1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
177 }
178
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 struct tcp_sock *tp = tcp_sk(sk);
183
184 if (unlikely(tp->compressed_ack)) {
185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 tp->compressed_ack);
187 tp->compressed_ack = 0;
188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 __sock_put(sk);
190 }
191
192 if (unlikely(rcv_nxt != tp->rcv_nxt))
193 return; /* Special ACK sent by DCTCP to reflect ECN */
194 tcp_dec_quickack_mode(sk);
195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *__window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211 u32 window_clamp = READ_ONCE(*__window_clamp);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (window_clamp == 0)
215 window_clamp = (U16_MAX << TCP_MAX_WSCALE);
216 space = min(window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = rounddown(space, mss);
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = min_t(u32, space, U16_MAX);
234
235 if (init_rcv_wnd)
236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237
238 *rcv_wscale = 0;
239 if (wscale_ok) {
240 /* Set window scaling on max possible window */
241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 space = min_t(u32, space, window_clamp);
244 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 0, TCP_MAX_WSCALE);
246 }
247 /* Set the clamp no higher than max representable value */
248 WRITE_ONCE(*__window_clamp,
249 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252
253 /* Chose a new window to advertise, update state in tcp_sock for the
254 * socket, and return result with RFC1323 scaling applied. The return
255 * value can be stuffed directly into th->window for an outgoing
256 * frame.
257 */
tcp_select_window(struct sock * sk)258 static u16 tcp_select_window(struct sock *sk)
259 {
260 struct tcp_sock *tp = tcp_sk(sk);
261 struct net *net = sock_net(sk);
262 u32 old_win = tp->rcv_wnd;
263 u32 cur_win, new_win;
264
265 /* Make the window 0 if we failed to queue the data because we
266 * are out of memory. The window is temporary, so we don't store
267 * it on the socket.
268 */
269 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
270 return 0;
271
272 cur_win = tcp_receive_window(tp);
273 new_win = __tcp_select_window(sk);
274 if (new_win < cur_win) {
275 /* Danger Will Robinson!
276 * Don't update rcv_wup/rcv_wnd here or else
277 * we will not be able to advertise a zero
278 * window in time. --DaveM
279 *
280 * Relax Will Robinson.
281 */
282 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
283 /* Never shrink the offered window */
284 if (new_win == 0)
285 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
286 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
287 }
288 }
289
290 tp->rcv_wnd = new_win;
291 tp->rcv_wup = tp->rcv_nxt;
292
293 /* Make sure we do not exceed the maximum possible
294 * scaled window.
295 */
296 if (!tp->rx_opt.rcv_wscale &&
297 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
298 new_win = min(new_win, MAX_TCP_WINDOW);
299 else
300 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
301
302 /* RFC1323 scaling applied */
303 new_win >>= tp->rx_opt.rcv_wscale;
304
305 /* If we advertise zero window, disable fast path. */
306 if (new_win == 0) {
307 tp->pred_flags = 0;
308 if (old_win)
309 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
310 } else if (old_win == 0) {
311 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
312 }
313
314 return new_win;
315 }
316
317 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 const struct tcp_sock *tp = tcp_sk(sk);
321
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 if (!(tp->ecn_flags & TCP_ECN_OK))
324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 else if (tcp_ca_needs_ecn(sk) ||
326 tcp_bpf_ca_needs_ecn(sk))
327 INET_ECN_xmit(sk);
328 }
329
330 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)331 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
332 {
333 struct tcp_sock *tp = tcp_sk(sk);
334 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
335 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
336 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
337
338 if (!use_ecn) {
339 const struct dst_entry *dst = __sk_dst_get(sk);
340
341 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
342 use_ecn = true;
343 }
344
345 tp->ecn_flags = 0;
346
347 if (use_ecn) {
348 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
349 tp->ecn_flags = TCP_ECN_OK;
350 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
351 INET_ECN_xmit(sk);
352 }
353 }
354
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)355 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
356 {
357 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
358 /* tp->ecn_flags are cleared at a later point in time when
359 * SYN ACK is ultimatively being received.
360 */
361 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
362 }
363
364 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)365 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
366 {
367 if (inet_rsk(req)->ecn_ok)
368 th->ece = 1;
369 }
370
371 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
372 * be sent.
373 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)374 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
375 struct tcphdr *th, int tcp_header_len)
376 {
377 struct tcp_sock *tp = tcp_sk(sk);
378
379 if (tp->ecn_flags & TCP_ECN_OK) {
380 /* Not-retransmitted data segment: set ECT and inject CWR. */
381 if (skb->len != tcp_header_len &&
382 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
383 INET_ECN_xmit(sk);
384 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
385 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
386 th->cwr = 1;
387 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
388 }
389 } else if (!tcp_ca_needs_ecn(sk)) {
390 /* ACK or retransmitted segment: clear ECT|CE */
391 INET_ECN_dontxmit(sk);
392 }
393 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
394 th->ece = 1;
395 }
396 }
397
398 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
399 * auto increment end seqno.
