280 }
281 #define after(seq2, seq1) before(seq1, seq2)
282
283 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)284 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
285 {
286 return seq3 - seq2 >= seq1 - seq2;
287 }
288
tcp_out_of_memory(struct sock * sk)289 static inline bool tcp_out_of_memory(struct sock *sk)
290 {
291 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
292 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
293 return true;
294 return false;
295 }
296
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)297 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
298 {
299 sk_wmem_queued_add(sk, -skb->truesize);
300 if (!skb_zcopy_pure(skb))
301 sk_mem_uncharge(sk, skb->truesize);
302 else
303 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
304 __kfree_skb(skb);
305 }
306
307 void sk_forced_mem_schedule(struct sock *sk, int size);
308
309 bool tcp_check_oom(struct sock *sk, int shift);
310
311
312 extern struct proto tcp_prot;
313
314 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
316 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
317 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
318
319 void tcp_tasklet_init(void);
320
321 int tcp_v4_err(struct sk_buff *skb, u32);
322
323 void tcp_shutdown(struct sock *sk, int how);
324
325 int tcp_v4_early_demux(struct sk_buff *skb);
326 int tcp_v4_rcv(struct sk_buff *skb);
327
328 void tcp_remove_empty_skb(struct sock *sk);
329 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
331 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
332 size_t size, struct ubuf_info *uarg);
333 void tcp_splice_eof(struct socket *sock);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 int tcp_wmem_schedule(struct sock *sk, int copy);
336 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
337 int size_goal);
338 void tcp_release_cb(struct sock *sk);
339 void tcp_wfree(struct sk_buff *skb);
340 void tcp_write_timer_handler(struct sock *sk);
341 void tcp_delack_timer_handler(struct sock *sk);
342 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
343 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_space_adjust(struct sock *sk);
346 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
347 void tcp_twsk_destructor(struct sock *sk);
348 void tcp_twsk_purge(struct list_head *net_exit_list);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 struct pipe_inode_info *pipe, size_t len,
351 unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
353 bool force_schedule);
354
tcp_dec_quickack_mode(struct sock * sk)355 static inline void tcp_dec_quickack_mode(struct sock *sk)
356 {
357 struct inet_connection_sock *icsk = inet_csk(sk);
358
359 if (icsk->icsk_ack.quick) {
360 /* How many ACKs S/ACKing new data have we sent? */
361 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
362
363 if (pkts >= icsk->icsk_ack.quick) {
364 icsk->icsk_ack.quick = 0;
365 /* Leaving quickack mode we deflate ATO. */
366 icsk->icsk_ack.ato = TCP_ATO_MIN;
367 } else
368 icsk->icsk_ack.quick -= pkts;
369 }
370 }
371
372 #define TCP_ECN_OK 1
373 #define TCP_ECN_QUEUE_CWR 2
374 #define TCP_ECN_DEMAND_CWR 4
375 #define TCP_ECN_SEEN 8
376
377 enum tcp_tw_status {
378 TCP_TW_SUCCESS = 0,
379 TCP_TW_RST = 1,
380 TCP_TW_ACK = 2,
381 TCP_TW_SYN = 3
382 };
383
384
385 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
386 struct sk_buff *skb,
387 const struct tcphdr *th);
388 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
389 struct request_sock *req, bool fastopen,
390 bool *lost_race);
391 int tcp_child_process(struct sock *parent, struct sock *child,
392 struct sk_buff *skb);
393 void tcp_enter_loss(struct sock *sk);
394 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
395 void tcp_clear_retrans(struct tcp_sock *tp);
396 void tcp_update_metrics(struct sock *sk);
397 void tcp_init_metrics(struct sock *sk);
398 void tcp_metrics_init(void);
399 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
400 void __tcp_close(struct sock *sk, long timeout);
401 void tcp_close(struct sock *sk, long timeout);
402 void tcp_init_sock(struct sock *sk);
403 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
404 __poll_t tcp_poll(struct file *file, struct socket *sock,
405 struct poll_table_struct *wait);
406 int do_tcp_getsockopt(struct sock *sk, int level,
407 int optname, sockptr_t optval, sockptr_t optlen);
408 int tcp_getsockopt(struct sock *sk, int level, int optname,
409 char __user *optval, int __user *optlen);
410 bool tcp_bpf_bypass_getsockopt(int level, int optname);
411 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
412 sockptr_t optval, unsigned int optlen);
413 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
414 unsigned int optlen);
415 void tcp_set_keepalive(struct sock *sk, int val);
416 void tcp_syn_ack_timeout(const struct request_sock *req);
417 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
418 int flags, int *addr_len);
419 int tcp_set_rcvlowat(struct sock *sk, int val);
420 int tcp_set_window_clamp(struct sock *sk, int val);
421 void tcp_update_recv_tstamps(struct sk_buff *skb,
422 struct scm_timestamping_internal *tss);
423 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
424 struct scm_timestamping_internal *tss);
425 void tcp_data_ready(struct sock *sk);
426 #ifdef CONFIG_MMU
427 int tcp_mmap(struct file *file, struct socket *sock,
428 struct vm_area_struct *vma);
429 #endif
430 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
431 struct tcp_options_received *opt_rx,
432 int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434
435 /*
436 * BPF SKB-less helpers
437 */
438 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
439 struct tcphdr *th, u32 *cookie);
440 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
441 struct tcphdr *th, u32 *cookie);
442 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
443 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
444 const struct tcp_request_sock_ops *af_ops,
445 struct sock *sk, struct tcphdr *th);
446 /*
447 * TCP v4 functions exported for the inet6 API
448 */
449
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
453 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
454 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
455 struct sock *tcp_create_openreq_child(const struct sock *sk,
456 struct request_sock *req,
457 struct sk_buff *skb);
458 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
459 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
460 struct request_sock *req,
461 struct dst_entry *dst,
462 struct request_sock *req_unhash,
463 bool *own_req);
464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
465 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
466 int tcp_connect(struct sock *sk);
467 enum tcp_synack_type {
468 TCP_SYNACK_NORMAL,
469 TCP_SYNACK_FASTOPEN,
470 TCP_SYNACK_COOKIE,
471 };
472 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
473 struct request_sock *req,
474 struct tcp_fastopen_cookie *foc,
475 enum tcp_synack_type synack_type,
476 struct sk_buff *syn_skb);
477 int tcp_disconnect(struct sock *sk, int flags);
478
479 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
480 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
481 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
482
483 /* From syncookies.c */
484 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
485 struct request_sock *req,
486 struct dst_entry *dst, u32 tsoff);
487 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
488 u32 cookie);
489 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
490 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
491 const struct tcp_request_sock_ops *af_ops,
492 struct sock *sk, struct sk_buff *skb);
493 #ifdef CONFIG_SYN_COOKIES
494
495 /* Syncookies use a monotonic timer which increments every 60 seconds.
496 * This counter is used both as a hash input and partially encoded into
497 * the cookie value. A cookie is only validated further if the delta
498 * between the current counter value and the encoded one is less than this,
499 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
500 * the counter advances immediately after a cookie is generated).
501 */
502 #define MAX_SYNCOOKIE_AGE 2
503 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
504 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
505
506 /* syncookies: remember time of last synqueue overflow
507 * But do not dirty this field too often (once per second is enough)
508 * It is racy as we do not hold a lock, but race is very minor.
509 */
tcp_synq_overflow(const struct sock * sk)510 static inline void tcp_synq_overflow(const struct sock *sk)
511 {
512 unsigned int last_overflow;
513 unsigned int now = jiffies;
514
515 if (sk->sk_reuseport) {
516 struct sock_reuseport *reuse;
517
518 reuse = rcu_dereference(sk->sk_reuseport_cb);
519 if (likely(reuse)) {
520 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
521 if (!time_between32(now, last_overflow,
522 last_overflow + HZ))
523 WRITE_ONCE(reuse->synq_overflow_ts, now);
524 return;
525 }
526 }
527
528 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
529 if (!time_between32(now, last_overflow, last_overflow + HZ))
530 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
531 }
532
533 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)534 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
535 {
536 unsigned int last_overflow;
537 unsigned int now = jiffies;
538
539 if (sk->sk_reuseport) {
540 struct sock_reuseport *reuse;
541
542 reuse = rcu_dereference(sk->sk_reuseport_cb);
543 if (likely(reuse)) {
544 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
545 return !time_between32(now, last_overflow - HZ,
546 last_overflow +
547 TCP_SYNCOOKIE_VALID);
548 }
549 }
550
551 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
552
553 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
554 * then we're under synflood. However, we have to use
555 * 'last_overflow - HZ' as lower bound. That's because a concurrent
556 * tcp_synq_overflow() could update .ts_recent_stamp after we read
557 * jiffies but before we store .ts_recent_stamp into last_overflow,
558 * which could lead to rejecting a valid syncookie.
