xref: /openbmc/linux/net/ipv4/tcp_input.c (revision d37cf9b63113f13d742713881ce691fc615d8b3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247 
248 			do_div(val, skb->truesize);
249 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 
251 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 				struct tcp_sock *tp = tcp_sk(sk);
253 
254 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 				tcp_set_window_clamp(sk, val);
256 
257 				if (tp->window_clamp < tp->rcvq_space.space)
258 					tp->rcvq_space.space = tp->window_clamp;
259 			}
260 		}
261 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 					       tcp_sk(sk)->advmss);
263 		/* Account for possibly-removed options */
264 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
265 				   MAX_TCP_OPTION_SPACE))
266 			tcp_gro_dev_warn(sk, skb, len);
267 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
268 		 * set then it is likely the end of an application write. So
269 		 * more data may not be arriving soon, and yet the data sender
270 		 * may be waiting for an ACK if cwnd-bound or using TX zero
271 		 * copy. So we set ICSK_ACK_PUSHED here so that
272 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
273 		 * reads all of the data and is not ping-pong. If len > MSS
274 		 * then this logic does not matter (and does not hurt) because
275 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
276 		 * reads data and there is more than an MSS of unACKed data.
277 		 */
278 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
279 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
280 	} else {
281 		/* Otherwise, we make more careful check taking into account,
282 		 * that SACKs block is variable.
283 		 *
284 		 * "len" is invariant segment length, including TCP header.
285 		 */
286 		len += skb->data - skb_transport_header(skb);
287 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
288 		    /* If PSH is not set, packet should be
289 		     * full sized, provided peer TCP is not badly broken.
290 		     * This observation (if it is correct 8)) allows
291 		     * to handle super-low mtu links fairly.
292 		     */
293 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
294 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
295 			/* Subtract also invariant (if peer is RFC compliant),
296 			 * tcp header plus fixed timestamp option length.
297 			 * Resulting "len" is MSS free of SACK jitter.
298 			 */
299 			len -= tcp_sk(sk)->tcp_header_len;
300 			icsk->icsk_ack.last_seg_size = len;
301 			if (len == lss) {
302 				icsk->icsk_ack.rcv_mss = len;
303 				return;
304 			}
305 		}
306 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
307 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
308 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
309 	}
310 }
311 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
313 {
314 	struct inet_connection_sock *icsk = inet_csk(sk);
315 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
316 
317 	if (quickacks == 0)
318 		quickacks = 2;
319 	quickacks = min(quickacks, max_quickacks);
320 	if (quickacks > icsk->icsk_ack.quick)
321 		icsk->icsk_ack.quick = quickacks;
322 }
323 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
325 {
326 	struct inet_connection_sock *icsk = inet_csk(sk);
327 
328 	tcp_incr_quickack(sk, max_quickacks);
329 	inet_csk_exit_pingpong_mode(sk);
330 	icsk->icsk_ack.ato = TCP_ATO_MIN;
331 }
332 
333 /* Send ACKs quickly, if "quick" count is not exhausted
334  * and the session is not interactive.
335  */
336 
tcp_in_quickack_mode(struct sock * sk)337 static bool tcp_in_quickack_mode(struct sock *sk)
338 {
339 	const struct inet_connection_sock *icsk = inet_csk(sk);
340 	const struct dst_entry *dst = __sk_dst_get(sk);
341 
342 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
343 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
344 }
345 
tcp_ecn_queue_cwr(struct tcp_sock * tp)346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
347 {
348 	if (tp->ecn_flags & TCP_ECN_OK)
349 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
350 }
351 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
353 {
354 	if (tcp_hdr(skb)->cwr) {
355 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
356 
357 		/* If the sender is telling us it has entered CWR, then its
358 		 * cwnd may be very low (even just 1 packet), so we should ACK
359 		 * immediately.
360 		 */
361 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
362 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
363 	}
364 }
365 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
367 {
368 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 }
370 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 	struct tcp_sock *tp = tcp_sk(sk);
374 
375 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
376 	case INET_ECN_NOT_ECT:
377 		/* Funny extension: if ECT is not set on a segment,
378 		 * and we already seen ECT on a previous segment,
379 		 * it is probably a retransmit.
380 		 */
381 		if (tp->ecn_flags & TCP_ECN_SEEN)
382 			tcp_enter_quickack_mode(sk, 2);
383 		break;
384 	case INET_ECN_CE:
385 		if (tcp_ca_needs_ecn(sk))
386 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
387 
388 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
389 			/* Better not delay acks, sender can have a very low cwnd */
390 			tcp_enter_quickack_mode(sk, 2);
391 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
392 		}
393 		tp->ecn_flags |= TCP_ECN_SEEN;
394 		break;
395 	default:
396 		if (tcp_ca_needs_ecn(sk))
397 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
398 		tp->ecn_flags |= TCP_ECN_SEEN;
399 		break;
400 	}
401 }
402 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
404 {
405 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
406 		__tcp_ecn_check_ce(sk, skb);
407 }
408 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
412 		tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
418 		tp->ecn_flags &= ~TCP_ECN_OK;
419 }
420 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
422 {
423 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
424 		return true;
425 	return false;
426 }
427 
428 /* Buffer size and advertised window tuning.
429  *
430  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
431  */
432 
tcp_sndbuf_expand(struct sock * sk)433 static void tcp_sndbuf_expand(struct sock *sk)
434 {
435 	const struct tcp_sock *tp = tcp_sk(sk);
436 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
437 	int sndmem, per_mss;
438 	u32 nr_segs;
439 
440 	/* Worst case is non GSO/TSO : each frame consumes one skb
441 	 * and skb->head is kmalloced using power of two area of memory
442 	 */
443 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
444 		  MAX_TCP_HEADER +
445 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
446 
447 	per_mss = roundup_pow_of_two(per_mss) +
448 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
449 
450 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
451 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
452 
453 	/* Fast Recovery (RFC 5681 3.2) :
454 	 * Cubic needs 1.7 factor, rounded to 2 to include
455 	 * extra cushion (application might react slowly to EPOLLOUT)
456 	 */
457 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
458 	sndmem *= nr_segs * per_mss;
459 
460 	if (sk->sk_sndbuf < sndmem)
461 		WRITE_ONCE(sk->sk_sndbuf,
462 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
463 }
464 
465 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
466  *
467  * All tcp_full_space() is split to two parts: "network" buffer, allocated
468  * forward and advertised in receiver window (tp->rcv_wnd) and
469  * "application buffer", required to isolate scheduling/application
470  * latencies from network.
471  * window_clamp is maximal advertised window. It can be less than
472  * tcp_full_space(), in this case tcp_full_space() - window_clamp
473  * is reserved for "application" buffer. The less window_clamp is
474  * the smoother our behaviour from viewpoint of network, but the lower
475  * throughput and the higher sensitivity of the connection to losses. 8)
476  *
477  * rcv_ssthresh is more strict window_clamp used at "slow start"
478  * phase to predict further behaviour of this connection.
479  * It is used for two goals:
480  * - to enforce header prediction at sender, even when application
481  *   requires some significant "application buffer". It is check #1.
482  * - to prevent pruning of receive queue because of misprediction
483  *   of receiver window. Check #2.
484  *
485  * The scheme does not work when sender sends good segments opening
486  * window and then starts to feed us spaghetti. But it should work
487  * in common situations. Otherwise, we have to rely on queue collapsing.
488  */
489 
490 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)491 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
492 			     unsigned int skbtruesize)
493 {
494 	const struct tcp_sock *tp = tcp_sk(sk);
495 	/* Optimize this! */
496 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
497 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
498 
499 	while (tp->rcv_ssthresh <= window) {
500 		if (truesize <= skb->len)
501 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
502 
503 		truesize >>= 1;
504 		window >>= 1;
505 	}
506 	return 0;
507 }
508 
509 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
510  * can play nice with us, as sk_buff and skb->head might be either
511  * freed or shared with up to MAX_SKB_FRAGS segments.
512  * Only give a boost to drivers using page frag(s) to hold the frame(s),
513  * and if no payload was pulled in skb->head before reaching us.
514  */
truesize_adjust(bool adjust,const struct sk_buff * skb)515 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
516 {
517 	u32 truesize = skb->truesize;
518 
519 	if (adjust && !skb_headlen(skb)) {
520 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
521 		/* paranoid check, some drivers might be buggy */
522 		if (unlikely((int)truesize < (int)skb->len))
523 			truesize = skb->truesize;
524 	}
525 	return truesize;
526 }
527 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)528 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
529 			    bool adjust)
530 {
531 	struct tcp_sock *tp = tcp_sk(sk);
532 	int room;
533 
534 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
535 
536 	if (room <= 0)
537 		return;
538 
539 	/* Check #1 */
540 	if (!tcp_under_memory_pressure(sk)) {
541 		unsigned int truesize = truesize_adjust(adjust, skb);
542 		int incr;
543 
544 		/* Check #2. Increase window, if skb with such overhead
545 		 * will fit to rcvbuf in future.
546 		 */
547 		if (tcp_win_from_space(sk, truesize) <= skb->len)
548 			incr = 2 * tp->advmss;
549 		else
550 			incr = __tcp_grow_window(sk, skb, truesize);
551 
552 		if (incr) {
553 			incr = max_t(int, incr, 2 * skb->len);
554 			tp->rcv_ssthresh += min(room, incr);
555 			inet_csk(sk)->icsk_ack.quick |= 1;
556 		}
557 	} else {
558 		/* Under pressure:
559 		 * Adjust rcv_ssthresh according to reserved mem
560 		 */
561 		tcp_adjust_rcv_ssthresh(sk);
562 	}
563 }
564 
565 /* 3. Try to fixup all. It is made immediately after connection enters
566  *    established state.
567  */
tcp_init_buffer_space(struct sock * sk)568 static void tcp_init_buffer_space(struct sock *sk)
569 {
570 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
571 	struct tcp_sock *tp = tcp_sk(sk);
572 	int maxwin;
573 
574 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
575 		tcp_sndbuf_expand(sk);
576 
577 	tcp_mstamp_refresh(tp);
578 	tp->rcvq_space.time = tp->tcp_mstamp;
579 	tp->rcvq_space.seq = tp->copied_seq;
580 
581 	maxwin = tcp_full_space(sk);
582 
583 	if (tp->window_clamp >= maxwin) {
584 		WRITE_ONCE(tp->window_clamp, maxwin);
585 
586 		if (tcp_app_win && maxwin > 4 * tp->advmss)
587 			WRITE_ONCE(tp->window_clamp,
588 				   max(maxwin - (maxwin >> tcp_app_win),
589 				       4 * tp->advmss));
590 	}
591 
592 	/* Force reservation of one segment. */
593 	if (tcp_app_win &&
594 	    tp->window_clamp > 2 * tp->advmss &&
595 	    tp->window_clamp + tp->advmss > maxwin)
596 		WRITE_ONCE(tp->window_clamp,
597 			   max(2 * tp->advmss, maxwin - tp->advmss));
598 
599 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
600 	tp->snd_cwnd_stamp = tcp_jiffies32;
601 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
602 				    (u32)TCP_INIT_CWND * tp->advmss);
603 }
604 
605 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)606 static void tcp_clamp_window(struct sock *sk)
607 {
608 	struct tcp_sock *tp = tcp_sk(sk);
609 	struct inet_connection_sock *icsk = inet_csk(sk);
610 	struct net *net = sock_net(sk);
611 	int rmem2;
612 
613 	icsk->icsk_ack.quick = 0;
614 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
615 
616 	if (sk->sk_rcvbuf < rmem2 &&
617 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
618 	    !tcp_under_memory_pressure(sk) &&
619 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
620 		WRITE_ONCE(sk->sk_rcvbuf,
621 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
622 	}
623 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
624 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
625 }
626 
627 /* Initialize RCV_MSS value.
628  * RCV_MSS is an our guess about MSS used by the peer.
629  * We haven't any direct information about the MSS.
630  * It's better to underestimate the RCV_MSS rather than overestimate.
631  * Overestimations make us ACKing less frequently than needed.
632  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
633  */
tcp_initialize_rcv_mss(struct sock * sk)634 void tcp_initialize_rcv_mss(struct sock *sk)
635 {
636 	const struct tcp_sock *tp = tcp_sk(sk);
637 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
638 
639 	hint = min(hint, tp->rcv_wnd / 2);
640 	hint = min(hint, TCP_MSS_DEFAULT);
641 	hint = max(hint, TCP_MIN_MSS);
642 
643 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
644 }
645 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
646 
647 /* Receiver "autotuning" code.
648  *
649  * The algorithm for RTT estimation w/o timestamps is based on
650  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
651  * <https://public.lanl.gov/radiant/pubs.html#DRS>
652  *
653  * More detail on this code can be found at
654  * <http://staff.psc.edu/jheffner/>,
655  * though this reference is out of date.  A new paper
656  * is pending.
657  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)658 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
659 {
660 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
661 	long m = sample;
662 
663 	if (new_sample != 0) {
664 		/* If we sample in larger samples in the non-timestamp
665 		 * case, we could grossly overestimate the RTT especially
666 		 * with chatty applications or bulk transfer apps which
667 		 * are stalled on filesystem I/O.
668 		 *
669 		 * Also, since we are only going for a minimum in the
670 		 * non-timestamp case, we do not smooth things out
671 		 * else with timestamps disabled convergence takes too
672 		 * long.
673 		 */
674 		if (!win_dep) {
675 			m -= (new_sample >> 3);
676 			new_sample += m;
677 		} else {
678 			m <<= 3;
679 			if (m < new_sample)
680 				new_sample = m;
681 		}
682 	} else {
683 		/* No previous measure. */
684 		new_sample = m << 3;
685 	}
686 
687 	tp->rcv_rtt_est.rtt_us = new_sample;
688 }
689 
tcp_rcv_rtt_measure(struct tcp_sock * tp)690 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
691 {
692 	u32 delta_us;
693 
694 	if (tp->rcv_rtt_est.time == 0)
695 		goto new_measure;
696 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
697 		return;
698 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
699 	if (!delta_us)
700 		delta_us = 1;
701 	tcp_rcv_rtt_update(tp, delta_us, 1);
702 
703 new_measure:
704 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
705 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
706 }
707 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)708 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
709 					  const struct sk_buff *skb)
710 {
711 	struct tcp_sock *tp = tcp_sk(sk);
712 
713 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
714 		return;
715 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
716 
717 	if (TCP_SKB_CB(skb)->end_seq -
718 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
719 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
720 		u32 delta_us;
721 
722 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
723 			if (!delta)
724 				delta = 1;
725 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
726 			tcp_rcv_rtt_update(tp, delta_us, 0);
727 		}
728 	}
729 }
730 
731 /*
732  * This function should be called every time data is copied to user space.
733  * It calculates the appropriate TCP receive buffer space.
734  */
tcp_rcv_space_adjust(struct sock * sk)735 void tcp_rcv_space_adjust(struct sock *sk)
736 {
737 	struct tcp_sock *tp = tcp_sk(sk);
738 	u32 copied;
739 	int time;
740 
741 	trace_tcp_rcv_space_adjust(sk);
742 
743 	tcp_mstamp_refresh(tp);
744 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
745 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
746 		return;
747 
748 	/* Number of bytes copied to user in last RTT */
749 	copied = tp->copied_seq - tp->rcvq_space.seq;
750 	if (copied <= tp->rcvq_space.space)
751 		goto new_measure;
752 
753 	/* A bit of theory :
754 	 * copied = bytes received in previous RTT, our base window
755 	 * To cope with packet losses, we need a 2x factor
756 	 * To cope with slow start, and sender growing its cwin by 100 %
757 	 * every RTT, we need a 4x factor, because the ACK we are sending
758 	 * now is for the next RTT, not the current one :
759 	 * <prev RTT . ><current RTT .. ><next RTT .... >
760 	 */
761 
762 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
763 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
764 		u64 rcvwin, grow;
765 		int rcvbuf;
766 
767 		/* minimal window to cope with packet losses, assuming
768 		 * steady state. Add some cushion because of small variations.
769 		 */
770 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
771 
772 		/* Accommodate for sender rate increase (eg. slow start) */
773 		grow = rcvwin * (copied - tp->rcvq_space.space);
774 		do_div(grow, tp->rcvq_space.space);
775 		rcvwin += (grow << 1);
776 
777 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
778 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
779 		if (rcvbuf > sk->sk_rcvbuf) {
780 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
781 
782 			/* Make the window clamp follow along.  */
783 			WRITE_ONCE(tp->window_clamp,
784 				   tcp_win_from_space(sk, rcvbuf));
785 		}
786 	}
787 	tp->rcvq_space.space = copied;
788 
789 new_measure:
790 	tp->rcvq_space.seq = tp->copied_seq;
791 	tp->rcvq_space.time = tp->tcp_mstamp;
792 }
793 
794 /* There is something which you must keep in mind when you analyze the
795  * behavior of the tp->ato delayed ack timeout interval.  When a
796  * connection starts up, we want to ack as quickly as possible.  The
797  * problem is that "good" TCP's do slow start at the beginning of data
798  * transmission.  The means that until we send the first few ACK's the
799  * sender will sit on his end and only queue most of his data, because
800  * he can only send snd_cwnd unacked packets at any given time.  For
801  * each ACK we send, he increments snd_cwnd and transmits more of his
802  * queue.  -DaveM
803  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)804 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
805 {
806 	struct tcp_sock *tp = tcp_sk(sk);
807 	struct inet_connection_sock *icsk = inet_csk(sk);
808 	u32 now;
809 
810 	inet_csk_schedule_ack(sk);
811 
812 	tcp_measure_rcv_mss(sk, skb);
813 
814 	tcp_rcv_rtt_measure(tp);
815 
816 	now = tcp_jiffies32;
817 
818 	if (!icsk->icsk_ack.ato) {
819 		/* The _first_ data packet received, initialize
820 		 * delayed ACK engine.
821 		 */
822 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
823 		icsk->icsk_ack.ato = TCP_ATO_MIN;
824 	} else {
825 		int m = now - icsk->icsk_ack.lrcvtime;
826 
827 		if (m <= TCP_ATO_MIN / 2) {
828 			/* The fastest case is the first. */
829 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
830 		} else if (m < icsk->icsk_ack.ato) {
831 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
832 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
833 				icsk->icsk_ack.ato = icsk->icsk_rto;
834 		} else if (m > icsk->icsk_rto) {
835 			/* Too long gap. Apparently sender failed to
836 			 * restart window, so that we send ACKs quickly.
837 			 */
838 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
839 		}
840 	}
841 	icsk->icsk_ack.lrcvtime = now;
842 
843 	tcp_ecn_check_ce(sk, skb);
844 
845 	if (skb->len >= 128)
846 		tcp_grow_window(sk, skb, true);
847 }
848 
849 /* Called to compute a smoothed rtt estimate. The data fed to this
850  * routine either comes from timestamps, or from segments that were
851  * known _not_ to have been retransmitted [see Karn/Partridge
852  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
853  * piece by Van Jacobson.
854  * NOTE: the next three routines used to be one big routine.
855  * To save cycles in the RFC 1323 implementation it was better to break
856  * it up into three procedures. -- erics
857  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)858 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
859 {
860 	struct tcp_sock *tp = tcp_sk(sk);
861 	long m = mrtt_us; /* RTT */
862 	u32 srtt = tp->srtt_us;
863 
864 	/*	The following amusing code comes from Jacobson's
865 	 *	article in SIGCOMM '88.  Note that rtt and mdev
866 	 *	are scaled versions of rtt and mean deviation.
867 	 *	This is designed to be as fast as possible
868 	 *	m stands for "measurement".
869 	 *
870 	 *	On a 1990 paper the rto value is changed to:
871 	 *	RTO = rtt + 4 * mdev
872 	 *
873 	 * Funny. This algorithm seems to be very broken.
874 	 * These formulae increase RTO, when it should be decreased, increase
875 	 * too slowly, when it should be increased quickly, decrease too quickly
876 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
877 	 * does not matter how to _calculate_ it. Seems, it was trap
878 	 * that VJ failed to avoid. 8)
879 	 */
880 	if (srtt != 0) {
881 		m -= (srtt >> 3);	/* m is now error in rtt est */
882 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
883 		if (m < 0) {
884 			m = -m;		/* m is now abs(error) */
885 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
886 			/* This is similar to one of Eifel findings.
887 			 * Eifel blocks mdev updates when rtt decreases.
888 			 * This solution is a bit different: we use finer gain
889 			 * for mdev in this case (alpha*beta).
890 			 * Like Eifel it also prevents growth of rto,
891 			 * but also it limits too fast rto decreases,
892 			 * happening in pure Eifel.
893 			 */
894 			if (m > 0)
895 				m >>= 3;
896 		} else {
897 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
898 		}
899 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
900 		if (tp->mdev_us > tp->mdev_max_us) {
901 			tp->mdev_max_us = tp->mdev_us;
902 			if (tp->mdev_max_us > tp->rttvar_us)
903 				tp->rttvar_us = tp->mdev_max_us;
904 		}
905 		if (after(tp->snd_una, tp->rtt_seq)) {
906 			if (tp->mdev_max_us < tp->rttvar_us)
907 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
908 			tp->rtt_seq = tp->snd_nxt;
909 			tp->mdev_max_us = tcp_rto_min_us(sk);
910 
911 			tcp_bpf_rtt(sk);
912 		}
913 	} else {
914 		/* no previous measure. */
915 		srtt = m << 3;		/* take the measured time to be rtt */
916 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
917 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
918 		tp->mdev_max_us = tp->rttvar_us;
919 		tp->rtt_seq = tp->snd_nxt;
920 
921 		tcp_bpf_rtt(sk);
922 	}
923 	tp->srtt_us = max(1U, srtt);
924 }
925 
tcp_update_pacing_rate(struct sock * sk)926 static void tcp_update_pacing_rate(struct sock *sk)
927 {
928 	const struct tcp_sock *tp = tcp_sk(sk);
929 	u64 rate;
930 
931 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
932 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
933 
934 	/* current rate is (cwnd * mss) / srtt
935 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
936 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
937 	 *
938 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
939 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
940 	 *	 end of slow start and should slow down.
941 	 */
942 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
943 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
944 	else
945 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
946 
947 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
948 
949 	if (likely(tp->srtt_us))
950 		do_div(rate, tp->srtt_us);
951 
952 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
953 	 * without any lock. We want to make sure compiler wont store
954 	 * intermediate values in this location.
955 	 */
956 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
957 					     sk->sk_max_pacing_rate));
958 }
959 
960 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
961  * routine referred to above.
962  */
tcp_set_rto(struct sock * sk)963 static void tcp_set_rto(struct sock *sk)
964 {
965 	const struct tcp_sock *tp = tcp_sk(sk);
966 	/* Old crap is replaced with new one. 8)
967 	 *
968 	 * More seriously:
969 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
970 	 *    It cannot be less due to utterly erratic ACK generation made
971 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
972 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
973 	 *    is invisible. Actually, Linux-2.4 also generates erratic
974 	 *    ACKs in some circumstances.
975 	 */
976 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
977 
978 	/* 2. Fixups made earlier cannot be right.
979 	 *    If we do not estimate RTO correctly without them,
980 	 *    all the algo is pure shit and should be replaced
981 	 *    with correct one. It is exactly, which we pretend to do.
982 	 */
983 
984 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
985 	 * guarantees that rto is higher.
986 	 */
987 	tcp_bound_rto(sk);
988 }
989 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)990 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
991 {
992 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
993 
994 	if (!cwnd)
995 		cwnd = TCP_INIT_CWND;
996 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
997 }
998 
999 struct tcp_sacktag_state {
1000 	/* Timestamps for earliest and latest never-retransmitted segment
1001 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1002 	 * but congestion control should still get an accurate delay signal.
1003 	 */
1004 	u64	first_sackt;
1005 	u64	last_sackt;
1006 	u32	reord;
1007 	u32	sack_delivered;
1008 	int	flag;
1009 	unsigned int mss_now;
1010 	struct rate_sample *rate;
1011 };
1012 
1013 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1014  * and spurious retransmission information if this DSACK is unlikely caused by
1015  * sender's action:
1016  * - DSACKed sequence range is larger than maximum receiver's window.
1017  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1018  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1019 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1020 			  u32 end_seq, struct tcp_sacktag_state *state)
1021 {
1022 	u32 seq_len, dup_segs = 1;
1023 
1024 	if (!before(start_seq, end_seq))
1025 		return 0;
1026 
1027 	seq_len = end_seq - start_seq;
1028 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1029 	if (seq_len > tp->max_window)
1030 		return 0;
1031 	if (seq_len > tp->mss_cache)
1032 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1033 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1034 		state->flag |= FLAG_DSACK_TLP;
1035 
1036 	tp->dsack_dups += dup_segs;
1037 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1038 	if (tp->dsack_dups > tp->total_retrans)
1039 		return 0;
1040 
1041 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1042 	/* We increase the RACK ordering window in rounds where we receive
1043 	 * DSACKs that may have been due to reordering causing RACK to trigger
1044 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1045 	 * without having seen reordering, or that match TLP probes (TLP
1046 	 * is timer-driven, not triggered by RACK).
1047 	 */
1048 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1049 		tp->rack.dsack_seen = 1;
1050 
1051 	state->flag |= FLAG_DSACKING_ACK;
1052 	/* A spurious retransmission is delivered */
1053 	state->sack_delivered += dup_segs;
1054 
1055 	return dup_segs;
1056 }
1057 
1058 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1059  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1060  * distance is approximated in full-mss packet distance ("reordering").
1061  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1062 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1063 				      const int ts)
1064 {
1065 	struct tcp_sock *tp = tcp_sk(sk);
1066 	const u32 mss = tp->mss_cache;
1067 	u32 fack, metric;
1068 
1069 	fack = tcp_highest_sack_seq(tp);
1070 	if (!before(low_seq, fack))
1071 		return;
1072 
1073 	metric = fack - low_seq;
1074 	if ((metric > tp->reordering * mss) && mss) {
1075 #if FASTRETRANS_DEBUG > 1
1076 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1077 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1078 			 tp->reordering,
1079 			 0,
1080 			 tp->sacked_out,
1081 			 tp->undo_marker ? tp->undo_retrans : 0);
1082 #endif
1083 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1084 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1085 	}
1086 
1087 	/* This exciting event is worth to be remembered. 8) */
1088 	tp->reord_seen++;
1089 	NET_INC_STATS(sock_net(sk),
1090 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1091 }
1092 
1093  /* This must be called before lost_out or retrans_out are updated
1094   * on a new loss, because we want to know if all skbs previously
1095   * known to be lost have already been retransmitted, indicating
1096   * that this newly lost skb is our next skb to retransmit.
1097   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1098 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1099 {
1100 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1101 	    (tp->retransmit_skb_hint &&
1102 	     before(TCP_SKB_CB(skb)->seq,
1103 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1104 		tp->retransmit_skb_hint = skb;
1105 }
1106 
1107 /* Sum the number of packets on the wire we have marked as lost, and
1108  * notify the congestion control module that the given skb was marked lost.