400 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)401 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
402 {
403 skb->ip_summed = CHECKSUM_PARTIAL;
404
405 TCP_SKB_CB(skb)->tcp_flags = flags;
406
407 tcp_skb_pcount_set(skb, 1);
408
409 TCP_SKB_CB(skb)->seq = seq;
410 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
411 seq++;
412 TCP_SKB_CB(skb)->end_seq = seq;
413 }
414
tcp_urg_mode(const struct tcp_sock * tp)415 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
416 {
417 return tp->snd_una != tp->snd_up;
418 }
419
420 #define OPTION_SACK_ADVERTISE BIT(0)
421 #define OPTION_TS BIT(1)
422 #define OPTION_MD5 BIT(2)
423 #define OPTION_WSCALE BIT(3)
424 #define OPTION_FAST_OPEN_COOKIE BIT(8)
425 #define OPTION_SMC BIT(9)
426 #define OPTION_MPTCP BIT(10)
427
smc_options_write(__be32 * ptr,u16 * options)428 static void smc_options_write(__be32 *ptr, u16 *options)
429 {
430 #if IS_ENABLED(CONFIG_SMC)
431 if (static_branch_unlikely(&tcp_have_smc)) {
432 if (unlikely(OPTION_SMC & *options)) {
433 *ptr++ = htonl((TCPOPT_NOP << 24) |
434 (TCPOPT_NOP << 16) |
435 (TCPOPT_EXP << 8) |
436 (TCPOLEN_EXP_SMC_BASE));
437 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
438 }
439 }
440 #endif
441 }
442
443 struct tcp_out_options {
444 u16 options; /* bit field of OPTION_* */
445 u16 mss; /* 0 to disable */
446 u8 ws; /* window scale, 0 to disable */
447 u8 num_sack_blocks; /* number of SACK blocks to include */
448 u8 hash_size; /* bytes in hash_location */
449 u8 bpf_opt_len; /* length of BPF hdr option */
450 __u8 *hash_location; /* temporary pointer, overloaded */
451 __u32 tsval, tsecr; /* need to include OPTION_TS */
452 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
453 struct mptcp_out_options mptcp;
454 };
455
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)456 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
457 struct tcp_sock *tp,
458 struct tcp_out_options *opts)
459 {
460 #if IS_ENABLED(CONFIG_MPTCP)
461 if (unlikely(OPTION_MPTCP & opts->options))
462 mptcp_write_options(th, ptr, tp, &opts->mptcp);
463 #endif
464 }
465
466 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)467 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
468 enum tcp_synack_type synack_type)
469 {
470 if (unlikely(!skb))
471 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
472
473 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
474 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
475
476 return 0;
477 }
478
479 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)480 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
481 struct request_sock *req,
482 struct sk_buff *syn_skb,
483 enum tcp_synack_type synack_type,
484 struct tcp_out_options *opts,
485 unsigned int *remaining)
486 {
487 struct bpf_sock_ops_kern sock_ops;
488 int err;
489
490 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
491 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
492 !*remaining)
493 return;
494
495 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
496
497 /* init sock_ops */
498 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
499
500 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
501
502 if (req) {
503 /* The listen "sk" cannot be passed here because
504 * it is not locked. It would not make too much
505 * sense to do bpf_setsockopt(listen_sk) based
506 * on individual connection request also.
507 *
508 * Thus, "req" is passed here and the cgroup-bpf-progs
509 * of the listen "sk" will be run.
510 *
511 * "req" is also used here for fastopen even the "sk" here is
512 * a fullsock "child" sk. It is to keep the behavior
513 * consistent between fastopen and non-fastopen on
514 * the bpf programming side.
515 */
516 sock_ops.sk = (struct sock *)req;
517 sock_ops.syn_skb = syn_skb;
518 } else {
519 sock_owned_by_me(sk);
520
521 sock_ops.is_fullsock = 1;
522 sock_ops.sk = sk;
523 }
524
525 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
526 sock_ops.remaining_opt_len = *remaining;
527 /* tcp_current_mss() does not pass a skb */
528 if (skb)
529 bpf_skops_init_skb(&sock_ops, skb, 0);
530
531 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
532
533 if (err || sock_ops.remaining_opt_len == *remaining)
534 return;
535
536 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
537 /* round up to 4 bytes */
538 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
539
540 *remaining -= opts->bpf_opt_len;
541 }
542
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)543 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
544 struct request_sock *req,
545 struct sk_buff *syn_skb,
546 enum tcp_synack_type synack_type,
547 struct tcp_out_options *opts)
548 {
549 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
550 struct bpf_sock_ops_kern sock_ops;
551 int err;
552
553 if (likely(!max_opt_len))
554 return;
555
556 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
557
558 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
559
560 if (req) {
561 sock_ops.sk = (struct sock *)req;
562 sock_ops.syn_skb = syn_skb;
563 } else {
564 sock_owned_by_me(sk);
565
566 sock_ops.is_fullsock = 1;
567 sock_ops.sk = sk;
568 }
569
570 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
571 sock_ops.remaining_opt_len = max_opt_len;
572 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
573 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
574
575 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
576
577 if (err)
578 nr_written = 0;
579 else
580 nr_written = max_opt_len - sock_ops.remaining_opt_len;
581
582 if (nr_written < max_opt_len)
583 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
584 max_opt_len - nr_written);
585 }
586 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)587 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
588 struct request_sock *req,
589 struct sk_buff *syn_skb,
590 enum tcp_synack_type synack_type,
591 struct tcp_out_options *opts,
592 unsigned int *remaining)
593 {
594 }
595
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)596 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
597 struct request_sock *req,
598 struct sk_buff *syn_skb,
599 enum tcp_synack_type synack_type,
600 struct tcp_out_options *opts)
601 {
602 }
603 #endif
604
605 /* Write previously computed TCP options to the packet.
