xref: /openbmc/linux/include/net/tcp.h (revision d37cf9b63113f13d742713881ce691fc615d8b3b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 #include <net/xfrm.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
56 
57 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS		48
60 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61 
62 /*
63  * Never offer a window over 32767 without using window scaling. Some
64  * poor stacks do signed 16bit maths!
65  */
66 #define MAX_TCP_WINDOW		32767U
67 
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS		88U
70 
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS		1024
73 
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL	600
76 
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD	8
79 
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
82 
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS	16U
85 
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE		14U
88 
89 /* urg_data states */
90 #define TCP_URG_VALID	0x0100
91 #define TCP_URG_NOTYET	0x0200
92 #define TCP_URG_READ	0x0400
93 
94 #define TCP_RETR1	3	/*
95 				 * This is how many retries it does before it
96 				 * tries to figure out if the gateway is
97 				 * down. Minimal RFC value is 3; it corresponds
98 				 * to ~3sec-8min depending on RTO.
99 				 */
100 
101 #define TCP_RETR2	15	/*
102 				 * This should take at least
103 				 * 90 minutes to time out.
104 				 * RFC1122 says that the limit is 100 sec.
105 				 * 15 is ~13-30min depending on RTO.
106 				 */
107 
108 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
109 				 * when active opening a connection.
110 				 * RFC1122 says the minimum retry MUST
111 				 * be at least 180secs.  Nevertheless
112 				 * this value is corresponding to
113 				 * 63secs of retransmission with the
114 				 * current initial RTO.
115 				 */
116 
117 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
118 				 * when passive opening a connection.
119 				 * This is corresponding to 31secs of
120 				 * retransmission with the current
121 				 * initial RTO.
122 				 */
123 
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 				  * state, about 60 seconds	*/
126 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
127                                  /* BSD style FIN_WAIT2 deadlock breaker.
128 				  * It used to be 3min, new value is 60sec,
129 				  * to combine FIN-WAIT-2 timeout with
130 				  * TIME-WAIT timer.
131 				  */
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133 
134 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135 #if HZ >= 100
136 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
137 #define TCP_ATO_MIN	((unsigned)(HZ/25))
138 #else
139 #define TCP_DELACK_MIN	4U
140 #define TCP_ATO_MIN	4U
141 #endif
142 #define TCP_RTO_MAX	((unsigned)(120*HZ))
143 #define TCP_RTO_MIN	((unsigned)(HZ/5))
144 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
145 
146 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
147 
148 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
149 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
150 						 * used as a fallback RTO for the
151 						 * initial data transmission if no
152 						 * valid RTT sample has been acquired,
153 						 * most likely due to retrans in 3WHS.
154 						 */
155 
156 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
157 					                 * for local resources.
158 					                 */
159 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
160 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
161 #define TCP_KEEPALIVE_INTVL	(75*HZ)
162 
163 #define MAX_TCP_KEEPIDLE	32767
164 #define MAX_TCP_KEEPINTVL	32767
165 #define MAX_TCP_KEEPCNT		127
166 #define MAX_TCP_SYNCNT		127
167 
168 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
169 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
170 					 * after this time. It should be equal
171 					 * (or greater than) TCP_TIMEWAIT_LEN
172 					 * to provide reliability equal to one
173 					 * provided by timewait state.
174 					 */
175 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
176 					 * timestamps. It must be less than
177 					 * minimal timewait lifetime.
178 					 */
179 /*
180  *	TCP option
181  */
182 
183 #define TCPOPT_NOP		1	/* Padding */
184 #define TCPOPT_EOL		0	/* End of options */
185 #define TCPOPT_MSS		2	/* Segment size negotiating */
186 #define TCPOPT_WINDOW		3	/* Window scaling */
187 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
188 #define TCPOPT_SACK             5       /* SACK Block */
189 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
190 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
191 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
192 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
193 #define TCPOPT_EXP		254	/* Experimental */
194 /* Magic number to be after the option value for sharing TCP
195  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
196  */
197 #define TCPOPT_FASTOPEN_MAGIC	0xF989
198 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
199 
200 /*
201  *     TCP option lengths
202  */
203 
204 #define TCPOLEN_MSS            4
205 #define TCPOLEN_WINDOW         3
206 #define TCPOLEN_SACK_PERM      2
207 #define TCPOLEN_TIMESTAMP      10
208 #define TCPOLEN_MD5SIG         18
209 #define TCPOLEN_FASTOPEN_BASE  2
210 #define TCPOLEN_EXP_FASTOPEN_BASE  4
211 #define TCPOLEN_EXP_SMC_BASE   6
212 
213 /* But this is what stacks really send out. */
214 #define TCPOLEN_TSTAMP_ALIGNED		12
215 #define TCPOLEN_WSCALE_ALIGNED		4
216 #define TCPOLEN_SACKPERM_ALIGNED	4
217 #define TCPOLEN_SACK_BASE		2
218 #define TCPOLEN_SACK_BASE_ALIGNED	4
219 #define TCPOLEN_SACK_PERBLOCK		8
220 #define TCPOLEN_MD5SIG_ALIGNED		20
221 #define TCPOLEN_MSS_ALIGNED		4
222 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
223 
224 /* Flags in tp->nonagle */
225 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
226 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
227 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
228 
229 /* TCP thin-stream limits */
230 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
231 
232 /* TCP initial congestion window as per rfc6928 */
233 #define TCP_INIT_CWND		10
234 
235 /* Bit Flags for sysctl_tcp_fastopen */
236 #define	TFO_CLIENT_ENABLE	1
237 #define	TFO_SERVER_ENABLE	2
238 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
239 
240 /* Accept SYN data w/o any cookie option */
241 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
242 
243 /* Force enable TFO on all listeners, i.e., not requiring the
244  * TCP_FASTOPEN socket option.
245  */
246 #define	TFO_SERVER_WO_SOCKOPT1	0x400
247 
248 
249 /* sysctl variables for tcp */
250 extern int sysctl_tcp_max_orphans;
251 extern long sysctl_tcp_mem[3];
252 
253 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
254 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
255 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
256 
257 extern atomic_long_t tcp_memory_allocated;
258 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
259 
260 extern struct percpu_counter tcp_sockets_allocated;
261 extern unsigned long tcp_memory_pressure;
262 
263 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)264 static inline bool tcp_under_memory_pressure(const struct sock *sk)
265 {
266 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
267 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
268 		return true;
269 
270 	return READ_ONCE(tcp_memory_pressure);
271 }
272 /*
273  * The next routines deal with comparing 32 bit unsigned ints
274  * and worry about wraparound (automatic with unsigned arithmetic).
275  */
276 
before(__u32 seq1,__u32 seq2)277 static inline bool before(__u32 seq1, __u32 seq2)
278 {
279         return (__s32)(seq1-seq2) < 0;
280 }
281 #define after(seq2, seq1) 	before(seq1, seq2)
282 
283 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)284 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
285 {
286 	return seq3 - seq2 >= seq1 - seq2;
287 }
288 
tcp_out_of_memory(struct sock * sk)289 static inline bool tcp_out_of_memory(struct sock *sk)
290 {
291 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
292 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
293 		return true;
294 	return false;
295 }
296 
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)297 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
298 {
299 	sk_wmem_queued_add(sk, -skb->truesize);
300 	if (!skb_zcopy_pure(skb))
301 		sk_mem_uncharge(sk, skb->truesize);
302 	else
303 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
304 	__kfree_skb(skb);
305 }
306 
307 void sk_forced_mem_schedule(struct sock *sk, int size);
308 
309 bool tcp_check_oom(struct sock *sk, int shift);
310 
311 
312 extern struct proto tcp_prot;
313 
314 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
316 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
317 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
318 
319 void tcp_tasklet_init(void);
320 
321 int tcp_v4_err(struct sk_buff *skb, u32);
322 
323 void tcp_shutdown(struct sock *sk, int how);
324 
325 int tcp_v4_early_demux(struct sk_buff *skb);
326 int tcp_v4_rcv(struct sk_buff *skb);
327 
328 void tcp_remove_empty_skb(struct sock *sk);
329 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
331 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
332 			 size_t size, struct ubuf_info *uarg);
333 void tcp_splice_eof(struct socket *sock);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 int tcp_wmem_schedule(struct sock *sk, int copy);
336 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
337 	      int size_goal);
338 void tcp_release_cb(struct sock *sk);
339 void tcp_wfree(struct sk_buff *skb);
340 void tcp_write_timer_handler(struct sock *sk);
341 void tcp_delack_timer_handler(struct sock *sk);
342 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
343 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_space_adjust(struct sock *sk);
346 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
347 void tcp_twsk_destructor(struct sock *sk);
348 void tcp_twsk_purge(struct list_head *net_exit_list);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 			struct pipe_inode_info *pipe, size_t len,
351 			unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
353 				     bool force_schedule);
354 
tcp_dec_quickack_mode(struct sock * sk)355 static inline void tcp_dec_quickack_mode(struct sock *sk)
356 {
357 	struct inet_connection_sock *icsk = inet_csk(sk);
358 
359 	if (icsk->icsk_ack.quick) {
360 		/* How many ACKs S/ACKing new data have we sent? */
361 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
362 
363 		if (pkts >= icsk->icsk_ack.quick) {
364 			icsk->icsk_ack.quick = 0;
365 			/* Leaving quickack mode we deflate ATO. */
366 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
367 		} else
368 			icsk->icsk_ack.quick -= pkts;
369 	}
370 }
371 
372 #define	TCP_ECN_OK		1
373 #define	TCP_ECN_QUEUE_CWR	2
374 #define	TCP_ECN_DEMAND_CWR	4
375 #define	TCP_ECN_SEEN		8
376 
377 enum tcp_tw_status {
378 	TCP_TW_SUCCESS = 0,
379 	TCP_TW_RST = 1,
380 	TCP_TW_ACK = 2,
381 	TCP_TW_SYN = 3
382 };
383 
384 
385 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
386 					      struct sk_buff *skb,