1109  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1110 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1111 {
1112 	tp->lost += tcp_skb_pcount(skb);
1113 }
1114 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1115 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1116 {
1117 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1118 	struct tcp_sock *tp = tcp_sk(sk);
1119 
1120 	if (sacked & TCPCB_SACKED_ACKED)
1121 		return;
1122 
1123 	tcp_verify_retransmit_hint(tp, skb);
1124 	if (sacked & TCPCB_LOST) {
1125 		if (sacked & TCPCB_SACKED_RETRANS) {
1126 			/* Account for retransmits that are lost again */
1127 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1128 			tp->retrans_out -= tcp_skb_pcount(skb);
1129 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1130 				      tcp_skb_pcount(skb));
1131 			tcp_notify_skb_loss_event(tp, skb);
1132 		}
1133 	} else {
1134 		tp->lost_out += tcp_skb_pcount(skb);
1135 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1136 		tcp_notify_skb_loss_event(tp, skb);
1137 	}
1138 }
1139 
1140 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1141 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1142 				bool ece_ack)
1143 {
1144 	tp->delivered += delivered;
1145 	if (ece_ack)
1146 		tp->delivered_ce += delivered;
1147 }
1148 
1149 /* This procedure tags the retransmission queue when SACKs arrive.
1150  *
1151  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1152  * Packets in queue with these bits set are counted in variables
1153  * sacked_out, retrans_out and lost_out, correspondingly.
1154  *
1155  * Valid combinations are:
1156  * Tag  InFlight	Description
1157  * 0	1		- orig segment is in flight.
1158  * S	0		- nothing flies, orig reached receiver.
1159  * L	0		- nothing flies, orig lost by net.
1160  * R	2		- both orig and retransmit are in flight.
1161  * L|R	1		- orig is lost, retransmit is in flight.
1162  * S|R  1		- orig reached receiver, retrans is still in flight.
1163  * (L|S|R is logically valid, it could occur when L|R is sacked,
1164  *  but it is equivalent to plain S and code short-curcuits it to S.
1165  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1166  *
1167  * These 6 states form finite state machine, controlled by the following events:
1168  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1169  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1170  * 3. Loss detection event of two flavors:
1171  *	A. Scoreboard estimator decided the packet is lost.
1172  *	   A'. Reno "three dupacks" marks head of queue lost.
1173  *	B. SACK arrives sacking SND.NXT at the moment, when the
1174  *	   segment was retransmitted.
1175  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1176  *
1177  * It is pleasant to note, that state diagram turns out to be commutative,
1178  * so that we are allowed not to be bothered by order of our actions,
1179  * when multiple events arrive simultaneously. (see the function below).
1180  *
1181  * Reordering detection.
1182  * --------------------
1183  * Reordering metric is maximal distance, which a packet can be displaced
1184  * in packet stream. With SACKs we can estimate it:
1185  *
1186  * 1. SACK fills old hole and the corresponding segment was not
1187  *    ever retransmitted -> reordering. Alas, we cannot use it
1188  *    when segment was retransmitted.
1189  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1190  *    for retransmitted and already SACKed segment -> reordering..
1191  * Both of these heuristics are not used in Loss state, when we cannot
1192  * account for retransmits accurately.
1193  *
1194  * SACK block validation.
1195  * ----------------------
1196  *
1197  * SACK block range validation checks that the received SACK block fits to
1198  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1199  * Note that SND.UNA is not included to the range though being valid because
1200  * it means that the receiver is rather inconsistent with itself reporting
1201  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1202  * perfectly valid, however, in light of RFC2018 which explicitly states
1203  * that "SACK block MUST reflect the newest segment.  Even if the newest
1204  * segment is going to be discarded ...", not that it looks very clever
1205  * in case of head skb. Due to potentional receiver driven attacks, we
1206  * choose to avoid immediate execution of a walk in write queue due to
1207  * reneging and defer head skb's loss recovery to standard loss recovery
1208  * procedure that will eventually trigger (nothing forbids us doing this).
1209  *
1210  * Implements also blockage to start_seq wrap-around. Problem lies in the
1211  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1212  * there's no guarantee that it will be before snd_nxt (n). The problem
1213  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1214  * wrap (s_w):
1215  *
1216  *         <- outs wnd ->                          <- wrapzone ->
1217  *         u     e      n                         u_w   e_w  s n_w
1218  *         |     |      |                          |     |   |  |
1219  * |<------------+------+----- TCP seqno space --------------+---------->|
1220  * ...-- <2^31 ->|                                           |<--------...
1221  * ...---- >2^31 ------>|                                    |<--------...
1222  *
1223  * Current code wouldn't be vulnerable but it's better still to discard such
1224  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1225  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1226  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1227  * equal to the ideal case (infinite seqno space without wrap caused issues).
1228  *
1229  * With D-SACK the lower bound is extended to cover sequence space below
1230  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1231  * again, D-SACK block must not to go across snd_una (for the same reason as
1232  * for the normal SACK blocks, explained above). But there all simplicity
1233  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1234  * fully below undo_marker they do not affect behavior in anyway and can
1235  * therefore be safely ignored. In rare cases (which are more or less
1236  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1237  * fragmentation and packet reordering past skb's retransmission. To consider
1238  * them correctly, the acceptable range must be extended even more though
1239  * the exact amount is rather hard to quantify. However, tp->max_window can
1240  * be used as an exaggerated estimate.
1241  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1242 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1243 				   u32 start_seq, u32 end_seq)
1244 {
1245 	/* Too far in future, or reversed (interpretation is ambiguous) */
1246 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1247 		return false;
1248 
1249 	/* Nasty start_seq wrap-around check (see comments above) */
1250 	if (!before(start_seq, tp->snd_nxt))
1251 		return false;
1252 
1253 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1254 	 * start_seq == snd_una is non-sensical (see comments above)
1255 	 */
1256 	if (after(start_seq, tp->snd_una))
1257 		return true;
1258 
1259 	if (!is_dsack || !tp->undo_marker)
1260 		return false;
1261 
1262 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1263 	if (after(end_seq, tp->snd_una))
1264 		return false;
1265 
1266 	if (!before(start_seq, tp->undo_marker))
1267 		return true;
1268 
1269 	/* Too old */
1270 	if (!after(end_seq, tp->undo_marker))
1271 		return false;
1272 
1273 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1274 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1275 	 */
1276 	return !before(start_seq, end_seq - tp->max_window);
1277 }
1278 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1279 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1280 			    struct tcp_sack_block_wire *sp, int num_sacks,
1281 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1282 {
1283 	struct tcp_sock *tp = tcp_sk(sk);
1284 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1285 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1286 	u32 dup_segs;
1287 
1288 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1289 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1290 	} else if (num_sacks > 1) {
1291 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1292 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1293 
1294 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1295 			return false;
1296 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1297 	} else {
1298 		return false;
1299 	}
1300 
1301 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1302 	if (!dup_segs) {	/* Skip dubious DSACK */
1303 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1304 		return false;
1305 	}
1306 
1307 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1308 
1309 	/* D-SACK for already forgotten data... Do dumb counting. */
1310 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1311 	    !after(end_seq_0, prior_snd_una) &&
1312 	    after(end_seq_0, tp->undo_marker))
1313 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1314 
1315 	return true;
1316 }
1317 
1318 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1319  * the incoming SACK may not exactly match but we can find smaller MSS
1320  * aligned portion of it that matches. Therefore we might need to fragment
1321  * which may fail and creates some hassle (caller must handle error case
1322  * returns).
1323  *
1324  * FIXME: this could be merged to shift decision code
1325  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1326 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1327 				  u32 start_seq, u32 end_seq)
1328 {
1329 	int err;
1330 	bool in_sack;
1331 	unsigned int pkt_len;
1332 	unsigned int mss;
1333 
1334 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1335 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1336 
1337 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1338 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1339 		mss = tcp_skb_mss(skb);
1340 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1341 
1342 		if (!in_sack) {
1343 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1344 			if (pkt_len < mss)
1345 				pkt_len = mss;
1346 		} else {
1347 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1348 			if (pkt_len < mss)
1349 				return -EINVAL;
1350 		}
1351 
1352 		/* Round if necessary so that SACKs cover only full MSSes
1353 		 * and/or the remaining small portion (if present)
1354 		 */
1355 		if (pkt_len > mss) {
1356 			unsigned int new_len = (pkt_len / mss) * mss;
1357 			if (!in_sack && new_len < pkt_len)
1358 				new_len += mss;
1359 			pkt_len = new_len;
1360 		}
1361 
1362 		if (pkt_len >= skb->len && !in_sack)
1363 			return 0;
1364 
1365 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1366 				   pkt_len, mss, GFP_ATOMIC);
1367 		if (err < 0)
1368 			return err;
1369 	}
1370 
1371 	return in_sack;
1372 }
1373 
1374 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1375 static u8 tcp_sacktag_one(struct sock *sk,
1376 			  struct tcp_sacktag_state *state, u8 sacked,
1377 			  u32 start_seq, u32 end_seq,
1378 			  int dup_sack, int pcount,
1379 			  u64 xmit_time)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 
1383 	/* Account D-SACK for retransmitted packet. */
1384 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1385 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1386 		    after(end_seq, tp->undo_marker))
1387 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1388 		if ((sacked & TCPCB_SACKED_ACKED) &&
1389 		    before(start_seq, state->reord))
1390 				state->reord = start_seq;
1391 	}
1392 
1393 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1394 	if (!after(end_seq, tp->snd_una))
1395 		return sacked;
1396 
1397 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1398 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1399 
1400 		if (sacked & TCPCB_SACKED_RETRANS) {
1401 			/* If the segment is not tagged as lost,
1402 			 * we do not clear RETRANS, believing
1403 			 * that retransmission is still in flight.
1404 			 */
1405 			if (sacked & TCPCB_LOST) {
1406 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1407 				tp->lost_out -= pcount;
1408 				tp->retrans_out -= pcount;
1409 			}
1410 		} else {
1411 			if (!(sacked & TCPCB_RETRANS)) {
1412 				/* New sack for not retransmitted frame,
1413 				 * which was in hole. It is reordering.
1414 				 */
1415 				if (before(start_seq,
1416 					   tcp_highest_sack_seq(tp)) &&
1417 				    before(start_seq, state->reord))
1418 					state->reord = start_seq;
1419 
1420 				if (!after(end_seq, tp->high_seq))
1421 					state->flag |= FLAG_ORIG_SACK_ACKED;
1422 				if (state->first_sackt == 0)
1423 					state->first_sackt = xmit_time;
1424 				state->last_sackt = xmit_time;
1425 			}
1426 
1427 			if (sacked & TCPCB_LOST) {
1428 				sacked &= ~TCPCB_LOST;
1429 				tp->lost_out -= pcount;
1430 			}
1431 		}
1432 
1433 		sacked |= TCPCB_SACKED_ACKED;
1434 		state->flag |= FLAG_DATA_SACKED;
1435 		tp->sacked_out += pcount;
1436 		/* Out-of-order packets delivered */
1437 		state->sack_delivered += pcount;
1438 
1439 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1440 		if (tp->lost_skb_hint &&
1441 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1442 			tp->lost_cnt_hint += pcount;
1443 	}
1444 
1445 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1446 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1447 	 * are accounted above as well.
1448 	 */
1449 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1450 		sacked &= ~TCPCB_SACKED_RETRANS;
1451 		tp->retrans_out -= pcount;
1452 	}
1453 
1454 	return sacked;
1455 }
1456 
1457 /* Shift newly-SACKed bytes from this skb to the immediately previous
1458  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1459  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1460 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1461 			    struct sk_buff *skb,
1462 			    struct tcp_sacktag_state *state,
1463 			    unsigned int pcount, int shifted, int mss,
1464 			    bool dup_sack)
1465 {
1466 	struct tcp_sock *tp = tcp_sk(sk);
1467 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1468 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1469 
1470 	BUG_ON(!pcount);
1471 
1472 	/* Adjust counters and hints for the newly sacked sequence
1473 	 * range but discard the return value since prev is already
1474 	 * marked. We must tag the range first because the seq
1475 	 * advancement below implicitly advances
1476 	 * tcp_highest_sack_seq() when skb is highest_sack.
1477 	 */
1478 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1479 			start_seq, end_seq, dup_sack, pcount,
1480 			tcp_skb_timestamp_us(skb));
1481 	tcp_rate_skb_delivered(sk, skb, state->rate);
1482 
1483 	if (skb == tp->lost_skb_hint)
1484 		tp->lost_cnt_hint += pcount;
1485 
1486 	TCP_SKB_CB(prev)->end_seq += shifted;
1487 	TCP_SKB_CB(skb)->seq += shifted;
1488 
1489 	tcp_skb_pcount_add(prev, pcount);
1490 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1491 	tcp_skb_pcount_add(skb, -pcount);
1492 
1493 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1494 	 * in theory this shouldn't be necessary but as long as DSACK
1495 	 * code can come after this skb later on it's better to keep
1496 	 * setting gso_size to something.
1497 	 */
1498 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1499 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1500 
1501 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1502 	if (tcp_skb_pcount(skb) <= 1)
1503 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1504 
1505 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1506 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1507 
1508 	if (skb->len > 0) {
1509 		BUG_ON(!tcp_skb_pcount(skb));
1510 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1511 		return false;
1512 	}
1513 
1514 	/* Whole SKB was eaten :-) */
1515 
1516 	if (skb == tp->retransmit_skb_hint)
1517 		tp->retransmit_skb_hint = prev;
1518 	if (skb == tp->lost_skb_hint) {
1519 		tp->lost_skb_hint = prev;
1520 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1521 	}
1522 
1523 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1524 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1525 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1526 		TCP_SKB_CB(prev)->end_seq++;
1527 
1528 	if (skb == tcp_highest_sack(sk))
1529 		tcp_advance_highest_sack(sk, skb);
1530 
1531 	tcp_skb_collapse_tstamp(prev, skb);
1532 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1533 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1534 
1535 	tcp_rtx_queue_unlink_and_free(skb, sk);
1536 
1537 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1538 
1539 	return true;
1540 }
1541 
1542 /* I wish gso_size would have a bit more sane initialization than
1543  * something-or-zero which complicates things
1544  */
tcp_skb_seglen(const struct sk_buff * skb)1545 static int tcp_skb_seglen(const struct sk_buff *skb)
1546 {
1547 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1548 }
1549 
1550 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1551 static int skb_can_shift(const struct sk_buff *skb)
1552 {
1553 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1554 }
1555 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1556 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1557 		  int pcount, int shiftlen)
1558 {
1559 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1560 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1561 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1562 	 * even if current MSS is bigger.
1563 	 */
1564 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1565 		return 0;
1566 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1567 		return 0;
1568 	return skb_shift(to, from, shiftlen);
1569 }
1570 
1571 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1572  * skb.
1573  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1574 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1575 					  struct tcp_sacktag_state *state,
1576 					  u32 start_seq, u32 end_seq,
1577 					  bool dup_sack)
1578 {
1579 	struct tcp_sock *tp = tcp_sk(sk);
1580 	struct sk_buff *prev;
1581 	int mss;
1582 	int pcount = 0;
1583 	int len;
1584 	int in_sack;
1585 
1586 	/* Normally R but no L won't result in plain S */
1587 	if (!dup_sack &&
1588 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1589 		goto fallback;
1590 	if (!skb_can_shift(skb))
1591 		goto fallback;
1592 	/* This frame is about to be dropped (was ACKed). */
1593 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1594 		goto fallback;
1595 
1596 	/* Can only happen with delayed DSACK + discard craziness */
1597 	prev = skb_rb_prev(skb);
1598 	if (!prev)
1599 		goto fallback;
1600 
1601 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1602 		goto fallback;
1603 
1604 	if (!tcp_skb_can_collapse(prev, skb))
1605 		goto fallback;
1606 
1607 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1608 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1609 
1610 	if (in_sack) {
1611 		len = skb->len;
1612 		pcount = tcp_skb_pcount(skb);
1613 		mss = tcp_skb_seglen(skb);
1614 
1615 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1616 		 * drop this restriction as unnecessary
1617 		 */
1618 		if (mss != tcp_skb_seglen(prev))
1619 			goto fallback;
1620 	} else {
1621 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1622 			goto noop;
1623 		/* CHECKME: This is non-MSS split case only?, this will
1624 		 * cause skipped skbs due to advancing loop btw, original
1625 		 * has that feature too
1626 		 */
1627 		if (tcp_skb_pcount(skb) <= 1)
1628 			goto noop;
1629 
1630 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1631 		if (!in_sack) {
1632 			/* TODO: head merge to next could be attempted here
1633 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1634 			 * though it might not be worth of the additional hassle
1635 			 *
1636 			 * ...we can probably just fallback to what was done
1637 			 * previously. We could try merging non-SACKed ones
1638 			 * as well but it probably isn't going to buy off
1639 			 * because later SACKs might again split them, and
1640 			 * it would make skb timestamp tracking considerably
1641 			 * harder problem.
1642 			 */
1643 			goto fallback;
1644 		}
1645 
1646 		len = end_seq - TCP_SKB_CB(skb)->seq;
1647 		BUG_ON(len < 0);
1648 		BUG_ON(len > skb->len);
1649 
1650 		/* MSS boundaries should be honoured or else pcount will
1651 		 * severely break even though it makes things bit trickier.
1652 		 * Optimize common case to avoid most of the divides
1653 		 */
1654 		mss = tcp_skb_mss(skb);
1655 
1656 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1657 		 * drop this restriction as unnecessary
1658 		 */
1659 		if (mss != tcp_skb_seglen(prev))
1660 			goto fallback;
1661 
1662 		if (len == mss) {
1663 			pcount = 1;
1664 		} else if (len < mss) {
1665 			goto noop;
1666 		} else {
1667 			pcount = len / mss;
1668 			len = pcount * mss;
1669 		}
1670 	}
1671 
1672 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1673 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1674 		goto fallback;
1675 
1676 	if (!tcp_skb_shift(prev, skb, pcount, len))
1677 		goto fallback;
1678 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1679 		goto out;
1680 
1681 	/* Hole filled allows collapsing with the next as well, this is very
1682 	 * useful when hole on every nth skb pattern happens
1683 	 */
1684 	skb = skb_rb_next(prev);
1685 	if (!skb)
1686 		goto out;
1687 
1688 	if (!skb_can_shift(skb) ||
1689 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1690 	    (mss != tcp_skb_seglen(skb)))
1691 		goto out;
1692 
1693 	if (!tcp_skb_can_collapse(prev, skb))
1694 		goto out;
1695 	len = skb->len;
1696 	pcount = tcp_skb_pcount(skb);
1697 	if (tcp_skb_shift(prev, skb, pcount, len))
1698 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1699 				len, mss, 0);
1700 
1701 out:
1702 	return prev;
1703 
1704 noop:
1705 	return skb;
1706 
1707 fallback:
1708 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1709 	return NULL;
1710 }
1711 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1712 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1713 					struct tcp_sack_block *next_dup,
1714 					struct tcp_sacktag_state *state,
1715 					u32 start_seq, u32 end_seq,
1716 					bool dup_sack_in)
1717 {
1718 	struct tcp_sock *tp = tcp_sk(sk);
1719 	struct sk_buff *tmp;
1720 
1721 	skb_rbtree_walk_from(skb) {
1722 		int in_sack = 0;
1723 		bool dup_sack = dup_sack_in;
1724 
1725 		/* queue is in-order => we can short-circuit the walk early */
1726 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1727 			break;
1728 
1729 		if (next_dup  &&
1730 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1731 			in_sack = tcp_match_skb_to_sack(sk, skb,
1732 							next_dup->start_seq,
1733 							next_dup->end_seq);
1734 			if (in_sack > 0)
1735 				dup_sack = true;
1736 		}
1737 
1738 		/* skb reference here is a bit tricky to get right, since
1739 		 * shifting can eat and free both this skb and the next,
1740 		 * so not even _safe variant of the loop is enough.
1741 		 */
1742 		if (in_sack <= 0) {
1743 			tmp = tcp_shift_skb_data(sk, skb, state,
1744 						 start_seq, end_seq, dup_sack);
1745 			if (tmp) {
1746 				if (tmp != skb) {
1747 					skb = tmp;
1748 					continue;
1749 				}
1750 
1751 				in_sack = 0;
1752 			} else {
1753 				in_sack = tcp_match_skb_to_sack(sk, skb,
1754 								start_seq,
1755 								end_seq);
1756 			}
1757 		}
1758 
1759 		if (unlikely(in_sack < 0))
1760 			break;
1761 
1762 		if (in_sack) {
1763 			TCP_SKB_CB(skb)->sacked =
1764 				tcp_sacktag_one(sk,
1765 						state,
1766 						TCP_SKB_CB(skb)->sacked,
1767 						TCP_SKB_CB(skb)->seq,
1768 						TCP_SKB_CB(skb)->end_seq,
1769 						dup_sack,
1770 						tcp_skb_pcount(skb),
1771 						tcp_skb_timestamp_us(skb));
1772 			tcp_rate_skb_delivered(sk, skb, state->rate);
1773 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1774 				list_del_init(&skb->tcp_tsorted_anchor);
1775 
1776 			if (!before(TCP_SKB_CB(skb)->seq,
1777 				    tcp_highest_sack_seq(tp)))
1778 				tcp_advance_highest_sack(sk, skb);
1779 		}
1780 	}
1781 	return skb;
1782 }
1783 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1784 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1785 {
1786 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1787 	struct sk_buff *skb;
1788 
1789 	while (*p) {
1790 		parent = *p;
1791 		skb = rb_to_skb(parent);
1792 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1793 			p = &parent->rb_left;
1794 			continue;
1795 		}
1796 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1797 			p = &parent->rb_right;
1798 			continue;
1799 		}
1800 		return skb;
1801 	}
1802 	return NULL;
1803 }
1804 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1805 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1806 					u32 skip_to_seq)
1807 {
1808 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1809 		return skb;
1810 
1811 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1812 }
1813 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1814 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1815 						struct sock *sk,
1816 						struct tcp_sack_block *next_dup,
1817 						struct tcp_sacktag_state *state,
1818 						u32 skip_to_seq)
1819 {
1820 	if (!next_dup)
1821 		return skb;
1822 
1823 	if (before(next_dup->start_seq, skip_to_seq)) {
1824 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1825 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1826 				       next_dup->start_seq, next_dup->end_seq,
1827 				       1);
1828 	}
1829 
1830 	return skb;
1831 }
1832 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1833 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1834 {
1835 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1836 }
1837 
1838 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1839 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1840 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1841 {
1842 	struct tcp_sock *tp = tcp_sk(sk);
1843 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1844 				    TCP_SKB_CB(ack_skb)->sacked);
1845 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1846 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1847 	struct tcp_sack_block *cache;
1848 	struct sk_buff *skb;
1849 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1850 	int used_sacks;
1851 	bool found_dup_sack = false;
1852 	int i, j;
1853 	int first_sack_index;
1854 
1855 	state->flag = 0;
1856 	state->reord = tp->snd_nxt;
1857 
1858 	if (!tp->sacked_out)
1859 		tcp_highest_sack_reset(sk);
1860 
1861 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1862 					 num_sacks, prior_snd_una, state);
1863 
1864 	/* Eliminate too old ACKs, but take into
1865 	 * account more or less fresh ones, they can
1866 	 * contain valid SACK info.
1867 	 */
1868 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1869 		return 0;
1870 
1871 	if (!tp->packets_out)
1872 		goto out;
1873 
1874 	used_sacks = 0;
1875 	first_sack_index = 0;
1876 	for (i = 0; i < num_sacks; i++) {
1877 		bool dup_sack = !i && found_dup_sack;
1878 
1879 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1880 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1881 
1882 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1883 					    sp[used_sacks].start_seq,
1884 					    sp[used_sacks].end_seq)) {
1885 			int mib_idx;
1886 
1887 			if (dup_sack) {
1888 				if (!tp->undo_marker)
1889 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1890 				else
1891 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1892 			} else {
1893 				/* Don't count olds caused by ACK reordering */
1894 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1895 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1896 					continue;
1897 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1898 			}
1899 
1900 			NET_INC_STATS(sock_net(sk), mib_idx);
1901 			if (i == 0)
1902 				first_sack_index = -1;
1903 			continue;
1904 		}
1905 
1906 		/* Ignore very old stuff early */
1907 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1908 			if (i == 0)
1909 				first_sack_index = -1;
1910 			continue;
1911 		}
1912 
1913 		used_sacks++;
1914 	}
1915 
1916 	/* order SACK blocks to allow in order walk of the retrans queue */
1917 	for (i = used_sacks - 1; i > 0; i--) {
1918 		for (j = 0; j < i; j++) {
1919 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1920 				swap(sp[j], sp[j + 1]);
1921 
1922 				/* Track where the first SACK block goes to */
1923 				if (j == first_sack_index)
1924 					first_sack_index = j + 1;
1925 			}
1926 		}
1927 	}
1928 
1929 	state->mss_now = tcp_current_mss(sk);
1930 	skb = NULL;
1931 	i = 0;
1932 
1933 	if (!tp->sacked_out) {
1934 		/* It's already past, so skip checking against it */
1935 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1936 	} else {
1937 		cache = tp->recv_sack_cache;
1938 		/* Skip empty blocks in at head of the cache */
1939 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1940 		       !cache->end_seq)
1941 			cache++;
1942 	}
1943 
1944 	while (i < used_sacks) {
1945 		u32 start_seq = sp[i].start_seq;
1946 		u32 end_seq = sp[i].end_seq;
1947 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1948 		struct tcp_sack_block *next_dup = NULL;
1949 
1950 		if (found_dup_sack && ((i + 1) == first_sack_index))
1951 			next_dup = &sp[i + 1];
1952 
1953 		/* Skip too early cached blocks */
1954 		while (tcp_sack_cache_ok(tp, cache) &&
1955 		       !before(start_seq, cache->end_seq))
1956 			cache++;
1957 
1958 		/* Can skip some work by looking recv_sack_cache? */
1959 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1960 		    after(end_seq, cache->start_seq)) {
1961 
1962 			/* Head todo? */
1963 			if (before(start_seq, cache->start_seq)) {
1964 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1965 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1966 						       state,
1967 						       start_seq,
1968 						       cache->start_seq,
1969 						       dup_sack);
1970 			}
1971 
1972 			/* Rest of the block already fully processed? */
1973 			if (!after(end_seq, cache->end_seq))
1974 				goto advance_sp;
1975 
1976 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1977 						       state,
1978 						       cache->end_seq);
1979 
1980 			/* ...tail remains todo... */
1981 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1982 				/* ...but better entrypoint exists! */
1983 				skb = tcp_highest_sack(sk);
1984 				if (!skb)
1985 					break;
1986 				cache++;
1987 				goto walk;
1988 			}
1989 
1990 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1991 			/* Check overlap against next cached too (past this one already) */
1992 			cache++;
1993 			continue;
1994 		}
1995 
1996 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1997 			skb = tcp_highest_sack(sk);
1998 			if (!skb)
1999 				break;
2000 		}
2001 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2002 
2003 walk:
2004 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2005 				       start_seq, end_seq, dup_sack);
2006 
2007 advance_sp:
2008 		i++;
2009 	}
2010 
2011 	/* Clear the head of the cache sack blocks so we can skip it next time */
2012 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2013 		tp->recv_sack_cache[i].start_seq = 0;
2014 		tp->recv_sack_cache[i].end_seq = 0;
2015 	}
2016 	for (j = 0; j < used_sacks; j++)
2017 		tp->recv_sack_cache[i++] = sp[j];
2018 
2019 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2020 		tcp_check_sack_reordering(sk, state->reord, 0);
2021 
2022 	tcp_verify_left_out(tp);
2023 out:
2024 
2025 #if FASTRETRANS_DEBUG > 0
2026 	WARN_ON((int)tp->sacked_out < 0);
2027 	WARN_ON((int)tp->lost_out < 0);
2028 	WARN_ON((int)tp->retrans_out < 0);
2029 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2030 #endif
2031 	return state->flag;
2032 }
2033 
2034 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2035  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2036  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2037 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2038 {
2039 	u32 holes;
2040 
2041 	holes = max(tp->lost_out, 1U);
2042 	holes = min(holes, tp->packets_out);
2043 
2044 	if ((tp->sacked_out + holes) > tp->packets_out) {
2045 		tp->sacked_out = tp->packets_out - holes;
2046 		return true;
2047 	}
2048 	return false;
2049 }
2050 
2051 /* If we receive more dupacks than we expected counting segments
2052  * in assumption of absent reordering, interpret this as reordering.