606 *
607 * Beware: Something in the Internet is very sensitive to the ordering of
608 * TCP options, we learned this through the hard way, so be careful here.
609 * Luckily we can at least blame others for their non-compliance but from
610 * inter-operability perspective it seems that we're somewhat stuck with
611 * the ordering which we have been using if we want to keep working with
612 * those broken things (not that it currently hurts anybody as there isn't
613 * particular reason why the ordering would need to be changed).
614 *
615 * At least SACK_PERM as the first option is known to lead to a disaster
616 * (but it may well be that other scenarios fail similarly).
617 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)618 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
619 struct tcp_out_options *opts)
620 {
621 __be32 *ptr = (__be32 *)(th + 1);
622 u16 options = opts->options; /* mungable copy */
623
624 if (unlikely(OPTION_MD5 & options)) {
625 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
626 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
627 /* overload cookie hash location */
628 opts->hash_location = (__u8 *)ptr;
629 ptr += 4;
630 }
631
632 if (unlikely(opts->mss)) {
633 *ptr++ = htonl((TCPOPT_MSS << 24) |
634 (TCPOLEN_MSS << 16) |
635 opts->mss);
636 }
637
638 if (likely(OPTION_TS & options)) {
639 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
640 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
641 (TCPOLEN_SACK_PERM << 16) |
642 (TCPOPT_TIMESTAMP << 8) |
643 TCPOLEN_TIMESTAMP);
644 options &= ~OPTION_SACK_ADVERTISE;
645 } else {
646 *ptr++ = htonl((TCPOPT_NOP << 24) |
647 (TCPOPT_NOP << 16) |
648 (TCPOPT_TIMESTAMP << 8) |
649 TCPOLEN_TIMESTAMP);
650 }
651 *ptr++ = htonl(opts->tsval);
652 *ptr++ = htonl(opts->tsecr);
653 }
654
655 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
656 *ptr++ = htonl((TCPOPT_NOP << 24) |
657 (TCPOPT_NOP << 16) |
658 (TCPOPT_SACK_PERM << 8) |
659 TCPOLEN_SACK_PERM);
660 }
661
662 if (unlikely(OPTION_WSCALE & options)) {
663 *ptr++ = htonl((TCPOPT_NOP << 24) |
664 (TCPOPT_WINDOW << 16) |
665 (TCPOLEN_WINDOW << 8) |
666 opts->ws);
667 }
668
669 if (unlikely(opts->num_sack_blocks)) {
670 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
671 tp->duplicate_sack : tp->selective_acks;
672 int this_sack;
673
674 *ptr++ = htonl((TCPOPT_NOP << 24) |
675 (TCPOPT_NOP << 16) |
676 (TCPOPT_SACK << 8) |
677 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
678 TCPOLEN_SACK_PERBLOCK)));
679
680 for (this_sack = 0; this_sack < opts->num_sack_blocks;
681 ++this_sack) {
682 *ptr++ = htonl(sp[this_sack].start_seq);
683 *ptr++ = htonl(sp[this_sack].end_seq);
684 }
685
686 tp->rx_opt.dsack = 0;
687 }
688
689 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
690 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
691 u8 *p = (u8 *)ptr;
692 u32 len; /* Fast Open option length */
693
694 if (foc->exp) {
695 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
696 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
697 TCPOPT_FASTOPEN_MAGIC);
698 p += TCPOLEN_EXP_FASTOPEN_BASE;
699 } else {
700 len = TCPOLEN_FASTOPEN_BASE + foc->len;
701 *p++ = TCPOPT_FASTOPEN;
702 *p++ = len;
703 }
704
705 memcpy(p, foc->val, foc->len);
706 if ((len & 3) == 2) {
707 p[foc->len] = TCPOPT_NOP;
708 p[foc->len + 1] = TCPOPT_NOP;
709 }
710 ptr += (len + 3) >> 2;
711 }
712
713 smc_options_write(ptr, &options);
714
715 mptcp_options_write(th, ptr, tp, opts);
716 }
717
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)718 static void smc_set_option(const struct tcp_sock *tp,
719 struct tcp_out_options *opts,
720 unsigned int *remaining)
721 {
722 #if IS_ENABLED(CONFIG_SMC)
723 if (static_branch_unlikely(&tcp_have_smc)) {
724 if (tp->syn_smc) {
725 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
726 opts->options |= OPTION_SMC;
727 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
728 }
729 }
730 }
731 #endif
732 }
733
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)734 static void smc_set_option_cond(const struct tcp_sock *tp,
735 const struct inet_request_sock *ireq,
736 struct tcp_out_options *opts,
737 unsigned int *remaining)
738 {
739 #if IS_ENABLED(CONFIG_SMC)
740 if (static_branch_unlikely(&tcp_have_smc)) {
741 if (tp->syn_smc && ireq->smc_ok) {
742 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
743 opts->options |= OPTION_SMC;
744 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
745 }
746 }
747 }
748 #endif
749 }
750
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)751 static void mptcp_set_option_cond(const struct request_sock *req,
752 struct tcp_out_options *opts,
753 unsigned int *remaining)
754 {
755 if (rsk_is_mptcp(req)) {
756 unsigned int size;
757
758 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
759 if (*remaining >= size) {
760 opts->options |= OPTION_MPTCP;
761 *remaining -= size;
762 }
763 }
764 }
765 }
766
767 /* Compute TCP options for SYN packets. This is not the final
768 * network wire format yet.