387 					      const struct tcphdr *th);
388 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
389 			   struct request_sock *req, bool fastopen,
390 			   bool *lost_race);
391 int tcp_child_process(struct sock *parent, struct sock *child,
392 		      struct sk_buff *skb);
393 void tcp_enter_loss(struct sock *sk);
394 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
395 void tcp_clear_retrans(struct tcp_sock *tp);
396 void tcp_update_metrics(struct sock *sk);
397 void tcp_init_metrics(struct sock *sk);
398 void tcp_metrics_init(void);
399 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
400 void __tcp_close(struct sock *sk, long timeout);
401 void tcp_close(struct sock *sk, long timeout);
402 void tcp_init_sock(struct sock *sk);
403 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
404 __poll_t tcp_poll(struct file *file, struct socket *sock,
405 		      struct poll_table_struct *wait);
406 int do_tcp_getsockopt(struct sock *sk, int level,
407 		      int optname, sockptr_t optval, sockptr_t optlen);
408 int tcp_getsockopt(struct sock *sk, int level, int optname,
409 		   char __user *optval, int __user *optlen);
410 bool tcp_bpf_bypass_getsockopt(int level, int optname);
411 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
412 		      sockptr_t optval, unsigned int optlen);
413 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
414 		   unsigned int optlen);
415 void tcp_set_keepalive(struct sock *sk, int val);
416 void tcp_syn_ack_timeout(const struct request_sock *req);
417 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
418 		int flags, int *addr_len);
419 int tcp_set_rcvlowat(struct sock *sk, int val);
420 int tcp_set_window_clamp(struct sock *sk, int val);
421 void tcp_update_recv_tstamps(struct sk_buff *skb,
422 			     struct scm_timestamping_internal *tss);
423 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
424 			struct scm_timestamping_internal *tss);
425 void tcp_data_ready(struct sock *sk);
426 #ifdef CONFIG_MMU
427 int tcp_mmap(struct file *file, struct socket *sock,
428 	     struct vm_area_struct *vma);
429 #endif
430 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
431 		       struct tcp_options_received *opt_rx,
432 		       int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434 
435 /*
436  *	BPF SKB-less helpers
437  */
438 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
439 			 struct tcphdr *th, u32 *cookie);
440 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
441 			 struct tcphdr *th, u32 *cookie);
442 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
443 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
444 			  const struct tcp_request_sock_ops *af_ops,
445 			  struct sock *sk, struct tcphdr *th);
446 /*
447  *	TCP v4 functions exported for the inet6 API
448  */
449 
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
453 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
454 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
455 struct sock *tcp_create_openreq_child(const struct sock *sk,
456 				      struct request_sock *req,
457 				      struct sk_buff *skb);
458 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
459 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
460 				  struct request_sock *req,
461 				  struct dst_entry *dst,
462 				  struct request_sock *req_unhash,
463 				  bool *own_req);
464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
465 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
466 int tcp_connect(struct sock *sk);
467 enum tcp_synack_type {
468 	TCP_SYNACK_NORMAL,
469 	TCP_SYNACK_FASTOPEN,
470 	TCP_SYNACK_COOKIE,
471 };
472 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
473 				struct request_sock *req,
474 				struct tcp_fastopen_cookie *foc,
475 				enum tcp_synack_type synack_type,
476 				struct sk_buff *syn_skb);
477 int tcp_disconnect(struct sock *sk, int flags);
478 
479 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
480 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
481 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
482 
483 /* From syncookies.c */
484 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
485 				 struct request_sock *req,
486 				 struct dst_entry *dst, u32 tsoff);
487 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
488 		      u32 cookie);
489 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
490 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
491 					    const struct tcp_request_sock_ops *af_ops,
492 					    struct sock *sk, struct sk_buff *skb);
493 #ifdef CONFIG_SYN_COOKIES
494 
495 /* Syncookies use a monotonic timer which increments every 60 seconds.
496  * This counter is used both as a hash input and partially encoded into
497  * the cookie value.  A cookie is only validated further if the delta
498  * between the current counter value and the encoded one is less than this,
499  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
500  * the counter advances immediately after a cookie is generated).
501  */
502 #define MAX_SYNCOOKIE_AGE	2
503 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
504 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
505 
506 /* syncookies: remember time of last synqueue overflow
507  * But do not dirty this field too often (once per second is enough)
508  * It is racy as we do not hold a lock, but race is very minor.
509  */
tcp_synq_overflow(const struct sock * sk)510 static inline void tcp_synq_overflow(const struct sock *sk)
511 {
512 	unsigned int last_overflow;
513 	unsigned int now = jiffies;
514 
515 	if (sk->sk_reuseport) {
516 		struct sock_reuseport *reuse;
517 
518 		reuse = rcu_dereference(sk->sk_reuseport_cb);
519 		if (likely(reuse)) {
520 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
521 			if (!time_between32(now, last_overflow,
522 					    last_overflow + HZ))
523 				WRITE_ONCE(reuse->synq_overflow_ts, now);
524 			return;
525 		}
526 	}
527 
528 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
529 	if (!time_between32(now, last_overflow, last_overflow + HZ))
530 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
531 }
532 
533 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)534 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
535 {
536 	unsigned int last_overflow;
537 	unsigned int now = jiffies;
538 
539 	if (sk->sk_reuseport) {
540 		struct sock_reuseport *reuse;
541 
542 		reuse = rcu_dereference(sk->sk_reuseport_cb);
543 		if (likely(reuse)) {
544 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
545 			return !time_between32(now, last_overflow - HZ,
546 					       last_overflow +
547 					       TCP_SYNCOOKIE_VALID);
548 		}
549 	}
550 
551 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
552 
553 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
554 	 * then we're under synflood. However, we have to use
555 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
556 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
557 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
558 	 * which could lead to rejecting a valid syncookie.
559 	 */
560 	return !time_between32(now, last_overflow - HZ,
561 			       last_overflow + TCP_SYNCOOKIE_VALID);
562 }
563 
tcp_cookie_time(void)564 static inline u32 tcp_cookie_time(void)
565 {
566 	u64 val = get_jiffies_64();
567 
568 	do_div(val, TCP_SYNCOOKIE_PERIOD);
569 	return val;
570 }
571 
572 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
573 			      u16 *mssp);
574 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
575 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
576 bool cookie_timestamp_decode(const struct net *net,
577 			     struct tcp_options_received *opt);
578 bool cookie_ecn_ok(const struct tcp_options_received *opt,
579 		   const struct net *net, const struct dst_entry *dst);
580 
581 /* From net/ipv6/syncookies.c */
582 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
583 		      u32 cookie);
584 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
585 
586 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
587 			      const struct tcphdr *th, u16 *mssp);
588 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
589 #endif
590 /* tcp_output.c */
591 
592 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
593 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
594 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
595 			       int nonagle);
596 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
598 void tcp_retransmit_timer(struct sock *sk);
599 void tcp_xmit_retransmit_queue(struct sock *);
600 void tcp_simple_retransmit(struct sock *);
601 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
602 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
603 enum tcp_queue {
604 	TCP_FRAG_IN_WRITE_QUEUE,
605 	TCP_FRAG_IN_RTX_QUEUE,
606 };
607 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
608 		 struct sk_buff *skb, u32 len,
609 		 unsigned int mss_now, gfp_t gfp);
610 
611 void tcp_send_probe0(struct sock *);
612 int tcp_write_wakeup(struct sock *, int mib);
613 void tcp_send_fin(struct sock *sk);
614 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
615 int tcp_send_synack(struct sock *);
616 void tcp_push_one(struct sock *, unsigned int mss_now);
617 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
618 void tcp_send_ack(struct sock *sk);
619 void tcp_send_delayed_ack(struct sock *sk);
620 void tcp_send_loss_probe(struct sock *sk);
621 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
622 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
623 			     const struct sk_buff *next_skb);
624 
625 /* tcp_input.c */
626 void tcp_rearm_rto(struct sock *sk);
627 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
628 void tcp_done_with_error(struct sock *sk, int err);
629 void tcp_reset(struct sock *sk, struct sk_buff *skb);
630 void tcp_fin(struct sock *sk);
631 void tcp_check_space(struct sock *sk);
632 void tcp_sack_compress_send_ack(struct sock *sk);
633 
tcp_cleanup_skb(struct sk_buff * skb)634 static inline void tcp_cleanup_skb(struct sk_buff *skb)
635 {
636 	skb_dst_drop(skb);
637 	secpath_reset(skb);
638 }
639 
tcp_add_receive_queue(struct sock * sk,struct sk_buff * skb)640 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
641 {
642 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
643 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
644 	__skb_queue_tail(&sk->sk_receive_queue, skb);
645 }
646 
647 /* tcp_timer.c */
648 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)649 static inline void tcp_clear_xmit_timers(struct sock *sk)
650 {
651 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
652 		__sock_put(sk);
653 
654 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
655 		__sock_put(sk);
656 
657 	inet_csk_clear_xmit_timers(sk);
658 }
659 
660 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
661 unsigned int tcp_current_mss(struct sock *sk);
662 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
663 
664 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)665 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
666 {
667 	int cutoff;
668 
669 	/* When peer uses tiny windows, there is no use in packetizing
670 	 * to sub-MSS pieces for the sake of SWS or making sure there
671 	 * are enough packets in the pipe for fast recovery.