559 */
560 return !time_between32(now, last_overflow - HZ,
561 last_overflow + TCP_SYNCOOKIE_VALID);
562 }
563
tcp_cookie_time(void)564 static inline u32 tcp_cookie_time(void)
565 {
566 u64 val = get_jiffies_64();
567
568 do_div(val, TCP_SYNCOOKIE_PERIOD);
569 return val;
570 }
571
572 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
573 u16 *mssp);
574 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
575 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
576 bool cookie_timestamp_decode(const struct net *net,
577 struct tcp_options_received *opt);
578 bool cookie_ecn_ok(const struct tcp_options_received *opt,
579 const struct net *net, const struct dst_entry *dst);
580
581 /* From net/ipv6/syncookies.c */
582 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
583 u32 cookie);
584 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
585
586 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
587 const struct tcphdr *th, u16 *mssp);
588 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
589 #endif
590 /* tcp_output.c */
591
592 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
593 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
594 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
595 int nonagle);
596 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
598 void tcp_retransmit_timer(struct sock *sk);
599 void tcp_xmit_retransmit_queue(struct sock *);
600 void tcp_simple_retransmit(struct sock *);
601 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
602 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
603 enum tcp_queue {
604 TCP_FRAG_IN_WRITE_QUEUE,
605 TCP_FRAG_IN_RTX_QUEUE,
606 };
607 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
608 struct sk_buff *skb, u32 len,
609 unsigned int mss_now, gfp_t gfp);
610
611 void tcp_send_probe0(struct sock *);
612 int tcp_write_wakeup(struct sock *, int mib);
613 void tcp_send_fin(struct sock *sk);
614 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
615 int tcp_send_synack(struct sock *);
616 void tcp_push_one(struct sock *, unsigned int mss_now);
617 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
618 void tcp_send_ack(struct sock *sk);
619 void tcp_send_delayed_ack(struct sock *sk);
620 void tcp_send_loss_probe(struct sock *sk);
621 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
622 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
623 const struct sk_buff *next_skb);
624
625 /* tcp_input.c */
626 void tcp_rearm_rto(struct sock *sk);
627 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
628 void tcp_done_with_error(struct sock *sk, int err);
629 void tcp_reset(struct sock *sk, struct sk_buff *skb);
630 void tcp_fin(struct sock *sk);
631 void tcp_check_space(struct sock *sk);
632 void tcp_sack_compress_send_ack(struct sock *sk);
633
tcp_cleanup_skb(struct sk_buff * skb)634 static inline void tcp_cleanup_skb(struct sk_buff *skb)
635 {
636 skb_dst_drop(skb);
637 secpath_reset(skb);
638 }
639
tcp_add_receive_queue(struct sock * sk,struct sk_buff * skb)640 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
641 {
642 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
643 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
644 __skb_queue_tail(&sk->sk_receive_queue, skb);
645 }
646
647 /* tcp_timer.c */
648 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)649 static inline void tcp_clear_xmit_timers(struct sock *sk)
650 {
651 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
652 __sock_put(sk);
653
654 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
655 __sock_put(sk);
656
657 inet_csk_clear_xmit_timers(sk);
658 }
659
660 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
661 unsigned int tcp_current_mss(struct sock *sk);
662 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
663
664 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)665 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
666 {
667 int cutoff;
668
669 /* When peer uses tiny windows, there is no use in packetizing
670 * to sub-MSS pieces for the sake of SWS or making sure there
671 * are enough packets in the pipe for fast recovery.
672 *
673 * On the other hand, for extremely large MSS devices, handling
674 * smaller than MSS windows in this way does make sense.
675 */
676 if (tp->max_window > TCP_MSS_DEFAULT)
677 cutoff = (tp->max_window >> 1);
678 else
679 cutoff = tp->max_window;
680
681 if (cutoff && pktsize > cutoff)
682 return max_t(int, cutoff, 68U - tp->tcp_header_len);
683 else
684 return pktsize;
685 }
686
687 /* tcp.c */
688 void tcp_get_info(struct sock *, struct tcp_info *);
689
690 /* Read 'sendfile()'-style from a TCP socket */
691 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
692 sk_read_actor_t recv_actor);
693 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
694 sk_read_actor_t recv_actor, bool noack,
695 u32 *copied_seq);
696 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
697 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
698 void tcp_read_done(struct sock *sk, size_t len);
699
700 void tcp_initialize_rcv_mss(struct sock *sk);
701
702 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
703 int tcp_mss_to_mtu(struct sock *sk, int mss);
704 void tcp_mtup_init(struct sock *sk);
705
tcp_bound_rto(const struct sock * sk)706 static inline void tcp_bound_rto(const struct sock *sk)
707 {
708 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710 }
711
__tcp_set_rto(const struct tcp_sock * tp)712 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
713 {
714 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
715 }
716
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)717 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
718 {
719 /* mptcp hooks are only on the slow path */
720 if (sk_is_mptcp((struct sock *)tp))
721 return;
722
723 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
724 ntohl(TCP_FLAG_ACK) |
725 snd_wnd);
726 }
727
tcp_fast_path_on(struct tcp_sock * tp)728 static inline void tcp_fast_path_on(struct tcp_sock *tp)
729 {
730 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
731 }
732
tcp_fast_path_check(struct sock * sk)733 static inline void tcp_fast_path_check(struct sock *sk)
734 {
735 struct tcp_sock *tp = tcp_sk(sk);
736
737 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
738 tp->rcv_wnd &&
739 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
740 !tp->urg_data)
741 tcp_fast_path_on(tp);
742 }
743
744 u32 tcp_delack_max(const struct sock *sk);
745
746 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)747 static inline u32 tcp_rto_min(struct sock *sk)
748 {
749 const struct dst_entry *dst = __sk_dst_get(sk);
750 u32 rto_min = inet_csk(sk)->icsk_rto_min;
751
752 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
753 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
754 return rto_min;
755 }
756
tcp_rto_min_us(struct sock * sk)757 static inline u32 tcp_rto_min_us(struct sock *sk)
758 {
759 return jiffies_to_usecs(tcp_rto_min(sk));
760 }
761
tcp_ca_dst_locked(const struct dst_entry * dst)762 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
763 {
764 return dst_metric_locked(dst, RTAX_CC_ALGO);
765 }
766
767 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)768 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
769 {
770 return minmax_get(&tp->rtt_min);
771 }
772
773 /* Compute the actual receive window we are currently advertising.
774 * Rcv_nxt can be after the window if our peer push more data
775 * than the offered window.
776 */
tcp_receive_window(const struct tcp_sock * tp)777 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
778 {
779 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
780
781 if (win < 0)
782 win = 0;
783 return (u32) win;
784 }
785
786 /* Choose a new window, without checks for shrinking, and without
787 * scaling applied to the result. The caller does these things
788 * if necessary. This is a "raw" window selection.
789 */
790 u32 __tcp_select_window(struct sock *sk);
791
792 void tcp_send_window_probe(struct sock *sk);
793
794 /* TCP uses 32bit jiffies to save some space.
795 * Note that this is different from tcp_time_stamp, which
796 * historically has been the same until linux-4.13.
797 */
798 #define tcp_jiffies32 ((u32)jiffies)
799
800 /*
801 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
802 * It is no longer tied to jiffies, but to 1 ms clock.
803 * Note: double check if you want to use tcp_jiffies32 instead of this.
804 */
805 #define TCP_TS_HZ 1000
806
tcp_clock_ns(void)807 static inline u64 tcp_clock_ns(void)
808 {
809 return ktime_get_ns();
810 }
811
tcp_clock_us(void)812 static inline u64 tcp_clock_us(void)
813 {
814 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
815 }
816
817 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)818 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
819 {
820 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
821 }
822
823 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)824 static inline u64 tcp_ns_to_ts(u64 ns)
825 {
826 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
827 }
828
829 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)830 static inline u32 tcp_time_stamp_raw(void)
831 {
832 return tcp_ns_to_ts(tcp_clock_ns());
833 }
834
835 void tcp_mstamp_refresh(struct tcp_sock *tp);
836
tcp_stamp_us_delta(u64 t1,u64 t0)837 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
838 {
839 return max_t(s64, t1 - t0, 0);
840 }
841
tcp_skb_timestamp(const struct sk_buff * skb)842 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
843 {
844 return tcp_ns_to_ts(skb->skb_mstamp_ns);
845 }
846
847 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)848 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
849 {
850 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
851 }
852
853
854 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
855
856 #define TCPHDR_FIN 0x01
857 #define TCPHDR_SYN 0x02
858 #define TCPHDR_RST 0x04
859 #define TCPHDR_PSH 0x08
860 #define TCPHDR_ACK 0x10
861 #define TCPHDR_URG 0x20
862 #define TCPHDR_ECE 0x40
863 #define TCPHDR_CWR 0x80
864
865 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
866
867 /* This is what the send packet queuing engine uses to pass
868 * TCP per-packet control information to the transmission code.