769 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)770 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
771 struct tcp_out_options *opts,
772 struct tcp_md5sig_key **md5)
773 {
774 struct tcp_sock *tp = tcp_sk(sk);
775 unsigned int remaining = MAX_TCP_OPTION_SPACE;
776 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
777
778 *md5 = NULL;
779 #ifdef CONFIG_TCP_MD5SIG
780 if (static_branch_unlikely(&tcp_md5_needed.key) &&
781 rcu_access_pointer(tp->md5sig_info)) {
782 *md5 = tp->af_specific->md5_lookup(sk, sk);
783 if (*md5) {
784 opts->options |= OPTION_MD5;
785 remaining -= TCPOLEN_MD5SIG_ALIGNED;
786 }
787 }
788 #endif
789
790 /* We always get an MSS option. The option bytes which will be seen in
791 * normal data packets should timestamps be used, must be in the MSS
792 * advertised. But we subtract them from tp->mss_cache so that
793 * calculations in tcp_sendmsg are simpler etc. So account for this
794 * fact here if necessary. If we don't do this correctly, as a
795 * receiver we won't recognize data packets as being full sized when we
796 * should, and thus we won't abide by the delayed ACK rules correctly.
797 * SACKs don't matter, we never delay an ACK when we have any of those
798 * going out. */
799 opts->mss = tcp_advertise_mss(sk);
800 remaining -= TCPOLEN_MSS_ALIGNED;
801
802 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
803 opts->options |= OPTION_TS;
804 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
805 opts->tsecr = tp->rx_opt.ts_recent;
806 remaining -= TCPOLEN_TSTAMP_ALIGNED;
807 }
808 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
809 opts->ws = tp->rx_opt.rcv_wscale;
810 opts->options |= OPTION_WSCALE;
811 remaining -= TCPOLEN_WSCALE_ALIGNED;
812 }
813 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
814 opts->options |= OPTION_SACK_ADVERTISE;
815 if (unlikely(!(OPTION_TS & opts->options)))
816 remaining -= TCPOLEN_SACKPERM_ALIGNED;
817 }
818
819 if (fastopen && fastopen->cookie.len >= 0) {
820 u32 need = fastopen->cookie.len;
821
822 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
823 TCPOLEN_FASTOPEN_BASE;
824 need = (need + 3) & ~3U; /* Align to 32 bits */
825 if (remaining >= need) {
826 opts->options |= OPTION_FAST_OPEN_COOKIE;
827 opts->fastopen_cookie = &fastopen->cookie;
828 remaining -= need;
829 tp->syn_fastopen = 1;
830 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
831 }
832 }
833
834 smc_set_option(tp, opts, &remaining);
835
836 if (sk_is_mptcp(sk)) {
837 unsigned int size;
838
839 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
840 opts->options |= OPTION_MPTCP;
841 remaining -= size;
842 }
843 }
844
845 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
846
847 return MAX_TCP_OPTION_SPACE - remaining;
848 }
849
850 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)851 static unsigned int tcp_synack_options(const struct sock *sk,
852 struct request_sock *req,
853 unsigned int mss, struct sk_buff *skb,
854 struct tcp_out_options *opts,
855 const struct tcp_md5sig_key *md5,
856 struct tcp_fastopen_cookie *foc,
857 enum tcp_synack_type synack_type,
858 struct sk_buff *syn_skb)
859 {
860 struct inet_request_sock *ireq = inet_rsk(req);
861 unsigned int remaining = MAX_TCP_OPTION_SPACE;
862
863 #ifdef CONFIG_TCP_MD5SIG
864 if (md5) {
865 opts->options |= OPTION_MD5;
866 remaining -= TCPOLEN_MD5SIG_ALIGNED;
867
868 /* We can't fit any SACK blocks in a packet with MD5 + TS
869 * options. There was discussion about disabling SACK
870 * rather than TS in order to fit in better with old,
871 * buggy kernels, but that was deemed to be unnecessary.