672 	 *
673 	 * On the other hand, for extremely large MSS devices, handling
674 	 * smaller than MSS windows in this way does make sense.
675 	 */
676 	if (tp->max_window > TCP_MSS_DEFAULT)
677 		cutoff = (tp->max_window >> 1);
678 	else
679 		cutoff = tp->max_window;
680 
681 	if (cutoff && pktsize > cutoff)
682 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
683 	else
684 		return pktsize;
685 }
686 
687 /* tcp.c */
688 void tcp_get_info(struct sock *, struct tcp_info *);
689 
690 /* Read 'sendfile()'-style from a TCP socket */
691 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
692 		  sk_read_actor_t recv_actor);
693 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
694 			sk_read_actor_t recv_actor, bool noack,
695 			u32 *copied_seq);
696 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
697 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
698 void tcp_read_done(struct sock *sk, size_t len);
699 
700 void tcp_initialize_rcv_mss(struct sock *sk);
701 
702 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
703 int tcp_mss_to_mtu(struct sock *sk, int mss);
704 void tcp_mtup_init(struct sock *sk);
705 
tcp_bound_rto(const struct sock * sk)706 static inline void tcp_bound_rto(const struct sock *sk)
707 {
708 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
709 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
710 }
711 
__tcp_set_rto(const struct tcp_sock * tp)712 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
713 {
714 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
715 }
716 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)717 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
718 {
719 	/* mptcp hooks are only on the slow path */
720 	if (sk_is_mptcp((struct sock *)tp))
721 		return;
722 
723 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
724 			       ntohl(TCP_FLAG_ACK) |
725 			       snd_wnd);
726 }
727 
tcp_fast_path_on(struct tcp_sock * tp)728 static inline void tcp_fast_path_on(struct tcp_sock *tp)
729 {
730 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
731 }
732 
tcp_fast_path_check(struct sock * sk)733 static inline void tcp_fast_path_check(struct sock *sk)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 
737 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
738 	    tp->rcv_wnd &&
739 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
740 	    !tp->urg_data)
741 		tcp_fast_path_on(tp);
742 }
743 
744 u32 tcp_delack_max(const struct sock *sk);
745 
746 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)747 static inline u32 tcp_rto_min(struct sock *sk)
748 {
749 	const struct dst_entry *dst = __sk_dst_get(sk);
750 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
751 
752 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
753 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
754 	return rto_min;
755 }
756 
tcp_rto_min_us(struct sock * sk)757 static inline u32 tcp_rto_min_us(struct sock *sk)
758 {
759 	return jiffies_to_usecs(tcp_rto_min(sk));
760 }
761 
tcp_ca_dst_locked(const struct dst_entry * dst)762 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
763 {
764 	return dst_metric_locked(dst, RTAX_CC_ALGO);
765 }
766 
767 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)768 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
769 {
770 	return minmax_get(&tp->rtt_min);
771 }
772 
773 /* Compute the actual receive window we are currently advertising.
774  * Rcv_nxt can be after the window if our peer push more data
775  * than the offered window.
776  */
tcp_receive_window(const struct tcp_sock * tp)777 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
778 {
779 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
780 
781 	if (win < 0)
782 		win = 0;
783 	return (u32) win;
784 }
785 
786 /* Choose a new window, without checks for shrinking, and without
787  * scaling applied to the result.  The caller does these things
788  * if necessary.  This is a "raw" window selection.
789  */
790 u32 __tcp_select_window(struct sock *sk);
791 
792 void tcp_send_window_probe(struct sock *sk);
793 
794 /* TCP uses 32bit jiffies to save some space.
795  * Note that this is different from tcp_time_stamp, which
796  * historically has been the same until linux-4.13.
797  */
798 #define tcp_jiffies32 ((u32)jiffies)
799 
800 /*
801  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
802  * It is no longer tied to jiffies, but to 1 ms clock.
803  * Note: double check if you want to use tcp_jiffies32 instead of this.
804  */
805 #define TCP_TS_HZ	1000
806 
tcp_clock_ns(void)807 static inline u64 tcp_clock_ns(void)
808 {
809 	return ktime_get_ns();
810 }
811 
tcp_clock_us(void)812 static inline u64 tcp_clock_us(void)
813 {
814 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
815 }
816 
817 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)818 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
819 {
820 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
821 }
822 
823 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)824 static inline u64 tcp_ns_to_ts(u64 ns)
825 {
826 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
827 }
828 
829 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)830 static inline u32 tcp_time_stamp_raw(void)
831 {
832 	return tcp_ns_to_ts(tcp_clock_ns());
833 }
834 
835 void tcp_mstamp_refresh(struct tcp_sock *tp);
836 
tcp_stamp_us_delta(u64 t1,u64 t0)837 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
838 {
839 	return max_t(s64, t1 - t0, 0);
840 }
841 
tcp_skb_timestamp(const struct sk_buff * skb)842 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
843 {
844 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
845 }
846 
847 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)848 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
849 {
850 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
851 }
852 
853 
854 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
855 
856 #define TCPHDR_FIN 0x01
857 #define TCPHDR_SYN 0x02
858 #define TCPHDR_RST 0x04
859 #define TCPHDR_PSH 0x08
860 #define TCPHDR_ACK 0x10
861 #define TCPHDR_URG 0x20
862 #define TCPHDR_ECE 0x40
863 #define TCPHDR_CWR 0x80
864 
865 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
866 
867 /* This is what the send packet queuing engine uses to pass
868  * TCP per-packet control information to the transmission code.
869  * We also store the host-order sequence numbers in here too.
870  * This is 44 bytes if IPV6 is enabled.
871  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
872  */
873 struct tcp_skb_cb {
874 	__u32		seq;		/* Starting sequence number	*/
875 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
876 	union {
877 		/* Note : tcp_tw_isn is used in input path only
878 		 *	  (isn chosen by tcp_timewait_state_process())
879 		 *
880 		 * 	  tcp_gso_segs/size are used in write queue only,
881 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
882 		 */
883 		__u32		tcp_tw_isn;
884 		struct {
885 			u16	tcp_gso_segs;
886 			u16	tcp_gso_size;
887 		};
888 	};
889 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
890 
891 	__u8		sacked;		/* State flags for SACK.	*/
892 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
893 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
894 #define TCPCB_LOST		0x04	/* SKB is lost			*/
895 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
896 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
897 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
898 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
899 				TCPCB_REPAIRED)
900 
901 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
902 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
903 			eor:1,		/* Is skb MSG_EOR marked? */
904 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
905 			unused:5;
906 	__u32		ack_seq;	/* Sequence number ACK'd	*/
907 	union {
908 		struct {
909 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
910 			/* There is space for up to 24 bytes */
911 			__u32 is_app_limited:1, /* cwnd not fully used? */
912 			      delivered_ce:20,
913 			      unused:11;
914 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
915 			__u32 delivered;
916 			/* start of send pipeline phase */
917 			u64 first_tx_mstamp;
918 			/* when we reached the "delivered" count */
919 			u64 delivered_mstamp;
920 		} tx;   /* only used for outgoing skbs */
921 		union {
922 			struct inet_skb_parm	h4;
923 #if IS_ENABLED(CONFIG_IPV6)
924 			struct inet6_skb_parm	h6;
925 #endif
926 		} header;	/* For incoming skbs */
927 	};
928 };
929 
930 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
931 
932 extern const struct inet_connection_sock_af_ops ipv4_specific;
933 
934 #if IS_ENABLED(CONFIG_IPV6)
935 /* This is the variant of inet6_iif() that must be used by TCP,
936  * as TCP moves IP6CB into a different location in skb->cb[]
937  */
tcp_v6_iif(const struct sk_buff * skb)938 static inline int tcp_v6_iif(const struct sk_buff *skb)
939 {
940 	return TCP_SKB_CB(skb)->header.h6.iif;
941 }
942 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)943 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
944 {
945 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
946 
947 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
948 }
949 
950 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)951 static inline int tcp_v6_sdif(const struct sk_buff *skb)
952 {
953 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
954 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
955 		return TCP_SKB_CB(skb)->header.h6.iif;
956 #endif
957 	return 0;
958 }
959 
960 extern const struct inet_connection_sock_af_ops ipv6_specific;
961 
962 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
963 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
964 void tcp_v6_early_demux(struct sk_buff *skb);
965 
966 #endif
967 
968 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)969 static inline int tcp_v4_sdif(struct sk_buff *skb)
970 {
971 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
972 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
973 		return TCP_SKB_CB(skb)->header.h4.iif;
974 #endif
975 	return 0;
976 }
977 
978 /* Due to TSO, an SKB can be composed of multiple actual
979  * packets.  To keep these tracked properly, we use this.