2053  * The only another reason could be bug in receiver TCP.
2054  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2055 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2056 {
2057 	struct tcp_sock *tp = tcp_sk(sk);
2058 
2059 	if (!tcp_limit_reno_sacked(tp))
2060 		return;
2061 
2062 	tp->reordering = min_t(u32, tp->packets_out + addend,
2063 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2064 	tp->reord_seen++;
2065 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2066 }
2067 
2068 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2069 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2070 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2071 {
2072 	if (num_dupack) {
2073 		struct tcp_sock *tp = tcp_sk(sk);
2074 		u32 prior_sacked = tp->sacked_out;
2075 		s32 delivered;
2076 
2077 		tp->sacked_out += num_dupack;
2078 		tcp_check_reno_reordering(sk, 0);
2079 		delivered = tp->sacked_out - prior_sacked;
2080 		if (delivered > 0)
2081 			tcp_count_delivered(tp, delivered, ece_ack);
2082 		tcp_verify_left_out(tp);
2083 	}
2084 }
2085 
2086 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2087 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2088 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2089 {
2090 	struct tcp_sock *tp = tcp_sk(sk);
2091 
2092 	if (acked > 0) {
2093 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2094 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2095 				    ece_ack);
2096 		if (acked - 1 >= tp->sacked_out)
2097 			tp->sacked_out = 0;
2098 		else
2099 			tp->sacked_out -= acked - 1;
2100 	}
2101 	tcp_check_reno_reordering(sk, acked);
2102 	tcp_verify_left_out(tp);
2103 }
2104 
tcp_reset_reno_sack(struct tcp_sock * tp)2105 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2106 {
2107 	tp->sacked_out = 0;
2108 }
2109 
tcp_clear_retrans(struct tcp_sock * tp)2110 void tcp_clear_retrans(struct tcp_sock *tp)
2111 {
2112 	tp->retrans_out = 0;
2113 	tp->lost_out = 0;
2114 	tp->undo_marker = 0;
2115 	tp->undo_retrans = -1;
2116 	tp->sacked_out = 0;
2117 	tp->rto_stamp = 0;
2118 	tp->total_rto = 0;
2119 	tp->total_rto_recoveries = 0;
2120 	tp->total_rto_time = 0;
2121 }
2122 
tcp_init_undo(struct tcp_sock * tp)2123 static inline void tcp_init_undo(struct tcp_sock *tp)
2124 {
2125 	tp->undo_marker = tp->snd_una;
2126 
2127 	/* Retransmission still in flight may cause DSACKs later. */
2128 	/* First, account for regular retransmits in flight: */
2129 	tp->undo_retrans = tp->retrans_out;
2130 	/* Next, account for TLP retransmits in flight: */
2131 	if (tp->tlp_high_seq && tp->tlp_retrans)
2132 		tp->undo_retrans++;
2133 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2134 	if (!tp->undo_retrans)
2135 		tp->undo_retrans = -1;
2136 }
2137 
tcp_is_rack(const struct sock * sk)2138 static bool tcp_is_rack(const struct sock *sk)
2139 {
2140 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2141 		TCP_RACK_LOSS_DETECTION;
2142 }
2143 
2144 /* If we detect SACK reneging, forget all SACK information
2145  * and reset tags completely, otherwise preserve SACKs. If receiver
2146  * dropped its ofo queue, we will know this due to reneging detection.
2147  */
tcp_timeout_mark_lost(struct sock * sk)2148 static void tcp_timeout_mark_lost(struct sock *sk)
2149 {
2150 	struct tcp_sock *tp = tcp_sk(sk);
2151 	struct sk_buff *skb, *head;
2152 	bool is_reneg;			/* is receiver reneging on SACKs? */
2153 
2154 	head = tcp_rtx_queue_head(sk);
2155 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2156 	if (is_reneg) {
2157 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2158 		tp->sacked_out = 0;
2159 		/* Mark SACK reneging until we recover from this loss event. */
2160 		tp->is_sack_reneg = 1;
2161 	} else if (tcp_is_reno(tp)) {
2162 		tcp_reset_reno_sack(tp);
2163 	}
2164 
2165 	skb = head;
2166 	skb_rbtree_walk_from(skb) {
2167 		if (is_reneg)
2168 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2169 		else if (tcp_is_rack(sk) && skb != head &&
2170 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2171 			continue; /* Don't mark recently sent ones lost yet */
2172 		tcp_mark_skb_lost(sk, skb);
2173 	}
2174 	tcp_verify_left_out(tp);
2175 	tcp_clear_all_retrans_hints(tp);
2176 }
2177 
2178 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2179 void tcp_enter_loss(struct sock *sk)
2180 {
2181 	const struct inet_connection_sock *icsk = inet_csk(sk);
2182 	struct tcp_sock *tp = tcp_sk(sk);
2183 	struct net *net = sock_net(sk);
2184 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2185 	u8 reordering;
2186 
2187 	tcp_timeout_mark_lost(sk);
2188 
2189 	/* Reduce ssthresh if it has not yet been made inside this window. */
2190 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2191 	    !after(tp->high_seq, tp->snd_una) ||
2192 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2193 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2194 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2195 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2196 		tcp_ca_event(sk, CA_EVENT_LOSS);
2197 		tcp_init_undo(tp);
2198 	}
2199 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2200 	tp->snd_cwnd_cnt   = 0;
2201 	tp->snd_cwnd_stamp = tcp_jiffies32;
2202 
2203 	/* Timeout in disordered state after receiving substantial DUPACKs
2204 	 * suggests that the degree of reordering is over-estimated.
2205 	 */
2206 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2207 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2208 	    tp->sacked_out >= reordering)
2209 		tp->reordering = min_t(unsigned int, tp->reordering,
2210 				       reordering);
2211 
2212 	tcp_set_ca_state(sk, TCP_CA_Loss);
2213 	tp->high_seq = tp->snd_nxt;
2214 	tp->tlp_high_seq = 0;
2215 	tcp_ecn_queue_cwr(tp);
2216 
2217 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2218 	 * loss recovery is underway except recurring timeout(s) on
2219 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2220 	 */
2221 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2222 		   (new_recovery || icsk->icsk_retransmits) &&
2223 		   !inet_csk(sk)->icsk_mtup.probe_size;
2224 }
2225 
2226 /* If ACK arrived pointing to a remembered SACK, it means that our
2227  * remembered SACKs do not reflect real state of receiver i.e.
2228  * receiver _host_ is heavily congested (or buggy).
2229  *
2230  * To avoid big spurious retransmission bursts due to transient SACK
2231  * scoreboard oddities that look like reneging, we give the receiver a
2232  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2233  * restore sanity to the SACK scoreboard. If the apparent reneging
2234  * persists until this RTO then we'll clear the SACK scoreboard.
2235  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2236 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2237 {
2238 	if (*ack_flag & FLAG_SACK_RENEGING &&
2239 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2240 		struct tcp_sock *tp = tcp_sk(sk);
2241 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2242 					  msecs_to_jiffies(10));
2243 
2244 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2245 					  delay, TCP_RTO_MAX);
2246 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2247 		return true;
2248 	}
2249 	return false;
2250 }
2251 
2252 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2253  * counter when SACK is enabled (without SACK, sacked_out is used for
2254  * that purpose).
2255  *
2256  * With reordering, holes may still be in flight, so RFC3517 recovery
2257  * uses pure sacked_out (total number of SACKed segments) even though
2258  * it violates the RFC that uses duplicate ACKs, often these are equal
2259  * but when e.g. out-of-window ACKs or packet duplication occurs,
2260  * they differ. Since neither occurs due to loss, TCP should really
2261  * ignore them.
2262  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2263 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2264 {
2265 	return tp->sacked_out + 1;
2266 }
2267 
2268 /* Linux NewReno/SACK/ECN state machine.
2269  * --------------------------------------
2270  *
2271  * "Open"	Normal state, no dubious events, fast path.
2272  * "Disorder"   In all the respects it is "Open",
2273  *		but requires a bit more attention. It is entered when
2274  *		we see some SACKs or dupacks. It is split of "Open"
2275  *		mainly to move some processing from fast path to slow one.
2276  * "CWR"	CWND was reduced due to some Congestion Notification event.
2277  *		It can be ECN, ICMP source quench, local device congestion.
2278  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2279  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2280  *
2281  * tcp_fastretrans_alert() is entered:
2282  * - each incoming ACK, if state is not "Open"
2283  * - when arrived ACK is unusual, namely:
2284  *	* SACK
2285  *	* Duplicate ACK.
2286  *	* ECN ECE.
2287  *
2288  * Counting packets in flight is pretty simple.
2289  *
2290  *	in_flight = packets_out - left_out + retrans_out
2291  *
2292  *	packets_out is SND.NXT-SND.UNA counted in packets.
2293  *
2294  *	retrans_out is number of retransmitted segments.
2295  *
2296  *	left_out is number of segments left network, but not ACKed yet.
2297  *
2298  *		left_out = sacked_out + lost_out
2299  *
2300  *     sacked_out: Packets, which arrived to receiver out of order
2301  *		   and hence not ACKed. With SACKs this number is simply
2302  *		   amount of SACKed data. Even without SACKs
2303  *		   it is easy to give pretty reliable estimate of this number,
2304  *		   counting duplicate ACKs.
2305  *
2306  *       lost_out: Packets lost by network. TCP has no explicit
2307  *		   "loss notification" feedback from network (for now).
2308  *		   It means that this number can be only _guessed_.
2309  *		   Actually, it is the heuristics to predict lossage that
2310  *		   distinguishes different algorithms.
2311  *
2312  *	F.e. after RTO, when all the queue is considered as lost,
2313  *	lost_out = packets_out and in_flight = retrans_out.
2314  *
2315  *		Essentially, we have now a few algorithms detecting
2316  *		lost packets.
2317  *
2318  *		If the receiver supports SACK:
2319  *
2320  *		RFC6675/3517: It is the conventional algorithm. A packet is
2321  *		considered lost if the number of higher sequence packets
2322  *		SACKed is greater than or equal the DUPACK thoreshold
2323  *		(reordering). This is implemented in tcp_mark_head_lost and
2324  *		tcp_update_scoreboard.
2325  *
2326  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2327  *		(2017-) that checks timing instead of counting DUPACKs.
2328  *		Essentially a packet is considered lost if it's not S/ACKed
2329  *		after RTT + reordering_window, where both metrics are
2330  *		dynamically measured and adjusted. This is implemented in
2331  *		tcp_rack_mark_lost.
2332  *
2333  *		If the receiver does not support SACK:
2334  *
2335  *		NewReno (RFC6582): in Recovery we assume that one segment
2336  *		is lost (classic Reno). While we are in Recovery and
2337  *		a partial ACK arrives, we assume that one more packet
2338  *		is lost (NewReno). This heuristics are the same in NewReno
2339  *		and SACK.
2340  *
2341  * Really tricky (and requiring careful tuning) part of algorithm
2342  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2343  * The first determines the moment _when_ we should reduce CWND and,
2344  * hence, slow down forward transmission. In fact, it determines the moment
2345  * when we decide that hole is caused by loss, rather than by a reorder.
2346  *
2347  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2348  * holes, caused by lost packets.
2349  *
2350  * And the most logically complicated part of algorithm is undo
2351  * heuristics. We detect false retransmits due to both too early
2352  * fast retransmit (reordering) and underestimated RTO, analyzing
2353  * timestamps and D-SACKs. When we detect that some segments were
2354  * retransmitted by mistake and CWND reduction was wrong, we undo
2355  * window reduction and abort recovery phase. This logic is hidden
2356  * inside several functions named tcp_try_undo_<something>.
2357  */
2358 
2359 /* This function decides, when we should leave Disordered state
2360  * and enter Recovery phase, reducing congestion window.
2361  *
2362  * Main question: may we further continue forward transmission
2363  * with the same cwnd?
2364  */
tcp_time_to_recover(struct sock * sk,int flag)2365 static bool tcp_time_to_recover(struct sock *sk, int flag)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 
2369 	/* Trick#1: The loss is proven. */
2370 	if (tp->lost_out)
2371 		return true;
2372 
2373 	/* Not-A-Trick#2 : Classic rule... */
2374 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2375 		return true;
2376 
2377 	return false;
2378 }
2379 
2380 /* Detect loss in event "A" above by marking head of queue up as lost.
2381  * For RFC3517 SACK, a segment is considered lost if it
2382  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2383  * the maximum SACKed segments to pass before reaching this limit.
2384  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2385 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 	struct sk_buff *skb;
2389 	int cnt;
2390 	/* Use SACK to deduce losses of new sequences sent during recovery */
2391 	const u32 loss_high = tp->snd_nxt;
2392 
2393 	WARN_ON(packets > tp->packets_out);
2394 	skb = tp->lost_skb_hint;
2395 	if (skb) {
2396 		/* Head already handled? */
2397 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2398 			return;
2399 		cnt = tp->lost_cnt_hint;
2400 	} else {
2401 		skb = tcp_rtx_queue_head(sk);
2402 		cnt = 0;
2403 	}
2404 
2405 	skb_rbtree_walk_from(skb) {
2406 		/* TODO: do this better */
2407 		/* this is not the most efficient way to do this... */
2408 		tp->lost_skb_hint = skb;
2409 		tp->lost_cnt_hint = cnt;
2410 
2411 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2412 			break;
2413 
2414 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2415 			cnt += tcp_skb_pcount(skb);
2416 
2417 		if (cnt > packets)
2418 			break;
2419 
2420 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2421 			tcp_mark_skb_lost(sk, skb);
2422 
2423 		if (mark_head)
2424 			break;
2425 	}
2426 	tcp_verify_left_out(tp);
2427 }
2428 
2429 /* Account newly detected lost packet(s) */
2430 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2431 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2432 {
2433 	struct tcp_sock *tp = tcp_sk(sk);
2434 
2435 	if (tcp_is_sack(tp)) {
2436 		int sacked_upto = tp->sacked_out - tp->reordering;
2437 		if (sacked_upto >= 0)
2438 			tcp_mark_head_lost(sk, sacked_upto, 0);
2439 		else if (fast_rexmit)
2440 			tcp_mark_head_lost(sk, 1, 1);
2441 	}
2442 }
2443 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2444 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2445 {
2446 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2447 	       before(tp->rx_opt.rcv_tsecr, when);
2448 }
2449 
2450 /* skb is spurious retransmitted if the returned timestamp echo
2451  * reply is prior to the skb transmission time
2452  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2453 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2454 				     const struct sk_buff *skb)
2455 {
2456 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2457 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2458 }
2459 
2460 /* Nothing was retransmitted or returned timestamp is less
2461  * than timestamp of the first retransmission.
2462  */
tcp_packet_delayed(const struct tcp_sock * tp)2463 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2464 {
2465 	const struct sock *sk = (const struct sock *)tp;
2466 
2467 	if (tp->retrans_stamp &&
2468 	    tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2469 		return true;  /* got echoed TS before first retransmission */
2470 
2471 	/* Check if nothing was retransmitted (retrans_stamp==0), which may
2472 	 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2473 	 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2474 	 * retrans_stamp even if we had retransmitted the SYN.
2475 	 */
2476 	if (!tp->retrans_stamp &&	   /* no record of a retransmit/SYN? */
2477 	    sk->sk_state != TCP_SYN_SENT)  /* not the FLAG_SYN_ACKED case? */
2478 		return true;  /* nothing was retransmitted */
2479 
2480 	return false;
2481 }
2482 
2483 /* Undo procedures. */
2484 
2485 /* We can clear retrans_stamp when there are no retransmissions in the
2486  * window. It would seem that it is trivially available for us in
2487  * tp->retrans_out, however, that kind of assumptions doesn't consider
2488  * what will happen if errors occur when sending retransmission for the
2489  * second time. ...It could the that such segment has only
2490  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2491  * the head skb is enough except for some reneging corner cases that
2492  * are not worth the effort.
2493  *
2494  * Main reason for all this complexity is the fact that connection dying
2495  * time now depends on the validity of the retrans_stamp, in particular,
2496  * that successive retransmissions of a segment must not advance
2497  * retrans_stamp under any conditions.
2498  */
tcp_any_retrans_done(const struct sock * sk)2499 static bool tcp_any_retrans_done(const struct sock *sk)
2500 {
2501 	const struct tcp_sock *tp = tcp_sk(sk);
2502 	struct sk_buff *skb;
2503 
2504 	if (tp->retrans_out)
2505 		return true;
2506 
2507 	skb = tcp_rtx_queue_head(sk);
2508 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2509 		return true;
2510 
2511 	return false;
2512 }
2513 
2514 /* If loss recovery is finished and there are no retransmits out in the
2515  * network, then we clear retrans_stamp so that upon the next loss recovery
2516  * retransmits_timed_out() and timestamp-undo are using the correct value.
2517  */
tcp_retrans_stamp_cleanup(struct sock * sk)2518 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2519 {
2520 	if (!tcp_any_retrans_done(sk))
2521 		tcp_sk(sk)->retrans_stamp = 0;
2522 }
2523 
DBGUNDO(struct sock * sk,const char * msg)2524 static void DBGUNDO(struct sock *sk, const char *msg)
2525 {
2526 #if FASTRETRANS_DEBUG > 1
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 	struct inet_sock *inet = inet_sk(sk);
2529 
2530 	if (sk->sk_family == AF_INET) {
2531 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2532 			 msg,
2533 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2534 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2535 			 tp->snd_ssthresh, tp->prior_ssthresh,
2536 			 tp->packets_out);
2537 	}
2538 #if IS_ENABLED(CONFIG_IPV6)
2539 	else if (sk->sk_family == AF_INET6) {
2540 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2541 			 msg,
2542 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2543 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2544 			 tp->snd_ssthresh, tp->prior_ssthresh,
2545 			 tp->packets_out);
2546 	}
2547 #endif
2548 #endif
2549 }
2550 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2551 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2552 {
2553 	struct tcp_sock *tp = tcp_sk(sk);
2554 
2555 	if (unmark_loss) {
2556 		struct sk_buff *skb;
2557 
2558 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2559 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2560 		}
2561 		tp->lost_out = 0;
2562 		tcp_clear_all_retrans_hints(tp);
2563 	}
2564 
2565 	if (tp->prior_ssthresh) {
2566 		const struct inet_connection_sock *icsk = inet_csk(sk);
2567 
2568 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2569 
2570 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2571 			tp->snd_ssthresh = tp->prior_ssthresh;
2572 			tcp_ecn_withdraw_cwr(tp);
2573 		}
2574 	}
2575 	tp->snd_cwnd_stamp = tcp_jiffies32;
2576 	tp->undo_marker = 0;
2577 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2578 }
2579 
tcp_may_undo(const struct tcp_sock * tp)2580 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2581 {
2582 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2583 }
2584 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2585 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2586 {
2587 	struct tcp_sock *tp = tcp_sk(sk);
2588 
2589 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2590 		/* Hold old state until something *above* high_seq
2591 		 * is ACKed. For Reno it is MUST to prevent false
2592 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2593 		if (!tcp_any_retrans_done(sk))
2594 			tp->retrans_stamp = 0;
2595 		return true;
2596 	}
2597 	return false;
2598 }
2599 
2600 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2601 static bool tcp_try_undo_recovery(struct sock *sk)
2602 {
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 
2605 	if (tcp_may_undo(tp)) {
2606 		int mib_idx;
2607 
2608 		/* Happy end! We did not retransmit anything
2609 		 * or our original transmission succeeded.
2610 		 */
2611 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2612 		tcp_undo_cwnd_reduction(sk, false);
2613 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2614 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2615 		else
2616 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2617 
2618 		NET_INC_STATS(sock_net(sk), mib_idx);
2619 	} else if (tp->rack.reo_wnd_persist) {
2620 		tp->rack.reo_wnd_persist--;
2621 	}
2622 	if (tcp_is_non_sack_preventing_reopen(sk))
2623 		return true;
2624 	tcp_set_ca_state(sk, TCP_CA_Open);
2625 	tp->is_sack_reneg = 0;
2626 	return false;
2627 }
2628 
2629 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2630 static bool tcp_try_undo_dsack(struct sock *sk)
2631 {
2632 	struct tcp_sock *tp = tcp_sk(sk);
2633 
2634 	if (tp->undo_marker && !tp->undo_retrans) {
2635 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2636 					       tp->rack.reo_wnd_persist + 1);
2637 		DBGUNDO(sk, "D-SACK");
2638 		tcp_undo_cwnd_reduction(sk, false);
2639 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2640 		return true;
2641 	}
2642 	return false;
2643 }
2644 
2645 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2646 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2647 {
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 
2650 	if (frto_undo || tcp_may_undo(tp)) {
2651 		tcp_undo_cwnd_reduction(sk, true);
2652 
2653 		DBGUNDO(sk, "partial loss");
2654 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2655 		if (frto_undo)
2656 			NET_INC_STATS(sock_net(sk),
2657 					LINUX_MIB_TCPSPURIOUSRTOS);
2658 		inet_csk(sk)->icsk_retransmits = 0;
2659 		if (tcp_is_non_sack_preventing_reopen(sk))
2660 			return true;
2661 		if (frto_undo || tcp_is_sack(tp)) {
2662 			tcp_set_ca_state(sk, TCP_CA_Open);
2663 			tp->is_sack_reneg = 0;
2664 		}
2665 		return true;
2666 	}
2667 	return false;
2668 }
2669 
2670 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2671  * It computes the number of packets to send (sndcnt) based on packets newly
2672  * delivered:
2673  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2674  *	cwnd reductions across a full RTT.
2675  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2676  *      But when SND_UNA is acked without further losses,
2677  *      slow starts cwnd up to ssthresh to speed up the recovery.
2678  */
tcp_init_cwnd_reduction(struct sock * sk)2679 static void tcp_init_cwnd_reduction(struct sock *sk)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 	tp->high_seq = tp->snd_nxt;
2684 	tp->tlp_high_seq = 0;
2685 	tp->snd_cwnd_cnt = 0;
2686 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2687 	tp->prr_delivered = 0;
2688 	tp->prr_out = 0;
2689 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2690 	tcp_ecn_queue_cwr(tp);
2691 }
2692 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2693 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2694 {
2695 	struct tcp_sock *tp = tcp_sk(sk);
2696 	int sndcnt = 0;
2697 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2698 
2699 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2700 		return;
2701 
2702 	tp->prr_delivered += newly_acked_sacked;
2703 	if (delta < 0) {
2704 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2705 			       tp->prior_cwnd - 1;
2706 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2707 	} else {
2708 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2709 			       newly_acked_sacked);
2710 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2711 			sndcnt++;
2712 		sndcnt = min(delta, sndcnt);
2713 	}
2714 	/* Force a fast retransmit upon entering fast recovery */
2715 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2716 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2717 }
2718 
tcp_end_cwnd_reduction(struct sock * sk)2719 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 
2723 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2724 		return;
2725 
2726 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2727 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2728 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2729 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2730 		tp->snd_cwnd_stamp = tcp_jiffies32;
2731 	}
2732 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2733 }
2734 
2735 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2736 void tcp_enter_cwr(struct sock *sk)
2737 {
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 
2740 	tp->prior_ssthresh = 0;
2741 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742 		tp->undo_marker = 0;
2743 		tcp_init_cwnd_reduction(sk);
2744 		tcp_set_ca_state(sk, TCP_CA_CWR);
2745 	}
2746 }
2747 EXPORT_SYMBOL(tcp_enter_cwr);
2748 
tcp_try_keep_open(struct sock * sk)2749 static void tcp_try_keep_open(struct sock *sk)
2750 {
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 	int state = TCP_CA_Open;
2753 
2754 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2755 		state = TCP_CA_Disorder;
2756 
2757 	if (inet_csk(sk)->icsk_ca_state != state) {
2758 		tcp_set_ca_state(sk, state);
2759 		tp->high_seq = tp->snd_nxt;
2760 	}
2761 }
2762 
tcp_try_to_open(struct sock * sk,int flag)2763 static void tcp_try_to_open(struct sock *sk, int flag)
2764 {
2765 	struct tcp_sock *tp = tcp_sk(sk);
2766 
2767 	tcp_verify_left_out(tp);
2768 
2769 	if (!tcp_any_retrans_done(sk))
2770 		tp->retrans_stamp = 0;
2771 
2772 	if (flag & FLAG_ECE)
2773 		tcp_enter_cwr(sk);
2774 
2775 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2776 		tcp_try_keep_open(sk);
2777 	}
2778 }
2779 
tcp_mtup_probe_failed(struct sock * sk)2780 static void tcp_mtup_probe_failed(struct sock *sk)
2781 {
2782 	struct inet_connection_sock *icsk = inet_csk(sk);
2783 
2784 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2785 	icsk->icsk_mtup.probe_size = 0;
2786 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2787 }
2788 
tcp_mtup_probe_success(struct sock * sk)2789 static void tcp_mtup_probe_success(struct sock *sk)
2790 {
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	struct inet_connection_sock *icsk = inet_csk(sk);
2793 	u64 val;
2794 
2795 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2796 
2797 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2798 	do_div(val, icsk->icsk_mtup.probe_size);
2799 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2800 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2801 
2802 	tp->snd_cwnd_cnt = 0;
2803 	tp->snd_cwnd_stamp = tcp_jiffies32;
2804 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2805 
2806 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2807 	icsk->icsk_mtup.probe_size = 0;
2808 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2809 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2810 }
2811 
2812 /* Sometimes we deduce that packets have been dropped due to reasons other than
2813  * congestion, like path MTU reductions or failed client TFO attempts. In these
2814  * cases we call this function to retransmit as many packets as cwnd allows,
2815  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2816  * non-zero value (and may do so in a later calling context due to TSQ), we
2817  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2818  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2819  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2820  * prematurely).
2821  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2822 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2823 {
2824 	const struct inet_connection_sock *icsk = inet_csk(sk);
2825 	struct tcp_sock *tp = tcp_sk(sk);
2826 
2827 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2828 		tp->high_seq = tp->snd_nxt;
2829 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2830 		tp->prior_ssthresh = 0;
2831 		tp->undo_marker = 0;
2832 		tcp_set_ca_state(sk, TCP_CA_Loss);
2833 	}
2834 	tcp_xmit_retransmit_queue(sk);
2835 }
2836 
2837 /* Do a simple retransmit without using the backoff mechanisms in
2838  * tcp_timer. This is used for path mtu discovery.