872 */
873 if (synack_type != TCP_SYNACK_COOKIE)
874 ireq->tstamp_ok &= !ireq->sack_ok;
875 }
876 #endif
877
878 /* We always send an MSS option. */
879 opts->mss = mss;
880 remaining -= TCPOLEN_MSS_ALIGNED;
881
882 if (likely(ireq->wscale_ok)) {
883 opts->ws = ireq->rcv_wscale;
884 opts->options |= OPTION_WSCALE;
885 remaining -= TCPOLEN_WSCALE_ALIGNED;
886 }
887 if (likely(ireq->tstamp_ok)) {
888 opts->options |= OPTION_TS;
889 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
890 opts->tsecr = READ_ONCE(req->ts_recent);
891 remaining -= TCPOLEN_TSTAMP_ALIGNED;
892 }
893 if (likely(ireq->sack_ok)) {
894 opts->options |= OPTION_SACK_ADVERTISE;
895 if (unlikely(!ireq->tstamp_ok))
896 remaining -= TCPOLEN_SACKPERM_ALIGNED;
897 }
898 if (foc != NULL && foc->len >= 0) {
899 u32 need = foc->len;
900
901 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
902 TCPOLEN_FASTOPEN_BASE;
903 need = (need + 3) & ~3U; /* Align to 32 bits */
904 if (remaining >= need) {
905 opts->options |= OPTION_FAST_OPEN_COOKIE;
906 opts->fastopen_cookie = foc;
907 remaining -= need;
908 }
909 }
910
911 mptcp_set_option_cond(req, opts, &remaining);
912
913 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
914
915 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
916 synack_type, opts, &remaining);
917
918 return MAX_TCP_OPTION_SPACE - remaining;
919 }
920
921 /* Compute TCP options for ESTABLISHED sockets. This is not the
922 * final wire format yet.
923 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)924 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
925 struct tcp_out_options *opts,
926 struct tcp_md5sig_key **md5)
927 {
928 struct tcp_sock *tp = tcp_sk(sk);
929 unsigned int size = 0;
930 unsigned int eff_sacks;
931
932 opts->options = 0;
933
934 *md5 = NULL;
935 #ifdef CONFIG_TCP_MD5SIG
936 if (static_branch_unlikely(&tcp_md5_needed.key) &&
937 rcu_access_pointer(tp->md5sig_info)) {
938 *md5 = tp->af_specific->md5_lookup(sk, sk);
939 if (*md5) {
940 opts->options |= OPTION_MD5;
941 size += TCPOLEN_MD5SIG_ALIGNED;
942 }
943 }
944 #endif
945
946 if (likely(tp->rx_opt.tstamp_ok)) {
947 opts->options |= OPTION_TS;
948 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
949 opts->tsecr = tp->rx_opt.ts_recent;
950 size += TCPOLEN_TSTAMP_ALIGNED;
951 }
952
953 /* MPTCP options have precedence over SACK for the limited TCP
954 * option space because a MPTCP connection would be forced to
955 * fall back to regular TCP if a required multipath option is
956 * missing. SACK still gets a chance to use whatever space is
957 * left.
958 */
959 if (sk_is_mptcp(sk)) {
960 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961 unsigned int opt_size = 0;
962
963 if (mptcp_established_options(sk, skb, &opt_size, remaining,
964 &opts->mptcp)) {
965 opts->options |= OPTION_MPTCP;
966 size += opt_size;
967 }
968 }
969
970 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
971 if (unlikely(eff_sacks)) {
972 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
973 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
974 TCPOLEN_SACK_PERBLOCK))
975 return size;
976
977 opts->num_sack_blocks =
978 min_t(unsigned int, eff_sacks,
979 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
980 TCPOLEN_SACK_PERBLOCK);
981
982 size += TCPOLEN_SACK_BASE_ALIGNED +
983 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
984 }
985
986 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
987 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
988 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
989
990 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
991
992 size = MAX_TCP_OPTION_SPACE - remaining;
993 }
994
995 return size;
996 }
997
998
999 /* TCP SMALL QUEUES (TSQ)
1000 *
1001 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1002 * to reduce RTT and bufferbloat.
1003 * We do this using a special skb destructor (tcp_wfree).
1004 *
1005 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1006 * needs to be reallocated in a driver.
1007 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1008 *
1009 * Since transmit from skb destructor is forbidden, we use a tasklet
1010 * to process all sockets that eventually need to send more skbs.
1011 * We use one tasklet per cpu, with its own queue of sockets.