980  */
tcp_skb_pcount(const struct sk_buff * skb)981 static inline int tcp_skb_pcount(const struct sk_buff *skb)
982 {
983 	return TCP_SKB_CB(skb)->tcp_gso_segs;
984 }
985 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)986 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
987 {
988 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
989 }
990 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)991 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
992 {
993 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
994 }
995 
996 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)997 static inline int tcp_skb_mss(const struct sk_buff *skb)
998 {
999 	return TCP_SKB_CB(skb)->tcp_gso_size;
1000 }
1001 
tcp_skb_can_collapse_to(const struct sk_buff * skb)1002 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1003 {
1004 	return likely(!TCP_SKB_CB(skb)->eor);
1005 }
1006 
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)1007 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1008 					const struct sk_buff *from)
1009 {
1010 	return likely(tcp_skb_can_collapse_to(to) &&
1011 		      mptcp_skb_can_collapse(to, from) &&
1012 		      skb_pure_zcopy_same(to, from));
1013 }
1014 
1015 /* Events passed to congestion control interface */
1016 enum tcp_ca_event {
1017 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1018 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1019 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1020 	CA_EVENT_LOSS,		/* loss timeout */
1021 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1022 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1023 };
1024 
1025 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1026 enum tcp_ca_ack_event_flags {
1027 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1028 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1029 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1030 };
1031 
1032 /*
1033  * Interface for adding new TCP congestion control handlers
1034  */
1035 #define TCP_CA_NAME_MAX	16
1036 #define TCP_CA_MAX	128
1037 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1038 
1039 #define TCP_CA_UNSPEC	0
1040 
1041 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1042 #define TCP_CONG_NON_RESTRICTED 0x1
1043 /* Requires ECN/ECT set on all packets */
1044 #define TCP_CONG_NEEDS_ECN	0x2
1045 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1046 
1047 union tcp_cc_info;
1048 
1049 struct ack_sample {
1050 	u32 pkts_acked;
1051 	s32 rtt_us;
1052 	u32 in_flight;
1053 };
1054 
1055 /* A rate sample measures the number of (original/retransmitted) data
1056  * packets delivered "delivered" over an interval of time "interval_us".
1057  * The tcp_rate.c code fills in the rate sample, and congestion
1058  * control modules that define a cong_control function to run at the end
1059  * of ACK processing can optionally chose to consult this sample when
1060  * setting cwnd and pacing rate.
1061  * A sample is invalid if "delivered" or "interval_us" is negative.
1062  */
1063 struct rate_sample {
1064 	u64  prior_mstamp; /* starting timestamp for interval */
1065 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1066 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1067 	s32  delivered;		/* number of packets delivered over interval */
1068 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1069 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1070 	u32 snd_interval_us;	/* snd interval for delivered packets */
1071 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1072 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1073 	int  losses;		/* number of packets marked lost upon ACK */
1074 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1075 	u32  prior_in_flight;	/* in flight before this ACK */
1076 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1077 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1078 	bool is_retrans;	/* is sample from retransmission? */
1079 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1080 };
1081 
1082 struct tcp_congestion_ops {
1083 /* fast path fields are put first to fill one cache line */
1084 
1085 	/* return slow start threshold (required) */
1086 	u32 (*ssthresh)(struct sock *sk);
1087 
1088 	/* do new cwnd calculation (required) */
1089 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1090 
1091 	/* call before changing ca_state (optional) */
1092 	void (*set_state)(struct sock *sk, u8 new_state);
1093 
1094 	/* call when cwnd event occurs (optional) */
1095 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1096 
1097 	/* call when ack arrives (optional) */
1098 	void (*in_ack_event)(struct sock *sk, u32 flags);
1099 
1100 	/* hook for packet ack accounting (optional) */
1101 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1102 
1103 	/* override sysctl_tcp_min_tso_segs */
1104 	u32 (*min_tso_segs)(struct sock *sk);
1105 
1106 	/* call when packets are delivered to update cwnd and pacing rate,
1107 	 * after all the ca_state processing. (optional)
1108 	 */
1109 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1110 
1111 
1112 	/* new value of cwnd after loss (required) */
1113 	u32  (*undo_cwnd)(struct sock *sk);
1114 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1115 	u32 (*sndbuf_expand)(struct sock *sk);
1116 
1117 /* control/slow paths put last */
1118 	/* get info for inet_diag (optional) */
1119 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1120 			   union tcp_cc_info *info);
1121 
1122 	char 			name[TCP_CA_NAME_MAX];
1123 	struct module		*owner;
1124 	struct list_head	list;
1125 	u32			key;
1126 	u32			flags;
1127 
1128 	/* initialize private data (optional) */
1129 	void (*init)(struct sock *sk);
1130 	/* cleanup private data  (optional) */
1131 	void (*release)(struct sock *sk);
1132 } ____cacheline_aligned_in_smp;
1133 
1134 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1135 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1136 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1137 				  struct tcp_congestion_ops *old_type);
1138 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1139 
1140 void tcp_assign_congestion_control(struct sock *sk);
1141 void tcp_init_congestion_control(struct sock *sk);
1142 void tcp_cleanup_congestion_control(struct sock *sk);
1143 int tcp_set_default_congestion_control(struct net *net, const char *name);
1144 void tcp_get_default_congestion_control(struct net *net, char *name);
1145 void tcp_get_available_congestion_control(char *buf, size_t len);
1146 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1147 int tcp_set_allowed_congestion_control(char *allowed);
1148 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1149 			       bool cap_net_admin);
1150 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1151 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1152 
1153 u32 tcp_reno_ssthresh(struct sock *sk);
1154 u32 tcp_reno_undo_cwnd(struct sock *sk);
1155 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1156 extern struct tcp_congestion_ops tcp_reno;
1157 
1158 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1159 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1160 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1161 #ifdef CONFIG_INET
1162 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1163 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1164 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1165 {
1166 	return NULL;
1167 }
1168 #endif
1169 
tcp_ca_needs_ecn(const struct sock * sk)1170 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1171 {
1172 	const struct inet_connection_sock *icsk = inet_csk(sk);
1173 
1174 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1175 }
1176 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1177 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1178 {
1179 	const struct inet_connection_sock *icsk = inet_csk(sk);
1180 
1181 	if (icsk->icsk_ca_ops->cwnd_event)
1182 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1183 }
1184 
1185 /* From tcp_cong.c */
1186 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1187 
1188 /* From tcp_rate.c */
1189 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1190 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1191 			    struct rate_sample *rs);
1192 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1193 		  bool is_sack_reneg, struct rate_sample *rs);
1194 void tcp_rate_check_app_limited(struct sock *sk);
1195 
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1196 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1197 {
1198 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1199 }
1200 
1201 /* These functions determine how the current flow behaves in respect of SACK
1202  * handling. SACK is negotiated with the peer, and therefore it can vary
1203  * between different flows.
1204  *
1205  * tcp_is_sack - SACK enabled
1206  * tcp_is_reno - No SACK
1207  */
tcp_is_sack(const struct tcp_sock * tp)1208 static inline int tcp_is_sack(const struct tcp_sock *tp)
1209 {
1210 	return likely(tp->rx_opt.sack_ok);
1211 }
1212 
tcp_is_reno(const struct tcp_sock * tp)1213 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1214 {
1215 	return !tcp_is_sack(tp);
1216 }
1217 
tcp_left_out(const struct tcp_sock * tp)1218 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1219 {
1220 	return tp->sacked_out + tp->lost_out;
1221 }
1222 
1223 /* This determines how many packets are "in the network" to the best
1224  * of our knowledge.  In many cases it is conservative, but where
1225  * detailed information is available from the receiver (via SACK
1226  * blocks etc.) we can make more aggressive calculations.
1227  *
1228  * Use this for decisions involving congestion control, use just
1229  * tp->packets_out to determine if the send queue is empty or not.
1230  *
1231  * Read this equation as:
1232  *
1233  *	"Packets sent once on transmission queue" MINUS
1234  *	"Packets left network, but not honestly ACKed yet" PLUS
1235  *	"Packets fast retransmitted"
1236  */
tcp_packets_in_flight(const struct tcp_sock * tp)1237 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1238 {
1239 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1240 }
1241 
1242 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1243 
tcp_snd_cwnd(const struct tcp_sock * tp)1244 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1245 {
1246 	return tp->snd_cwnd;
1247 }
1248 
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1249 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1250 {
1251 	WARN_ON_ONCE((int)val <= 0);
1252 	tp->snd_cwnd = val;
1253 }
1254 
tcp_in_slow_start(const struct tcp_sock * tp)1255 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1256 {
1257 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1258 }
1259 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1260 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1261 {
1262 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1263 }
1264 
tcp_in_cwnd_reduction(const struct sock * sk)1265 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1266 {
1267 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1268 	       (1 << inet_csk(sk)->icsk_ca_state);
1269 }
1270 
1271 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1272  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1273  * ssthresh.
1274  */
tcp_current_ssthresh(const struct sock * sk)1275 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1276 {
1277 	const struct tcp_sock *tp = tcp_sk(sk);
1278 
1279 	if (tcp_in_cwnd_reduction(sk))
1280 		return tp->snd_ssthresh;
1281 	else
1282 		return max(tp->snd_ssthresh,
1283 			   ((tcp_snd_cwnd(tp) >> 1) +
1284 			    (tcp_snd_cwnd(tp) >> 2)));
1285 }
1286 
1287 /* Use define here intentionally to get WARN_ON location shown at the caller */
1288 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1289 
1290 void tcp_enter_cwr(struct sock *sk);
1291 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1292 
1293 /* The maximum number of MSS of available cwnd for which TSO defers
1294  * sending if not using sysctl_tcp_tso_win_divisor.