2839  * The socket is already locked here.
2840  */
tcp_simple_retransmit(struct sock * sk)2841 void tcp_simple_retransmit(struct sock *sk)
2842 {
2843 	struct tcp_sock *tp = tcp_sk(sk);
2844 	struct sk_buff *skb;
2845 	int mss;
2846 
2847 	/* A fastopen SYN request is stored as two separate packets within
2848 	 * the retransmit queue, this is done by tcp_send_syn_data().
2849 	 * As a result simply checking the MSS of the frames in the queue
2850 	 * will not work for the SYN packet.
2851 	 *
2852 	 * Us being here is an indication of a path MTU issue so we can
2853 	 * assume that the fastopen SYN was lost and just mark all the
2854 	 * frames in the retransmit queue as lost. We will use an MSS of
2855 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2856 	 */
2857 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2858 		mss = -1;
2859 	else
2860 		mss = tcp_current_mss(sk);
2861 
2862 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2863 		if (tcp_skb_seglen(skb) > mss)
2864 			tcp_mark_skb_lost(sk, skb);
2865 	}
2866 
2867 	tcp_clear_retrans_hints_partial(tp);
2868 
2869 	if (!tp->lost_out)
2870 		return;
2871 
2872 	if (tcp_is_reno(tp))
2873 		tcp_limit_reno_sacked(tp);
2874 
2875 	tcp_verify_left_out(tp);
2876 
2877 	/* Don't muck with the congestion window here.
2878 	 * Reason is that we do not increase amount of _data_
2879 	 * in network, but units changed and effective
2880 	 * cwnd/ssthresh really reduced now.
2881 	 */
2882 	tcp_non_congestion_loss_retransmit(sk);
2883 }
2884 EXPORT_SYMBOL(tcp_simple_retransmit);
2885 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2886 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2887 {
2888 	struct tcp_sock *tp = tcp_sk(sk);
2889 	int mib_idx;
2890 
2891 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2892 	tcp_retrans_stamp_cleanup(sk);
2893 
2894 	if (tcp_is_reno(tp))
2895 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2896 	else
2897 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2898 
2899 	NET_INC_STATS(sock_net(sk), mib_idx);
2900 
2901 	tp->prior_ssthresh = 0;
2902 	tcp_init_undo(tp);
2903 
2904 	if (!tcp_in_cwnd_reduction(sk)) {
2905 		if (!ece_ack)
2906 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2907 		tcp_init_cwnd_reduction(sk);
2908 	}
2909 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2910 }
2911 
tcp_update_rto_time(struct tcp_sock * tp)2912 static void tcp_update_rto_time(struct tcp_sock *tp)
2913 {
2914 	if (tp->rto_stamp) {
2915 		tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2916 		tp->rto_stamp = 0;
2917 	}
2918 }
2919 
2920 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2921  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2922  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2923 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2924 			     int *rexmit)
2925 {
2926 	struct tcp_sock *tp = tcp_sk(sk);
2927 	bool recovered = !before(tp->snd_una, tp->high_seq);
2928 
2929 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2930 	    tcp_try_undo_loss(sk, false))
2931 		return;
2932 
2933 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2934 		/* Step 3.b. A timeout is spurious if not all data are
2935 		 * lost, i.e., never-retransmitted data are (s)acked.
2936 		 */
2937 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2938 		    tcp_try_undo_loss(sk, true))
2939 			return;
2940 
2941 		if (after(tp->snd_nxt, tp->high_seq)) {
2942 			if (flag & FLAG_DATA_SACKED || num_dupack)
2943 				tp->frto = 0; /* Step 3.a. loss was real */
2944 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2945 			tp->high_seq = tp->snd_nxt;
2946 			/* Step 2.b. Try send new data (but deferred until cwnd
2947 			 * is updated in tcp_ack()). Otherwise fall back to
2948 			 * the conventional recovery.
2949 			 */
2950 			if (!tcp_write_queue_empty(sk) &&
2951 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2952 				*rexmit = REXMIT_NEW;
2953 				return;
2954 			}
2955 			tp->frto = 0;
2956 		}
2957 	}
2958 
2959 	if (recovered) {
2960 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2961 		tcp_try_undo_recovery(sk);
2962 		return;
2963 	}
2964 	if (tcp_is_reno(tp)) {
2965 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2966 		 * delivered. Lower inflight to clock out (re)transmissions.
2967 		 */
2968 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2969 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2970 		else if (flag & FLAG_SND_UNA_ADVANCED)
2971 			tcp_reset_reno_sack(tp);
2972 	}
2973 	*rexmit = REXMIT_LOST;
2974 }
2975 
tcp_force_fast_retransmit(struct sock * sk)2976 static bool tcp_force_fast_retransmit(struct sock *sk)
2977 {
2978 	struct tcp_sock *tp = tcp_sk(sk);
2979 
2980 	return after(tcp_highest_sack_seq(tp),
2981 		     tp->snd_una + tp->reordering * tp->mss_cache);
2982 }
2983 
2984 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2985 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2986 				 bool *do_lost)
2987 {
2988 	struct tcp_sock *tp = tcp_sk(sk);
2989 
2990 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2991 		/* Plain luck! Hole if filled with delayed
2992 		 * packet, rather than with a retransmit. Check reordering.
2993 		 */
2994 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2995 
2996 		/* We are getting evidence that the reordering degree is higher
2997 		 * than we realized. If there are no retransmits out then we
2998 		 * can undo. Otherwise we clock out new packets but do not
2999 		 * mark more packets lost or retransmit more.
3000 		 */
3001 		if (tp->retrans_out)
3002 			return true;
3003 
3004 		if (!tcp_any_retrans_done(sk))
3005 			tp->retrans_stamp = 0;
3006 
3007 		DBGUNDO(sk, "partial recovery");
3008 		tcp_undo_cwnd_reduction(sk, true);
3009 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3010 		tcp_try_keep_open(sk);
3011 	} else {
3012 		/* Partial ACK arrived. Force fast retransmit. */
3013 		*do_lost = tcp_force_fast_retransmit(sk);
3014 	}
3015 	return false;
3016 }
3017 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3018 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 
3022 	if (tcp_rtx_queue_empty(sk))
3023 		return;
3024 
3025 	if (unlikely(tcp_is_reno(tp))) {
3026 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3027 	} else if (tcp_is_rack(sk)) {
3028 		u32 prior_retrans = tp->retrans_out;
3029 
3030 		if (tcp_rack_mark_lost(sk))
3031 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3032 		if (prior_retrans > tp->retrans_out)
3033 			*ack_flag |= FLAG_LOST_RETRANS;
3034 	}
3035 }
3036 
3037 /* Process an event, which can update packets-in-flight not trivially.
3038  * Main goal of this function is to calculate new estimate for left_out,
3039  * taking into account both packets sitting in receiver's buffer and
3040  * packets lost by network.
3041  *
3042  * Besides that it updates the congestion state when packet loss or ECN
3043  * is detected. But it does not reduce the cwnd, it is done by the
3044  * congestion control later.
3045  *
3046  * It does _not_ decide what to send, it is made in function
3047  * tcp_xmit_retransmit_queue().
3048  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3049 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3050 				  int num_dupack, int *ack_flag, int *rexmit)
3051 {
3052 	struct inet_connection_sock *icsk = inet_csk(sk);
3053 	struct tcp_sock *tp = tcp_sk(sk);
3054 	int fast_rexmit = 0, flag = *ack_flag;
3055 	bool ece_ack = flag & FLAG_ECE;
3056 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3057 				      tcp_force_fast_retransmit(sk));
3058 
3059 	if (!tp->packets_out && tp->sacked_out)
3060 		tp->sacked_out = 0;
3061 
3062 	/* Now state machine starts.
3063 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3064 	if (ece_ack)
3065 		tp->prior_ssthresh = 0;
3066 
3067 	/* B. In all the states check for reneging SACKs. */
3068 	if (tcp_check_sack_reneging(sk, ack_flag))
3069 		return;
3070 
3071 	/* C. Check consistency of the current state. */
3072 	tcp_verify_left_out(tp);
3073 
3074 	/* D. Check state exit conditions. State can be terminated
3075 	 *    when high_seq is ACKed. */
3076 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3077 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3078 		tp->retrans_stamp = 0;
3079 	} else if (!before(tp->snd_una, tp->high_seq)) {
3080 		switch (icsk->icsk_ca_state) {
3081 		case TCP_CA_CWR:
3082 			/* CWR is to be held something *above* high_seq
3083 			 * is ACKed for CWR bit to reach receiver. */
3084 			if (tp->snd_una != tp->high_seq) {
3085 				tcp_end_cwnd_reduction(sk);
3086 				tcp_set_ca_state(sk, TCP_CA_Open);
3087 			}
3088 			break;
3089 
3090 		case TCP_CA_Recovery:
3091 			if (tcp_is_reno(tp))
3092 				tcp_reset_reno_sack(tp);
3093 			if (tcp_try_undo_recovery(sk))
3094 				return;
3095 			tcp_end_cwnd_reduction(sk);
3096 			break;
3097 		}
3098 	}
3099 
3100 	/* E. Process state. */
3101 	switch (icsk->icsk_ca_state) {
3102 	case TCP_CA_Recovery:
3103 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3104 			if (tcp_is_reno(tp))
3105 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3106 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3107 			return;
3108 
3109 		if (tcp_try_undo_dsack(sk))
3110 			tcp_try_to_open(sk, flag);
3111 
3112 		tcp_identify_packet_loss(sk, ack_flag);
3113 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3114 			if (!tcp_time_to_recover(sk, flag))
3115 				return;
3116 			/* Undo reverts the recovery state. If loss is evident,
3117 			 * starts a new recovery (e.g. reordering then loss);
3118 			 */
3119 			tcp_enter_recovery(sk, ece_ack);
3120 		}
3121 		break;
3122 	case TCP_CA_Loss:
3123 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3124 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3125 			tcp_update_rto_time(tp);
3126 		tcp_identify_packet_loss(sk, ack_flag);
3127 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3128 		      (*ack_flag & FLAG_LOST_RETRANS)))
3129 			return;
3130 		/* Change state if cwnd is undone or retransmits are lost */
3131 		fallthrough;
3132 	default:
3133 		if (tcp_is_reno(tp)) {
3134 			if (flag & FLAG_SND_UNA_ADVANCED)
3135 				tcp_reset_reno_sack(tp);
3136 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3137 		}
3138 
3139 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3140 			tcp_try_undo_dsack(sk);
3141 
3142 		tcp_identify_packet_loss(sk, ack_flag);
3143 		if (!tcp_time_to_recover(sk, flag)) {
3144 			tcp_try_to_open(sk, flag);
3145 			return;
3146 		}
3147 
3148 		/* MTU probe failure: don't reduce cwnd */
3149 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3150 		    icsk->icsk_mtup.probe_size &&
3151 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3152 			tcp_mtup_probe_failed(sk);
3153 			/* Restores the reduction we did in tcp_mtup_probe() */
3154 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3155 			tcp_simple_retransmit(sk);
3156 			return;
3157 		}
3158 
3159 		/* Otherwise enter Recovery state */
3160 		tcp_enter_recovery(sk, ece_ack);
3161 		fast_rexmit = 1;
3162 	}
3163 
3164 	if (!tcp_is_rack(sk) && do_lost)
3165 		tcp_update_scoreboard(sk, fast_rexmit);
3166 	*rexmit = REXMIT_LOST;
3167 }
3168 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3169 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3170 {
3171 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3172 	struct tcp_sock *tp = tcp_sk(sk);
3173 
3174 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3175 		/* If the remote keeps returning delayed ACKs, eventually
3176 		 * the min filter would pick it up and overestimate the
3177 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3178 		 */
3179 		return;
3180 	}
3181 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3182 			   rtt_us ? : jiffies_to_usecs(1));
3183 }
3184 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3185 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3186 			       long seq_rtt_us, long sack_rtt_us,
3187 			       long ca_rtt_us, struct rate_sample *rs)
3188 {
3189 	const struct tcp_sock *tp = tcp_sk(sk);
3190 
3191 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3192 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3193 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3194 	 * is acked (RFC6298).
3195 	 */
3196 	if (seq_rtt_us < 0)
3197 		seq_rtt_us = sack_rtt_us;
3198 
3199 	/* RTTM Rule: A TSecr value received in a segment is used to
3200 	 * update the averaged RTT measurement only if the segment
3201 	 * acknowledges some new data, i.e., only if it advances the
3202 	 * left edge of the send window.
3203 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3204 	 */
3205 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3206 	    flag & FLAG_ACKED) {
3207 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3208 
3209 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3210 			if (!delta)
3211 				delta = 1;
3212 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3213 			ca_rtt_us = seq_rtt_us;
3214 		}
3215 	}
3216 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3217 	if (seq_rtt_us < 0)
3218 		return false;
3219 
3220 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3221 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3222 	 * values will be skipped with the seq_rtt_us < 0 check above.
3223 	 */
3224 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3225 	tcp_rtt_estimator(sk, seq_rtt_us);
3226 	tcp_set_rto(sk);
3227 
3228 	/* RFC6298: only reset backoff on valid RTT measurement. */
3229 	inet_csk(sk)->icsk_backoff = 0;
3230 	return true;
3231 }
3232 
3233 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3234 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3235 {
3236 	struct rate_sample rs;
3237 	long rtt_us = -1L;
3238 
3239 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3240 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3241 
3242 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3243 }
3244 
3245 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3246 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3247 {
3248 	const struct inet_connection_sock *icsk = inet_csk(sk);
3249 
3250 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3251 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3252 }
3253 
3254 /* Restart timer after forward progress on connection.
3255  * RFC2988 recommends to restart timer to now+rto.
3256  */
tcp_rearm_rto(struct sock * sk)3257 void tcp_rearm_rto(struct sock *sk)
3258 {
3259 	const struct inet_connection_sock *icsk = inet_csk(sk);
3260 	struct tcp_sock *tp = tcp_sk(sk);
3261 
3262 	/* If the retrans timer is currently being used by Fast Open
3263 	 * for SYN-ACK retrans purpose, stay put.
3264 	 */
3265 	if (rcu_access_pointer(tp->fastopen_rsk))
3266 		return;
3267 
3268 	if (!tp->packets_out) {
3269 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3270 	} else {
3271 		u32 rto = inet_csk(sk)->icsk_rto;
3272 		/* Offset the time elapsed after installing regular RTO */
3273 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3274 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3275 			s64 delta_us = tcp_rto_delta_us(sk);
3276 			/* delta_us may not be positive if the socket is locked
3277 			 * when the retrans timer fires and is rescheduled.
3278 			 */
3279 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3280 		}
3281 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3282 				     TCP_RTO_MAX);
3283 	}
3284 }
3285 
3286 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3287 static void tcp_set_xmit_timer(struct sock *sk)
3288 {
3289 	if (!tcp_schedule_loss_probe(sk, true))
3290 		tcp_rearm_rto(sk);
3291 }
3292 
3293 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3294 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3295 {
3296 	struct tcp_sock *tp = tcp_sk(sk);
3297 	u32 packets_acked;
3298 
3299 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3300 
3301 	packets_acked = tcp_skb_pcount(skb);
3302 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3303 		return 0;
3304 	packets_acked -= tcp_skb_pcount(skb);
3305 
3306 	if (packets_acked) {
3307 		BUG_ON(tcp_skb_pcount(skb) == 0);
3308 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3309 	}
3310 
3311 	return packets_acked;
3312 }
3313 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3314 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3315 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3316 {
3317 	const struct skb_shared_info *shinfo;
3318 
3319 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3320 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3321 		return;
3322 
3323 	shinfo = skb_shinfo(skb);
3324 	if (!before(shinfo->tskey, prior_snd_una) &&
3325 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3326 		tcp_skb_tsorted_save(skb) {
3327 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3328 		} tcp_skb_tsorted_restore(skb);
3329 	}
3330 }
3331 
3332 /* Remove acknowledged frames from the retransmission queue. If our packet
3333  * is before the ack sequence we can discard it as it's confirmed to have
3334  * arrived at the other end.
3335  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3336 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3337 			       u32 prior_fack, u32 prior_snd_una,
3338 			       struct tcp_sacktag_state *sack, bool ece_ack)
3339 {
3340 	const struct inet_connection_sock *icsk = inet_csk(sk);
3341 	u64 first_ackt, last_ackt;
3342 	struct tcp_sock *tp = tcp_sk(sk);
3343 	u32 prior_sacked = tp->sacked_out;
3344 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3345 	struct sk_buff *skb, *next;
3346 	bool fully_acked = true;
3347 	long sack_rtt_us = -1L;
3348 	long seq_rtt_us = -1L;
3349 	long ca_rtt_us = -1L;
3350 	u32 pkts_acked = 0;
3351 	bool rtt_update;
3352 	int flag = 0;
3353 
3354 	first_ackt = 0;
3355 
3356 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3357 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3358 		const u32 start_seq = scb->seq;
3359 		u8 sacked = scb->sacked;
3360 		u32 acked_pcount;
3361 
3362 		/* Determine how many packets and what bytes were acked, tso and else */
3363 		if (after(scb->end_seq, tp->snd_una)) {
3364 			if (tcp_skb_pcount(skb) == 1 ||
3365 			    !after(tp->snd_una, scb->seq))
3366 				break;
3367 
3368 			acked_pcount = tcp_tso_acked(sk, skb);
3369 			if (!acked_pcount)
3370 				break;
3371 			fully_acked = false;
3372 		} else {
3373 			acked_pcount = tcp_skb_pcount(skb);
3374 		}
3375 
3376 		if (unlikely(sacked & TCPCB_RETRANS)) {
3377 			if (sacked & TCPCB_SACKED_RETRANS)
3378 				tp->retrans_out -= acked_pcount;
3379 			flag |= FLAG_RETRANS_DATA_ACKED;
3380 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3381 			last_ackt = tcp_skb_timestamp_us(skb);
3382 			WARN_ON_ONCE(last_ackt == 0);
3383 			if (!first_ackt)
3384 				first_ackt = last_ackt;
3385 
3386 			if (before(start_seq, reord))
3387 				reord = start_seq;
3388 			if (!after(scb->end_seq, tp->high_seq))
3389 				flag |= FLAG_ORIG_SACK_ACKED;
3390 		}
3391 
3392 		if (sacked & TCPCB_SACKED_ACKED) {
3393 			tp->sacked_out -= acked_pcount;
3394 		} else if (tcp_is_sack(tp)) {
3395 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3396 			if (!tcp_skb_spurious_retrans(tp, skb))
3397 				tcp_rack_advance(tp, sacked, scb->end_seq,
3398 						 tcp_skb_timestamp_us(skb));
3399 		}
3400 		if (sacked & TCPCB_LOST)
3401 			tp->lost_out -= acked_pcount;
3402 
3403 		tp->packets_out -= acked_pcount;
3404 		pkts_acked += acked_pcount;
3405 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3406 
3407 		/* Initial outgoing SYN's get put onto the write_queue
3408 		 * just like anything else we transmit.  It is not
3409 		 * true data, and if we misinform our callers that
3410 		 * this ACK acks real data, we will erroneously exit
3411 		 * connection startup slow start one packet too
3412 		 * quickly.  This is severely frowned upon behavior.
3413 		 */
3414 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3415 			flag |= FLAG_DATA_ACKED;
3416 		} else {
3417 			flag |= FLAG_SYN_ACKED;
3418 			tp->retrans_stamp = 0;
3419 		}
3420 
3421 		if (!fully_acked)
3422 			break;
3423 
3424 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3425 
3426 		next = skb_rb_next(skb);
3427 		if (unlikely(skb == tp->retransmit_skb_hint))
3428 			tp->retransmit_skb_hint = NULL;
3429 		if (unlikely(skb == tp->lost_skb_hint))
3430 			tp->lost_skb_hint = NULL;
3431 		tcp_highest_sack_replace(sk, skb, next);
3432 		tcp_rtx_queue_unlink_and_free(skb, sk);
3433 	}
3434 
3435 	if (!skb)
3436 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3437 
3438 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3439 		tp->snd_up = tp->snd_una;
3440 
3441 	if (skb) {
3442 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3443 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3444 			flag |= FLAG_SACK_RENEGING;
3445 	}
3446 
3447 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3448 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3449 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3450 
3451 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3452 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3453 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3454 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3455 			/* Conservatively mark a delayed ACK. It's typically
3456 			 * from a lone runt packet over the round trip to
3457 			 * a receiver w/o out-of-order or CE events.
3458 			 */
3459 			flag |= FLAG_ACK_MAYBE_DELAYED;
3460 		}
3461 	}
3462 	if (sack->first_sackt) {
3463 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3464 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3465 	}
3466 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3467 					ca_rtt_us, sack->rate);
3468 
3469 	if (flag & FLAG_ACKED) {
3470 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3471 		if (unlikely(icsk->icsk_mtup.probe_size &&
3472 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3473 			tcp_mtup_probe_success(sk);
3474 		}
3475 
3476 		if (tcp_is_reno(tp)) {
3477 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3478 
3479 			/* If any of the cumulatively ACKed segments was
3480 			 * retransmitted, non-SACK case cannot confirm that
3481 			 * progress was due to original transmission due to
3482 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3483 			 * the packets may have been never retransmitted.
3484 			 */
3485 			if (flag & FLAG_RETRANS_DATA_ACKED)
3486 				flag &= ~FLAG_ORIG_SACK_ACKED;
3487 		} else {
3488 			int delta;
3489 
3490 			/* Non-retransmitted hole got filled? That's reordering */
3491 			if (before(reord, prior_fack))
3492 				tcp_check_sack_reordering(sk, reord, 0);
3493 
3494 			delta = prior_sacked - tp->sacked_out;
3495 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3496 		}
3497 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3498 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3499 						    tcp_skb_timestamp_us(skb))) {
3500 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3501 		 * after when the head was last (re)transmitted. Otherwise the
3502 		 * timeout may continue to extend in loss recovery.
3503 		 */
3504 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3505 	}
3506 
3507 	if (icsk->icsk_ca_ops->pkts_acked) {
3508 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3509 					     .rtt_us = sack->rate->rtt_us };
3510 
3511 		sample.in_flight = tp->mss_cache *
3512 			(tp->delivered - sack->rate->prior_delivered);
3513 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3514 	}
3515 
3516 #if FASTRETRANS_DEBUG > 0
3517 	WARN_ON((int)tp->sacked_out < 0);
3518 	WARN_ON((int)tp->lost_out < 0);
3519 	WARN_ON((int)tp->retrans_out < 0);
3520 	if (!tp->packets_out && tcp_is_sack(tp)) {
3521 		icsk = inet_csk(sk);
3522 		if (tp->lost_out) {
3523 			pr_debug("Leak l=%u %d\n",
3524 				 tp->lost_out, icsk->icsk_ca_state);
3525 			tp->lost_out = 0;
3526 		}
3527 		if (tp->sacked_out) {
3528 			pr_debug("Leak s=%u %d\n",
3529 				 tp->sacked_out, icsk->icsk_ca_state);
3530 			tp->sacked_out = 0;
3531 		}
3532 		if (tp->retrans_out) {
3533 			pr_debug("Leak r=%u %d\n",
3534 				 tp->retrans_out, icsk->icsk_ca_state);
3535 			tp->retrans_out = 0;
3536 		}
3537 	}
3538 #endif
3539 	return flag;
3540 }
3541 
tcp_ack_probe(struct sock * sk)3542 static void tcp_ack_probe(struct sock *sk)
3543 {
3544 	struct inet_connection_sock *icsk = inet_csk(sk);
3545 	struct sk_buff *head = tcp_send_head(sk);
3546 	const struct tcp_sock *tp = tcp_sk(sk);
3547 
3548 	/* Was it a usable window open? */
3549 	if (!head)
3550 		return;
3551 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3552 		icsk->icsk_backoff = 0;
3553 		icsk->icsk_probes_tstamp = 0;
3554 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3555 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3556 		 * This function is not for random using!
3557 		 */
3558 	} else {
3559 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3560 
3561 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3562 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3563 	}
3564 }
3565 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3566 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3567 {
3568 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3569 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3570 }
3571 
3572 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3573 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3574 {
3575 	/* If reordering is high then always grow cwnd whenever data is
3576 	 * delivered regardless of its ordering. Otherwise stay conservative
3577 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3578 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3579 	 * cwnd in tcp_fastretrans_alert() based on more states.
3580 	 */
3581 	if (tcp_sk(sk)->reordering >
3582 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3583 		return flag & FLAG_FORWARD_PROGRESS;
3584 
3585 	return flag & FLAG_DATA_ACKED;
3586 }
3587 
3588 /* The "ultimate" congestion control function that aims to replace the rigid
3589  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3590  * It's called toward the end of processing an ACK with precise rate
3591  * information. All transmission or retransmission are delayed afterwards.
3592  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3593 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3594 			     int flag, const struct rate_sample *rs)
3595 {
3596 	const struct inet_connection_sock *icsk = inet_csk(sk);
3597 
3598 	if (icsk->icsk_ca_ops->cong_control) {
3599 		icsk->icsk_ca_ops->cong_control(sk, rs);
3600 		return;
3601 	}
3602 
3603 	if (tcp_in_cwnd_reduction(sk)) {
3604 		/* Reduce cwnd if state mandates */
3605 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3606 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3607 		/* Advance cwnd if state allows */
3608 		tcp_cong_avoid(sk, ack, acked_sacked);
3609 	}
3610 	tcp_update_pacing_rate(sk);
3611 }
3612 
3613 /* Check that window update is acceptable.
3614  * The function assumes that snd_una<=ack<=snd_next.
3615  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3616 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3617 					const u32 ack, const u32 ack_seq,
3618 					const u32 nwin)
3619 {
3620 	return	after(ack, tp->snd_una) ||
3621 		after(ack_seq, tp->snd_wl1) ||
3622 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3623 }
3624 
3625 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3626 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3627 {
3628 	u32 delta = ack - tp->snd_una;
3629 
3630 	sock_owned_by_me((struct sock *)tp);
3631 	tp->bytes_acked += delta;
3632 	tp->snd_una = ack;
3633 }
3634 
3635 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3636 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3637 {
3638 	u32 delta = seq - tp->rcv_nxt;
3639 
3640 	sock_owned_by_me((struct sock *)tp);
3641 	tp->bytes_received += delta;
3642 	WRITE_ONCE(tp->rcv_nxt, seq);
3643 }
3644 
3645 /* Update our send window.
3646  *
3647  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3648  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3649  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3650 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3651 				 u32 ack_seq)
3652 {
3653 	struct tcp_sock *tp = tcp_sk(sk);
3654 	int flag = 0;
3655 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3656 
3657 	if (likely(!tcp_hdr(skb)->syn))
3658 		nwin <<= tp->rx_opt.snd_wscale;
3659 
3660 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3661 		flag |= FLAG_WIN_UPDATE;
3662 		tcp_update_wl(tp, ack_seq);
3663 
3664 		if (tp->snd_wnd != nwin) {
3665 			tp->snd_wnd = nwin;
3666 
3667 			/* Note, it is the only place, where
3668 			 * fast path is recovered for sending TCP.