869 * We also store the host-order sequence numbers in here too.
870 * This is 44 bytes if IPV6 is enabled.
871 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
872 */
873 struct tcp_skb_cb {
874 __u32 seq; /* Starting sequence number */
875 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
876 union {
877 /* Note : tcp_tw_isn is used in input path only
878 * (isn chosen by tcp_timewait_state_process())
879 *
880 * tcp_gso_segs/size are used in write queue only,
881 * cf tcp_skb_pcount()/tcp_skb_mss()
882 */
883 __u32 tcp_tw_isn;
884 struct {
885 u16 tcp_gso_segs;
886 u16 tcp_gso_size;
887 };
888 };
889 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
890
891 __u8 sacked; /* State flags for SACK. */
892 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
893 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
894 #define TCPCB_LOST 0x04 /* SKB is lost */
895 #define TCPCB_TAGBITS 0x07 /* All tag bits */
896 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
897 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
898 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
899 TCPCB_REPAIRED)
900
901 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
902 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
903 eor:1, /* Is skb MSG_EOR marked? */
904 has_rxtstamp:1, /* SKB has a RX timestamp */
905 unused:5;
906 __u32 ack_seq; /* Sequence number ACK'd */
907 union {
908 struct {
909 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
910 /* There is space for up to 24 bytes */
911 __u32 is_app_limited:1, /* cwnd not fully used? */
912 delivered_ce:20,
913 unused:11;
914 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
915 __u32 delivered;
916 /* start of send pipeline phase */
917 u64 first_tx_mstamp;
918 /* when we reached the "delivered" count */
919 u64 delivered_mstamp;
920 } tx; /* only used for outgoing skbs */
921 union {
922 struct inet_skb_parm h4;
923 #if IS_ENABLED(CONFIG_IPV6)
924 struct inet6_skb_parm h6;
925 #endif
926 } header; /* For incoming skbs */
927 };
928 };
929
930 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
931
932 extern const struct inet_connection_sock_af_ops ipv4_specific;
933
934 #if IS_ENABLED(CONFIG_IPV6)
935 /* This is the variant of inet6_iif() that must be used by TCP,
936 * as TCP moves IP6CB into a different location in skb->cb[]
937 */
tcp_v6_iif(const struct sk_buff * skb)938 static inline int tcp_v6_iif(const struct sk_buff *skb)
939 {
940 return TCP_SKB_CB(skb)->header.h6.iif;
941 }
942
tcp_v6_iif_l3_slave(const struct sk_buff * skb)943 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
944 {
945 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
946
947 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
948 }
949
950 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)951 static inline int tcp_v6_sdif(const struct sk_buff *skb)
952 {
953 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
954 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
955 return TCP_SKB_CB(skb)->header.h6.iif;
956 #endif
957 return 0;
958 }
959
960 extern const struct inet_connection_sock_af_ops ipv6_specific;
961
962 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
963 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
964 void tcp_v6_early_demux(struct sk_buff *skb);
965
966 #endif
967
968 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)969 static inline int tcp_v4_sdif(struct sk_buff *skb)
970 {
971 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
972 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
973 return TCP_SKB_CB(skb)->header.h4.iif;
974 #endif
975 return 0;
976 }
977
978 /* Due to TSO, an SKB can be composed of multiple actual
979 * packets. To keep these tracked properly, we use this.
980 */
tcp_skb_pcount(const struct sk_buff * skb)981 static inline int tcp_skb_pcount(const struct sk_buff *skb)
982 {
983 return TCP_SKB_CB(skb)->tcp_gso_segs;
984 }
985
tcp_skb_pcount_set(struct sk_buff * skb,int segs)986 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
987 {
988 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
989 }
990
tcp_skb_pcount_add(struct sk_buff * skb,int segs)991 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
992 {
993 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
994 }
995
996 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)997 static inline int tcp_skb_mss(const struct sk_buff *skb)
998 {
999 return TCP_SKB_CB(skb)->tcp_gso_size;
1000 }
1001
tcp_skb_can_collapse_to(const struct sk_buff * skb)1002 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1003 {
1004 return likely(!TCP_SKB_CB(skb)->eor);
1005 }
1006
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)1007 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1008 const struct sk_buff *from)
1009 {
1010 return likely(tcp_skb_can_collapse_to(to) &&
1011 mptcp_skb_can_collapse(to, from) &&
1012 skb_pure_zcopy_same(to, from));
1013 }
1014
1015 /* Events passed to congestion control interface */
1016 enum tcp_ca_event {
1017 CA_EVENT_TX_START, /* first transmit when no packets in flight */
1018 CA_EVENT_CWND_RESTART, /* congestion window restart */
1019 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1020 CA_EVENT_LOSS, /* loss timeout */
1021 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1022 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1023 };
1024
1025 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1026 enum tcp_ca_ack_event_flags {
1027 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1028 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1029 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1030 };
1031
1032 /*
1033 * Interface for adding new TCP congestion control handlers
1034 */
1035 #define TCP_CA_NAME_MAX 16
1036 #define TCP_CA_MAX 128
1037 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1038
1039 #define TCP_CA_UNSPEC 0
1040
1041 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1042 #define TCP_CONG_NON_RESTRICTED 0x1
1043 /* Requires ECN/ECT set on all packets */
1044 #define TCP_CONG_NEEDS_ECN 0x2
1045 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1046
1047 union tcp_cc_info;
1048
1049 struct ack_sample {
1050 u32 pkts_acked;
1051 s32 rtt_us;
1052 u32 in_flight;
1053 };
1054
1055 /* A rate sample measures the number of (original/retransmitted) data
1056 * packets delivered "delivered" over an interval of time "interval_us".
1057 * The tcp_rate.c code fills in the rate sample, and congestion
1058 * control modules that define a cong_control function to run at the end
1059 * of ACK processing can optionally chose to consult this sample when
1060 * setting cwnd and pacing rate.
1061 * A sample is invalid if "delivered" or "interval_us" is negative.