1012 */
1013 struct tsq_tasklet {
1014 struct tasklet_struct tasklet;
1015 struct list_head head; /* queue of tcp sockets */
1016 };
1017 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1018
tcp_tsq_write(struct sock * sk)1019 static void tcp_tsq_write(struct sock *sk)
1020 {
1021 if ((1 << sk->sk_state) &
1022 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1023 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1024 struct tcp_sock *tp = tcp_sk(sk);
1025
1026 if (tp->lost_out > tp->retrans_out &&
1027 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1028 tcp_mstamp_refresh(tp);
1029 tcp_xmit_retransmit_queue(sk);
1030 }
1031
1032 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1033 0, GFP_ATOMIC);
1034 }
1035 }
1036
tcp_tsq_handler(struct sock * sk)1037 static void tcp_tsq_handler(struct sock *sk)
1038 {
1039 bh_lock_sock(sk);
1040 if (!sock_owned_by_user(sk))
1041 tcp_tsq_write(sk);
1042 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1043 sock_hold(sk);
1044 bh_unlock_sock(sk);
1045 }
1046 /*
1047 * One tasklet per cpu tries to send more skbs.
1048 * We run in tasklet context but need to disable irqs when
1049 * transferring tsq->head because tcp_wfree() might
1050 * interrupt us (non NAPI drivers)
1051 */
tcp_tasklet_func(struct tasklet_struct * t)1052 static void tcp_tasklet_func(struct tasklet_struct *t)
1053 {
1054 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1055 LIST_HEAD(list);
1056 unsigned long flags;
1057 struct list_head *q, *n;
1058 struct tcp_sock *tp;
1059 struct sock *sk;
1060
1061 local_irq_save(flags);
1062 list_splice_init(&tsq->head, &list);
1063 local_irq_restore(flags);
1064
1065 list_for_each_safe(q, n, &list) {
1066 tp = list_entry(q, struct tcp_sock, tsq_node);
1067 list_del(&tp->tsq_node);
1068
1069 sk = (struct sock *)tp;
1070 smp_mb__before_atomic();
1071 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1072
1073 tcp_tsq_handler(sk);
1074 sk_free(sk);
1075 }
1076 }
1077
1078 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1079 TCPF_WRITE_TIMER_DEFERRED | \
1080 TCPF_DELACK_TIMER_DEFERRED | \
1081 TCPF_MTU_REDUCED_DEFERRED)
1082 /**
1083 * tcp_release_cb - tcp release_sock() callback
1084 * @sk: socket
1085 *
1086 * called from release_sock() to perform protocol dependent
1087 * actions before socket release.
1088 */
tcp_release_cb(struct sock * sk)1089 void tcp_release_cb(struct sock *sk)
1090 {
1091 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1092 unsigned long nflags;
1093
1094 /* perform an atomic operation only if at least one flag is set */
1095 do {
1096 if (!(flags & TCP_DEFERRED_ALL))
1097 return;
1098 nflags = flags & ~TCP_DEFERRED_ALL;
1099 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1100
1101 if (flags & TCPF_TSQ_DEFERRED) {
1102 tcp_tsq_write(sk);
1103 __sock_put(sk);
1104 }
1105 /* Here begins the tricky part :
1106 * We are called from release_sock() with :
1107 * 1) BH disabled
1108 * 2) sk_lock.slock spinlock held
1109 * 3) socket owned by us (sk->sk_lock.owned == 1)
1110 *
1111 * But following code is meant to be called from BH handlers,
1112 * so we should keep BH disabled, but early release socket ownership
1113 */
1114 sock_release_ownership(sk);
1115
1116 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1117 tcp_write_timer_handler(sk);
1118 __sock_put(sk);
1119 }
1120 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1121 tcp_delack_timer_handler(sk);
1122 __sock_put(sk);
1123 }
1124 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1125 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1126 __sock_put(sk);
1127 }
1128 }
1129 EXPORT_SYMBOL(tcp_release_cb);
1130
tcp_tasklet_init(void)1131 void __init tcp_tasklet_init(void)
1132 {
1133 int i;
1134
1135 for_each_possible_cpu(i) {
1136 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1137
1138 INIT_LIST_HEAD(&tsq->head);
1139 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1140 }
1141 }
1142
1143 /*
1144 * Write buffer destructor automatically called from kfree_skb.
1145 * We can't xmit new skbs from this context, as we might already
1146 * hold qdisc lock.
1147 */
tcp_wfree(struct sk_buff * skb)1148 void tcp_wfree(struct sk_buff *skb)
1149 {
1150 struct sock *sk = skb->sk;
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 unsigned long flags, nval, oval;
1153 struct tsq_tasklet *tsq;
1154 bool empty;
1155
1156 /* Keep one reference on sk_wmem_alloc.
1157 * Will be released by sk_free() from here or tcp_tasklet_func()
1158 */
1159 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1160
1161 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1162 * Wait until our queues (qdisc + devices) are drained.
1163 * This gives :
1164 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1165 * - chance for incoming ACK (processed by another cpu maybe)
1166 * to migrate this flow (skb->ooo_okay will be eventually set)
1167 */
1168 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1169 goto out;
1170
1171 oval = smp_load_acquire(&sk->sk_tsq_flags);
1172 do {
1173 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1174 goto out;
1175
1176 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1177 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1178
1179 /* queue this socket to tasklet queue */
1180 local_irq_save(flags);
1181 tsq = this_cpu_ptr(&tsq_tasklet);
1182 empty = list_empty(&tsq->head);
1183 list_add(&tp->tsq_node, &tsq->head);
1184 if (empty)
1185 tasklet_schedule(&tsq->tasklet);
1186 local_irq_restore(flags);
1187 return;
1188 out:
1189 sk_free(sk);
1190 }
1191
1192 /* Note: Called under soft irq.