3669 			 */
3670 			tp->pred_flags = 0;
3671 			tcp_fast_path_check(sk);
3672 
3673 			if (!tcp_write_queue_empty(sk))
3674 				tcp_slow_start_after_idle_check(sk);
3675 
3676 			if (nwin > tp->max_window) {
3677 				tp->max_window = nwin;
3678 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3679 			}
3680 		}
3681 	}
3682 
3683 	tcp_snd_una_update(tp, ack);
3684 
3685 	return flag;
3686 }
3687 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3688 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3689 				   u32 *last_oow_ack_time)
3690 {
3691 	/* Paired with the WRITE_ONCE() in this function. */
3692 	u32 val = READ_ONCE(*last_oow_ack_time);
3693 
3694 	if (val) {
3695 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3696 
3697 		if (0 <= elapsed &&
3698 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3699 			NET_INC_STATS(net, mib_idx);
3700 			return true;	/* rate-limited: don't send yet! */
3701 		}
3702 	}
3703 
3704 	/* Paired with the prior READ_ONCE() and with itself,
3705 	 * as we might be lockless.
3706 	 */
3707 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3708 
3709 	return false;	/* not rate-limited: go ahead, send dupack now! */
3710 }
3711 
3712 /* Return true if we're currently rate-limiting out-of-window ACKs and
3713  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3714  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3715  * attacks that send repeated SYNs or ACKs for the same connection. To
3716  * do this, we do not send a duplicate SYNACK or ACK if the remote
3717  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3718  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3719 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3720 			  int mib_idx, u32 *last_oow_ack_time)
3721 {
3722 	/* Data packets without SYNs are not likely part of an ACK loop. */
3723 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3724 	    !tcp_hdr(skb)->syn)
3725 		return false;
3726 
3727 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3728 }
3729 
3730 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3731 static void tcp_send_challenge_ack(struct sock *sk)
3732 {
3733 	struct tcp_sock *tp = tcp_sk(sk);
3734 	struct net *net = sock_net(sk);
3735 	u32 count, now, ack_limit;
3736 
3737 	/* First check our per-socket dupack rate limit. */
3738 	if (__tcp_oow_rate_limited(net,
3739 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3740 				   &tp->last_oow_ack_time))
3741 		return;
3742 
3743 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3744 	if (ack_limit == INT_MAX)
3745 		goto send_ack;
3746 
3747 	/* Then check host-wide RFC 5961 rate limit. */
3748 	now = jiffies / HZ;
3749 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3750 		u32 half = (ack_limit + 1) >> 1;
3751 
3752 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3753 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3754 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3755 	}
3756 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3757 	if (count > 0) {
3758 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3759 send_ack:
3760 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3761 		tcp_send_ack(sk);
3762 	}
3763 }
3764 
tcp_store_ts_recent(struct tcp_sock * tp)3765 static void tcp_store_ts_recent(struct tcp_sock *tp)
3766 {
3767 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3768 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3769 }
3770 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3771 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3772 {
3773 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3774 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3775 		 * extra check below makes sure this can only happen
3776 		 * for pure ACK frames.  -DaveM
3777 		 *
3778 		 * Not only, also it occurs for expired timestamps.
3779 		 */
3780 
3781 		if (tcp_paws_check(&tp->rx_opt, 0))
3782 			tcp_store_ts_recent(tp);
3783 	}
3784 }
3785 
3786 /* This routine deals with acks during a TLP episode and ends an episode by
3787  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3788  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3789 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3790 {
3791 	struct tcp_sock *tp = tcp_sk(sk);
3792 
3793 	if (before(ack, tp->tlp_high_seq))
3794 		return;
3795 
3796 	if (!tp->tlp_retrans) {
3797 		/* TLP of new data has been acknowledged */
3798 		tp->tlp_high_seq = 0;
3799 	} else if (flag & FLAG_DSACK_TLP) {
3800 		/* This DSACK means original and TLP probe arrived; no loss */
3801 		tp->tlp_high_seq = 0;
3802 	} else if (after(ack, tp->tlp_high_seq)) {
3803 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3804 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3805 		 */
3806 		tcp_init_cwnd_reduction(sk);
3807 		tcp_set_ca_state(sk, TCP_CA_CWR);
3808 		tcp_end_cwnd_reduction(sk);
3809 		tcp_try_keep_open(sk);
3810 		NET_INC_STATS(sock_net(sk),
3811 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3812 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3813 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3814 		/* Pure dupack: original and TLP probe arrived; no loss */
3815 		tp->tlp_high_seq = 0;
3816 	}
3817 }
3818 
tcp_in_ack_event(struct sock * sk,u32 flags)3819 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3820 {
3821 	const struct inet_connection_sock *icsk = inet_csk(sk);
3822 
3823 	if (icsk->icsk_ca_ops->in_ack_event)
3824 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3825 }
3826 
3827 /* Congestion control has updated the cwnd already. So if we're in
3828  * loss recovery then now we do any new sends (for FRTO) or
3829  * retransmits (for CA_Loss or CA_recovery) that make sense.
3830  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3831 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3832 {
3833 	struct tcp_sock *tp = tcp_sk(sk);
3834 
3835 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3836 		return;
3837 
3838 	if (unlikely(rexmit == REXMIT_NEW)) {
3839 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3840 					  TCP_NAGLE_OFF);
3841 		if (after(tp->snd_nxt, tp->high_seq))
3842 			return;
3843 		tp->frto = 0;
3844 	}
3845 	tcp_xmit_retransmit_queue(sk);
3846 }
3847 
3848 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3849 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3850 {
3851 	const struct net *net = sock_net(sk);
3852 	struct tcp_sock *tp = tcp_sk(sk);
3853 	u32 delivered;
3854 
3855 	delivered = tp->delivered - prior_delivered;
3856 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3857 	if (flag & FLAG_ECE)
3858 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3859 
3860 	return delivered;
3861 }
3862 
3863 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3864 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3865 {
3866 	struct inet_connection_sock *icsk = inet_csk(sk);
3867 	struct tcp_sock *tp = tcp_sk(sk);
3868 	struct tcp_sacktag_state sack_state;
3869 	struct rate_sample rs = { .prior_delivered = 0 };
3870 	u32 prior_snd_una = tp->snd_una;
3871 	bool is_sack_reneg = tp->is_sack_reneg;
3872 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3873 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3874 	int num_dupack = 0;
3875 	int prior_packets = tp->packets_out;
3876 	u32 delivered = tp->delivered;
3877 	u32 lost = tp->lost;
3878 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3879 	u32 prior_fack;
3880 
3881 	sack_state.first_sackt = 0;
3882 	sack_state.rate = &rs;
3883 	sack_state.sack_delivered = 0;
3884 
3885 	/* We very likely will need to access rtx queue. */
3886 	prefetch(sk->tcp_rtx_queue.rb_node);
3887 
3888 	/* If the ack is older than previous acks
3889 	 * then we can probably ignore it.
3890 	 */
3891 	if (before(ack, prior_snd_una)) {
3892 		u32 max_window;
3893 
3894 		/* do not accept ACK for bytes we never sent. */
3895 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3896 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3897 		if (before(ack, prior_snd_una - max_window)) {
3898 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3899 				tcp_send_challenge_ack(sk);
3900 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3901 		}
3902 		goto old_ack;
3903 	}
3904 
3905 	/* If the ack includes data we haven't sent yet, discard
3906 	 * this segment (RFC793 Section 3.9).
3907 	 */
3908 	if (after(ack, tp->snd_nxt))
3909 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3910 
3911 	if (after(ack, prior_snd_una)) {
3912 		flag |= FLAG_SND_UNA_ADVANCED;
3913 		icsk->icsk_retransmits = 0;
3914 
3915 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3916 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3917 			if (icsk->icsk_clean_acked)
3918 				icsk->icsk_clean_acked(sk, ack);
3919 #endif
3920 	}
3921 
3922 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3923 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3924 
3925 	/* ts_recent update must be made after we are sure that the packet
3926 	 * is in window.
3927 	 */
3928 	if (flag & FLAG_UPDATE_TS_RECENT)
3929 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3930 
3931 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3932 	    FLAG_SND_UNA_ADVANCED) {
3933 		/* Window is constant, pure forward advance.
3934 		 * No more checks are required.
3935 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3936 		 */
3937 		tcp_update_wl(tp, ack_seq);
3938 		tcp_snd_una_update(tp, ack);
3939 		flag |= FLAG_WIN_UPDATE;
3940 
3941 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3942 
3943 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3944 	} else {
3945 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3946 
3947 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3948 			flag |= FLAG_DATA;
3949 		else
3950 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3951 
3952 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3953 
3954 		if (TCP_SKB_CB(skb)->sacked)
3955 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3956 							&sack_state);
3957 
3958 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3959 			flag |= FLAG_ECE;
3960 			ack_ev_flags |= CA_ACK_ECE;
3961 		}
3962 
3963 		if (sack_state.sack_delivered)
3964 			tcp_count_delivered(tp, sack_state.sack_delivered,
3965 					    flag & FLAG_ECE);
3966 
3967 		if (flag & FLAG_WIN_UPDATE)
3968 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3969 
3970 		tcp_in_ack_event(sk, ack_ev_flags);
3971 	}
3972 
3973 	/* This is a deviation from RFC3168 since it states that:
3974 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3975 	 * the congestion window, it SHOULD set the CWR bit only on the first
3976 	 * new data packet that it transmits."
3977 	 * We accept CWR on pure ACKs to be more robust
3978 	 * with widely-deployed TCP implementations that do this.
3979 	 */
3980 	tcp_ecn_accept_cwr(sk, skb);
3981 
3982 	/* We passed data and got it acked, remove any soft error
3983 	 * log. Something worked...
3984 	 */
3985 	WRITE_ONCE(sk->sk_err_soft, 0);
3986 	icsk->icsk_probes_out = 0;
3987 	tp->rcv_tstamp = tcp_jiffies32;
3988 	if (!prior_packets)
3989 		goto no_queue;
3990 
3991 	/* See if we can take anything off of the retransmit queue. */
3992 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3993 				    &sack_state, flag & FLAG_ECE);
3994 
3995 	tcp_rack_update_reo_wnd(sk, &rs);
3996 
3997 	if (tp->tlp_high_seq)
3998 		tcp_process_tlp_ack(sk, ack, flag);
3999 
4000 	if (tcp_ack_is_dubious(sk, flag)) {
4001 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4002 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4003 			num_dupack = 1;
4004 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4005 			if (!(flag & FLAG_DATA))
4006 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4007 		}
4008 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4009 				      &rexmit);
4010 	}
4011 
4012 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4013 	if (flag & FLAG_SET_XMIT_TIMER)
4014 		tcp_set_xmit_timer(sk);
4015 
4016 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4017 		sk_dst_confirm(sk);
4018 
4019 	delivered = tcp_newly_delivered(sk, delivered, flag);
4020 	lost = tp->lost - lost;			/* freshly marked lost */
4021 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4022 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4023 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4024 	tcp_xmit_recovery(sk, rexmit);
4025 	return 1;
4026 
4027 no_queue:
4028 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4029 	if (flag & FLAG_DSACKING_ACK) {
4030 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4031 				      &rexmit);
4032 		tcp_newly_delivered(sk, delivered, flag);
4033 	}
4034 	/* If this ack opens up a zero window, clear backoff.  It was
4035 	 * being used to time the probes, and is probably far higher than
4036 	 * it needs to be for normal retransmission.
4037 	 */
4038 	tcp_ack_probe(sk);
4039 
4040 	if (tp->tlp_high_seq)
4041 		tcp_process_tlp_ack(sk, ack, flag);
4042 	return 1;
4043 
4044 old_ack:
4045 	/* If data was SACKed, tag it and see if we should send more data.
4046 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4047 	 */
4048 	if (TCP_SKB_CB(skb)->sacked) {
4049 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4050 						&sack_state);
4051 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4052 				      &rexmit);
4053 		tcp_newly_delivered(sk, delivered, flag);
4054 		tcp_xmit_recovery(sk, rexmit);
4055 	}
4056 
4057 	return 0;
4058 }
4059 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4060 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4061 				      bool syn, struct tcp_fastopen_cookie *foc,
4062 				      bool exp_opt)
4063 {
4064 	/* Valid only in SYN or SYN-ACK with an even length.  */
4065 	if (!foc || !syn || len < 0 || (len & 1))
4066 		return;
4067 
4068 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4069 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4070 		memcpy(foc->val, cookie, len);
4071 	else if (len != 0)
4072 		len = -1;
4073 	foc->len = len;
4074 	foc->exp = exp_opt;
4075 }
4076 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4077 static bool smc_parse_options(const struct tcphdr *th,
4078 			      struct tcp_options_received *opt_rx,
4079 			      const unsigned char *ptr,
4080 			      int opsize)
4081 {
4082 #if IS_ENABLED(CONFIG_SMC)
4083 	if (static_branch_unlikely(&tcp_have_smc)) {
4084 		if (th->syn && !(opsize & 1) &&
4085 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4086 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4087 			opt_rx->smc_ok = 1;
4088 			return true;
4089 		}
4090 	}
4091 #endif
4092 	return false;
4093 }
4094 
4095 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4096  * value on success.
4097  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4098 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4099 {
4100 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4101 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4102 	u16 mss = 0;
4103 
4104 	while (length > 0) {
4105 		int opcode = *ptr++;
4106 		int opsize;
4107 
4108 		switch (opcode) {
4109 		case TCPOPT_EOL:
4110 			return mss;
4111 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4112 			length--;
4113 			continue;
4114 		default:
4115 			if (length < 2)
4116 				return mss;
4117 			opsize = *ptr++;
4118 			if (opsize < 2) /* "silly options" */
4119 				return mss;
4120 			if (opsize > length)
4121 				return mss;	/* fail on partial options */
4122 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4123 				u16 in_mss = get_unaligned_be16(ptr);
4124 
4125 				if (in_mss) {
4126 					if (user_mss && user_mss < in_mss)
4127 						in_mss = user_mss;
4128 					mss = in_mss;
4129 				}
4130 			}
4131 			ptr += opsize - 2;
4132 			length -= opsize;
4133 		}
4134 	}
4135 	return mss;
4136 }
4137 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4138 
4139 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4140  * But, this can also be called on packets in the established flow when
4141  * the fast version below fails.
4142  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4143 void tcp_parse_options(const struct net *net,
4144 		       const struct sk_buff *skb,
4145 		       struct tcp_options_received *opt_rx, int estab,
4146 		       struct tcp_fastopen_cookie *foc)
4147 {
4148 	const unsigned char *ptr;
4149 	const struct tcphdr *th = tcp_hdr(skb);
4150 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4151 
4152 	ptr = (const unsigned char *)(th + 1);
4153 	opt_rx->saw_tstamp = 0;
4154 	opt_rx->saw_unknown = 0;
4155 
4156 	while (length > 0) {
4157 		int opcode = *ptr++;
4158 		int opsize;
4159 
4160 		switch (opcode) {
4161 		case TCPOPT_EOL:
4162 			return;
4163 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4164 			length--;
4165 			continue;
4166 		default:
4167 			if (length < 2)
4168 				return;
4169 			opsize = *ptr++;
4170 			if (opsize < 2) /* "silly options" */
4171 				return;
4172 			if (opsize > length)
4173 				return;	/* don't parse partial options */
4174 			switch (opcode) {
4175 			case TCPOPT_MSS:
4176 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4177 					u16 in_mss = get_unaligned_be16(ptr);
4178 					if (in_mss) {
4179 						if (opt_rx->user_mss &&
4180 						    opt_rx->user_mss < in_mss)
4181 							in_mss = opt_rx->user_mss;
4182 						opt_rx->mss_clamp = in_mss;
4183 					}
4184 				}
4185 				break;
4186 			case TCPOPT_WINDOW:
4187 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4188 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4189 					__u8 snd_wscale = *(__u8 *)ptr;
4190 					opt_rx->wscale_ok = 1;
4191 					if (snd_wscale > TCP_MAX_WSCALE) {
4192 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4193 								     __func__,
4194 								     snd_wscale,
4195 								     TCP_MAX_WSCALE);
4196 						snd_wscale = TCP_MAX_WSCALE;
4197 					}
4198 					opt_rx->snd_wscale = snd_wscale;
4199 				}
4200 				break;
4201 			case TCPOPT_TIMESTAMP:
4202 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4203 				    ((estab && opt_rx->tstamp_ok) ||
4204 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4205 					opt_rx->saw_tstamp = 1;
4206 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4207 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4208 				}
4209 				break;
4210 			case TCPOPT_SACK_PERM:
4211 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4212 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4213 					opt_rx->sack_ok = TCP_SACK_SEEN;
4214 					tcp_sack_reset(opt_rx);
4215 				}
4216 				break;
4217 
4218 			case TCPOPT_SACK:
4219 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4220 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4221 				   opt_rx->sack_ok) {
4222 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4223 				}
4224 				break;
4225 #ifdef CONFIG_TCP_MD5SIG
4226 			case TCPOPT_MD5SIG:
4227 				/* The MD5 Hash has already been
4228 				 * checked (see tcp_v{4,6}_rcv()).
4229 				 */
4230 				break;
4231 #endif
4232 			case TCPOPT_FASTOPEN:
4233 				tcp_parse_fastopen_option(
4234 					opsize - TCPOLEN_FASTOPEN_BASE,
4235 					ptr, th->syn, foc, false);
4236 				break;
4237 
4238 			case TCPOPT_EXP:
4239 				/* Fast Open option shares code 254 using a
4240 				 * 16 bits magic number.
4241 				 */
4242 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4243 				    get_unaligned_be16(ptr) ==
4244 				    TCPOPT_FASTOPEN_MAGIC) {
4245 					tcp_parse_fastopen_option(opsize -
4246 						TCPOLEN_EXP_FASTOPEN_BASE,
4247 						ptr + 2, th->syn, foc, true);
4248 					break;
4249 				}
4250 
4251 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4252 					break;
4253 
4254 				opt_rx->saw_unknown = 1;
4255 				break;
4256 
4257 			default:
4258 				opt_rx->saw_unknown = 1;
4259 			}
4260 			ptr += opsize-2;
4261 			length -= opsize;
4262 		}
4263 	}
4264 }
4265 EXPORT_SYMBOL(tcp_parse_options);
4266 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4267 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4268 {
4269 	const __be32 *ptr = (const __be32 *)(th + 1);
4270 
4271 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4272 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4273 		tp->rx_opt.saw_tstamp = 1;
4274 		++ptr;
4275 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4276 		++ptr;
4277 		if (*ptr)
4278 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4279 		else
4280 			tp->rx_opt.rcv_tsecr = 0;
4281 		return true;
4282 	}
4283 	return false;
4284 }
4285 
4286 /* Fast parse options. This hopes to only see timestamps.
4287  * If it is wrong it falls back on tcp_parse_options().
4288  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4289 static bool tcp_fast_parse_options(const struct net *net,
4290 				   const struct sk_buff *skb,
4291 				   const struct tcphdr *th, struct tcp_sock *tp)
4292 {
4293 	/* In the spirit of fast parsing, compare doff directly to constant
4294 	 * values.  Because equality is used, short doff can be ignored here.
4295 	 */
4296 	if (th->doff == (sizeof(*th) / 4)) {
4297 		tp->rx_opt.saw_tstamp = 0;
4298 		return false;
4299 	} else if (tp->rx_opt.tstamp_ok &&
4300 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4301 		if (tcp_parse_aligned_timestamp(tp, th))
4302 			return true;
4303 	}
4304 
4305 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4306 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4307 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4308 
4309 	return true;
4310 }
4311 
4312 #ifdef CONFIG_TCP_MD5SIG
4313 /*
4314  * Parse MD5 Signature option
4315  */
tcp_parse_md5sig_option(const struct tcphdr * th)4316 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4317 {
4318 	int length = (th->doff << 2) - sizeof(*th);
4319 	const u8 *ptr = (const u8 *)(th + 1);
4320 
4321 	/* If not enough data remaining, we can short cut */
4322 	while (length >= TCPOLEN_MD5SIG) {
4323 		int opcode = *ptr++;
4324 		int opsize;
4325 
4326 		switch (opcode) {
4327 		case TCPOPT_EOL:
4328 			return NULL;
4329 		case TCPOPT_NOP:
4330 			length--;
4331 			continue;
4332 		default:
4333 			opsize = *ptr++;
4334 			if (opsize < 2 || opsize > length)
4335 				return NULL;
4336 			if (opcode == TCPOPT_MD5SIG)
4337 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4338 		}
4339 		ptr += opsize - 2;
4340 		length -= opsize;
4341 	}
4342 	return NULL;
4343 }
4344 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4345 #endif
4346 
4347 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4348  *
4349  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4350  * it can pass through stack. So, the following predicate verifies that
4351  * this segment is not used for anything but congestion avoidance or
4352  * fast retransmit. Moreover, we even are able to eliminate most of such
4353  * second order effects, if we apply some small "replay" window (~RTO)
4354  * to timestamp space.
4355  *
4356  * All these measures still do not guarantee that we reject wrapped ACKs
4357  * on networks with high bandwidth, when sequence space is recycled fastly,
4358  * but it guarantees that such events will be very rare and do not affect
4359  * connection seriously. This doesn't look nice, but alas, PAWS is really
4360  * buggy extension.
4361  *
4362  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4363  * states that events when retransmit arrives after original data are rare.
4364  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4365  * the biggest problem on large power networks even with minor reordering.
4366  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4367  * up to bandwidth of 18Gigabit/sec. 8) ]
4368  */
4369 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4370 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4371 {
4372 	const struct tcp_sock *tp = tcp_sk(sk);
4373 	const struct tcphdr *th = tcp_hdr(skb);
4374 	u32 seq = TCP_SKB_CB(skb)->seq;
4375 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4376 
4377 	return (/* 1. Pure ACK with correct sequence number. */
4378 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4379 
4380 		/* 2. ... and duplicate ACK. */
4381 		ack == tp->snd_una &&
4382 
4383 		/* 3. ... and does not update window. */
4384 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4385 
4386 		/* 4. ... and sits in replay window. */
4387 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4388 }
4389 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4390 static inline bool tcp_paws_discard(const struct sock *sk,
4391 				   const struct sk_buff *skb)
4392 {
4393 	const struct tcp_sock *tp = tcp_sk(sk);
4394 
4395 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4396 	       !tcp_disordered_ack(sk, skb);
4397 }
4398 
4399 /* Check segment sequence number for validity.
4400  *
4401  * Segment controls are considered valid, if the segment
4402  * fits to the window after truncation to the window. Acceptability
4403  * of data (and SYN, FIN, of course) is checked separately.
4404  * See tcp_data_queue(), for example.
4405  *
4406  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4407  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4408  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4409  * (borrowed from freebsd)
4410  */
4411 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4412 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4413 					 u32 seq, u32 end_seq)
4414 {
4415 	if (before(end_seq, tp->rcv_wup))
4416 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4417 
4418 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4419 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4420 
4421 	return SKB_NOT_DROPPED_YET;
4422 }
4423 
4424 
tcp_done_with_error(struct sock * sk,int err)4425 void tcp_done_with_error(struct sock *sk, int err)
4426 {
4427 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4428 	WRITE_ONCE(sk->sk_err, err);
4429 	smp_wmb();
4430 
4431 	tcp_write_queue_purge(sk);
4432 	tcp_done(sk);
4433 
4434 	if (!sock_flag(sk, SOCK_DEAD))
4435 		sk_error_report(sk);
4436 }
4437 EXPORT_SYMBOL(tcp_done_with_error);
4438 
4439 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4440 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4441 {
4442 	int err;
4443 
4444 	trace_tcp_receive_reset(sk);
4445 
4446 	/* mptcp can't tell us to ignore reset pkts,
4447 	 * so just ignore the return value of mptcp_incoming_options().
4448 	 */
4449 	if (sk_is_mptcp(sk))
4450 		mptcp_incoming_options(sk, skb);
4451 
4452 	/* We want the right error as BSD sees it (and indeed as we do). */
4453 	switch (sk->sk_state) {
4454 	case TCP_SYN_SENT:
4455 		err = ECONNREFUSED;
4456 		break;
4457 	case TCP_CLOSE_WAIT:
4458 		err = EPIPE;
4459 		break;
4460 	case TCP_CLOSE:
4461 		return;
4462 	default:
4463 		err = ECONNRESET;
4464 	}
4465 	tcp_done_with_error(sk, err);
4466 }
4467 
4468 /*
4469  * 	Process the FIN bit. This now behaves as it is supposed to work
4470  *	and the FIN takes effect when it is validly part of sequence
4471  *	space. Not before when we get holes.
4472  *
4473  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4474  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4475  *	TIME-WAIT)
4476  *
4477  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4478  *	close and we go into CLOSING (and later onto TIME-WAIT)
4479  *
4480  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4481  */
tcp_fin(struct sock * sk)4482 void tcp_fin(struct sock *sk)
4483 {
4484 	struct tcp_sock *tp = tcp_sk(sk);
4485 
4486 	inet_csk_schedule_ack(sk);
4487 
4488 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4489 	sock_set_flag(sk, SOCK_DONE);
4490 
4491 	switch (sk->sk_state) {
4492 	case TCP_SYN_RECV:
4493 	case TCP_ESTABLISHED:
4494 		/* Move to CLOSE_WAIT */
4495 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4496 		inet_csk_enter_pingpong_mode(sk);
4497 		break;
4498 
4499 	case TCP_CLOSE_WAIT:
4500 	case TCP_CLOSING:
4501 		/* Received a retransmission of the FIN, do
4502 		 * nothing.
4503 		 */
4504 		break;
4505 	case TCP_LAST_ACK:
4506 		/* RFC793: Remain in the LAST-ACK state. */
4507 		break;
4508 
4509 	case TCP_FIN_WAIT1:
4510 		/* This case occurs when a simultaneous close
4511 		 * happens, we must ack the received FIN and
4512 		 * enter the CLOSING state.
4513 		 */
4514 		tcp_send_ack(sk);
4515 		tcp_set_state(sk, TCP_CLOSING);
4516 		break;
4517 	case TCP_FIN_WAIT2:
4518 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4519 		tcp_send_ack(sk);
4520 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4521 		break;
4522 	default:
4523 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4524 		 * cases we should never reach this piece of code.
4525 		 */
4526 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4527 		       __func__, sk->sk_state);
4528 		break;
4529 	}
4530 
4531 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4532 	 * Probably, we should reset in this case. For now drop them.
4533 	 */
4534 	skb_rbtree_purge(&tp->out_of_order_queue);
4535 	if (tcp_is_sack(tp))
4536 		tcp_sack_reset(&tp->rx_opt);
4537 
4538 	if (!sock_flag(sk, SOCK_DEAD)) {
4539 		sk->sk_state_change(sk);
4540 
4541 		/* Do not send POLL_HUP for half duplex close. */
4542 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4543 		    sk->sk_state == TCP_CLOSE)
4544 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4545 		else
4546 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4547 	}
4548 }
4549 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4550 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4551 				  u32 end_seq)
4552 {
4553 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4554 		if (before(seq, sp->start_seq))
4555 			sp->start_seq = seq;
4556 		if (after(end_seq, sp->end_seq))
4557 			sp->end_seq = end_seq;
4558 		return true;
4559 	}
4560 	return false;
4561 }
4562 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4563 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4564 {
4565 	struct tcp_sock *tp = tcp_sk(sk);
4566 
4567 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4568 		int mib_idx;
4569 
4570 		if (before(seq, tp->rcv_nxt))
4571 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4572 		else
4573 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4574 
4575 		NET_INC_STATS(sock_net(sk), mib_idx);
4576 
4577 		tp->rx_opt.dsack = 1;
4578 		tp->duplicate_sack[0].start_seq = seq;
4579 		tp->duplicate_sack[0].end_seq = end_seq;
4580 	}
4581 }
4582 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4583 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4584 {
4585 	struct tcp_sock *tp = tcp_sk(sk);
4586 
4587 	if (!tp->rx_opt.dsack)
4588 		tcp_dsack_set(sk, seq, end_seq);
4589 	else
4590 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4591 }
4592 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4593 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4594 {
4595 	/* When the ACK path fails or drops most ACKs, the sender would
4596 	 * timeout and spuriously retransmit the same segment repeatedly.