1062 */
1063 struct rate_sample {
1064 u64 prior_mstamp; /* starting timestamp for interval */
1065 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1066 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1067 s32 delivered; /* number of packets delivered over interval */
1068 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1069 long interval_us; /* time for tp->delivered to incr "delivered" */
1070 u32 snd_interval_us; /* snd interval for delivered packets */
1071 u32 rcv_interval_us; /* rcv interval for delivered packets */
1072 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1073 int losses; /* number of packets marked lost upon ACK */
1074 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1075 u32 prior_in_flight; /* in flight before this ACK */
1076 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1077 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1078 bool is_retrans; /* is sample from retransmission? */
1079 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1080 };
1081
1082 struct tcp_congestion_ops {
1083 /* fast path fields are put first to fill one cache line */
1084
1085 /* return slow start threshold (required) */
1086 u32 (*ssthresh)(struct sock *sk);
1087
1088 /* do new cwnd calculation (required) */
1089 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1090
1091 /* call before changing ca_state (optional) */
1092 void (*set_state)(struct sock *sk, u8 new_state);
1093
1094 /* call when cwnd event occurs (optional) */
1095 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1096
1097 /* call when ack arrives (optional) */
1098 void (*in_ack_event)(struct sock *sk, u32 flags);
1099
1100 /* hook for packet ack accounting (optional) */
1101 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1102
1103 /* override sysctl_tcp_min_tso_segs */
1104 u32 (*min_tso_segs)(struct sock *sk);
1105
1106 /* call when packets are delivered to update cwnd and pacing rate,
1107 * after all the ca_state processing. (optional)
1108 */
1109 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1110
1111
1112 /* new value of cwnd after loss (required) */
1113 u32 (*undo_cwnd)(struct sock *sk);
1114 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1115 u32 (*sndbuf_expand)(struct sock *sk);
1116
1117 /* control/slow paths put last */
1118 /* get info for inet_diag (optional) */
1119 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1120 union tcp_cc_info *info);
1121
1122 char name[TCP_CA_NAME_MAX];
1123 struct module *owner;
1124 struct list_head list;
1125 u32 key;
1126 u32 flags;
1127
1128 /* initialize private data (optional) */
1129 void (*init)(struct sock *sk);
1130 /* cleanup private data (optional) */
1131 void (*release)(struct sock *sk);
1132 } ____cacheline_aligned_in_smp;
1133
1134 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1135 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1136 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1137 struct tcp_congestion_ops *old_type);
1138 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1139
1140 void tcp_assign_congestion_control(struct sock *sk);
1141 void tcp_init_congestion_control(struct sock *sk);
1142 void tcp_cleanup_congestion_control(struct sock *sk);
1143 int tcp_set_default_congestion_control(struct net *net, const char *name);
1144 void tcp_get_default_congestion_control(struct net *net, char *name);
1145 void tcp_get_available_congestion_control(char *buf, size_t len);
1146 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1147 int tcp_set_allowed_congestion_control(char *allowed);
1148 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1149 bool cap_net_admin);
1150 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1151 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1152
1153 u32 tcp_reno_ssthresh(struct sock *sk);
1154 u32 tcp_reno_undo_cwnd(struct sock *sk);
1155 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1156 extern struct tcp_congestion_ops tcp_reno;
1157
1158 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1159 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1160 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1161 #ifdef CONFIG_INET
1162 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1163 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1164 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1165 {
1166 return NULL;
1167 }
1168 #endif
1169
tcp_ca_needs_ecn(const struct sock * sk)1170 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1171 {
1172 const struct inet_connection_sock *icsk = inet_csk(sk);
1173
1174 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1175 }
1176
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1177 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1178 {
1179 const struct inet_connection_sock *icsk = inet_csk(sk);
1180
1181 if (icsk->icsk_ca_ops->cwnd_event)
1182 icsk->icsk_ca_ops->cwnd_event(sk, event);
1183 }
1184
1185 /* From tcp_cong.c */
1186 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1187
1188 /* From tcp_rate.c */
1189 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1190 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1191 struct rate_sample *rs);
1192 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1193 bool is_sack_reneg, struct rate_sample *rs);
1194 void tcp_rate_check_app_limited(struct sock *sk);
1195
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1196 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1197 {
1198 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1199 }
1200
1201 /* These functions determine how the current flow behaves in respect of SACK
1202 * handling. SACK is negotiated with the peer, and therefore it can vary
1203 * between different flows.
1204 *
1205 * tcp_is_sack - SACK enabled
1206 * tcp_is_reno - No SACK
1207 */
tcp_is_sack(const struct tcp_sock * tp)1208 static inline int tcp_is_sack(const struct tcp_sock *tp)
1209 {
1210 return likely(tp->rx_opt.sack_ok);
1211 }
1212
tcp_is_reno(const struct tcp_sock * tp)1213 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1214 {
1215 return !tcp_is_sack(tp);
1216 }
1217
tcp_left_out(const struct tcp_sock * tp)1218 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1219 {
1220 return tp->sacked_out + tp->lost_out;
1221 }
1222
1223 /* This determines how many packets are "in the network" to the best
1224 * of our knowledge. In many cases it is conservative, but where
1225 * detailed information is available from the receiver (via SACK
1226 * blocks etc.) we can make more aggressive calculations.
1227 *
1228 * Use this for decisions involving congestion control, use just
1229 * tp->packets_out to determine if the send queue is empty or not.
1230 *
1231 * Read this equation as:
1232 *
1233 * "Packets sent once on transmission queue" MINUS
1234 * "Packets left network, but not honestly ACKed yet" PLUS
1235 * "Packets fast retransmitted"
1236 */
tcp_packets_in_flight(const struct tcp_sock * tp)1237 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1238 {
1239 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1240 }
1241
1242 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1243
tcp_snd_cwnd(const struct tcp_sock * tp)1244 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1245 {
1246 return tp->snd_cwnd;
1247 }
1248
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1249 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1250 {
1251 WARN_ON_ONCE((int)val <= 0);
1252 tp->snd_cwnd = val;
1253 }
1254
tcp_in_slow_start(const struct tcp_sock * tp)1255 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1256 {
1257 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1258 }
1259
tcp_in_initial_slowstart(const struct tcp_sock * tp)1260 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1261 {
1262 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1263 }
1264
tcp_in_cwnd_reduction(const struct sock * sk)1265 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1266 {
1267 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1268 (1 << inet_csk(sk)->icsk_ca_state);
1269 }
1270
1271 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1272 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1273 * ssthresh.
1274 */
tcp_current_ssthresh(const struct sock * sk)1275 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1276 {
1277 const struct tcp_sock *tp = tcp_sk(sk);
1278
1279 if (tcp_in_cwnd_reduction(sk))
1280 return tp->snd_ssthresh;
1281 else
1282 return max(tp->snd_ssthresh,
1283 ((tcp_snd_cwnd(tp) >> 1) +
1284 (tcp_snd_cwnd(tp) >> 2)));
1285 }
1286
1287 /* Use define here intentionally to get WARN_ON location shown at the caller */
1288 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1289
1290 void tcp_enter_cwr(struct sock *sk);
1291 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1292
1293 /* The maximum number of MSS of available cwnd for which TSO defers
1294 * sending if not using sysctl_tcp_tso_win_divisor.
1295 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1296 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1297 {
1298 return 3;
1299 }
1300
1301 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1302 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1303 {
1304 return tp->snd_una + tp->snd_wnd;
1305 }
1306
1307 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1308 * flexible approach. The RFC suggests cwnd should not be raised unless
1309 * it was fully used previously. And that's exactly what we do in
1310 * congestion avoidance mode. But in slow start we allow cwnd to grow
1311 * as long as the application has used half the cwnd.
1312 * Example :
1313 * cwnd is 10 (IW10), but application sends 9 frames.
1314 * We allow cwnd to reach 18 when all frames are ACKed.
1315 * This check is safe because it's as aggressive as slow start which already
1316 * risks 100% overshoot. The advantage is that we discourage application to
1317 * either send more filler packets or data to artificially blow up the cwnd
1318 * usage, and allow application-limited process to probe bw more aggressively.
1319 */
tcp_is_cwnd_limited(const struct sock * sk)1320 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1321 {
1322 const struct tcp_sock *tp = tcp_sk(sk);
1323
1324 if (tp->is_cwnd_limited)
1325 return true;
1326
1327 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1328 if (tcp_in_slow_start(tp))
1329 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1330
1331 return false;
1332 }
1333
1334 /* BBR congestion control needs pacing.
1335 * Same remark for SO_MAX_PACING_RATE.
1336 * sch_fq packet scheduler is efficiently handling pacing,
1337 * but is not always installed/used.
1338 * Return true if TCP stack should pace packets itself.
1339 */
tcp_needs_internal_pacing(const struct sock * sk)1340 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1341 {
1342 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1343 }
1344
1345 /* Estimates in how many jiffies next packet for this flow can be sent.
1346 * Scheduling a retransmit timer too early would be silly.
1347 */
tcp_pacing_delay(const struct sock * sk)1348 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1349 {
1350 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1351
1352 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1353 }
1354
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1355 static inline void tcp_reset_xmit_timer(struct sock *sk,
1356 const int what,
1357 unsigned long when,
1358 const unsigned long max_when)
1359 {
1360 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1361 max_when);
1362 }
1363
1364 /* Something is really bad, we could not queue an additional packet,
1365 * because qdisc is full or receiver sent a 0 window, or we are paced.