1193 * We can call TCP stack right away, unless socket is owned by user.
1194 */
tcp_pace_kick(struct hrtimer * timer)1195 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1196 {
1197 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1198 struct sock *sk = (struct sock *)tp;
1199
1200 tcp_tsq_handler(sk);
1201 sock_put(sk);
1202
1203 return HRTIMER_NORESTART;
1204 }
1205
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1206 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1207 u64 prior_wstamp)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210
1211 if (sk->sk_pacing_status != SK_PACING_NONE) {
1212 unsigned long rate = sk->sk_pacing_rate;
1213
1214 /* Original sch_fq does not pace first 10 MSS
1215 * Note that tp->data_segs_out overflows after 2^32 packets,
1216 * this is a minor annoyance.
1217 */
1218 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1219 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1220 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1221
1222 /* take into account OS jitter */
1223 len_ns -= min_t(u64, len_ns / 2, credit);
1224 tp->tcp_wstamp_ns += len_ns;
1225 }
1226 }
1227 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1228 }
1229
1230 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1231 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1232 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1233
1234 /* This routine actually transmits TCP packets queued in by
1235 * tcp_do_sendmsg(). This is used by both the initial
1236 * transmission and possible later retransmissions.
1237 * All SKB's seen here are completely headerless. It is our
1238 * job to build the TCP header, and pass the packet down to
1239 * IP so it can do the same plus pass the packet off to the
1240 * device.
1241 *
1242 * We are working here with either a clone of the original
1243 * SKB, or a fresh unique copy made by the retransmit engine.
1244 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1245 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1246 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1247 {
1248 const struct inet_connection_sock *icsk = inet_csk(sk);
1249 struct inet_sock *inet;
1250 struct tcp_sock *tp;
1251 struct tcp_skb_cb *tcb;
1252 struct tcp_out_options opts;
1253 unsigned int tcp_options_size, tcp_header_size;
1254 struct sk_buff *oskb = NULL;
1255 struct tcp_md5sig_key *md5;
1256 struct tcphdr *th;
1257 u64 prior_wstamp;
1258 int err;
1259
1260 BUG_ON(!skb || !tcp_skb_pcount(skb));
1261 tp = tcp_sk(sk);
1262 prior_wstamp = tp->tcp_wstamp_ns;
1263 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1264 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1265 if (clone_it) {
1266 oskb = skb;
1267
1268 tcp_skb_tsorted_save(oskb) {
1269 if (unlikely(skb_cloned(oskb)))
1270 skb = pskb_copy(oskb, gfp_mask);
1271 else
1272 skb = skb_clone(oskb, gfp_mask);
1273 } tcp_skb_tsorted_restore(oskb);
1274
1275 if (unlikely(!skb))
1276 return -ENOBUFS;
1277 /* retransmit skbs might have a non zero value in skb->dev
1278 * because skb->dev is aliased with skb->rbnode.rb_left
1279 */
1280 skb->dev = NULL;
1281 }
1282
1283 inet = inet_sk(sk);
1284 tcb = TCP_SKB_CB(skb);
1285 memset(&opts, 0, sizeof(opts));
1286
1287 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1288 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1289 } else {
1290 tcp_options_size = tcp_established_options(sk, skb, &opts,
1291 &md5);
1292 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1293 * at receiver : This slightly improve GRO performance.
1294 * Note that we do not force the PSH flag for non GSO packets,
1295 * because they might be sent under high congestion events,
1296 * and in this case it is better to delay the delivery of 1-MSS
1297 * packets and thus the corresponding ACK packet that would
1298 * release the following packet.
1299 */
1300 if (tcp_skb_pcount(skb) > 1)
1301 tcb->tcp_flags |= TCPHDR_PSH;
1302 }
1303 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1304
1305 /* We set skb->ooo_okay to one if this packet can select
1306 * a different TX queue than prior packets of this flow,
1307 * to avoid self inflicted reorders.
1308 * The 'other' queue decision is based on current cpu number
1309 * if XPS is enabled, or sk->sk_txhash otherwise.
1310 * We can switch to another (and better) queue if:
1311 * 1) No packet with payload is in qdisc/device queues.
1312 * Delays in TX completion can defeat the test
1313 * even if packets were already sent.
1314 * 2) Or rtx queue is empty.
1315 * This mitigates above case if ACK packets for
1316 * all prior packets were already processed.
1317 */
1318 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1319 tcp_rtx_queue_empty(sk);
1320
1321 /* If we had to use memory reserve to allocate this skb,
1322 * this might cause drops if packet is looped back :
1323 * Other socket might not have SOCK_MEMALLOC.
1324 * Packets not looped back do not care about pfmemalloc.