4597 	 * The receiver remembers and reflects via DSACKs. Leverage the
4598 	 * DSACK state and change the txhash to re-route speculatively.
4599 	 */
4600 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4601 	    sk_rethink_txhash(sk))
4602 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4603 }
4604 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4605 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4606 {
4607 	struct tcp_sock *tp = tcp_sk(sk);
4608 
4609 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4610 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4611 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4612 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4613 
4614 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4615 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4616 
4617 			tcp_rcv_spurious_retrans(sk, skb);
4618 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4619 				end_seq = tp->rcv_nxt;
4620 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4621 		}
4622 	}
4623 
4624 	tcp_send_ack(sk);
4625 }
4626 
4627 /* These routines update the SACK block as out-of-order packets arrive or
4628  * in-order packets close up the sequence space.
4629  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4630 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4631 {
4632 	int this_sack;
4633 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4634 	struct tcp_sack_block *swalk = sp + 1;
4635 
4636 	/* See if the recent change to the first SACK eats into
4637 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4638 	 */
4639 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4640 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4641 			int i;
4642 
4643 			/* Zap SWALK, by moving every further SACK up by one slot.
4644 			 * Decrease num_sacks.
4645 			 */
4646 			tp->rx_opt.num_sacks--;
4647 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4648 				sp[i] = sp[i + 1];
4649 			continue;
4650 		}
4651 		this_sack++;
4652 		swalk++;
4653 	}
4654 }
4655 
tcp_sack_compress_send_ack(struct sock * sk)4656 void tcp_sack_compress_send_ack(struct sock *sk)
4657 {
4658 	struct tcp_sock *tp = tcp_sk(sk);
4659 
4660 	if (!tp->compressed_ack)
4661 		return;
4662 
4663 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4664 		__sock_put(sk);
4665 
4666 	/* Since we have to send one ack finally,
4667 	 * substract one from tp->compressed_ack to keep
4668 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4669 	 */
4670 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4671 		      tp->compressed_ack - 1);
4672 
4673 	tp->compressed_ack = 0;
4674 	tcp_send_ack(sk);
4675 }
4676 
4677 /* Reasonable amount of sack blocks included in TCP SACK option
4678  * The max is 4, but this becomes 3 if TCP timestamps are there.
4679  * Given that SACK packets might be lost, be conservative and use 2.
4680  */
4681 #define TCP_SACK_BLOCKS_EXPECTED 2
4682 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4683 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4684 {
4685 	struct tcp_sock *tp = tcp_sk(sk);
4686 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4687 	int cur_sacks = tp->rx_opt.num_sacks;
4688 	int this_sack;
4689 
4690 	if (!cur_sacks)
4691 		goto new_sack;
4692 
4693 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4694 		if (tcp_sack_extend(sp, seq, end_seq)) {
4695 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4696 				tcp_sack_compress_send_ack(sk);
4697 			/* Rotate this_sack to the first one. */
4698 			for (; this_sack > 0; this_sack--, sp--)
4699 				swap(*sp, *(sp - 1));
4700 			if (cur_sacks > 1)
4701 				tcp_sack_maybe_coalesce(tp);
4702 			return;
4703 		}
4704 	}
4705 
4706 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4707 		tcp_sack_compress_send_ack(sk);
4708 
4709 	/* Could not find an adjacent existing SACK, build a new one,
4710 	 * put it at the front, and shift everyone else down.  We
4711 	 * always know there is at least one SACK present already here.
4712 	 *
4713 	 * If the sack array is full, forget about the last one.
4714 	 */
4715 	if (this_sack >= TCP_NUM_SACKS) {
4716 		this_sack--;
4717 		tp->rx_opt.num_sacks--;
4718 		sp--;
4719 	}
4720 	for (; this_sack > 0; this_sack--, sp--)
4721 		*sp = *(sp - 1);
4722 
4723 new_sack:
4724 	/* Build the new head SACK, and we're done. */
4725 	sp->start_seq = seq;
4726 	sp->end_seq = end_seq;
4727 	tp->rx_opt.num_sacks++;
4728 }
4729 
4730 /* RCV.NXT advances, some SACKs should be eaten. */
4731 
tcp_sack_remove(struct tcp_sock * tp)4732 static void tcp_sack_remove(struct tcp_sock *tp)
4733 {
4734 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4735 	int num_sacks = tp->rx_opt.num_sacks;
4736 	int this_sack;
4737 
4738 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4739 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4740 		tp->rx_opt.num_sacks = 0;
4741 		return;
4742 	}
4743 
4744 	for (this_sack = 0; this_sack < num_sacks;) {
4745 		/* Check if the start of the sack is covered by RCV.NXT. */
4746 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4747 			int i;
4748 
4749 			/* RCV.NXT must cover all the block! */
4750 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4751 
4752 			/* Zap this SACK, by moving forward any other SACKS. */
4753 			for (i = this_sack+1; i < num_sacks; i++)
4754 				tp->selective_acks[i-1] = tp->selective_acks[i];
4755 			num_sacks--;
4756 			continue;
4757 		}
4758 		this_sack++;
4759 		sp++;
4760 	}
4761 	tp->rx_opt.num_sacks = num_sacks;
4762 }
4763 
4764 /**
4765  * tcp_try_coalesce - try to merge skb to prior one
4766  * @sk: socket
4767  * @to: prior buffer
4768  * @from: buffer to add in queue
4769  * @fragstolen: pointer to boolean
4770  *
4771  * Before queueing skb @from after @to, try to merge them
4772  * to reduce overall memory use and queue lengths, if cost is small.
4773  * Packets in ofo or receive queues can stay a long time.
4774  * Better try to coalesce them right now to avoid future collapses.
4775  * Returns true if caller should free @from instead of queueing it
4776  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4777 static bool tcp_try_coalesce(struct sock *sk,
4778 			     struct sk_buff *to,
4779 			     struct sk_buff *from,
4780 			     bool *fragstolen)
4781 {
4782 	int delta;
4783 
4784 	*fragstolen = false;
4785 
4786 	/* Its possible this segment overlaps with prior segment in queue */
4787 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4788 		return false;
4789 
4790 	if (!mptcp_skb_can_collapse(to, from))
4791 		return false;
4792 
4793 #ifdef CONFIG_TLS_DEVICE
4794 	if (from->decrypted != to->decrypted)
4795 		return false;
4796 #endif
4797 
4798 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4799 		return false;
4800 
4801 	atomic_add(delta, &sk->sk_rmem_alloc);
4802 	sk_mem_charge(sk, delta);
4803 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4804 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4805 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4806 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4807 
4808 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4809 		TCP_SKB_CB(to)->has_rxtstamp = true;
4810 		to->tstamp = from->tstamp;
4811 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4812 	}
4813 
4814 	return true;
4815 }
4816 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4817 static bool tcp_ooo_try_coalesce(struct sock *sk,
4818 			     struct sk_buff *to,
4819 			     struct sk_buff *from,
4820 			     bool *fragstolen)
4821 {
4822 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4823 
4824 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4825 	if (res) {
4826 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4827 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4828 
4829 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4830 	}
4831 	return res;
4832 }
4833 
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4834 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4835 			    enum skb_drop_reason reason)
4836 {
4837 	sk_drops_add(sk, skb);
4838 	kfree_skb_reason(skb, reason);
4839 }
4840 
4841 /* This one checks to see if we can put data from the
4842  * out_of_order queue into the receive_queue.
4843  */
tcp_ofo_queue(struct sock * sk)4844 static void tcp_ofo_queue(struct sock *sk)
4845 {
4846 	struct tcp_sock *tp = tcp_sk(sk);
4847 	__u32 dsack_high = tp->rcv_nxt;
4848 	bool fin, fragstolen, eaten;
4849 	struct sk_buff *skb, *tail;
4850 	struct rb_node *p;
4851 
4852 	p = rb_first(&tp->out_of_order_queue);
4853 	while (p) {
4854 		skb = rb_to_skb(p);
4855 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4856 			break;
4857 
4858 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4859 			__u32 dsack = dsack_high;
4860 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4861 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4862 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4863 		}
4864 		p = rb_next(p);
4865 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4866 
4867 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4868 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4869 			continue;
4870 		}
4871 
4872 		tail = skb_peek_tail(&sk->sk_receive_queue);
4873 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4874 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4875 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4876 		if (!eaten)
4877 			tcp_add_receive_queue(sk, skb);
4878 		else
4879 			kfree_skb_partial(skb, fragstolen);
4880 
4881 		if (unlikely(fin)) {
4882 			tcp_fin(sk);
4883 			/* tcp_fin() purges tp->out_of_order_queue,
4884 			 * so we must end this loop right now.
4885 			 */
4886 			break;
4887 		}
4888 	}
4889 }
4890 
4891 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4892 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4893 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4894 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4895 				 unsigned int size)
4896 {
4897 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4898 	    !sk_rmem_schedule(sk, skb, size)) {
4899 
4900 		if (tcp_prune_queue(sk, skb) < 0)
4901 			return -1;
4902 
4903 		while (!sk_rmem_schedule(sk, skb, size)) {
4904 			if (!tcp_prune_ofo_queue(sk, skb))
4905 				return -1;
4906 		}
4907 	}
4908 	return 0;
4909 }
4910 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4911 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4912 {
4913 	struct tcp_sock *tp = tcp_sk(sk);
4914 	struct rb_node **p, *parent;
4915 	struct sk_buff *skb1;
4916 	u32 seq, end_seq;
4917 	bool fragstolen;
4918 
4919 	tcp_ecn_check_ce(sk, skb);
4920 
4921 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4922 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4923 		sk->sk_data_ready(sk);
4924 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4925 		return;
4926 	}
4927 
4928 	/* Disable header prediction. */
4929 	tp->pred_flags = 0;
4930 	inet_csk_schedule_ack(sk);
4931 
4932 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4933 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4934 	seq = TCP_SKB_CB(skb)->seq;
4935 	end_seq = TCP_SKB_CB(skb)->end_seq;
4936 
4937 	p = &tp->out_of_order_queue.rb_node;
4938 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4939 		/* Initial out of order segment, build 1 SACK. */
4940 		if (tcp_is_sack(tp)) {
4941 			tp->rx_opt.num_sacks = 1;
4942 			tp->selective_acks[0].start_seq = seq;
4943 			tp->selective_acks[0].end_seq = end_seq;
4944 		}
4945 		rb_link_node(&skb->rbnode, NULL, p);
4946 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4947 		tp->ooo_last_skb = skb;
4948 		goto end;
4949 	}
4950 
4951 	/* In the typical case, we are adding an skb to the end of the list.
4952 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4953 	 */
4954 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4955 				 skb, &fragstolen)) {
4956 coalesce_done:
4957 		/* For non sack flows, do not grow window to force DUPACK
4958 		 * and trigger fast retransmit.
4959 		 */
4960 		if (tcp_is_sack(tp))
4961 			tcp_grow_window(sk, skb, true);
4962 		kfree_skb_partial(skb, fragstolen);
4963 		skb = NULL;
4964 		goto add_sack;
4965 	}
4966 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4967 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4968 		parent = &tp->ooo_last_skb->rbnode;
4969 		p = &parent->rb_right;
4970 		goto insert;
4971 	}
4972 
4973 	/* Find place to insert this segment. Handle overlaps on the way. */
4974 	parent = NULL;
4975 	while (*p) {
4976 		parent = *p;
4977 		skb1 = rb_to_skb(parent);
4978 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4979 			p = &parent->rb_left;
4980 			continue;
4981 		}
4982 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4983 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4984 				/* All the bits are present. Drop. */
4985 				NET_INC_STATS(sock_net(sk),
4986 					      LINUX_MIB_TCPOFOMERGE);
4987 				tcp_drop_reason(sk, skb,
4988 						SKB_DROP_REASON_TCP_OFOMERGE);
4989 				skb = NULL;
4990 				tcp_dsack_set(sk, seq, end_seq);
4991 				goto add_sack;
4992 			}
4993 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4994 				/* Partial overlap. */
4995 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4996 			} else {
4997 				/* skb's seq == skb1's seq and skb covers skb1.
4998 				 * Replace skb1 with skb.
4999 				 */
5000 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5001 						&tp->out_of_order_queue);
5002 				tcp_dsack_extend(sk,
5003 						 TCP_SKB_CB(skb1)->seq,
5004 						 TCP_SKB_CB(skb1)->end_seq);
5005 				NET_INC_STATS(sock_net(sk),
5006 					      LINUX_MIB_TCPOFOMERGE);
5007 				tcp_drop_reason(sk, skb1,
5008 						SKB_DROP_REASON_TCP_OFOMERGE);
5009 				goto merge_right;
5010 			}
5011 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5012 						skb, &fragstolen)) {
5013 			goto coalesce_done;
5014 		}
5015 		p = &parent->rb_right;
5016 	}
5017 insert:
5018 	/* Insert segment into RB tree. */
5019 	rb_link_node(&skb->rbnode, parent, p);
5020 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5021 
5022 merge_right:
5023 	/* Remove other segments covered by skb. */
5024 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5025 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5026 			break;
5027 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5028 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5029 					 end_seq);
5030 			break;
5031 		}
5032 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5033 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5034 				 TCP_SKB_CB(skb1)->end_seq);
5035 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5036 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5037 	}
5038 	/* If there is no skb after us, we are the last_skb ! */
5039 	if (!skb1)
5040 		tp->ooo_last_skb = skb;
5041 
5042 add_sack:
5043 	if (tcp_is_sack(tp))
5044 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5045 end:
5046 	if (skb) {
5047 		/* For non sack flows, do not grow window to force DUPACK
5048 		 * and trigger fast retransmit.
5049 		 */
5050 		if (tcp_is_sack(tp))
5051 			tcp_grow_window(sk, skb, false);
5052 		skb_condense(skb);
5053 		skb_set_owner_r(skb, sk);
5054 	}
5055 }
5056 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5057 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5058 				      bool *fragstolen)
5059 {
5060 	int eaten;
5061 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5062 
5063 	eaten = (tail &&
5064 		 tcp_try_coalesce(sk, tail,
5065 				  skb, fragstolen)) ? 1 : 0;
5066 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5067 	if (!eaten) {
5068 		tcp_add_receive_queue(sk, skb);
5069 		skb_set_owner_r(skb, sk);
5070 	}
5071 	return eaten;
5072 }
5073 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5074 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5075 {
5076 	struct sk_buff *skb;
5077 	int err = -ENOMEM;
5078 	int data_len = 0;
5079 	bool fragstolen;
5080 
5081 	if (size == 0)
5082 		return 0;
5083 
5084 	if (size > PAGE_SIZE) {
5085 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5086 
5087 		data_len = npages << PAGE_SHIFT;
5088 		size = data_len + (size & ~PAGE_MASK);
5089 	}
5090 	skb = alloc_skb_with_frags(size - data_len, data_len,
5091 				   PAGE_ALLOC_COSTLY_ORDER,
5092 				   &err, sk->sk_allocation);
5093 	if (!skb)
5094 		goto err;
5095 
5096 	skb_put(skb, size - data_len);
5097 	skb->data_len = data_len;
5098 	skb->len = size;
5099 
5100 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5102 		goto err_free;
5103 	}
5104 
5105 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5106 	if (err)
5107 		goto err_free;
5108 
5109 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5110 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5111 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5112 
5113 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5114 		WARN_ON_ONCE(fragstolen); /* should not happen */
5115 		__kfree_skb(skb);
5116 	}
5117 	return size;
5118 
5119 err_free:
5120 	kfree_skb(skb);
5121 err:
5122 	return err;
5123 
5124 }
5125 
tcp_data_ready(struct sock * sk)5126 void tcp_data_ready(struct sock *sk)
5127 {
5128 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5129 		sk->sk_data_ready(sk);
5130 }
5131 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5132 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5133 {
5134 	struct tcp_sock *tp = tcp_sk(sk);
5135 	enum skb_drop_reason reason;
5136 	bool fragstolen;
5137 	int eaten;
5138 
5139 	/* If a subflow has been reset, the packet should not continue
5140 	 * to be processed, drop the packet.
5141 	 */
5142 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5143 		__kfree_skb(skb);
5144 		return;
5145 	}
5146 
5147 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5148 		__kfree_skb(skb);
5149 		return;
5150 	}
5151 	tcp_cleanup_skb(skb);
5152 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5153 
5154 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5155 	tp->rx_opt.dsack = 0;
5156 
5157 	/*  Queue data for delivery to the user.
5158 	 *  Packets in sequence go to the receive queue.
5159 	 *  Out of sequence packets to the out_of_order_queue.
5160 	 */
5161 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5162 		if (tcp_receive_window(tp) == 0) {
5163 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5164 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5165 			goto out_of_window;
5166 		}
5167 
5168 		/* Ok. In sequence. In window. */
5169 queue_and_out:
5170 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5171 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5172 			inet_csk(sk)->icsk_ack.pending |=
5173 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5174 			inet_csk_schedule_ack(sk);
5175 			sk->sk_data_ready(sk);
5176 
5177 			if (skb_queue_len(&sk->sk_receive_queue)) {
5178 				reason = SKB_DROP_REASON_PROTO_MEM;
5179 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5180 				goto drop;
5181 			}
5182 			sk_forced_mem_schedule(sk, skb->truesize);
5183 		}
5184 
5185 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5186 		if (skb->len)
5187 			tcp_event_data_recv(sk, skb);
5188 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5189 			tcp_fin(sk);
5190 
5191 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5192 			tcp_ofo_queue(sk);
5193 
5194 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5195 			 * gap in queue is filled.
5196 			 */
5197 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5198 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5199 		}
5200 
5201 		if (tp->rx_opt.num_sacks)
5202 			tcp_sack_remove(tp);
5203 
5204 		tcp_fast_path_check(sk);
5205 
5206 		if (eaten > 0)
5207 			kfree_skb_partial(skb, fragstolen);
5208 		if (!sock_flag(sk, SOCK_DEAD))
5209 			tcp_data_ready(sk);
5210 		return;
5211 	}
5212 
5213 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5214 		tcp_rcv_spurious_retrans(sk, skb);
5215 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5216 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5217 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5218 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5219 
5220 out_of_window:
5221 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5222 		inet_csk_schedule_ack(sk);
5223 drop:
5224 		tcp_drop_reason(sk, skb, reason);
5225 		return;
5226 	}
5227 
5228 	/* Out of window. F.e. zero window probe. */
5229 	if (!before(TCP_SKB_CB(skb)->seq,
5230 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5231 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5232 		goto out_of_window;
5233 	}
5234 
5235 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5236 		/* Partial packet, seq < rcv_next < end_seq */
5237 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5238 
5239 		/* If window is closed, drop tail of packet. But after
5240 		 * remembering D-SACK for its head made in previous line.
5241 		 */
5242 		if (!tcp_receive_window(tp)) {
5243 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5244 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5245 			goto out_of_window;
5246 		}
5247 		goto queue_and_out;
5248 	}
5249 
5250 	tcp_data_queue_ofo(sk, skb);
5251 }
5252 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5253 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5254 {
5255 	if (list)
5256 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5257 
5258 	return skb_rb_next(skb);
5259 }
5260 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5261 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5262 					struct sk_buff_head *list,
5263 					struct rb_root *root)
5264 {
5265 	struct sk_buff *next = tcp_skb_next(skb, list);
5266 
5267 	if (list)
5268 		__skb_unlink(skb, list);
5269 	else
5270 		rb_erase(&skb->rbnode, root);
5271 
5272 	__kfree_skb(skb);
5273 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5274 
5275 	return next;
5276 }
5277 
5278 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5279 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5280 {
5281 	struct rb_node **p = &root->rb_node;
5282 	struct rb_node *parent = NULL;
5283 	struct sk_buff *skb1;
5284 
5285 	while (*p) {
5286 		parent = *p;
5287 		skb1 = rb_to_skb(parent);
5288 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5289 			p = &parent->rb_left;
5290 		else
5291 			p = &parent->rb_right;
5292 	}
5293 	rb_link_node(&skb->rbnode, parent, p);
5294 	rb_insert_color(&skb->rbnode, root);
5295 }
5296 
5297 /* Collapse contiguous sequence of skbs head..tail with
5298  * sequence numbers start..end.
5299  *
5300  * If tail is NULL, this means until the end of the queue.
5301  *
5302  * Segments with FIN/SYN are not collapsed (only because this
5303  * simplifies code)
5304  */
5305 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5306 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5307 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5308 {
5309 	struct sk_buff *skb = head, *n;
5310 	struct sk_buff_head tmp;
5311 	bool end_of_skbs;
5312 
5313 	/* First, check that queue is collapsible and find
5314 	 * the point where collapsing can be useful.
5315 	 */
5316 restart:
5317 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5318 		n = tcp_skb_next(skb, list);
5319 
5320 		/* No new bits? It is possible on ofo queue. */
5321 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5322 			skb = tcp_collapse_one(sk, skb, list, root);
5323 			if (!skb)
5324 				break;
5325 			goto restart;
5326 		}
5327 
5328 		/* The first skb to collapse is:
5329 		 * - not SYN/FIN and
5330 		 * - bloated or contains data before "start" or
5331 		 *   overlaps to the next one and mptcp allow collapsing.
5332 		 */
5333 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5334 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5335 		     before(TCP_SKB_CB(skb)->seq, start))) {
5336 			end_of_skbs = false;
5337 			break;
5338 		}
5339 
5340 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5341 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5342 			end_of_skbs = false;
5343 			break;
5344 		}
5345 
5346 		/* Decided to skip this, advance start seq. */
5347 		start = TCP_SKB_CB(skb)->end_seq;
5348 	}
5349 	if (end_of_skbs ||
5350 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5351 		return;
5352 
5353 	__skb_queue_head_init(&tmp);
5354 
5355 	while (before(start, end)) {
5356 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5357 		struct sk_buff *nskb;
5358 
5359 		nskb = alloc_skb(copy, GFP_ATOMIC);
5360 		if (!nskb)
5361 			break;
5362 
5363 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5364 #ifdef CONFIG_TLS_DEVICE
5365 		nskb->decrypted = skb->decrypted;
5366 #endif
5367 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5368 		if (list)
5369 			__skb_queue_before(list, skb, nskb);
5370 		else
5371 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5372 		skb_set_owner_r(nskb, sk);
5373 		mptcp_skb_ext_move(nskb, skb);
5374 
5375 		/* Copy data, releasing collapsed skbs. */
5376 		while (copy > 0) {
5377 			int offset = start - TCP_SKB_CB(skb)->seq;
5378 			int size = TCP_SKB_CB(skb)->end_seq - start;
5379 
5380 			BUG_ON(offset < 0);
5381 			if (size > 0) {
5382 				size = min(copy, size);
5383 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5384 					BUG();
5385 				TCP_SKB_CB(nskb)->end_seq += size;
5386 				copy -= size;
5387 				start += size;
5388 			}
5389 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5390 				skb = tcp_collapse_one(sk, skb, list, root);
5391 				if (!skb ||
5392 				    skb == tail ||
5393 				    !mptcp_skb_can_collapse(nskb, skb) ||
5394 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5395 					goto end;
5396 #ifdef CONFIG_TLS_DEVICE
5397 				if (skb->decrypted != nskb->decrypted)
5398 					goto end;
5399 #endif
5400 			}
5401 		}
5402 	}
5403 end:
5404 	skb_queue_walk_safe(&tmp, skb, n)
5405 		tcp_rbtree_insert(root, skb);
5406 }
5407 
5408 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5409  * and tcp_collapse() them until all the queue is collapsed.
5410  */
tcp_collapse_ofo_queue(struct sock * sk)5411 static void tcp_collapse_ofo_queue(struct sock *sk)
5412 {
5413 	struct tcp_sock *tp = tcp_sk(sk);
5414 	u32 range_truesize, sum_tiny = 0;
5415 	struct sk_buff *skb, *head;
5416 	u32 start, end;
5417 
5418 	skb = skb_rb_first(&tp->out_of_order_queue);
5419 new_range:
5420 	if (!skb) {
5421 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5422 		return;
5423 	}
5424 	start = TCP_SKB_CB(skb)->seq;
5425 	end = TCP_SKB_CB(skb)->end_seq;
5426 	range_truesize = skb->truesize;
5427 
5428 	for (head = skb;;) {
5429 		skb = skb_rb_next(skb);
5430 
5431 		/* Range is terminated when we see a gap or when
5432 		 * we are at the queue end.
5433 		 */
5434 		if (!skb ||
5435 		    after(TCP_SKB_CB(skb)->seq, end) ||
5436 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5437 			/* Do not attempt collapsing tiny skbs */
5438 			if (range_truesize != head->truesize ||
5439 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5440 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5441 					     head, skb, start, end);
5442 			} else {
5443 				sum_tiny += range_truesize;
5444 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5445 					return;
5446 			}
5447 			goto new_range;
5448 		}
5449 
5450 		range_truesize += skb->truesize;
5451 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5452 			start = TCP_SKB_CB(skb)->seq;
5453 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5454 			end = TCP_SKB_CB(skb)->end_seq;
5455 	}
5456 }
5457 
5458 /*
5459  * Clean the out-of-order queue to make room.
5460  * We drop high sequences packets to :
5461  * 1) Let a chance for holes to be filled.
5462  *    This means we do not drop packets from ooo queue if their sequence
5463  *    is before incoming packet sequence.
5464  * 2) not add too big latencies if thousands of packets sit there.
5465  *    (But if application shrinks SO_RCVBUF, we could still end up
5466  *     freeing whole queue here)
5467  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5468  *
5469  * Return true if queue has shrunk.
5470  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5471 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5472 {
5473 	struct tcp_sock *tp = tcp_sk(sk);
5474 	struct rb_node *node, *prev;
5475 	bool pruned = false;
5476 	int goal;
5477 
5478 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5479 		return false;
5480 
5481 	goal = sk->sk_rcvbuf >> 3;
5482 	node = &tp->ooo_last_skb->rbnode;
5483 
5484 	do {
5485 		struct sk_buff *skb = rb_to_skb(node);
5486 
5487 		/* If incoming skb would land last in ofo queue, stop pruning. */
5488 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5489 			break;
5490 		pruned = true;
5491 		prev = rb_prev(node);
5492 		rb_erase(node, &tp->out_of_order_queue);
5493 		goal -= skb->truesize;
5494 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5495 		tp->ooo_last_skb = rb_to_skb(prev);
5496 		if (!prev || goal <= 0) {
5497 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5498 			    !tcp_under_memory_pressure(sk))
5499 				break;
5500 			goal = sk->sk_rcvbuf >> 3;
5501 		}
5502 		node = prev;
5503 	} while (node);
5504 
5505 	if (pruned) {
5506 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5507 		/* Reset SACK state.  A conforming SACK implementation will
5508 		 * do the same at a timeout based retransmit.  When a connection
5509 		 * is in a sad state like this, we care only about integrity
5510 		 * of the connection not performance.