1366 * We do not want to add fuel to the fire, or abort too early,
1367 * so make sure the timer we arm now is at least 200ms in the future,
1368 * regardless of current icsk_rto value (as it could be ~2ms)
1369 */
tcp_probe0_base(const struct sock * sk)1370 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1371 {
1372 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1373 }
1374
1375 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1376 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1377 unsigned long max_when)
1378 {
1379 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1380 inet_csk(sk)->icsk_backoff);
1381 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1382
1383 return (unsigned long)min_t(u64, when, max_when);
1384 }
1385
tcp_check_probe_timer(struct sock * sk)1386 static inline void tcp_check_probe_timer(struct sock *sk)
1387 {
1388 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1389 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1390 tcp_probe0_base(sk), TCP_RTO_MAX);
1391 }
1392
tcp_init_wl(struct tcp_sock * tp,u32 seq)1393 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1394 {
1395 tp->snd_wl1 = seq;
1396 }
1397
tcp_update_wl(struct tcp_sock * tp,u32 seq)1398 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1399 {
1400 tp->snd_wl1 = seq;
1401 }
1402
1403 /*
1404 * Calculate(/check) TCP checksum
1405 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1406 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1407 __be32 daddr, __wsum base)
1408 {
1409 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1410 }
1411
tcp_checksum_complete(struct sk_buff * skb)1412 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1413 {
1414 return !skb_csum_unnecessary(skb) &&
1415 __skb_checksum_complete(skb);
1416 }
1417
1418 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1419 enum skb_drop_reason *reason);
1420
1421
1422 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1423 void tcp_set_state(struct sock *sk, int state);
1424 void tcp_done(struct sock *sk);
1425 int tcp_abort(struct sock *sk, int err);
1426
tcp_sack_reset(struct tcp_options_received * rx_opt)1427 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1428 {
1429 rx_opt->dsack = 0;
1430 rx_opt->num_sacks = 0;
1431 }
1432
1433 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1434
tcp_slow_start_after_idle_check(struct sock * sk)1435 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1436 {
1437 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1438 struct tcp_sock *tp = tcp_sk(sk);
1439 s32 delta;
1440
1441 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1442 tp->packets_out || ca_ops->cong_control)
1443 return;
1444 delta = tcp_jiffies32 - tp->lsndtime;
1445 if (delta > inet_csk(sk)->icsk_rto)
1446 tcp_cwnd_restart(sk, delta);
1447 }
1448
1449 /* Determine a window scaling and initial window to offer. */
1450 void tcp_select_initial_window(const struct sock *sk, int __space,
1451 __u32 mss, __u32 *rcv_wnd,
1452 __u32 *window_clamp, int wscale_ok,
1453 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1454
__tcp_win_from_space(u8 scaling_ratio,int space)1455 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1456 {
1457 s64 scaled_space = (s64)space * scaling_ratio;
1458
1459 return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1460 }
1461
tcp_win_from_space(const struct sock * sk,int space)1462 static inline int tcp_win_from_space(const struct sock *sk, int space)
1463 {
1464 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1465 }
1466
1467 /* inverse of __tcp_win_from_space() */
__tcp_space_from_win(u8 scaling_ratio,int win)1468 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1469 {
1470 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1471
1472 do_div(val, scaling_ratio);
1473 return val;
1474 }
1475
tcp_space_from_win(const struct sock * sk,int win)1476 static inline int tcp_space_from_win(const struct sock *sk, int win)
1477 {
1478 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1479 }
1480
1481 /* Assume a 50% default for skb->len/skb->truesize ratio.
1482 * This may be adjusted later in tcp_measure_rcv_mss().
1483 */
1484 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1485
tcp_scaling_ratio_init(struct sock * sk)1486 static inline void tcp_scaling_ratio_init(struct sock *sk)
1487 {
1488 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1489 }
1490
1491 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1492 static inline int tcp_space(const struct sock *sk)
1493 {
1494 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1495 READ_ONCE(sk->sk_backlog.len) -
1496 atomic_read(&sk->sk_rmem_alloc));
1497 }
1498
tcp_full_space(const struct sock * sk)1499 static inline int tcp_full_space(const struct sock *sk)
1500 {
1501 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1502 }
1503
__tcp_adjust_rcv_ssthresh(struct sock * sk,u32 new_ssthresh)1504 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1505 {
1506 int unused_mem = sk_unused_reserved_mem(sk);
1507 struct tcp_sock *tp = tcp_sk(sk);
1508
1509 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1510 if (unused_mem)
1511 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1512 tcp_win_from_space(sk, unused_mem));
1513 }
1514
tcp_adjust_rcv_ssthresh(struct sock * sk)1515 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1516 {
1517 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1518 }
1519
1520 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1521 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1522
1523
1524 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1525 * If 87.5 % (7/8) of the space has been consumed, we want to override
1526 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1527 * len/truesize ratio.
1528 */
tcp_rmem_pressure(const struct sock * sk)1529 static inline bool tcp_rmem_pressure(const struct sock *sk)
1530 {
1531 int rcvbuf, threshold;
1532
1533 if (tcp_under_memory_pressure(sk))
1534 return true;
1535
1536 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1537 threshold = rcvbuf - (rcvbuf >> 3);
1538
1539 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1540 }
1541
tcp_epollin_ready(const struct sock * sk,int target)1542 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1543 {
1544 const struct tcp_sock *tp = tcp_sk(sk);
1545 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1546
1547 if (avail <= 0)
1548 return false;
1549
1550 return (avail >= target) || tcp_rmem_pressure(sk) ||
1551 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1552 }
1553
1554 extern void tcp_openreq_init_rwin(struct request_sock *req,
1555 const struct sock *sk_listener,
1556 const struct dst_entry *dst);
1557
1558 void tcp_enter_memory_pressure(struct sock *sk);
1559 void tcp_leave_memory_pressure(struct sock *sk);
1560
keepalive_intvl_when(const struct tcp_sock * tp)1561 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1562 {
1563 struct net *net = sock_net((struct sock *)tp);
1564 int val;
1565
1566 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1567 * and do_tcp_setsockopt().
1568 */
1569 val = READ_ONCE(tp->keepalive_intvl);
1570
1571 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1572 }
1573
keepalive_time_when(const struct tcp_sock * tp)1574 static inline int keepalive_time_when(const struct tcp_sock *tp)
1575 {
1576 struct net *net = sock_net((struct sock *)tp);
1577 int val;
1578
1579 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1580 val = READ_ONCE(tp->keepalive_time);
1581
1582 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1583 }
1584
keepalive_probes(const struct tcp_sock * tp)1585 static inline int keepalive_probes(const struct tcp_sock *tp)
1586 {
1587 struct net *net = sock_net((struct sock *)tp);
1588 int val;
1589
1590 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1591 * and do_tcp_setsockopt().
1592 */
1593 val = READ_ONCE(tp->keepalive_probes);
1594
1595 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1596 }
1597
keepalive_time_elapsed(const struct tcp_sock * tp)1598 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1599 {
1600 const struct inet_connection_sock *icsk = &tp->inet_conn;
1601
1602 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1603 tcp_jiffies32 - tp->rcv_tstamp);
1604 }
1605
tcp_fin_time(const struct sock * sk)1606 static inline int tcp_fin_time(const struct sock *sk)
1607 {
1608 int fin_timeout = tcp_sk(sk)->linger2 ? :
1609 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1610 const int rto = inet_csk(sk)->icsk_rto;
1611
1612 if (fin_timeout < (rto << 2) - (rto >> 1))
1613 fin_timeout = (rto << 2) - (rto >> 1);
1614
1615 return fin_timeout;
1616 }
1617
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1618 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1619 int paws_win)
1620 {
1621 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1622 return true;
1623 if (unlikely(!time_before32(ktime_get_seconds(),
1624 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1625 return true;
1626 /*
1627 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1628 * then following tcp messages have valid values. Ignore 0 value,
1629 * or else 'negative' tsval might forbid us to accept their packets.
1630 */
1631 if (!rx_opt->ts_recent)
1632 return true;
1633 return false;
1634 }
1635
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1636 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1637 int rst)
1638 {
1639 if (tcp_paws_check(rx_opt, 0))
1640 return false;
1641
1642 /* RST segments are not recommended to carry timestamp,
1643 and, if they do, it is recommended to ignore PAWS because
1644 "their cleanup function should take precedence over timestamps."
1645 Certainly, it is mistake. It is necessary to understand the reasons
1646 of this constraint to relax it: if peer reboots, clock may go
1647 out-of-sync and half-open connections will not be reset.
1648 Actually, the problem would be not existing if all
1649 the implementations followed draft about maintaining clock
1650 via reboots. Linux-2.2 DOES NOT!