1295  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1296 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1297 {
1298 	return 3;
1299 }
1300 
1301 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1302 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1303 {
1304 	return tp->snd_una + tp->snd_wnd;
1305 }
1306 
1307 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1308  * flexible approach. The RFC suggests cwnd should not be raised unless
1309  * it was fully used previously. And that's exactly what we do in
1310  * congestion avoidance mode. But in slow start we allow cwnd to grow
1311  * as long as the application has used half the cwnd.
1312  * Example :
1313  *    cwnd is 10 (IW10), but application sends 9 frames.
1314  *    We allow cwnd to reach 18 when all frames are ACKed.
1315  * This check is safe because it's as aggressive as slow start which already
1316  * risks 100% overshoot. The advantage is that we discourage application to
1317  * either send more filler packets or data to artificially blow up the cwnd
1318  * usage, and allow application-limited process to probe bw more aggressively.
1319  */
tcp_is_cwnd_limited(const struct sock * sk)1320 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1321 {
1322 	const struct tcp_sock *tp = tcp_sk(sk);
1323 
1324 	if (tp->is_cwnd_limited)
1325 		return true;
1326 
1327 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1328 	if (tcp_in_slow_start(tp))
1329 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1330 
1331 	return false;
1332 }
1333 
1334 /* BBR congestion control needs pacing.
1335  * Same remark for SO_MAX_PACING_RATE.
1336  * sch_fq packet scheduler is efficiently handling pacing,
1337  * but is not always installed/used.
1338  * Return true if TCP stack should pace packets itself.
1339  */
tcp_needs_internal_pacing(const struct sock * sk)1340 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1341 {
1342 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1343 }
1344 
1345 /* Estimates in how many jiffies next packet for this flow can be sent.
1346  * Scheduling a retransmit timer too early would be silly.
1347  */
tcp_pacing_delay(const struct sock * sk)1348 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1349 {
1350 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1351 
1352 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1353 }
1354 
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1355 static inline void tcp_reset_xmit_timer(struct sock *sk,
1356 					const int what,
1357 					unsigned long when,
1358 					const unsigned long max_when)
1359 {
1360 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1361 				  max_when);
1362 }
1363 
1364 /* Something is really bad, we could not queue an additional packet,
1365  * because qdisc is full or receiver sent a 0 window, or we are paced.
1366  * We do not want to add fuel to the fire, or abort too early,
1367  * so make sure the timer we arm now is at least 200ms in the future,
1368  * regardless of current icsk_rto value (as it could be ~2ms)
1369  */
tcp_probe0_base(const struct sock * sk)1370 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1371 {
1372 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1373 }
1374 
1375 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1376 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1377 					    unsigned long max_when)
1378 {
1379 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1380 			   inet_csk(sk)->icsk_backoff);
1381 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1382 
1383 	return (unsigned long)min_t(u64, when, max_when);
1384 }
1385 
tcp_check_probe_timer(struct sock * sk)1386 static inline void tcp_check_probe_timer(struct sock *sk)
1387 {
1388 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1389 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1390 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1391 }
1392 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1393 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1394 {
1395 	tp->snd_wl1 = seq;
1396 }
1397 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1398 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1399 {
1400 	tp->snd_wl1 = seq;
1401 }
1402 
1403 /*
1404  * Calculate(/check) TCP checksum
1405  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1406 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1407 				   __be32 daddr, __wsum base)
1408 {
1409 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1410 }
1411 
tcp_checksum_complete(struct sk_buff * skb)1412 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1413 {
1414 	return !skb_csum_unnecessary(skb) &&
1415 		__skb_checksum_complete(skb);
1416 }
1417 
1418 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1419 		     enum skb_drop_reason *reason);
1420 
1421 
1422 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1423 void tcp_set_state(struct sock *sk, int state);
1424 void tcp_done(struct sock *sk);
1425 int tcp_abort(struct sock *sk, int err);
1426 
tcp_sack_reset(struct tcp_options_received * rx_opt)1427 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1428 {
1429 	rx_opt->dsack = 0;
1430 	rx_opt->num_sacks = 0;
1431 }
1432 
1433 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1434 
tcp_slow_start_after_idle_check(struct sock * sk)1435 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1436 {
1437 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 	s32 delta;
1440 
1441 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1442 	    tp->packets_out || ca_ops->cong_control)
1443 		return;
1444 	delta = tcp_jiffies32 - tp->lsndtime;
1445 	if (delta > inet_csk(sk)->icsk_rto)
1446 		tcp_cwnd_restart(sk, delta);
1447 }
1448 
1449 /* Determine a window scaling and initial window to offer. */
1450 void tcp_select_initial_window(const struct sock *sk, int __space,
1451 			       __u32 mss, __u32 *rcv_wnd,
1452 			       __u32 *window_clamp, int wscale_ok,
1453 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1454 
__tcp_win_from_space(u8 scaling_ratio,int space)1455 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1456 {
1457 	s64 scaled_space = (s64)space * scaling_ratio;
1458 
1459 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1460 }
1461 
tcp_win_from_space(const struct sock * sk,int space)1462 static inline int tcp_win_from_space(const struct sock *sk, int space)
1463 {
1464 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1465 }
1466 
1467 /* inverse of __tcp_win_from_space() */
__tcp_space_from_win(u8 scaling_ratio,int win)1468 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1469 {
1470 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1471 
1472 	do_div(val, scaling_ratio);
1473 	return val;
1474 }
1475 
tcp_space_from_win(const struct sock * sk,int win)1476 static inline int tcp_space_from_win(const struct sock *sk, int win)
1477 {
1478 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1479 }
1480 
1481 /* Assume a 50% default for skb->len/skb->truesize ratio.
1482  * This may be adjusted later in tcp_measure_rcv_mss().
1483  */
1484 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1485 
tcp_scaling_ratio_init(struct sock * sk)1486 static inline void tcp_scaling_ratio_init(struct sock *sk)
1487 {
1488 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1489 }
1490 
1491 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1492 static inline int tcp_space(const struct sock *sk)
1493 {
1494 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1495 				  READ_ONCE(sk->sk_backlog.len) -
1496 				  atomic_read(&sk->sk_rmem_alloc));
1497 }
1498 
tcp_full_space(const struct sock * sk)1499 static inline int tcp_full_space(const struct sock *sk)
1500 {
1501 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1502 }
1503 
__tcp_adjust_rcv_ssthresh(struct sock * sk,u32 new_ssthresh)1504 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1505 {
1506 	int unused_mem = sk_unused_reserved_mem(sk);
1507 	struct tcp_sock *tp = tcp_sk(sk);
1508 
1509 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1510 	if (unused_mem)
1511 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1512 					 tcp_win_from_space(sk, unused_mem));
1513 }
1514 
tcp_adjust_rcv_ssthresh(struct sock * sk)1515 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1516 {
1517 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1518 }
1519 
1520 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1521 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1522 
1523 
1524 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1525  * If 87.5 % (7/8) of the space has been consumed, we want to override
1526  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1527  * len/truesize ratio.
1528  */
tcp_rmem_pressure(const struct sock * sk)1529 static inline bool tcp_rmem_pressure(const struct sock *sk)
1530 {
1531 	int rcvbuf, threshold;
1532 
1533 	if (tcp_under_memory_pressure(sk))
1534 		return true;
1535 
1536 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1537 	threshold = rcvbuf - (rcvbuf >> 3);
1538 
1539 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1540 }
1541 
tcp_epollin_ready(const struct sock * sk,int target)1542 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1543 {
1544 	const struct tcp_sock *tp = tcp_sk(sk);
1545 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1546 
1547 	if (avail <= 0)
1548 		return false;
1549 
1550 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1551 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1552 }
1553 
1554 extern void tcp_openreq_init_rwin(struct request_sock *req,
1555 				  const struct sock *sk_listener,
1556 				  const struct dst_entry *dst);
1557 
1558 void tcp_enter_memory_pressure(struct sock *sk);
1559 void tcp_leave_memory_pressure(struct sock *sk);
1560 
keepalive_intvl_when(const struct tcp_sock * tp)1561 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1562 {
1563 	struct net *net = sock_net((struct sock *)tp);
1564 	int val;
1565 
1566 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1567 	 * and do_tcp_setsockopt().
1568 	 */
1569 	val = READ_ONCE(tp->keepalive_intvl);
1570 
1571 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1572 }
1573 
keepalive_time_when(const struct tcp_sock * tp)1574 static inline int keepalive_time_when(const struct tcp_sock *tp)
1575 {
1576 	struct net *net = sock_net((struct sock *)tp);
1577 	int val;
1578 
1579 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1580 	val = READ_ONCE(tp->keepalive_time);
1581 
1582 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1583 }
1584 
keepalive_probes(const struct tcp_sock * tp)1585 static inline int keepalive_probes(const struct tcp_sock *tp)
1586 {
1587 	struct net *net = sock_net((struct sock *)tp);
1588 	int val;
1589 
1590 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1591 	 * and do_tcp_setsockopt().