5511 		 */
5512 		if (tp->rx_opt.sack_ok)
5513 			tcp_sack_reset(&tp->rx_opt);
5514 	}
5515 	return pruned;
5516 }
5517 
5518 /* Reduce allocated memory if we can, trying to get
5519  * the socket within its memory limits again.
5520  *
5521  * Return less than zero if we should start dropping frames
5522  * until the socket owning process reads some of the data
5523  * to stabilize the situation.
5524  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5525 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5526 {
5527 	struct tcp_sock *tp = tcp_sk(sk);
5528 
5529 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5530 
5531 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5532 		tcp_clamp_window(sk);
5533 	else if (tcp_under_memory_pressure(sk))
5534 		tcp_adjust_rcv_ssthresh(sk);
5535 
5536 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5537 		return 0;
5538 
5539 	tcp_collapse_ofo_queue(sk);
5540 	if (!skb_queue_empty(&sk->sk_receive_queue))
5541 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5542 			     skb_peek(&sk->sk_receive_queue),
5543 			     NULL,
5544 			     tp->copied_seq, tp->rcv_nxt);
5545 
5546 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5547 		return 0;
5548 
5549 	/* Collapsing did not help, destructive actions follow.
5550 	 * This must not ever occur. */
5551 
5552 	tcp_prune_ofo_queue(sk, in_skb);
5553 
5554 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5555 		return 0;
5556 
5557 	/* If we are really being abused, tell the caller to silently
5558 	 * drop receive data on the floor.  It will get retransmitted
5559 	 * and hopefully then we'll have sufficient space.
5560 	 */
5561 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5562 
5563 	/* Massive buffer overcommit. */
5564 	tp->pred_flags = 0;
5565 	return -1;
5566 }
5567 
tcp_should_expand_sndbuf(struct sock * sk)5568 static bool tcp_should_expand_sndbuf(struct sock *sk)
5569 {
5570 	const struct tcp_sock *tp = tcp_sk(sk);
5571 
5572 	/* If the user specified a specific send buffer setting, do
5573 	 * not modify it.
5574 	 */
5575 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5576 		return false;
5577 
5578 	/* If we are under global TCP memory pressure, do not expand.  */
5579 	if (tcp_under_memory_pressure(sk)) {
5580 		int unused_mem = sk_unused_reserved_mem(sk);
5581 
5582 		/* Adjust sndbuf according to reserved mem. But make sure
5583 		 * it never goes below SOCK_MIN_SNDBUF.
5584 		 * See sk_stream_moderate_sndbuf() for more details.
5585 		 */
5586 		if (unused_mem > SOCK_MIN_SNDBUF)
5587 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5588 
5589 		return false;
5590 	}
5591 
5592 	/* If we are under soft global TCP memory pressure, do not expand.  */
5593 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5594 		return false;
5595 
5596 	/* If we filled the congestion window, do not expand.  */
5597 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5598 		return false;
5599 
5600 	return true;
5601 }
5602 
tcp_new_space(struct sock * sk)5603 static void tcp_new_space(struct sock *sk)
5604 {
5605 	struct tcp_sock *tp = tcp_sk(sk);
5606 
5607 	if (tcp_should_expand_sndbuf(sk)) {
5608 		tcp_sndbuf_expand(sk);
5609 		tp->snd_cwnd_stamp = tcp_jiffies32;
5610 	}
5611 
5612 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5613 }
5614 
5615 /* Caller made space either from:
5616  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5617  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5618  *
5619  * We might be able to generate EPOLLOUT to the application if:
5620  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5621  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5622  *    small enough that tcp_stream_memory_free() decides it
5623  *    is time to generate EPOLLOUT.
5624  */
tcp_check_space(struct sock * sk)5625 void tcp_check_space(struct sock *sk)
5626 {
5627 	/* pairs with tcp_poll() */
5628 	smp_mb();
5629 	if (sk->sk_socket &&
5630 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5631 		tcp_new_space(sk);
5632 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5633 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5634 	}
5635 }
5636 
tcp_data_snd_check(struct sock * sk)5637 static inline void tcp_data_snd_check(struct sock *sk)
5638 {
5639 	tcp_push_pending_frames(sk);
5640 	tcp_check_space(sk);
5641 }
5642 
5643 /*
5644  * Check if sending an ack is needed.
5645  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5646 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5647 {
5648 	struct tcp_sock *tp = tcp_sk(sk);
5649 	unsigned long rtt, delay;
5650 
5651 	    /* More than one full frame received... */
5652 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5653 	     /* ... and right edge of window advances far enough.
5654 	      * (tcp_recvmsg() will send ACK otherwise).
5655 	      * If application uses SO_RCVLOWAT, we want send ack now if
5656 	      * we have not received enough bytes to satisfy the condition.
5657 	      */
5658 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5659 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5660 	    /* We ACK each frame or... */
5661 	    tcp_in_quickack_mode(sk) ||
5662 	    /* Protocol state mandates a one-time immediate ACK */
5663 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5664 send_now:
5665 		tcp_send_ack(sk);
5666 		return;
5667 	}
5668 
5669 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5670 		tcp_send_delayed_ack(sk);
5671 		return;
5672 	}
5673 
5674 	if (!tcp_is_sack(tp) ||
5675 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5676 		goto send_now;
5677 
5678 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5679 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5680 		tp->dup_ack_counter = 0;
5681 	}
5682 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5683 		tp->dup_ack_counter++;
5684 		goto send_now;
5685 	}
5686 	tp->compressed_ack++;
5687 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5688 		return;
5689 
5690 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5691 
5692 	rtt = tp->rcv_rtt_est.rtt_us;
5693 	if (tp->srtt_us && tp->srtt_us < rtt)
5694 		rtt = tp->srtt_us;
5695 
5696 	delay = min_t(unsigned long,
5697 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5698 		      rtt * (NSEC_PER_USEC >> 3)/20);
5699 	sock_hold(sk);
5700 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5701 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5702 			       HRTIMER_MODE_REL_PINNED_SOFT);
5703 }
5704 
tcp_ack_snd_check(struct sock * sk)5705 static inline void tcp_ack_snd_check(struct sock *sk)
5706 {
5707 	if (!inet_csk_ack_scheduled(sk)) {
5708 		/* We sent a data segment already. */
5709 		return;
5710 	}
5711 	__tcp_ack_snd_check(sk, 1);
5712 }
5713 
5714 /*
5715  *	This routine is only called when we have urgent data
5716  *	signaled. Its the 'slow' part of tcp_urg. It could be
5717  *	moved inline now as tcp_urg is only called from one
5718  *	place. We handle URGent data wrong. We have to - as
5719  *	BSD still doesn't use the correction from RFC961.
5720  *	For 1003.1g we should support a new option TCP_STDURG to permit
5721  *	either form (or just set the sysctl tcp_stdurg).
5722  */
5723 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5724 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5725 {
5726 	struct tcp_sock *tp = tcp_sk(sk);
5727 	u32 ptr = ntohs(th->urg_ptr);
5728 
5729 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5730 		ptr--;
5731 	ptr += ntohl(th->seq);
5732 
5733 	/* Ignore urgent data that we've already seen and read. */
5734 	if (after(tp->copied_seq, ptr))
5735 		return;
5736 
5737 	/* Do not replay urg ptr.
5738 	 *
5739 	 * NOTE: interesting situation not covered by specs.
5740 	 * Misbehaving sender may send urg ptr, pointing to segment,
5741 	 * which we already have in ofo queue. We are not able to fetch
5742 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5743 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5744 	 * situations. But it is worth to think about possibility of some
5745 	 * DoSes using some hypothetical application level deadlock.
5746 	 */
5747 	if (before(ptr, tp->rcv_nxt))
5748 		return;
5749 
5750 	/* Do we already have a newer (or duplicate) urgent pointer? */
5751 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5752 		return;
5753 
5754 	/* Tell the world about our new urgent pointer. */
5755 	sk_send_sigurg(sk);
5756 
5757 	/* We may be adding urgent data when the last byte read was
5758 	 * urgent. To do this requires some care. We cannot just ignore
5759 	 * tp->copied_seq since we would read the last urgent byte again
5760 	 * as data, nor can we alter copied_seq until this data arrives
5761 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5762 	 *
5763 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5764 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5765 	 * and expect that both A and B disappear from stream. This is _wrong_.
5766 	 * Though this happens in BSD with high probability, this is occasional.
5767 	 * Any application relying on this is buggy. Note also, that fix "works"
5768 	 * only in this artificial test. Insert some normal data between A and B and we will
5769 	 * decline of BSD again. Verdict: it is better to remove to trap
5770 	 * buggy users.
5771 	 */
5772 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5773 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5774 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5775 		tp->copied_seq++;
5776 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5777 			__skb_unlink(skb, &sk->sk_receive_queue);
5778 			__kfree_skb(skb);
5779 		}
5780 	}
5781 
5782 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5783 	WRITE_ONCE(tp->urg_seq, ptr);
5784 
5785 	/* Disable header prediction. */
5786 	tp->pred_flags = 0;
5787 }
5788 
5789 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5790 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5791 {
5792 	struct tcp_sock *tp = tcp_sk(sk);
5793 
5794 	/* Check if we get a new urgent pointer - normally not. */
5795 	if (unlikely(th->urg))
5796 		tcp_check_urg(sk, th);
5797 
5798 	/* Do we wait for any urgent data? - normally not... */
5799 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5800 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5801 			  th->syn;
5802 
5803 		/* Is the urgent pointer pointing into this packet? */
5804 		if (ptr < skb->len) {
5805 			u8 tmp;
5806 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5807 				BUG();
5808 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5809 			if (!sock_flag(sk, SOCK_DEAD))
5810 				sk->sk_data_ready(sk);
5811 		}
5812 	}
5813 }
5814 
5815 /* Accept RST for rcv_nxt - 1 after a FIN.
5816  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5817  * FIN is sent followed by a RST packet. The RST is sent with the same
5818  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5819  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5820  * ACKs on the closed socket. In addition middleboxes can drop either the
5821  * challenge ACK or a subsequent RST.
5822  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5823 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5824 {
5825 	const struct tcp_sock *tp = tcp_sk(sk);
5826 
5827 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5828 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5829 					       TCPF_CLOSING));
5830 }
5831 
5832 /* Does PAWS and seqno based validation of an incoming segment, flags will
5833  * play significant role here.
5834  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5835 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5836 				  const struct tcphdr *th, int syn_inerr)
5837 {
5838 	struct tcp_sock *tp = tcp_sk(sk);
5839 	SKB_DR(reason);
5840 
5841 	/* RFC1323: H1. Apply PAWS check first. */
5842 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5843 	    tp->rx_opt.saw_tstamp &&
5844 	    tcp_paws_discard(sk, skb)) {
5845 		if (!th->rst) {
5846 			if (unlikely(th->syn))
5847 				goto syn_challenge;
5848 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5849 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5850 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5851 						  &tp->last_oow_ack_time))
5852 				tcp_send_dupack(sk, skb);
5853 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5854 			goto discard;
5855 		}
5856 		/* Reset is accepted even if it did not pass PAWS. */
5857 	}
5858 
5859 	/* Step 1: check sequence number */
5860 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5861 	if (reason) {
5862 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5863 		 * (RST) segments are validated by checking their SEQ-fields."
5864 		 * And page 69: "If an incoming segment is not acceptable,
5865 		 * an acknowledgment should be sent in reply (unless the RST
5866 		 * bit is set, if so drop the segment and return)".
5867 		 */
5868 		if (!th->rst) {
5869 			if (th->syn)
5870 				goto syn_challenge;
5871 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5872 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5873 						  &tp->last_oow_ack_time))
5874 				tcp_send_dupack(sk, skb);
5875 		} else if (tcp_reset_check(sk, skb)) {
5876 			goto reset;
5877 		}
5878 		goto discard;
5879 	}
5880 
5881 	/* Step 2: check RST bit */
5882 	if (th->rst) {
5883 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5884 		 * FIN and SACK too if available):
5885 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5886 		 * the right-most SACK block,
5887 		 * then
5888 		 *     RESET the connection
5889 		 * else
5890 		 *     Send a challenge ACK
5891 		 */
5892 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5893 		    tcp_reset_check(sk, skb))
5894 			goto reset;
5895 
5896 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5897 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5898 			int max_sack = sp[0].end_seq;
5899 			int this_sack;
5900 
5901 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5902 			     ++this_sack) {
5903 				max_sack = after(sp[this_sack].end_seq,
5904 						 max_sack) ?
5905 					sp[this_sack].end_seq : max_sack;
5906 			}
5907 
5908 			if (TCP_SKB_CB(skb)->seq == max_sack)
5909 				goto reset;
5910 		}
5911 
5912 		/* Disable TFO if RST is out-of-order
5913 		 * and no data has been received
5914 		 * for current active TFO socket
5915 		 */
5916 		if (tp->syn_fastopen && !tp->data_segs_in &&
5917 		    sk->sk_state == TCP_ESTABLISHED)
5918 			tcp_fastopen_active_disable(sk);
5919 		tcp_send_challenge_ack(sk);
5920 		SKB_DR_SET(reason, TCP_RESET);
5921 		goto discard;
5922 	}
5923 
5924 	/* step 3: check security and precedence [ignored] */
5925 
5926 	/* step 4: Check for a SYN
5927 	 * RFC 5961 4.2 : Send a challenge ack
5928 	 */
5929 	if (th->syn) {
5930 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5931 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5932 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5933 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5934 			goto pass;
5935 syn_challenge:
5936 		if (syn_inerr)
5937 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5938 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5939 		tcp_send_challenge_ack(sk);
5940 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5941 		goto discard;
5942 	}
5943 
5944 pass:
5945 	bpf_skops_parse_hdr(sk, skb);
5946 
5947 	return true;
5948 
5949 discard:
5950 	tcp_drop_reason(sk, skb, reason);
5951 	return false;
5952 
5953 reset:
5954 	tcp_reset(sk, skb);
5955 	__kfree_skb(skb);
5956 	return false;
5957 }
5958 
5959 /*
5960  *	TCP receive function for the ESTABLISHED state.
5961  *
5962  *	It is split into a fast path and a slow path. The fast path is
5963  * 	disabled when:
5964  *	- A zero window was announced from us - zero window probing
5965  *        is only handled properly in the slow path.
5966  *	- Out of order segments arrived.
5967  *	- Urgent data is expected.
5968  *	- There is no buffer space left
5969  *	- Unexpected TCP flags/window values/header lengths are received
5970  *	  (detected by checking the TCP header against pred_flags)
5971  *	- Data is sent in both directions. Fast path only supports pure senders
5972  *	  or pure receivers (this means either the sequence number or the ack
5973  *	  value must stay constant)
5974  *	- Unexpected TCP option.
5975  *
5976  *	When these conditions are not satisfied it drops into a standard
5977  *	receive procedure patterned after RFC793 to handle all cases.
5978  *	The first three cases are guaranteed by proper pred_flags setting,
5979  *	the rest is checked inline. Fast processing is turned on in
5980  *	tcp_data_queue when everything is OK.
5981  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5982 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5983 {
5984 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5985 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5986 	struct tcp_sock *tp = tcp_sk(sk);
5987 	unsigned int len = skb->len;
5988 
5989 	/* TCP congestion window tracking */
5990 	trace_tcp_probe(sk, skb);
5991 
5992 	tcp_mstamp_refresh(tp);
5993 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5994 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5995 	/*
5996 	 *	Header prediction.
5997 	 *	The code loosely follows the one in the famous
5998 	 *	"30 instruction TCP receive" Van Jacobson mail.
5999 	 *
6000 	 *	Van's trick is to deposit buffers into socket queue
6001 	 *	on a device interrupt, to call tcp_recv function
6002 	 *	on the receive process context and checksum and copy
6003 	 *	the buffer to user space. smart...
6004 	 *
6005 	 *	Our current scheme is not silly either but we take the
6006 	 *	extra cost of the net_bh soft interrupt processing...
6007 	 *	We do checksum and copy also but from device to kernel.
6008 	 */
6009 
6010 	tp->rx_opt.saw_tstamp = 0;
6011 
6012 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6013 	 *	if header_prediction is to be made
6014 	 *	'S' will always be tp->tcp_header_len >> 2
6015 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6016 	 *  turn it off	(when there are holes in the receive
6017 	 *	 space for instance)
6018 	 *	PSH flag is ignored.
6019 	 */
6020 
6021 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6022 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6023 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6024 		int tcp_header_len = tp->tcp_header_len;
6025 
6026 		/* Timestamp header prediction: tcp_header_len
6027 		 * is automatically equal to th->doff*4 due to pred_flags
6028 		 * match.
6029 		 */
6030 
6031 		/* Check timestamp */
6032 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6033 			/* No? Slow path! */
6034 			if (!tcp_parse_aligned_timestamp(tp, th))
6035 				goto slow_path;
6036 
6037 			/* If PAWS failed, check it more carefully in slow path */
6038 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6039 				goto slow_path;
6040 
6041 			/* DO NOT update ts_recent here, if checksum fails
6042 			 * and timestamp was corrupted part, it will result
6043 			 * in a hung connection since we will drop all
6044 			 * future packets due to the PAWS test.
6045 			 */
6046 		}
6047 
6048 		if (len <= tcp_header_len) {
6049 			/* Bulk data transfer: sender */
6050 			if (len == tcp_header_len) {
6051 				/* Predicted packet is in window by definition.
6052 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6053 				 * Hence, check seq<=rcv_wup reduces to:
6054 				 */
6055 				if (tcp_header_len ==
6056 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6057 				    tp->rcv_nxt == tp->rcv_wup)
6058 					tcp_store_ts_recent(tp);
6059 
6060 				/* We know that such packets are checksummed
6061 				 * on entry.
6062 				 */
6063 				tcp_ack(sk, skb, 0);
6064 				__kfree_skb(skb);
6065 				tcp_data_snd_check(sk);
6066 				/* When receiving pure ack in fast path, update
6067 				 * last ts ecr directly instead of calling
6068 				 * tcp_rcv_rtt_measure_ts()
6069 				 */
6070 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6071 				return;
6072 			} else { /* Header too small */
6073 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6074 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6075 				goto discard;
6076 			}
6077 		} else {
6078 			int eaten = 0;
6079 			bool fragstolen = false;
6080 
6081 			if (tcp_checksum_complete(skb))
6082 				goto csum_error;
6083 
6084 			if ((int)skb->truesize > sk->sk_forward_alloc)
6085 				goto step5;
6086 
6087 			/* Predicted packet is in window by definition.
6088 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6089 			 * Hence, check seq<=rcv_wup reduces to:
6090 			 */
6091 			if (tcp_header_len ==
6092 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6093 			    tp->rcv_nxt == tp->rcv_wup)
6094 				tcp_store_ts_recent(tp);
6095 
6096 			tcp_rcv_rtt_measure_ts(sk, skb);
6097 
6098 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6099 
6100 			/* Bulk data transfer: receiver */
6101 			tcp_cleanup_skb(skb);
6102 			__skb_pull(skb, tcp_header_len);
6103 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6104 
6105 			tcp_event_data_recv(sk, skb);
6106 
6107 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6108 				/* Well, only one small jumplet in fast path... */
6109 				tcp_ack(sk, skb, FLAG_DATA);
6110 				tcp_data_snd_check(sk);
6111 				if (!inet_csk_ack_scheduled(sk))
6112 					goto no_ack;
6113 			} else {
6114 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6115 			}
6116 
6117 			__tcp_ack_snd_check(sk, 0);
6118 no_ack:
6119 			if (eaten)
6120 				kfree_skb_partial(skb, fragstolen);
6121 			tcp_data_ready(sk);
6122 			return;
6123 		}
6124 	}
6125 
6126 slow_path:
6127 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6128 		goto csum_error;
6129 
6130 	if (!th->ack && !th->rst && !th->syn) {
6131 		reason = SKB_DROP_REASON_TCP_FLAGS;
6132 		goto discard;
6133 	}
6134 
6135 	/*
6136 	 *	Standard slow path.
6137 	 */
6138 
6139 	if (!tcp_validate_incoming(sk, skb, th, 1))
6140 		return;
6141 
6142 step5:
6143 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6144 	if ((int)reason < 0) {
6145 		reason = -reason;
6146 		goto discard;
6147 	}
6148 	tcp_rcv_rtt_measure_ts(sk, skb);
6149 
6150 	/* Process urgent data. */
6151 	tcp_urg(sk, skb, th);
6152 
6153 	/* step 7: process the segment text */
6154 	tcp_data_queue(sk, skb);
6155 
6156 	tcp_data_snd_check(sk);
6157 	tcp_ack_snd_check(sk);
6158 	return;
6159 
6160 csum_error:
6161 	reason = SKB_DROP_REASON_TCP_CSUM;
6162 	trace_tcp_bad_csum(skb);
6163 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6164 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6165 
6166 discard:
6167 	tcp_drop_reason(sk, skb, reason);
6168 }
6169 EXPORT_SYMBOL(tcp_rcv_established);
6170 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6171 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6172 {
6173 	struct inet_connection_sock *icsk = inet_csk(sk);
6174 	struct tcp_sock *tp = tcp_sk(sk);
6175 
6176 	tcp_mtup_init(sk);
6177 	icsk->icsk_af_ops->rebuild_header(sk);
6178 	tcp_init_metrics(sk);
6179 
6180 	/* Initialize the congestion window to start the transfer.
6181 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6182 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6183 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6184 	 * retransmission has occurred.
6185 	 */
6186 	if (tp->total_retrans > 1 && tp->undo_marker)
6187 		tcp_snd_cwnd_set(tp, 1);
6188 	else
6189 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6190 	tp->snd_cwnd_stamp = tcp_jiffies32;
6191 
6192 	bpf_skops_established(sk, bpf_op, skb);
6193 	/* Initialize congestion control unless BPF initialized it already: */
6194 	if (!icsk->icsk_ca_initialized)
6195 		tcp_init_congestion_control(sk);
6196 	tcp_init_buffer_space(sk);
6197 }
6198 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6199 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6200 {
6201 	struct tcp_sock *tp = tcp_sk(sk);
6202 	struct inet_connection_sock *icsk = inet_csk(sk);
6203 
6204 	tcp_set_state(sk, TCP_ESTABLISHED);
6205 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6206 
6207 	if (skb) {
6208 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6209 		security_inet_conn_established(sk, skb);
6210 		sk_mark_napi_id(sk, skb);
6211 	}
6212 
6213 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6214 
6215 	/* Prevent spurious tcp_cwnd_restart() on first data
6216 	 * packet.
6217 	 */
6218 	tp->lsndtime = tcp_jiffies32;
6219 
6220 	if (sock_flag(sk, SOCK_KEEPOPEN))
6221 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6222 
6223 	if (!tp->rx_opt.snd_wscale)
6224 		__tcp_fast_path_on(tp, tp->snd_wnd);
6225 	else
6226 		tp->pred_flags = 0;
6227 }
6228 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6229 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6230 				    struct tcp_fastopen_cookie *cookie)
6231 {
6232 	struct tcp_sock *tp = tcp_sk(sk);
6233 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6234 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6235 	bool syn_drop = false;
6236 
6237 	if (mss == tp->rx_opt.user_mss) {
6238 		struct tcp_options_received opt;
6239 
6240 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6241 		tcp_clear_options(&opt);
6242 		opt.user_mss = opt.mss_clamp = 0;
6243 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6244 		mss = opt.mss_clamp;
6245 	}
6246 
6247 	if (!tp->syn_fastopen) {
6248 		/* Ignore an unsolicited cookie */
6249 		cookie->len = -1;
6250 	} else if (tp->total_retrans) {
6251 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6252 		 * acknowledges data. Presumably the remote received only
6253 		 * the retransmitted (regular) SYNs: either the original
6254 		 * SYN-data or the corresponding SYN-ACK was dropped.
6255 		 */
6256 		syn_drop = (cookie->len < 0 && data);
6257 	} else if (cookie->len < 0 && !tp->syn_data) {
6258 		/* We requested a cookie but didn't get it. If we did not use
6259 		 * the (old) exp opt format then try so next time (try_exp=1).
6260 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6261 		 */
6262 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6263 	}
6264 
6265 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6266 
6267 	if (data) { /* Retransmit unacked data in SYN */
6268 		if (tp->total_retrans)
6269 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6270 		else
6271 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6272 		skb_rbtree_walk_from(data)
6273 			 tcp_mark_skb_lost(sk, data);
6274 		tcp_non_congestion_loss_retransmit(sk);
6275 		NET_INC_STATS(sock_net(sk),
6276 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6277 		return true;
6278 	}
6279 	tp->syn_data_acked = tp->syn_data;
6280 	if (tp->syn_data_acked) {
6281 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6282 		/* SYN-data is counted as two separate packets in tcp_ack() */
6283 		if (tp->delivered > 1)
6284 			--tp->delivered;
6285 	}
6286 
6287 	tcp_fastopen_add_skb(sk, synack);
6288 
6289 	return false;
6290 }
6291 
smc_check_reset_syn(struct tcp_sock * tp)6292 static void smc_check_reset_syn(struct tcp_sock *tp)
6293 {
6294 #if IS_ENABLED(CONFIG_SMC)
6295 	if (static_branch_unlikely(&tcp_have_smc)) {
6296 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6297 			tp->syn_smc = 0;
6298 	}
6299 #endif
6300 }
6301 
tcp_try_undo_spurious_syn(struct sock * sk)6302 static void tcp_try_undo_spurious_syn(struct sock *sk)
6303 {
6304 	struct tcp_sock *tp = tcp_sk(sk);
6305 	u32 syn_stamp;
6306 
6307 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6308 	 * spurious if the ACK's timestamp option echo value matches the
6309 	 * original SYN timestamp.
6310 	 */
6311 	syn_stamp = tp->retrans_stamp;
6312 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6313 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6314 		tp->undo_marker = 0;
6315 }
6316 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6317 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6318 					 const struct tcphdr *th)
6319 {
6320 	struct inet_connection_sock *icsk = inet_csk(sk);
6321 	struct tcp_sock *tp = tcp_sk(sk);
6322 	struct tcp_fastopen_cookie foc = { .len = -1 };
6323 	int saved_clamp = tp->rx_opt.mss_clamp;
6324 	bool fastopen_fail;
6325 	SKB_DR(reason);
6326 
6327 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6328 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6329 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6330 
6331 	if (th->ack) {
6332 		/* rfc793:
6333 		 * "If the state is SYN-SENT then
6334 		 *    first check the ACK bit
6335 		 *      If the ACK bit is set
6336 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6337 		 *        a reset (unless the RST bit is set, if so drop
6338 		 *        the segment and return)"
6339 		 */
6340 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6341 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6342 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6343 			if (icsk->icsk_retransmits == 0)
6344 				inet_csk_reset_xmit_timer(sk,
6345 						ICSK_TIME_RETRANS,
6346 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6347 			goto reset_and_undo;
6348 		}
6349 
6350 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6351 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6352 			     tcp_time_stamp(tp))) {
6353 			NET_INC_STATS(sock_net(sk),
6354 					LINUX_MIB_PAWSACTIVEREJECTED);
6355 			goto reset_and_undo;
6356 		}
6357 
6358 		/* Now ACK is acceptable.