1651
1652 However, we can relax time bounds for RST segments to MSL.
1653 */
1654 if (rst && !time_before32(ktime_get_seconds(),
1655 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1656 return false;
1657 return true;
1658 }
1659
1660 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1661 int mib_idx, u32 *last_oow_ack_time);
1662
tcp_mib_init(struct net * net)1663 static inline void tcp_mib_init(struct net *net)
1664 {
1665 /* See RFC 2012 */
1666 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1667 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1668 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1669 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1670 }
1671
1672 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1673 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1674 {
1675 tp->lost_skb_hint = NULL;
1676 }
1677
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1678 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1679 {
1680 tcp_clear_retrans_hints_partial(tp);
1681 tp->retransmit_skb_hint = NULL;
1682 }
1683
1684 union tcp_md5_addr {
1685 struct in_addr a4;
1686 #if IS_ENABLED(CONFIG_IPV6)
1687 struct in6_addr a6;
1688 #endif
1689 };
1690
1691 /* - key database */
1692 struct tcp_md5sig_key {
1693 struct hlist_node node;
1694 u8 keylen;
1695 u8 family; /* AF_INET or AF_INET6 */
1696 u8 prefixlen;
1697 u8 flags;
1698 union tcp_md5_addr addr;
1699 int l3index; /* set if key added with L3 scope */
1700 u8 key[TCP_MD5SIG_MAXKEYLEN];
1701 struct rcu_head rcu;
1702 };
1703
1704 /* - sock block */
1705 struct tcp_md5sig_info {
1706 struct hlist_head head;
1707 struct rcu_head rcu;
1708 };
1709
1710 /* - pseudo header */
1711 struct tcp4_pseudohdr {
1712 __be32 saddr;
1713 __be32 daddr;
1714 __u8 pad;
1715 __u8 protocol;
1716 __be16 len;
1717 };
1718
1719 struct tcp6_pseudohdr {
1720 struct in6_addr saddr;
1721 struct in6_addr daddr;
1722 __be32 len;
1723 __be32 protocol; /* including padding */
1724 };
1725
1726 union tcp_md5sum_block {
1727 struct tcp4_pseudohdr ip4;
1728 #if IS_ENABLED(CONFIG_IPV6)
1729 struct tcp6_pseudohdr ip6;
1730 #endif
1731 };
1732
1733 /* - pool: digest algorithm, hash description and scratch buffer */
1734 struct tcp_md5sig_pool {
1735 struct ahash_request *md5_req;
1736 void *scratch;
1737 };
1738
1739 /* - functions */
1740 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1741 const struct sock *sk, const struct sk_buff *skb);
1742 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1743 int family, u8 prefixlen, int l3index, u8 flags,
1744 const u8 *newkey, u8 newkeylen);
1745 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1746 int family, u8 prefixlen, int l3index,
1747 struct tcp_md5sig_key *key);
1748
1749 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1750 int family, u8 prefixlen, int l3index, u8 flags);
1751 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1752 const struct sock *addr_sk);
1753
1754 #ifdef CONFIG_TCP_MD5SIG
1755 #include <linux/jump_label.h>
1756 extern struct static_key_false_deferred tcp_md5_needed;
1757 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1758 const union tcp_md5_addr *addr,
1759 int family);
1760 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1761 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1762 const union tcp_md5_addr *addr, int family)
1763 {
1764 if (!static_branch_unlikely(&tcp_md5_needed.key))
1765 return NULL;
1766 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1767 }
1768
1769 enum skb_drop_reason
1770 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1771 const void *saddr, const void *daddr,
1772 int family, int dif, int sdif);
1773
1774
1775 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1776 #else
1777 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1778 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1779 const union tcp_md5_addr *addr, int family)
1780 {
1781 return NULL;
1782 }
1783
1784 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)1785 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1786 const void *saddr, const void *daddr,
1787 int family, int dif, int sdif)
1788 {
1789 return SKB_NOT_DROPPED_YET;
1790 }
1791 #define tcp_twsk_md5_key(twsk) NULL
1792 #endif
1793
1794 bool tcp_alloc_md5sig_pool(void);
1795
1796 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1797 static inline void tcp_put_md5sig_pool(void)
1798 {
1799 local_bh_enable();
1800 }
1801
1802 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1803 unsigned int header_len);
1804 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1805 const struct tcp_md5sig_key *key);
1806
1807 /* From tcp_fastopen.c */
1808 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1809 struct tcp_fastopen_cookie *cookie);
1810 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1811 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1812 u16 try_exp);
1813 struct tcp_fastopen_request {
1814 /* Fast Open cookie. Size 0 means a cookie request */
1815 struct tcp_fastopen_cookie cookie;
1816 struct msghdr *data; /* data in MSG_FASTOPEN */
1817 size_t size;
1818 int copied; /* queued in tcp_connect() */
1819 struct ubuf_info *uarg;
1820 };
1821 void tcp_free_fastopen_req(struct tcp_sock *tp);
1822 void tcp_fastopen_destroy_cipher(struct sock *sk);
1823 void tcp_fastopen_ctx_destroy(struct net *net);
1824 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1825 void *primary_key, void *backup_key);
1826 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1827 u64 *key);
1828 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1829 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1830 struct request_sock *req,
1831 struct tcp_fastopen_cookie *foc,
1832 const struct dst_entry *dst);
1833 void tcp_fastopen_init_key_once(struct net *net);
1834 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1835 struct tcp_fastopen_cookie *cookie);
1836 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1837 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1838 #define TCP_FASTOPEN_KEY_MAX 2
1839 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1840 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1841
1842 /* Fastopen key context */
1843 struct tcp_fastopen_context {
1844 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1845 int num;
1846 struct rcu_head rcu;
1847 };
1848
1849 void tcp_fastopen_active_disable(struct sock *sk);
1850 bool tcp_fastopen_active_should_disable(struct sock *sk);
1851 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1852 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1853
1854 /* Caller needs to wrap with rcu_read_(un)lock() */
1855 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1856 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1857 {
1858 struct tcp_fastopen_context *ctx;
1859
1860 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1861 if (!ctx)
1862 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1863 return ctx;
1864 }
1865
1866 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1867 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1868 const struct tcp_fastopen_cookie *orig)
1869 {
1870 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1871 orig->len == foc->len &&
1872 !memcmp(orig->val, foc->val, foc->len))
1873 return true;
1874 return false;
1875 }
1876
1877 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1878 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1879 {
1880 return ctx->num;
1881 }
1882
1883 /* Latencies incurred by various limits for a sender. They are
1884 * chronograph-like stats that are mutually exclusive.
1885 */
1886 enum tcp_chrono {
1887 TCP_CHRONO_UNSPEC,
1888 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1889 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1890 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1891 __TCP_CHRONO_MAX,
1892 };
1893
1894 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1895 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1896
1897 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1898 * the same memory storage than skb->destructor/_skb_refdst
1899 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1900 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1901 {
1902 skb->destructor = NULL;
1903 skb->_skb_refdst = 0UL;
1904 }
1905
1906 #define tcp_skb_tsorted_save(skb) { \
1907 unsigned long _save = skb->_skb_refdst; \
1908 skb->_skb_refdst = 0UL;
1909
1910 #define tcp_skb_tsorted_restore(skb) \
1911 skb->_skb_refdst = _save; \
1912 }
1913
1914 void tcp_write_queue_purge(struct sock *sk);
1915
tcp_rtx_queue_head(const struct sock * sk)1916 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1917 {
1918 return skb_rb_first(&sk->tcp_rtx_queue);
1919 }
1920
tcp_rtx_queue_tail(const struct sock * sk)1921 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1922 {
1923 return skb_rb_last(&sk->tcp_rtx_queue);
1924 }
1925
tcp_write_queue_tail(const struct sock * sk)1926 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1927 {
1928 return skb_peek_tail(&sk->sk_write_queue);
1929 }
1930
1931 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1932 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1933
tcp_send_head(const struct sock * sk)1934 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1935 {
1936 return skb_peek(&sk->sk_write_queue);
1937 }
1938
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1939 static inline bool tcp_skb_is_last(const struct sock *sk,
1940 const struct sk_buff *skb)
1941 {
1942 return skb_queue_is_last(&sk->sk_write_queue, skb);
1943 }
1944
1945 /**
1946 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1947 * @sk: socket
1948 *
1949 * Since the write queue can have a temporary empty skb in it,
1950 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1951 */
tcp_write_queue_empty(const struct sock * sk)1952 static inline bool tcp_write_queue_empty(const struct sock *sk)
1953 {
1954 const struct tcp_sock *tp = tcp_sk(sk);
1955
1956 return tp->write_seq == tp->snd_nxt;
1957 }
1958
tcp_rtx_queue_empty(const struct sock * sk)1959 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1960 {
1961 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1962 }
1963
tcp_rtx_and_write_queues_empty(const struct sock * sk)1964 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1965 {
1966 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1967 }
1968
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1969 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1970 {
1971 __skb_queue_tail(&sk->sk_write_queue, skb);
1972
1973 /* Queue it, remembering where we must start sending. */
1974 if (sk->sk_write_queue.next == skb)
1975 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1976 }
1977
1978 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1979 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1980 struct sk_buff *skb,
1981 struct sock *sk)
1982 {
1983 __skb_queue_before(&sk->sk_write_queue, skb, new);
1984 }
1985
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1986 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1987 {
1988 tcp_skb_tsorted_anchor_cleanup(skb);
1989 __skb_unlink(skb, &sk->sk_write_queue);
1990 }
1991
1992 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1993
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1994 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1995 {
1996 tcp_skb_tsorted_anchor_cleanup(skb);
1997 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1998 }
1999
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)2000 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2001 {
2002 list_del(&skb->tcp_tsorted_anchor);
2003 tcp_rtx_queue_unlink(skb, sk);
2004 tcp_wmem_free_skb(sk, skb);
2005 }
2006
tcp_push_pending_frames(struct sock * sk)2007 static inline void tcp_push_pending_frames(struct sock *sk)
2008 {
2009 if (tcp_send_head(sk)) {
2010 struct tcp_sock *tp = tcp_sk(sk);
2011
2012 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2013 }
2014 }
2015
2016 /* Start sequence of the skb just after the highest skb with SACKed
2017 * bit, valid only if sacked_out > 0 or when the caller has ensured
2018 * validity by itself.