1592 	 */
1593 	val = READ_ONCE(tp->keepalive_probes);
1594 
1595 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1596 }
1597 
keepalive_time_elapsed(const struct tcp_sock * tp)1598 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1599 {
1600 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1601 
1602 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1603 			  tcp_jiffies32 - tp->rcv_tstamp);
1604 }
1605 
tcp_fin_time(const struct sock * sk)1606 static inline int tcp_fin_time(const struct sock *sk)
1607 {
1608 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1609 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1610 	const int rto = inet_csk(sk)->icsk_rto;
1611 
1612 	if (fin_timeout < (rto << 2) - (rto >> 1))
1613 		fin_timeout = (rto << 2) - (rto >> 1);
1614 
1615 	return fin_timeout;
1616 }
1617 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1618 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1619 				  int paws_win)
1620 {
1621 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1622 		return true;
1623 	if (unlikely(!time_before32(ktime_get_seconds(),
1624 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1625 		return true;
1626 	/*
1627 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1628 	 * then following tcp messages have valid values. Ignore 0 value,
1629 	 * or else 'negative' tsval might forbid us to accept their packets.
1630 	 */
1631 	if (!rx_opt->ts_recent)
1632 		return true;
1633 	return false;
1634 }
1635 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1636 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1637 				   int rst)
1638 {
1639 	if (tcp_paws_check(rx_opt, 0))
1640 		return false;
1641 
1642 	/* RST segments are not recommended to carry timestamp,
1643 	   and, if they do, it is recommended to ignore PAWS because
1644 	   "their cleanup function should take precedence over timestamps."
1645 	   Certainly, it is mistake. It is necessary to understand the reasons
1646 	   of this constraint to relax it: if peer reboots, clock may go
1647 	   out-of-sync and half-open connections will not be reset.
1648 	   Actually, the problem would be not existing if all
1649 	   the implementations followed draft about maintaining clock
1650 	   via reboots. Linux-2.2 DOES NOT!
1651 
1652 	   However, we can relax time bounds for RST segments to MSL.
1653 	 */
1654 	if (rst && !time_before32(ktime_get_seconds(),
1655 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1656 		return false;
1657 	return true;
1658 }
1659 
1660 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1661 			  int mib_idx, u32 *last_oow_ack_time);
1662 
tcp_mib_init(struct net * net)1663 static inline void tcp_mib_init(struct net *net)
1664 {
1665 	/* See RFC 2012 */
1666 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1667 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1668 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1669 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1670 }
1671 
1672 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1673 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1674 {
1675 	tp->lost_skb_hint = NULL;
1676 }
1677 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1678 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1679 {
1680 	tcp_clear_retrans_hints_partial(tp);
1681 	tp->retransmit_skb_hint = NULL;
1682 }
1683 
1684 union tcp_md5_addr {
1685 	struct in_addr  a4;
1686 #if IS_ENABLED(CONFIG_IPV6)
1687 	struct in6_addr	a6;
1688 #endif
1689 };
1690 
1691 /* - key database */
1692 struct tcp_md5sig_key {
1693 	struct hlist_node	node;
1694 	u8			keylen;
1695 	u8			family; /* AF_INET or AF_INET6 */
1696 	u8			prefixlen;
1697 	u8			flags;
1698 	union tcp_md5_addr	addr;
1699 	int			l3index; /* set if key added with L3 scope */
1700 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1701 	struct rcu_head		rcu;
1702 };
1703 
1704 /* - sock block */
1705 struct tcp_md5sig_info {
1706 	struct hlist_head	head;
1707 	struct rcu_head		rcu;
1708 };
1709 
1710 /* - pseudo header */
1711 struct tcp4_pseudohdr {
1712 	__be32		saddr;
1713 	__be32		daddr;
1714 	__u8		pad;
1715 	__u8		protocol;
1716 	__be16		len;
1717 };
1718 
1719 struct tcp6_pseudohdr {
1720 	struct in6_addr	saddr;
1721 	struct in6_addr daddr;
1722 	__be32		len;
1723 	__be32		protocol;	/* including padding */
1724 };
1725 
1726 union tcp_md5sum_block {
1727 	struct tcp4_pseudohdr ip4;
1728 #if IS_ENABLED(CONFIG_IPV6)
1729 	struct tcp6_pseudohdr ip6;
1730 #endif
1731 };
1732 
1733 /* - pool: digest algorithm, hash description and scratch buffer */
1734 struct tcp_md5sig_pool {
1735 	struct ahash_request	*md5_req;
1736 	void			*scratch;
1737 };
1738 
1739 /* - functions */
1740 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1741 			const struct sock *sk, const struct sk_buff *skb);
1742 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1743 		   int family, u8 prefixlen, int l3index, u8 flags,
1744 		   const u8 *newkey, u8 newkeylen);
1745 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1746 		     int family, u8 prefixlen, int l3index,
1747 		     struct tcp_md5sig_key *key);
1748 
1749 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1750 		   int family, u8 prefixlen, int l3index, u8 flags);
1751 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1752 					 const struct sock *addr_sk);
1753 
1754 #ifdef CONFIG_TCP_MD5SIG
1755 #include <linux/jump_label.h>
1756 extern struct static_key_false_deferred tcp_md5_needed;
1757 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1758 					   const union tcp_md5_addr *addr,
1759 					   int family);
1760 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1761 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1762 		  const union tcp_md5_addr *addr, int family)
1763 {
1764 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1765 		return NULL;
1766 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1767 }
1768 
1769 enum skb_drop_reason
1770 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1771 		     const void *saddr, const void *daddr,
1772 		     int family, int dif, int sdif);
1773 
1774 
1775 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1776 #else
1777 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1778 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1779 		  const union tcp_md5_addr *addr, int family)
1780 {
1781 	return NULL;
1782 }
1783 
1784 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)1785 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1786 		     const void *saddr, const void *daddr,
1787 		     int family, int dif, int sdif)
1788 {
1789 	return SKB_NOT_DROPPED_YET;
1790 }
1791 #define tcp_twsk_md5_key(twsk)	NULL
1792 #endif
1793 
1794 bool tcp_alloc_md5sig_pool(void);
1795 
1796 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1797 static inline void tcp_put_md5sig_pool(void)
1798 {
1799 	local_bh_enable();
1800 }
1801 
1802 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1803 			  unsigned int header_len);
1804 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1805 		     const struct tcp_md5sig_key *key);
1806 
1807 /* From tcp_fastopen.c */
1808 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1809 			    struct tcp_fastopen_cookie *cookie);
1810 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1811 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1812 			    u16 try_exp);
1813 struct tcp_fastopen_request {
1814 	/* Fast Open cookie. Size 0 means a cookie request */
1815 	struct tcp_fastopen_cookie	cookie;
1816 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1817 	size_t				size;
1818 	int				copied;	/* queued in tcp_connect() */
1819 	struct ubuf_info		*uarg;
1820 };
1821 void tcp_free_fastopen_req(struct tcp_sock *tp);
1822 void tcp_fastopen_destroy_cipher(struct sock *sk);
1823 void tcp_fastopen_ctx_destroy(struct net *net);
1824 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1825 			      void *primary_key, void *backup_key);
1826 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1827 			    u64 *key);
1828 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1829 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1830 			      struct request_sock *req,
1831 			      struct tcp_fastopen_cookie *foc,
1832 			      const struct dst_entry *dst);
1833 void tcp_fastopen_init_key_once(struct net *net);
1834 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1835 			     struct tcp_fastopen_cookie *cookie);
1836 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1837 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1838 #define TCP_FASTOPEN_KEY_MAX 2
1839 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1840 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1841 
1842 /* Fastopen key context */
1843 struct tcp_fastopen_context {
1844 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1845 	int		num;
1846 	struct rcu_head	rcu;
1847 };
1848 
1849 void tcp_fastopen_active_disable(struct sock *sk);
1850 bool tcp_fastopen_active_should_disable(struct sock *sk);
1851 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1852 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1853 
1854 /* Caller needs to wrap with rcu_read_(un)lock() */
1855 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1856 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1857 {
1858 	struct tcp_fastopen_context *ctx;
1859 
1860 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1861 	if (!ctx)
1862 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1863 	return ctx;
1864 }
1865 
1866 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1867 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1868 			       const struct tcp_fastopen_cookie *orig)
1869 {
1870 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1871 	    orig->len == foc->len &&
1872 	    !memcmp(orig->val, foc->val, foc->len))
1873 		return true;
1874 	return false;
1875 }
1876 
1877 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1878 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1879 {
1880 	return ctx->num;
1881 }
1882 
1883 /* Latencies incurred by various limits for a sender. They are
1884  * chronograph-like stats that are mutually exclusive.