6359 		 *
6360 		 * "If the RST bit is set
6361 		 *    If the ACK was acceptable then signal the user "error:
6362 		 *    connection reset", drop the segment, enter CLOSED state,
6363 		 *    delete TCB, and return."
6364 		 */
6365 
6366 		if (th->rst) {
6367 			tcp_reset(sk, skb);
6368 consume:
6369 			__kfree_skb(skb);
6370 			return 0;
6371 		}
6372 
6373 		/* rfc793:
6374 		 *   "fifth, if neither of the SYN or RST bits is set then
6375 		 *    drop the segment and return."
6376 		 *
6377 		 *    See note below!
6378 		 *                                        --ANK(990513)
6379 		 */
6380 		if (!th->syn) {
6381 			SKB_DR_SET(reason, TCP_FLAGS);
6382 			goto discard_and_undo;
6383 		}
6384 		/* rfc793:
6385 		 *   "If the SYN bit is on ...
6386 		 *    are acceptable then ...
6387 		 *    (our SYN has been ACKed), change the connection
6388 		 *    state to ESTABLISHED..."
6389 		 */
6390 
6391 		tcp_ecn_rcv_synack(tp, th);
6392 
6393 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6394 		tcp_try_undo_spurious_syn(sk);
6395 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6396 
6397 		/* Ok.. it's good. Set up sequence numbers and
6398 		 * move to established.
6399 		 */
6400 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6401 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6402 
6403 		/* RFC1323: The window in SYN & SYN/ACK segments is
6404 		 * never scaled.
6405 		 */
6406 		tp->snd_wnd = ntohs(th->window);
6407 
6408 		if (!tp->rx_opt.wscale_ok) {
6409 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6410 			WRITE_ONCE(tp->window_clamp,
6411 				   min(tp->window_clamp, 65535U));
6412 		}
6413 
6414 		if (tp->rx_opt.saw_tstamp) {
6415 			tp->rx_opt.tstamp_ok	   = 1;
6416 			tp->tcp_header_len =
6417 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6418 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6419 			tcp_store_ts_recent(tp);
6420 		} else {
6421 			tp->tcp_header_len = sizeof(struct tcphdr);
6422 		}
6423 
6424 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6425 		tcp_initialize_rcv_mss(sk);
6426 
6427 		/* Remember, tcp_poll() does not lock socket!
6428 		 * Change state from SYN-SENT only after copied_seq
6429 		 * is initialized. */
6430 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6431 
6432 		smc_check_reset_syn(tp);
6433 
6434 		smp_mb();
6435 
6436 		tcp_finish_connect(sk, skb);
6437 
6438 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6439 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6440 
6441 		if (!sock_flag(sk, SOCK_DEAD)) {
6442 			sk->sk_state_change(sk);
6443 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6444 		}
6445 		if (fastopen_fail)
6446 			return -1;
6447 		if (sk->sk_write_pending ||
6448 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6449 		    inet_csk_in_pingpong_mode(sk)) {
6450 			/* Save one ACK. Data will be ready after
6451 			 * several ticks, if write_pending is set.
6452 			 *
6453 			 * It may be deleted, but with this feature tcpdumps
6454 			 * look so _wonderfully_ clever, that I was not able
6455 			 * to stand against the temptation 8)     --ANK
6456 			 */
6457 			inet_csk_schedule_ack(sk);
6458 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6459 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6460 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6461 			goto consume;
6462 		}
6463 		tcp_send_ack(sk);
6464 		return -1;
6465 	}
6466 
6467 	/* No ACK in the segment */
6468 
6469 	if (th->rst) {
6470 		/* rfc793:
6471 		 * "If the RST bit is set
6472 		 *
6473 		 *      Otherwise (no ACK) drop the segment and return."
6474 		 */
6475 		SKB_DR_SET(reason, TCP_RESET);
6476 		goto discard_and_undo;
6477 	}
6478 
6479 	/* PAWS check. */
6480 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6481 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6482 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6483 		goto discard_and_undo;
6484 	}
6485 	if (th->syn) {
6486 		/* We see SYN without ACK. It is attempt of
6487 		 * simultaneous connect with crossed SYNs.
6488 		 * Particularly, it can be connect to self.
6489 		 */
6490 		tcp_set_state(sk, TCP_SYN_RECV);
6491 
6492 		if (tp->rx_opt.saw_tstamp) {
6493 			tp->rx_opt.tstamp_ok = 1;
6494 			tcp_store_ts_recent(tp);
6495 			tp->tcp_header_len =
6496 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6497 		} else {
6498 			tp->tcp_header_len = sizeof(struct tcphdr);
6499 		}
6500 
6501 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6502 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6503 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6504 
6505 		/* RFC1323: The window in SYN & SYN/ACK segments is
6506 		 * never scaled.
6507 		 */
6508 		tp->snd_wnd    = ntohs(th->window);
6509 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6510 		tp->max_window = tp->snd_wnd;
6511 
6512 		tcp_ecn_rcv_syn(tp, th);
6513 
6514 		tcp_mtup_init(sk);
6515 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6516 		tcp_initialize_rcv_mss(sk);
6517 
6518 		tcp_send_synack(sk);
6519 #if 0
6520 		/* Note, we could accept data and URG from this segment.
6521 		 * There are no obstacles to make this (except that we must
6522 		 * either change tcp_recvmsg() to prevent it from returning data
6523 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6524 		 *
6525 		 * However, if we ignore data in ACKless segments sometimes,
6526 		 * we have no reasons to accept it sometimes.
6527 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6528 		 * is not flawless. So, discard packet for sanity.
6529 		 * Uncomment this return to process the data.
6530 		 */
6531 		return -1;
6532 #else
6533 		goto consume;
6534 #endif
6535 	}
6536 	/* "fifth, if neither of the SYN or RST bits is set then
6537 	 * drop the segment and return."
6538 	 */
6539 
6540 discard_and_undo:
6541 	tcp_clear_options(&tp->rx_opt);
6542 	tp->rx_opt.mss_clamp = saved_clamp;
6543 	tcp_drop_reason(sk, skb, reason);
6544 	return 0;
6545 
6546 reset_and_undo:
6547 	tcp_clear_options(&tp->rx_opt);
6548 	tp->rx_opt.mss_clamp = saved_clamp;
6549 	return 1;
6550 }
6551 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6552 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6553 {
6554 	struct tcp_sock *tp = tcp_sk(sk);
6555 	struct request_sock *req;
6556 
6557 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6558 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6559 	 */
6560 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6561 		tcp_try_undo_recovery(sk);
6562 
6563 	tcp_update_rto_time(tp);
6564 	inet_csk(sk)->icsk_retransmits = 0;
6565 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6566 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6567 	 * need to zero retrans_stamp here to prevent spurious
6568 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6569 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6570 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6571 	 * undo behavior.
6572 	 */
6573 	tcp_retrans_stamp_cleanup(sk);
6574 
6575 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6576 	 * we no longer need req so release it.
6577 	 */
6578 	req = rcu_dereference_protected(tp->fastopen_rsk,
6579 					lockdep_sock_is_held(sk));
6580 	reqsk_fastopen_remove(sk, req, false);
6581 
6582 	/* Re-arm the timer because data may have been sent out.
6583 	 * This is similar to the regular data transmission case
6584 	 * when new data has just been ack'ed.
6585 	 *
6586 	 * (TFO) - we could try to be more aggressive and
6587 	 * retransmitting any data sooner based on when they
6588 	 * are sent out.
6589 	 */
6590 	tcp_rearm_rto(sk);
6591 }
6592 
6593 /*
6594  *	This function implements the receiving procedure of RFC 793 for
6595  *	all states except ESTABLISHED and TIME_WAIT.
6596  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6597  *	address independent.
6598  */
6599 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6600 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6601 {
6602 	struct tcp_sock *tp = tcp_sk(sk);
6603 	struct inet_connection_sock *icsk = inet_csk(sk);
6604 	const struct tcphdr *th = tcp_hdr(skb);
6605 	struct request_sock *req;
6606 	int queued = 0;
6607 	bool acceptable;
6608 	SKB_DR(reason);
6609 
6610 	switch (sk->sk_state) {
6611 	case TCP_CLOSE:
6612 		SKB_DR_SET(reason, TCP_CLOSE);
6613 		goto discard;
6614 
6615 	case TCP_LISTEN:
6616 		if (th->ack)
6617 			return 1;
6618 
6619 		if (th->rst) {
6620 			SKB_DR_SET(reason, TCP_RESET);
6621 			goto discard;
6622 		}
6623 		if (th->syn) {
6624 			if (th->fin) {
6625 				SKB_DR_SET(reason, TCP_FLAGS);
6626 				goto discard;
6627 			}
6628 			/* It is possible that we process SYN packets from backlog,
6629 			 * so we need to make sure to disable BH and RCU right there.
6630 			 */
6631 			rcu_read_lock();
6632 			local_bh_disable();
6633 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6634 			local_bh_enable();
6635 			rcu_read_unlock();
6636 
6637 			if (!acceptable)
6638 				return 1;
6639 			consume_skb(skb);
6640 			return 0;
6641 		}
6642 		SKB_DR_SET(reason, TCP_FLAGS);
6643 		goto discard;
6644 
6645 	case TCP_SYN_SENT:
6646 		tp->rx_opt.saw_tstamp = 0;
6647 		tcp_mstamp_refresh(tp);
6648 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6649 		if (queued >= 0)
6650 			return queued;
6651 
6652 		/* Do step6 onward by hand. */
6653 		tcp_urg(sk, skb, th);
6654 		__kfree_skb(skb);
6655 		tcp_data_snd_check(sk);
6656 		return 0;
6657 	}
6658 
6659 	tcp_mstamp_refresh(tp);
6660 	tp->rx_opt.saw_tstamp = 0;
6661 	req = rcu_dereference_protected(tp->fastopen_rsk,
6662 					lockdep_sock_is_held(sk));
6663 	if (req) {
6664 		bool req_stolen;
6665 
6666 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6667 		    sk->sk_state != TCP_FIN_WAIT1);
6668 
6669 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6670 			SKB_DR_SET(reason, TCP_FASTOPEN);
6671 			goto discard;
6672 		}
6673 	}
6674 
6675 	if (!th->ack && !th->rst && !th->syn) {
6676 		SKB_DR_SET(reason, TCP_FLAGS);
6677 		goto discard;
6678 	}
6679 	if (!tcp_validate_incoming(sk, skb, th, 0))
6680 		return 0;
6681 
6682 	/* step 5: check the ACK field */
6683 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6684 				      FLAG_UPDATE_TS_RECENT |
6685 				      FLAG_NO_CHALLENGE_ACK) > 0;
6686 
6687 	if (!acceptable) {
6688 		if (sk->sk_state == TCP_SYN_RECV)
6689 			return 1;	/* send one RST */
6690 		tcp_send_challenge_ack(sk);
6691 		SKB_DR_SET(reason, TCP_OLD_ACK);
6692 		goto discard;
6693 	}
6694 	switch (sk->sk_state) {
6695 	case TCP_SYN_RECV:
6696 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6697 		if (!tp->srtt_us)
6698 			tcp_synack_rtt_meas(sk, req);
6699 
6700 		if (req) {
6701 			tcp_rcv_synrecv_state_fastopen(sk);
6702 		} else {
6703 			tcp_try_undo_spurious_syn(sk);
6704 			tp->retrans_stamp = 0;
6705 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6706 					  skb);
6707 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6708 		}
6709 		smp_mb();
6710 		tcp_set_state(sk, TCP_ESTABLISHED);
6711 		sk->sk_state_change(sk);
6712 
6713 		/* Note, that this wakeup is only for marginal crossed SYN case.
6714 		 * Passively open sockets are not waked up, because
6715 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6716 		 */
6717 		if (sk->sk_socket)
6718 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6719 
6720 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6721 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6722 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6723 
6724 		if (tp->rx_opt.tstamp_ok)
6725 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6726 
6727 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6728 			tcp_update_pacing_rate(sk);
6729 
6730 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6731 		tp->lsndtime = tcp_jiffies32;
6732 
6733 		tcp_initialize_rcv_mss(sk);
6734 		tcp_fast_path_on(tp);
6735 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6736 			tcp_shutdown(sk, SEND_SHUTDOWN);
6737 		break;
6738 
6739 	case TCP_FIN_WAIT1: {
6740 		int tmo;
6741 
6742 		if (req)
6743 			tcp_rcv_synrecv_state_fastopen(sk);
6744 
6745 		if (tp->snd_una != tp->write_seq)
6746 			break;
6747 
6748 		tcp_set_state(sk, TCP_FIN_WAIT2);
6749 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6750 
6751 		sk_dst_confirm(sk);
6752 
6753 		if (!sock_flag(sk, SOCK_DEAD)) {
6754 			/* Wake up lingering close() */
6755 			sk->sk_state_change(sk);
6756 			break;
6757 		}
6758 
6759 		if (READ_ONCE(tp->linger2) < 0) {
6760 			tcp_done(sk);
6761 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6762 			return 1;
6763 		}
6764 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6765 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6766 			/* Receive out of order FIN after close() */
6767 			if (tp->syn_fastopen && th->fin)
6768 				tcp_fastopen_active_disable(sk);
6769 			tcp_done(sk);
6770 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6771 			return 1;
6772 		}
6773 
6774 		tmo = tcp_fin_time(sk);
6775 		if (tmo > TCP_TIMEWAIT_LEN) {
6776 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6777 		} else if (th->fin || sock_owned_by_user(sk)) {
6778 			/* Bad case. We could lose such FIN otherwise.
6779 			 * It is not a big problem, but it looks confusing
6780 			 * and not so rare event. We still can lose it now,
6781 			 * if it spins in bh_lock_sock(), but it is really
6782 			 * marginal case.
6783 			 */
6784 			inet_csk_reset_keepalive_timer(sk, tmo);
6785 		} else {
6786 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6787 			goto consume;
6788 		}
6789 		break;
6790 	}
6791 
6792 	case TCP_CLOSING:
6793 		if (tp->snd_una == tp->write_seq) {
6794 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6795 			goto consume;
6796 		}
6797 		break;
6798 
6799 	case TCP_LAST_ACK:
6800 		if (tp->snd_una == tp->write_seq) {
6801 			tcp_update_metrics(sk);
6802 			tcp_done(sk);
6803 			goto consume;
6804 		}
6805 		break;
6806 	}
6807 
6808 	/* step 6: check the URG bit */
6809 	tcp_urg(sk, skb, th);
6810 
6811 	/* step 7: process the segment text */
6812 	switch (sk->sk_state) {
6813 	case TCP_CLOSE_WAIT:
6814 	case TCP_CLOSING:
6815 	case TCP_LAST_ACK:
6816 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6817 			/* If a subflow has been reset, the packet should not
6818 			 * continue to be processed, drop the packet.
6819 			 */
6820 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6821 				goto discard;
6822 			break;
6823 		}
6824 		fallthrough;
6825 	case TCP_FIN_WAIT1:
6826 	case TCP_FIN_WAIT2:
6827 		/* RFC 793 says to queue data in these states,
6828 		 * RFC 1122 says we MUST send a reset.
6829 		 * BSD 4.4 also does reset.
6830 		 */
6831 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6832 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6833 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6834 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6835 				tcp_reset(sk, skb);
6836 				return 1;
6837 			}
6838 		}
6839 		fallthrough;
6840 	case TCP_ESTABLISHED:
6841 		tcp_data_queue(sk, skb);
6842 		queued = 1;
6843 		break;
6844 	}
6845 
6846 	/* tcp_data could move socket to TIME-WAIT */
6847 	if (sk->sk_state != TCP_CLOSE) {
6848 		tcp_data_snd_check(sk);
6849 		tcp_ack_snd_check(sk);
6850 	}
6851 
6852 	if (!queued) {
6853 discard:
6854 		tcp_drop_reason(sk, skb, reason);
6855 	}
6856 	return 0;
6857 
6858 consume:
6859 	__kfree_skb(skb);
6860 	return 0;
6861 }
6862 EXPORT_SYMBOL(tcp_rcv_state_process);
6863 
pr_drop_req(struct request_sock * req,__u16 port,int family)6864 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6865 {
6866 	struct inet_request_sock *ireq = inet_rsk(req);
6867 
6868 	if (family == AF_INET)
6869 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6870 				    &ireq->ir_rmt_addr, port);
6871 #if IS_ENABLED(CONFIG_IPV6)
6872 	else if (family == AF_INET6)
6873 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6874 				    &ireq->ir_v6_rmt_addr, port);
6875 #endif
6876 }
6877 
6878 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6879  *
6880  * If we receive a SYN packet with these bits set, it means a
6881  * network is playing bad games with TOS bits. In order to
6882  * avoid possible false congestion notifications, we disable
6883  * TCP ECN negotiation.
6884  *
6885  * Exception: tcp_ca wants ECN. This is required for DCTCP
6886  * congestion control: Linux DCTCP asserts ECT on all packets,
6887  * including SYN, which is most optimal solution; however,
6888  * others, such as FreeBSD do not.
6889  *
6890  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6891  * set, indicating the use of a future TCP extension (such as AccECN). See
6892  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6893  * extensions.
6894  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6895 static void tcp_ecn_create_request(struct request_sock *req,
6896 				   const struct sk_buff *skb,
6897 				   const struct sock *listen_sk,
6898 				   const struct dst_entry *dst)
6899 {
6900 	const struct tcphdr *th = tcp_hdr(skb);
6901 	const struct net *net = sock_net(listen_sk);
6902 	bool th_ecn = th->ece && th->cwr;
6903 	bool ect, ecn_ok;
6904 	u32 ecn_ok_dst;
6905 
6906 	if (!th_ecn)
6907 		return;
6908 
6909 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6910 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6911 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6912 
6913 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6914 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6915 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6916 		inet_rsk(req)->ecn_ok = 1;
6917 }
6918 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6919 static void tcp_openreq_init(struct request_sock *req,
6920 			     const struct tcp_options_received *rx_opt,
6921 			     struct sk_buff *skb, const struct sock *sk)
6922 {
6923 	struct inet_request_sock *ireq = inet_rsk(req);
6924 
6925 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6926 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6927 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6928 	tcp_rsk(req)->snt_synack = 0;
6929 	tcp_rsk(req)->last_oow_ack_time = 0;
6930 	req->mss = rx_opt->mss_clamp;
6931 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6932 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6933 	ireq->sack_ok = rx_opt->sack_ok;
6934 	ireq->snd_wscale = rx_opt->snd_wscale;
6935 	ireq->wscale_ok = rx_opt->wscale_ok;
6936 	ireq->acked = 0;
6937 	ireq->ecn_ok = 0;
6938 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6939 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6940 	ireq->ir_mark = inet_request_mark(sk, skb);
6941 #if IS_ENABLED(CONFIG_SMC)
6942 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6943 			tcp_sk(sk)->smc_hs_congested(sk));
6944 #endif
6945 }
6946 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6947 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6948 				      struct sock *sk_listener,
6949 				      bool attach_listener)
6950 {
6951 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6952 					       attach_listener);
6953 
6954 	if (req) {
6955 		struct inet_request_sock *ireq = inet_rsk(req);
6956 
6957 		ireq->ireq_opt = NULL;
6958 #if IS_ENABLED(CONFIG_IPV6)
6959 		ireq->pktopts = NULL;
6960 #endif
6961 		atomic64_set(&ireq->ir_cookie, 0);
6962 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6963 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6964 		ireq->ireq_family = sk_listener->sk_family;
6965 		req->timeout = TCP_TIMEOUT_INIT;
6966 	}
6967 
6968 	return req;
6969 }
6970 EXPORT_SYMBOL(inet_reqsk_alloc);
6971 
6972 /*
6973  * Return true if a syncookie should be sent
6974  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6975 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6976 {
6977 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6978 	const char *msg = "Dropping request";
6979 	struct net *net = sock_net(sk);
6980 	bool want_cookie = false;
6981 	u8 syncookies;
6982 
6983 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6984 
6985 #ifdef CONFIG_SYN_COOKIES
6986 	if (syncookies) {
6987 		msg = "Sending cookies";
6988 		want_cookie = true;
6989 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6990 	} else
6991 #endif
6992 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6993 
6994 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6995 	    xchg(&queue->synflood_warned, 1) == 0) {
6996 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6997 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6998 					proto, inet6_rcv_saddr(sk),
6999 					sk->sk_num, msg);
7000 		} else {
7001 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7002 					proto, &sk->sk_rcv_saddr,
7003 					sk->sk_num, msg);
7004 		}
7005 	}
7006 
7007 	return want_cookie;
7008 }
7009 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7010 static void tcp_reqsk_record_syn(const struct sock *sk,
7011 				 struct request_sock *req,
7012 				 const struct sk_buff *skb)
7013 {
7014 	if (tcp_sk(sk)->save_syn) {
7015 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7016 		struct saved_syn *saved_syn;
7017 		u32 mac_hdrlen;
7018 		void *base;
7019 
7020 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7021 			base = skb_mac_header(skb);
7022 			mac_hdrlen = skb_mac_header_len(skb);
7023 			len += mac_hdrlen;
7024 		} else {
7025 			base = skb_network_header(skb);
7026 			mac_hdrlen = 0;
7027 		}
7028 
7029 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7030 				    GFP_ATOMIC);
7031 		if (saved_syn) {
7032 			saved_syn->mac_hdrlen = mac_hdrlen;
7033 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7034 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7035 			memcpy(saved_syn->data, base, len);
7036 			req->saved_syn = saved_syn;
7037 		}
7038 	}
7039 }
7040 
7041 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7042  * used for SYN cookie generation.
7043  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7044 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7045 			  const struct tcp_request_sock_ops *af_ops,
7046 			  struct sock *sk, struct tcphdr *th)
7047 {
7048 	struct tcp_sock *tp = tcp_sk(sk);
7049 	u16 mss;
7050 
7051 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7052 	    !inet_csk_reqsk_queue_is_full(sk))
7053 		return 0;
7054 
7055 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7056 		return 0;
7057 
7058 	if (sk_acceptq_is_full(sk)) {
7059 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7060 		return 0;
7061 	}
7062 
7063 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7064 	if (!mss)
7065 		mss = af_ops->mss_clamp;
7066 
7067 	return mss;
7068 }
7069 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7070 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7071 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7072 		     const struct tcp_request_sock_ops *af_ops,
7073 		     struct sock *sk, struct sk_buff *skb)
7074 {
7075 	struct tcp_fastopen_cookie foc = { .len = -1 };
7076 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7077 	struct tcp_options_received tmp_opt;
7078 	struct tcp_sock *tp = tcp_sk(sk);
7079 	struct net *net = sock_net(sk);
7080 	struct sock *fastopen_sk = NULL;
7081 	struct request_sock *req;
7082 	bool want_cookie = false;
7083 	struct dst_entry *dst;
7084 	struct flowi fl;
7085 	u8 syncookies;
7086 
7087 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7088 
7089 	/* TW buckets are converted to open requests without
7090 	 * limitations, they conserve resources and peer is
7091 	 * evidently real one.
7092 	 */
7093 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7094 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7095 		if (!want_cookie)
7096 			goto drop;
7097 	}
7098 
7099 	if (sk_acceptq_is_full(sk)) {
7100 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7101 		goto drop;
7102 	}
7103 
7104 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7105 	if (!req)
7106 		goto drop;
7107 
7108 	req->syncookie = want_cookie;
7109 	tcp_rsk(req)->af_specific = af_ops;
7110 	tcp_rsk(req)->ts_off = 0;
7111 #if IS_ENABLED(CONFIG_MPTCP)
7112 	tcp_rsk(req)->is_mptcp = 0;
7113 #endif
7114 
7115 	tcp_clear_options(&tmp_opt);
7116 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7117 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7118 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7119 			  want_cookie ? NULL : &foc);
7120 
7121 	if (want_cookie && !tmp_opt.saw_tstamp)
7122 		tcp_clear_options(&tmp_opt);
7123 
7124 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7125 		tmp_opt.smc_ok = 0;
7126 
7127 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7128 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7129 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7130 
7131 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7132 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7133 
7134 	dst = af_ops->route_req(sk, skb, &fl, req);
7135 	if (!dst)
7136 		goto drop_and_free;
7137 
7138 	if (tmp_opt.tstamp_ok)
7139 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7140 
7141 	if (!want_cookie && !isn) {
7142 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7143 
7144 		/* Kill the following clause, if you dislike this way. */
7145 		if (!syncookies &&
7146 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7147 		     (max_syn_backlog >> 2)) &&
7148 		    !tcp_peer_is_proven(req, dst)) {
7149 			/* Without syncookies last quarter of
7150 			 * backlog is filled with destinations,
7151 			 * proven to be alive.
7152 			 * It means that we continue to communicate
7153 			 * to destinations, already remembered
7154 			 * to the moment of synflood.
7155 			 */
7156 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7157 				    rsk_ops->family);
7158 			goto drop_and_release;
7159 		}
7160 
7161 		isn = af_ops->init_seq(skb);
7162 	}
7163 
7164 	tcp_ecn_create_request(req, skb, sk, dst);
7165 
7166 	if (want_cookie) {
7167 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7168 		if (!tmp_opt.tstamp_ok)
7169 			inet_rsk(req)->ecn_ok = 0;
7170 	}
7171 
7172 	tcp_rsk(req)->snt_isn = isn;
7173 	tcp_rsk(req)->txhash = net_tx_rndhash();
7174 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7175 	tcp_openreq_init_rwin(req, sk, dst);
7176 	sk_rx_queue_set(req_to_sk(req), skb);
7177 	if (!want_cookie) {
7178 		tcp_reqsk_record_syn(sk, req, skb);
7179 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7180 	}
7181 	if (fastopen_sk) {
7182 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7183 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7184 		/* Add the child socket directly into the accept queue */
7185 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7186 			reqsk_fastopen_remove(fastopen_sk, req, false);
7187 			bh_unlock_sock(fastopen_sk);
7188 			sock_put(fastopen_sk);
7189 			goto drop_and_free;
7190 		}
7191 		sk->sk_data_ready(sk);
7192 		bh_unlock_sock(fastopen_sk);
7193 		sock_put(fastopen_sk);
7194 	} else {
7195 		tcp_rsk(req)->tfo_listener = false;
7196 		if (!want_cookie) {
7197 			req->timeout = tcp_timeout_init((struct sock *)req);
7198 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7199 								    req->timeout))) {
7200 				reqsk_free(req);
7201 				dst_release(dst);
7202 				return 0;
7203 			}
7204 
7205 		}
7206 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7207 				    !want_cookie ? TCP_SYNACK_NORMAL :
7208 						   TCP_SYNACK_COOKIE,
7209 				    skb);
7210 		if (want_cookie) {
7211 			reqsk_free(req);
7212 			return 0;
7213 		}
7214 	}
7215 	reqsk_put(req);
7216 	return 0;
7217 
7218 drop_and_release:
7219 	dst_release(dst);
7220 drop_and_free:
7221 	__reqsk_free(req);
7222 drop:
7223 	tcp_listendrop(sk);
7224 	return 0;
7225 }
7226 EXPORT_SYMBOL(tcp_conn_request);
7227