2019 */
tcp_highest_sack_seq(struct tcp_sock * tp)2020 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2021 {
2022 if (!tp->sacked_out)
2023 return tp->snd_una;
2024
2025 if (tp->highest_sack == NULL)
2026 return tp->snd_nxt;
2027
2028 return TCP_SKB_CB(tp->highest_sack)->seq;
2029 }
2030
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)2031 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2032 {
2033 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2034 }
2035
tcp_highest_sack(struct sock * sk)2036 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2037 {
2038 return tcp_sk(sk)->highest_sack;
2039 }
2040
tcp_highest_sack_reset(struct sock * sk)2041 static inline void tcp_highest_sack_reset(struct sock *sk)
2042 {
2043 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2044 }
2045
2046 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)2047 static inline void tcp_highest_sack_replace(struct sock *sk,
2048 struct sk_buff *old,
2049 struct sk_buff *new)
2050 {
2051 if (old == tcp_highest_sack(sk))
2052 tcp_sk(sk)->highest_sack = new;
2053 }
2054
2055 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)2056 static inline bool inet_sk_transparent(const struct sock *sk)
2057 {
2058 switch (sk->sk_state) {
2059 case TCP_TIME_WAIT:
2060 return inet_twsk(sk)->tw_transparent;
2061 case TCP_NEW_SYN_RECV:
2062 return inet_rsk(inet_reqsk(sk))->no_srccheck;
2063 }
2064 return inet_test_bit(TRANSPARENT, sk);
2065 }
2066
2067 /* Determines whether this is a thin stream (which may suffer from
2068 * increased latency). Used to trigger latency-reducing mechanisms.
2069 */
tcp_stream_is_thin(struct tcp_sock * tp)2070 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2071 {
2072 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2073 }
2074
2075 /* /proc */
2076 enum tcp_seq_states {
2077 TCP_SEQ_STATE_LISTENING,
2078 TCP_SEQ_STATE_ESTABLISHED,
2079 };
2080
2081 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2082 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2083 void tcp_seq_stop(struct seq_file *seq, void *v);
2084
2085 struct tcp_seq_afinfo {
2086 sa_family_t family;
2087 };
2088
2089 struct tcp_iter_state {
2090 struct seq_net_private p;
2091 enum tcp_seq_states state;
2092 struct sock *syn_wait_sk;
2093 int bucket, offset, sbucket, num;
2094 loff_t last_pos;
2095 };
2096
2097 extern struct request_sock_ops tcp_request_sock_ops;
2098 extern struct request_sock_ops tcp6_request_sock_ops;
2099
2100 void tcp_v4_destroy_sock(struct sock *sk);
2101
2102 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2103 netdev_features_t features);
2104 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2105 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2106 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2107 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2108 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2109 void tcp_gro_complete(struct sk_buff *skb);
2110
2111 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2112
tcp_notsent_lowat(const struct tcp_sock * tp)2113 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2114 {
2115 struct net *net = sock_net((struct sock *)tp);
2116 u32 val;
2117
2118 val = READ_ONCE(tp->notsent_lowat);
2119
2120 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2121 }
2122
2123 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2124
2125 #ifdef CONFIG_PROC_FS
2126 int tcp4_proc_init(void);
2127 void tcp4_proc_exit(void);
2128 #endif
2129
2130 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2131 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2132 const struct tcp_request_sock_ops *af_ops,
2133 struct sock *sk, struct sk_buff *skb);
2134
2135 /* TCP af-specific functions */
2136 struct tcp_sock_af_ops {
2137 #ifdef CONFIG_TCP_MD5SIG
2138 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2139 const struct sock *addr_sk);
2140 int (*calc_md5_hash)(char *location,
2141 const struct tcp_md5sig_key *md5,
2142 const struct sock *sk,
2143 const struct sk_buff *skb);
2144 int (*md5_parse)(struct sock *sk,
2145 int optname,
2146 sockptr_t optval,
2147 int optlen);
2148 #endif
2149 };
2150
2151 struct tcp_request_sock_ops {
2152 u16 mss_clamp;
2153 #ifdef CONFIG_TCP_MD5SIG
2154 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2155 const struct sock *addr_sk);
2156 int (*calc_md5_hash) (char *location,
2157 const struct tcp_md5sig_key *md5,
2158 const struct sock *sk,
2159 const struct sk_buff *skb);
2160 #endif
2161 #ifdef CONFIG_SYN_COOKIES
2162 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2163 __u16 *mss);
2164 #endif
2165 struct dst_entry *(*route_req)(const struct sock *sk,
2166 struct sk_buff *skb,
2167 struct flowi *fl,
2168 struct request_sock *req);
2169 u32 (*init_seq)(const struct sk_buff *skb);
2170 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2171 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2172 struct flowi *fl, struct request_sock *req,
2173 struct tcp_fastopen_cookie *foc,
2174 enum tcp_synack_type synack_type,
2175 struct sk_buff *syn_skb);
2176 };
2177
2178 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2179 #if IS_ENABLED(CONFIG_IPV6)
2180 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2181 #endif
2182
2183 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2184 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2185 const struct sock *sk, struct sk_buff *skb,
2186 __u16 *mss)
2187 {
2188 tcp_synq_overflow(sk);
2189 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2190 return ops->cookie_init_seq(skb, mss);
2191 }
2192 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2193 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2194 const struct sock *sk, struct sk_buff *skb,
2195 __u16 *mss)
2196 {
2197 return 0;
2198 }
2199 #endif
2200
2201 int tcpv4_offload_init(void);
2202
2203 void tcp_v4_init(void);
2204 void tcp_init(void);
2205
2206 /* tcp_recovery.c */
2207 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2208 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2209 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2210 u32 reo_wnd);
2211 extern bool tcp_rack_mark_lost(struct sock *sk);
2212 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2213 u64 xmit_time);
2214 extern void tcp_rack_reo_timeout(struct sock *sk);
2215 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2216
2217 /* tcp_plb.c */
2218
2219 /*
2220 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2221 * expects cong_ratio which represents fraction of traffic that experienced
2222 * congestion over a single RTT. In order to avoid floating point operations,
2223 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2224 */
2225 #define TCP_PLB_SCALE 8
2226
2227 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2228 struct tcp_plb_state {
2229 u8 consec_cong_rounds:5, /* consecutive congested rounds */
2230 unused:3;
2231 u32 pause_until; /* jiffies32 when PLB can resume rerouting */
2232 };
2233
tcp_plb_init(const struct sock * sk,struct tcp_plb_state * plb)2234 static inline void tcp_plb_init(const struct sock *sk,
2235 struct tcp_plb_state *plb)
2236 {
2237 plb->consec_cong_rounds = 0;
2238 plb->pause_until = 0;
2239 }
2240 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2241 const int cong_ratio);
2242 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2243 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2244
2245 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2246 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2247 {
2248 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2249 u32 rto = inet_csk(sk)->icsk_rto;
2250
2251 if (likely(skb)) {
2252 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2253
2254 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2255 } else {
2256 WARN_ONCE(1,
2257 "rtx queue emtpy: "
2258 "out:%u sacked:%u lost:%u retrans:%u "
2259 "tlp_high_seq:%u sk_state:%u ca_state:%u "
2260 "advmss:%u mss_cache:%u pmtu:%u\n",
2261 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2262 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2263 tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2264 inet_csk(sk)->icsk_ca_state,
2265 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2266 inet_csk(sk)->icsk_pmtu_cookie);
2267 return jiffies_to_usecs(rto);
2268 }
2269
2270 }
2271
2272 /*
2273 * Save and compile IPv4 options, return a pointer to it
2274 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2275 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2276 struct sk_buff *skb)
2277 {
2278 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2279 struct ip_options_rcu *dopt = NULL;
2280
2281 if (opt->optlen) {
2282 int opt_size = sizeof(*dopt) + opt->optlen;
2283
2284 dopt = kmalloc(opt_size, GFP_ATOMIC);
2285 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2286 kfree(dopt);
2287 dopt = NULL;
2288 }
2289 }
2290 return dopt;
2291 }
2292
2293 /* locally generated TCP pure ACKs have skb->truesize == 2
2294 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2295 * This is much faster than dissecting the packet to find out.