1885  */
1886 enum tcp_chrono {
1887 	TCP_CHRONO_UNSPEC,
1888 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1889 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1890 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1891 	__TCP_CHRONO_MAX,
1892 };
1893 
1894 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1895 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1896 
1897 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1898  * the same memory storage than skb->destructor/_skb_refdst
1899  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1900 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1901 {
1902 	skb->destructor = NULL;
1903 	skb->_skb_refdst = 0UL;
1904 }
1905 
1906 #define tcp_skb_tsorted_save(skb) {		\
1907 	unsigned long _save = skb->_skb_refdst;	\
1908 	skb->_skb_refdst = 0UL;
1909 
1910 #define tcp_skb_tsorted_restore(skb)		\
1911 	skb->_skb_refdst = _save;		\
1912 }
1913 
1914 void tcp_write_queue_purge(struct sock *sk);
1915 
tcp_rtx_queue_head(const struct sock * sk)1916 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1917 {
1918 	return skb_rb_first(&sk->tcp_rtx_queue);
1919 }
1920 
tcp_rtx_queue_tail(const struct sock * sk)1921 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1922 {
1923 	return skb_rb_last(&sk->tcp_rtx_queue);
1924 }
1925 
tcp_write_queue_tail(const struct sock * sk)1926 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1927 {
1928 	return skb_peek_tail(&sk->sk_write_queue);
1929 }
1930 
1931 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1932 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1933 
tcp_send_head(const struct sock * sk)1934 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1935 {
1936 	return skb_peek(&sk->sk_write_queue);
1937 }
1938 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1939 static inline bool tcp_skb_is_last(const struct sock *sk,
1940 				   const struct sk_buff *skb)
1941 {
1942 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1943 }
1944 
1945 /**
1946  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1947  * @sk: socket
1948  *
1949  * Since the write queue can have a temporary empty skb in it,
1950  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1951  */
tcp_write_queue_empty(const struct sock * sk)1952 static inline bool tcp_write_queue_empty(const struct sock *sk)
1953 {
1954 	const struct tcp_sock *tp = tcp_sk(sk);
1955 
1956 	return tp->write_seq == tp->snd_nxt;
1957 }
1958 
tcp_rtx_queue_empty(const struct sock * sk)1959 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1960 {
1961 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1962 }
1963 
tcp_rtx_and_write_queues_empty(const struct sock * sk)1964 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1965 {
1966 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1967 }
1968 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1969 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1970 {
1971 	__skb_queue_tail(&sk->sk_write_queue, skb);
1972 
1973 	/* Queue it, remembering where we must start sending. */
1974 	if (sk->sk_write_queue.next == skb)
1975 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1976 }
1977 
1978 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1979 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1980 						  struct sk_buff *skb,
1981 						  struct sock *sk)
1982 {
1983 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1984 }
1985 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1986 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1987 {
1988 	tcp_skb_tsorted_anchor_cleanup(skb);
1989 	__skb_unlink(skb, &sk->sk_write_queue);
1990 }
1991 
1992 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1993 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1994 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1995 {
1996 	tcp_skb_tsorted_anchor_cleanup(skb);
1997 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1998 }
1999 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)2000 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2001 {
2002 	list_del(&skb->tcp_tsorted_anchor);
2003 	tcp_rtx_queue_unlink(skb, sk);
2004 	tcp_wmem_free_skb(sk, skb);
2005 }
2006 
tcp_push_pending_frames(struct sock * sk)2007 static inline void tcp_push_pending_frames(struct sock *sk)
2008 {
2009 	if (tcp_send_head(sk)) {
2010 		struct tcp_sock *tp = tcp_sk(sk);
2011 
2012 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2013 	}
2014 }
2015 
2016 /* Start sequence of the skb just after the highest skb with SACKed
2017  * bit, valid only if sacked_out > 0 or when the caller has ensured
2018  * validity by itself.
2019  */
tcp_highest_sack_seq(struct tcp_sock * tp)2020 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2021 {
2022 	if (!tp->sacked_out)
2023 		return tp->snd_una;
2024 
2025 	if (tp->highest_sack == NULL)
2026 		return tp->snd_nxt;
2027 
2028 	return TCP_SKB_CB(tp->highest_sack)->seq;
2029 }
2030 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)2031 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2032 {
2033 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2034 }
2035 
tcp_highest_sack(struct sock * sk)2036 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2037 {
2038 	return tcp_sk(sk)->highest_sack;
2039 }
2040 
tcp_highest_sack_reset(struct sock * sk)2041 static inline void tcp_highest_sack_reset(struct sock *sk)
2042 {
2043 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2044 }
2045 
2046 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)2047 static inline void tcp_highest_sack_replace(struct sock *sk,
2048 					    struct sk_buff *old,
2049 					    struct sk_buff *new)
2050 {
2051 	if (old == tcp_highest_sack(sk))
2052 		tcp_sk(sk)->highest_sack = new;
2053 }
2054 
2055 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)2056 static inline bool inet_sk_transparent(const struct sock *sk)
2057 {
2058 	switch (sk->sk_state) {
2059 	case TCP_TIME_WAIT:
2060 		return inet_twsk(sk)->tw_transparent;
2061 	case TCP_NEW_SYN_RECV:
2062 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2063 	}
2064 	return inet_test_bit(TRANSPARENT, sk);
2065 }
2066 
2067 /* Determines whether this is a thin stream (which may suffer from
2068  * increased latency). Used to trigger latency-reducing mechanisms.
2069  */
tcp_stream_is_thin(struct tcp_sock * tp)2070 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2071 {
2072 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2073 }
2074 
2075 /* /proc */
2076 enum tcp_seq_states {
2077 	TCP_SEQ_STATE_LISTENING,
2078 	TCP_SEQ_STATE_ESTABLISHED,
2079 };
2080 
2081 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2082 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2083 void tcp_seq_stop(struct seq_file *seq, void *v);
2084 
2085 struct tcp_seq_afinfo {
2086 	sa_family_t			family;
2087 };
2088 
2089 struct tcp_iter_state {
2090 	struct seq_net_private	p;
2091 	enum tcp_seq_states	state;
2092 	struct sock		*syn_wait_sk;
2093 	int			bucket, offset, sbucket, num;
2094 	loff_t			last_pos;
2095 };
2096 
2097 extern struct request_sock_ops tcp_request_sock_ops;
2098 extern struct request_sock_ops tcp6_request_sock_ops;
2099 
2100 void tcp_v4_destroy_sock(struct sock *sk);
2101 
2102 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2103 				netdev_features_t features);
2104 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2105 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2106 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2107 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2108 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2109 void tcp_gro_complete(struct sk_buff *skb);
2110 
2111 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2112 
tcp_notsent_lowat(const struct tcp_sock * tp)2113 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2114 {
2115 	struct net *net = sock_net((struct sock *)tp);
2116 	u32 val;
2117 
2118 	val = READ_ONCE(tp->notsent_lowat);
2119 
2120 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2121 }
2122 
2123 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2124 
2125 #ifdef CONFIG_PROC_FS
2126 int tcp4_proc_init(void);
2127 void tcp4_proc_exit(void);
2128 #endif
2129 
2130 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2131 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2132 		     const struct tcp_request_sock_ops *af_ops,
2133 		     struct sock *sk, struct sk_buff *skb);
2134 
2135 /* TCP af-specific functions */
2136 struct tcp_sock_af_ops {
2137 #ifdef CONFIG_TCP_MD5SIG
2138 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2139 						const struct sock *addr_sk);
2140 	int		(*calc_md5_hash)(char *location,
2141 					 const struct tcp_md5sig_key *md5,
2142 					 const struct sock *sk,
2143 					 const struct sk_buff *skb);
2144 	int		(*md5_parse)(struct sock *sk,
2145 				     int optname,
2146 				     sockptr_t optval,
2147 				     int optlen);
2148 #endif
2149 };
2150 
2151 struct tcp_request_sock_ops {
2152 	u16 mss_clamp;
2153 #ifdef CONFIG_TCP_MD5SIG
2154 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2155 						 const struct sock *addr_sk);
2156 	int		(*calc_md5_hash) (char *location,
2157 					  const struct tcp_md5sig_key *md5,
2158 					  const struct sock *sk,
2159 					  const struct sk_buff *skb);
2160 #endif
2161 #ifdef CONFIG_SYN_COOKIES
2162 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2163 				 __u16 *mss);
2164 #endif
2165 	struct dst_entry *(*route_req)(const struct sock *sk,
2166 				       struct sk_buff *skb,
2167 				       struct flowi *fl,
2168 				       struct request_sock *req);
2169 	u32 (*init_seq)(const struct sk_buff *skb);
2170 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2171 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2172 			   struct flowi *fl, struct request_sock *req,
2173 			   struct tcp_fastopen_cookie *foc,
2174 			   enum tcp_synack_type synack_type,
2175 			   struct sk_buff *syn_skb);
2176 };
2177 
2178 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2179 #if IS_ENABLED(CONFIG_IPV6)
2180 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2181 #endif
2182 
2183 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2184 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2185 					 const struct sock *sk, struct sk_buff *skb,
2186 					 __u16 *mss)
2187 {
2188 	tcp_synq_overflow(sk);
2189 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2190 	return ops->cookie_init_seq(skb, mss);
2191 }
2192 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2193 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2194 					 const struct sock *sk, struct sk_buff *skb,
2195 					 __u16 *mss)
2196 {
2197 	return 0;
2198 }
2199 #endif
2200 
2201 int tcpv4_offload_init(void);
2202 
2203 void tcp_v4_init(void);
2204 void tcp_init(void);
2205 
2206 /* tcp_recovery.c */
2207 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2208 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2209 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2210 				u32 reo_wnd);
2211 extern bool tcp_rack_mark_lost(struct sock *sk);
2212 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2213 			     u64 xmit_time);
2214 extern void tcp_rack_reo_timeout(struct sock *sk);
2215 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2216 
2217 /* tcp_plb.c */
2218 
2219 /*
2220  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2221  * expects cong_ratio which represents fraction of traffic that experienced
2222  * congestion over a single RTT. In order to avoid floating point operations,
2223  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2224  */
2225 #define TCP_PLB_SCALE 8
2226 
2227 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2228 struct tcp_plb_state {
2229 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2230 		unused:3;
2231 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2232 };
2233 
tcp_plb_init(const struct sock * sk,struct tcp_plb_state * plb)2234 static inline void tcp_plb_init(const struct sock *sk,
2235 				struct tcp_plb_state *plb)
2236 {
2237 	plb->consec_cong_rounds = 0;
2238 	plb->pause_until = 0;
2239 }
2240 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2241 			  const int cong_ratio);
2242 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2243 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2244 
2245 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2246 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2247 {
2248 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2249 	u32 rto = inet_csk(sk)->icsk_rto;
2250 
2251 	if (likely(skb)) {
2252 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2253 
2254 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2255 	} else {
2256 		WARN_ONCE(1,
2257 			"rtx queue emtpy: "
2258 			"out:%u sacked:%u lost:%u retrans:%u "
2259 			"tlp_high_seq:%u sk_state:%u ca_state:%u "
2260 			"advmss:%u mss_cache:%u pmtu:%u\n",
2261 			tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2262 			tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2263 			tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2264 			inet_csk(sk)->icsk_ca_state,
2265 			tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2266 			inet_csk(sk)->icsk_pmtu_cookie);
2267 		return jiffies_to_usecs(rto);
2268 	}
2269 
2270 }
2271 
2272 /*
2273  * Save and compile IPv4 options, return a pointer to it
2274  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2275 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2276 							 struct sk_buff *skb)
2277 {
2278 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2279 	struct ip_options_rcu *dopt = NULL;
2280 
2281 	if (opt->optlen) {
2282 		int opt_size = sizeof(*dopt) + opt->optlen;
2283 
2284 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2285 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2286 			kfree(dopt);
2287 			dopt = NULL;
2288 		}
2289 	}
2290 	return dopt;
2291 }
2292 
2293 /* locally generated TCP pure ACKs have skb->truesize == 2
2294  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2295  * This is much faster than dissecting the packet to find out.
2296  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2297  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2298 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2299 {
2300 	return skb->truesize == 2;
2301 }
2302 
skb_set_tcp_pure_ack(struct sk_buff * skb)2303 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2304 {
2305 	skb->truesize = 2;
2306 }
2307 
tcp_inq(struct sock * sk)2308 static inline int tcp_inq(struct sock *sk)
2309 {
2310 	struct tcp_sock *tp = tcp_sk(sk);
2311 	int answ;
2312 
2313 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2314 		answ = 0;
2315 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2316 		   !tp->urg_data ||
2317 		   before(tp->urg_seq, tp->copied_seq) ||
2318 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2319 
2320 		answ = tp->rcv_nxt - tp->copied_seq;
2321 
2322 		/* Subtract 1, if FIN was received */
2323 		if (answ && sock_flag(sk, SOCK_DONE))
2324 			answ--;
2325 	} else {
2326 		answ = tp->urg_seq - tp->copied_seq;
2327 	}
2328 
2329 	return answ;
2330 }
2331 
2332 int tcp_peek_len(struct socket *sock);
2333 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2334 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2335 {
2336 	u16 segs_in;
2337 
2338 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2339 
2340 	/* We update these fields while other threads might
2341 	 * read them from tcp_get_info()
2342 	 */
2343 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2344 	if (skb->len > tcp_hdrlen(skb))
2345 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2346 }
2347 
2348 /*
2349  * TCP listen path runs lockless.
2350  * We forced "struct sock" to be const qualified to make sure
2351  * we don't modify one of its field by mistake.
2352  * Here, we increment sk_drops which is an atomic_t, so we can safely
2353  * make sock writable again.
2354  */
tcp_listendrop(const struct sock * sk)2355 static inline void tcp_listendrop(const struct sock *sk)
2356 {
2357 	atomic_inc(&((struct sock *)sk)->sk_drops);
2358 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2359 }
2360 
2361 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2362 
2363 /*
2364  * Interface for adding Upper Level Protocols over TCP
2365  */
2366 
2367 #define TCP_ULP_NAME_MAX	16
2368 #define TCP_ULP_MAX		128
2369 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2370 
2371 struct tcp_ulp_ops {
2372 	struct list_head	list;
2373 
2374 	/* initialize ulp */
2375 	int (*init)(struct sock *sk);
2376 	/* update ulp */
2377 	void (*update)(struct sock *sk, struct proto *p,
2378 		       void (*write_space)(struct sock *sk));
2379 	/* cleanup ulp */
2380 	void (*release)(struct sock *sk);
2381 	/* diagnostic */
2382 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2383 	size_t (*get_info_size)(const struct sock *sk);
2384 	/* clone ulp */
2385 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2386 		      const gfp_t priority);
2387 
2388 	char		name[TCP_ULP_NAME_MAX];
2389 	struct module	*owner;
2390 };
2391 int tcp_register_ulp(struct tcp_ulp_ops *type);
2392 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2393 int tcp_set_ulp(struct sock *sk, const char *name);
2394 void tcp_get_available_ulp(char *buf, size_t len);
2395 void tcp_cleanup_ulp(struct sock *sk);
2396 void tcp_update_ulp(struct sock *sk, struct proto *p,
2397 		    void (*write_space)(struct sock *sk));
2398 
2399 #define MODULE_ALIAS_TCP_ULP(name)				\
2400 	__MODULE_INFO(alias, alias_userspace, name);		\
2401 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2402 
2403 #ifdef CONFIG_NET_SOCK_MSG
2404 struct sk_msg;
2405 struct sk_psock;
2406 
2407 #ifdef CONFIG_BPF_SYSCALL
2408 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2409 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2410 #ifdef CONFIG_BPF_STREAM_PARSER
2411 struct strparser;
2412 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2413 			   sk_read_actor_t recv_actor);
2414 #endif /* CONFIG_BPF_STREAM_PARSER */
2415 #endif /* CONFIG_BPF_SYSCALL */
2416 
2417 #ifdef CONFIG_INET
2418 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2419 #else
tcp_eat_skb(struct sock * sk,struct sk_buff * skb)2420 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2421 {
2422 }
2423 #endif
2424 
2425 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2426 			  struct sk_msg *msg, u32 bytes, int flags);
2427 #endif /* CONFIG_NET_SOCK_MSG */
2428 
2429 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2430 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2431 {
2432 }
2433 #endif
2434 
2435 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2436 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2437 				      struct sk_buff *skb,
2438 				      unsigned int end_offset)
2439 {
2440 	skops->skb = skb;
2441 	skops->skb_data_end = skb->data + end_offset;
2442 }
2443 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2444 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2445 				      struct sk_buff *skb,
2446 				      unsigned int end_offset)
2447 {
2448 }
2449 #endif
2450 
2451 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2452  * is < 0, then the BPF op failed (for example if the loaded BPF
2453  * program does not support the chosen operation or there is no BPF
2454  * program loaded).
2455  */
2456 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2457 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2458 {
2459 	struct bpf_sock_ops_kern sock_ops;
2460 	int ret;
2461 
2462 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2463 	if (sk_fullsock(sk)) {
2464 		sock_ops.is_fullsock = 1;
2465 		sock_owned_by_me(sk);
2466 	}
2467 
2468 	sock_ops.sk = sk;
2469 	sock_ops.op = op;
2470 	if (nargs > 0)
2471 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2472 
2473 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2474 	if (ret == 0)
2475 		ret = sock_ops.reply;
2476 	else
2477 		ret = -1;
2478 	return ret;
2479 }
2480 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2481 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2482 {
2483 	u32 args[2] = {arg1, arg2};
2484 
2485 	return tcp_call_bpf(sk, op, 2, args);
2486 }
2487 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2488 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2489 				    u32 arg3)
2490 {
2491 	u32 args[3] = {arg1, arg2, arg3};
2492 
2493 	return tcp_call_bpf(sk, op, 3, args);
2494 }
2495 
2496 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2497 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2498 {
2499 	return -EPERM;
2500 }
2501 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2502 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2503 {
2504 	return -EPERM;
2505 }
2506 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2507 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2508 				    u32 arg3)
2509 {
2510 	return -EPERM;
2511 }
2512 
2513 #endif
2514 
tcp_timeout_init(struct sock * sk)2515 static inline u32 tcp_timeout_init(struct sock *sk)
2516 {
2517 	int timeout;
2518 
2519 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2520 
2521 	if (timeout <= 0)
2522 		timeout = TCP_TIMEOUT_INIT;
2523 	return min_t(int, timeout, TCP_RTO_MAX);
2524 }
2525 
tcp_rwnd_init_bpf(struct sock * sk)2526 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2527 {
2528 	int rwnd;
2529 
2530 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2531 
2532 	if (rwnd < 0)
2533 		rwnd = 0;
2534 	return rwnd;
2535 }
2536 
tcp_bpf_ca_needs_ecn(struct sock * sk)2537 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2538 {
2539 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2540 }
2541 
tcp_bpf_rtt(struct sock * sk)2542 static inline void tcp_bpf_rtt(struct sock *sk)
2543 {
2544 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2545 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2546 }
2547 
2548 #if IS_ENABLED(CONFIG_SMC)
2549 extern struct static_key_false tcp_have_smc;
2550 #endif
2551 
2552 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2553 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2554 			     void (*cad)(struct sock *sk, u32 ack_seq));
2555 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2556 void clean_acked_data_flush(void);
2557 #endif
2558 
2559 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2560 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2561 				    const struct tcp_sock *tp)
2562 {
2563 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2564 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2565 }
2566 
2567 /* Compute Earliest Departure Time for some control packets
2568  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2569  */
tcp_transmit_time(const struct sock * sk)2570 static inline u64 tcp_transmit_time(const struct sock *sk)
2571 {
2572 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2573 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2574 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2575 
2576 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2577 	}
2578 	return 0;
2579 }
2580 
2581 #endif	/* _TCP_H */
2582