2296 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2297 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2298 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2299 {
2300 return skb->truesize == 2;
2301 }
2302
skb_set_tcp_pure_ack(struct sk_buff * skb)2303 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2304 {
2305 skb->truesize = 2;
2306 }
2307
tcp_inq(struct sock * sk)2308 static inline int tcp_inq(struct sock *sk)
2309 {
2310 struct tcp_sock *tp = tcp_sk(sk);
2311 int answ;
2312
2313 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2314 answ = 0;
2315 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2316 !tp->urg_data ||
2317 before(tp->urg_seq, tp->copied_seq) ||
2318 !before(tp->urg_seq, tp->rcv_nxt)) {
2319
2320 answ = tp->rcv_nxt - tp->copied_seq;
2321
2322 /* Subtract 1, if FIN was received */
2323 if (answ && sock_flag(sk, SOCK_DONE))
2324 answ--;
2325 } else {
2326 answ = tp->urg_seq - tp->copied_seq;
2327 }
2328
2329 return answ;
2330 }
2331
2332 int tcp_peek_len(struct socket *sock);
2333
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2334 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2335 {
2336 u16 segs_in;
2337
2338 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2339
2340 /* We update these fields while other threads might
2341 * read them from tcp_get_info()
2342 */
2343 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2344 if (skb->len > tcp_hdrlen(skb))
2345 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2346 }
2347
2348 /*
2349 * TCP listen path runs lockless.
2350 * We forced "struct sock" to be const qualified to make sure
2351 * we don't modify one of its field by mistake.
2352 * Here, we increment sk_drops which is an atomic_t, so we can safely
2353 * make sock writable again.
2354 */
tcp_listendrop(const struct sock * sk)2355 static inline void tcp_listendrop(const struct sock *sk)
2356 {
2357 atomic_inc(&((struct sock *)sk)->sk_drops);
2358 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2359 }
2360
2361 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2362
2363 /*
2364 * Interface for adding Upper Level Protocols over TCP
2365 */
2366
2367 #define TCP_ULP_NAME_MAX 16
2368 #define TCP_ULP_MAX 128
2369 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2370
2371 struct tcp_ulp_ops {
2372 struct list_head list;
2373
2374 /* initialize ulp */
2375 int (*init)(struct sock *sk);
2376 /* update ulp */
2377 void (*update)(struct sock *sk, struct proto *p,
2378 void (*write_space)(struct sock *sk));
2379 /* cleanup ulp */
2380 void (*release)(struct sock *sk);
2381 /* diagnostic */
2382 int (*get_info)(struct sock *sk, struct sk_buff *skb);
2383 size_t (*get_info_size)(const struct sock *sk);
2384 /* clone ulp */
2385 void (*clone)(const struct request_sock *req, struct sock *newsk,
2386 const gfp_t priority);
2387
2388 char name[TCP_ULP_NAME_MAX];
2389 struct module *owner;
2390 };
2391 int tcp_register_ulp(struct tcp_ulp_ops *type);
2392 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2393 int tcp_set_ulp(struct sock *sk, const char *name);
2394 void tcp_get_available_ulp(char *buf, size_t len);
2395 void tcp_cleanup_ulp(struct sock *sk);
2396 void tcp_update_ulp(struct sock *sk, struct proto *p,
2397 void (*write_space)(struct sock *sk));
2398
2399 #define MODULE_ALIAS_TCP_ULP(name) \
2400 __MODULE_INFO(alias, alias_userspace, name); \
2401 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2402
2403 #ifdef CONFIG_NET_SOCK_MSG
2404 struct sk_msg;
2405 struct sk_psock;
2406
2407 #ifdef CONFIG_BPF_SYSCALL
2408 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2409 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2410 #ifdef CONFIG_BPF_STREAM_PARSER
2411 struct strparser;
2412 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2413 sk_read_actor_t recv_actor);
2414 #endif /* CONFIG_BPF_STREAM_PARSER */
2415 #endif /* CONFIG_BPF_SYSCALL */
2416
2417 #ifdef CONFIG_INET
2418 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2419 #else
tcp_eat_skb(struct sock * sk,struct sk_buff * skb)2420 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2421 {
2422 }
2423 #endif
2424
2425 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2426 struct sk_msg *msg, u32 bytes, int flags);
2427 #endif /* CONFIG_NET_SOCK_MSG */
2428
2429 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2430 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2431 {
2432 }
2433 #endif
2434
2435 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2436 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2437 struct sk_buff *skb,
2438 unsigned int end_offset)
2439 {
2440 skops->skb = skb;
2441 skops->skb_data_end = skb->data + end_offset;
2442 }
2443 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2444 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2445 struct sk_buff *skb,
2446 unsigned int end_offset)
2447 {
2448 }
2449 #endif
2450
2451 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2452 * is < 0, then the BPF op failed (for example if the loaded BPF
2453 * program does not support the chosen operation or there is no BPF
2454 * program loaded).
2455 */
2456 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2457 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2458 {
2459 struct bpf_sock_ops_kern sock_ops;
2460 int ret;
2461
2462 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2463 if (sk_fullsock(sk)) {
2464 sock_ops.is_fullsock = 1;
2465 sock_owned_by_me(sk);
2466 }
2467
2468 sock_ops.sk = sk;
2469 sock_ops.op = op;
2470 if (nargs > 0)
2471 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2472
2473 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2474 if (ret == 0)
2475 ret = sock_ops.reply;
2476 else
2477 ret = -1;
2478 return ret;
2479 }
2480
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2481 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2482 {
2483 u32 args[2] = {arg1, arg2};
2484
2485 return tcp_call_bpf(sk, op, 2, args);
2486 }
2487
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2488 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2489 u32 arg3)
2490 {
2491 u32 args[3] = {arg1, arg2, arg3};
2492
2493 return tcp_call_bpf(sk, op, 3, args);
2494 }
2495
2496 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2497 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2498 {
2499 return -EPERM;
2500 }
2501
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2502 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2503 {
2504 return -EPERM;
2505 }
2506
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2507 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2508 u32 arg3)
2509 {
2510 return -EPERM;
2511 }
2512
2513 #endif
2514
tcp_timeout_init(struct sock * sk)2515 static inline u32 tcp_timeout_init(struct sock *sk)
2516 {
2517 int timeout;
2518
2519 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2520
2521 if (timeout <= 0)
2522 timeout = TCP_TIMEOUT_INIT;
2523 return min_t(int, timeout, TCP_RTO_MAX);
2524 }
2525
tcp_rwnd_init_bpf(struct sock * sk)2526 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2527 {
2528 int rwnd;
2529
2530 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2531
2532 if (rwnd < 0)
2533 rwnd = 0;
2534 return rwnd;
2535 }
2536
tcp_bpf_ca_needs_ecn(struct sock * sk)2537 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2538 {
2539 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2540 }
2541
tcp_bpf_rtt(struct sock * sk)2542 static inline void tcp_bpf_rtt(struct sock *sk)
2543 {
2544 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2545 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2546 }
2547
2548 #if IS_ENABLED(CONFIG_SMC)
2549 extern struct static_key_false tcp_have_smc;
2550 #endif
2551
2552 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2553 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2554 void (*cad)(struct sock *sk, u32 ack_seq));
2555 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2556 void clean_acked_data_flush(void);
2557 #endif
2558
2559 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2560 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2561 const struct tcp_sock *tp)
2562 {
2563 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2564 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2565 }
2566
2567 /* Compute Earliest Departure Time for some control packets
2568 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2569 */
tcp_transmit_time(const struct sock * sk)2570 static inline u64 tcp_transmit_time(const struct sock *sk)
2571 {
2572 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2573 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2574 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2575
2576 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2577 }
2578 return 0;
2579 }
2580
2581 #endif /* _TCP_H */
2582