1325 */
1326 skb->pfmemalloc = 0;
1327
1328 skb_push(skb, tcp_header_size);
1329 skb_reset_transport_header(skb);
1330
1331 skb_orphan(skb);
1332 skb->sk = sk;
1333 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1334 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1335
1336 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1337
1338 /* Build TCP header and checksum it. */
1339 th = (struct tcphdr *)skb->data;
1340 th->source = inet->inet_sport;
1341 th->dest = inet->inet_dport;
1342 th->seq = htonl(tcb->seq);
1343 th->ack_seq = htonl(rcv_nxt);
1344 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1345 tcb->tcp_flags);
1346
1347 th->check = 0;
1348 th->urg_ptr = 0;
1349
1350 /* The urg_mode check is necessary during a below snd_una win probe */
1351 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1352 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1353 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1354 th->urg = 1;
1355 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1356 th->urg_ptr = htons(0xFFFF);
1357 th->urg = 1;
1358 }
1359 }
1360
1361 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1362 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1363 th->window = htons(tcp_select_window(sk));
1364 tcp_ecn_send(sk, skb, th, tcp_header_size);
1365 } else {
1366 /* RFC1323: The window in SYN & SYN/ACK segments
1367 * is never scaled.
1368 */
1369 th->window = htons(min(tp->rcv_wnd, 65535U));
1370 }
1371
1372 tcp_options_write(th, tp, &opts);
1373
1374 #ifdef CONFIG_TCP_MD5SIG
1375 /* Calculate the MD5 hash, as we have all we need now */
1376 if (md5) {
1377 sk_gso_disable(sk);
1378 tp->af_specific->calc_md5_hash(opts.hash_location,
1379 md5, sk, skb);
1380 }
1381 #endif
1382
1383 /* BPF prog is the last one writing header option */
1384 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1385
1386 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1387 tcp_v6_send_check, tcp_v4_send_check,
1388 sk, skb);
1389
1390 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1391 tcp_event_ack_sent(sk, rcv_nxt);
1392
1393 if (skb->len != tcp_header_size) {
1394 tcp_event_data_sent(tp, sk);
1395 tp->data_segs_out += tcp_skb_pcount(skb);
1396 tp->bytes_sent += skb->len - tcp_header_size;
1397 }
1398
1399 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1400 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1401 tcp_skb_pcount(skb));
1402
1403 tp->segs_out += tcp_skb_pcount(skb);
1404 skb_set_hash_from_sk(skb, sk);
1405 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1406 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1407 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1408
1409 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1410
1411 /* Cleanup our debris for IP stacks */
1412 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1413 sizeof(struct inet6_skb_parm)));
1414
1415 tcp_add_tx_delay(skb, tp);
1416
1417 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1418 inet6_csk_xmit, ip_queue_xmit,
1419 sk, skb, &inet->cork.fl);
1420
1421 if (unlikely(err > 0)) {
1422 tcp_enter_cwr(sk);
1423 err = net_xmit_eval(err);
1424 }
1425 if (!err && oskb) {
1426 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1427 tcp_rate_skb_sent(sk, oskb);
1428 }
1429 return err;
1430 }
1431
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1432 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1433 gfp_t gfp_mask)
1434 {
1435 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1436 tcp_sk(sk)->rcv_nxt);
1437 }
1438
1439 /* This routine just queues the buffer for sending.
1440 *
1441 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1442 * otherwise socket can stall.
1443 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1444 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1445 {
1446 struct tcp_sock *tp = tcp_sk(sk);
1447
1448 /* Advance write_seq and place onto the write_queue. */
1449 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1450 __skb_header_release(skb);
1451 tcp_add_write_queue_tail(sk, skb);
1452 sk_wmem_queued_add(sk, skb->truesize);
1453 sk_mem_charge(sk, skb->truesize);
1454 }
1455
1456 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1457 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1458 {
1459 if (skb->len <= mss_now) {
1460 /* Avoid the costly divide in the normal
1461 * non-TSO case.
1462 */
1463 tcp_skb_pcount_set(skb, 1);
1464 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1465 } else {
1466 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1467 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1468 }
1469 }
1470
1471 /* Pcount in the middle of the write queue got changed, we need to do various
1472 * tweaks to fix counters
1473 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1474 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1475 {
1476 struct tcp_sock *tp = tcp_sk(sk);
1477
1478 tp->packets_out -= decr;
1479
1480 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1481 tp->sacked_out -= decr;
1482 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1483 tp->retrans_out -= decr;
1484 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1485 tp->lost_out -= decr;
1486
1487 /* Reno case is special. Sigh... */
1488 if (tcp_is_reno(tp) && decr > 0)
1489 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1490
1491 if (tp->lost_skb_hint &&
1492 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1493 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1494 tp->lost_cnt_hint -= decr;
1495
1496 tcp_verify_left_out(tp);
1497 }
1498
tcp_has_tx_tstamp(const struct sk_buff * skb)1499 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1500 {
1501 return TCP_SKB_CB(skb)->txstamp_ack ||
1502 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1503 }
1504
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1505 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1506 {
1507 struct skb_shared_info *shinfo = skb_shinfo(skb);
1508
1509 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1510 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1511 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1512 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1513
1514 shinfo->tx_flags &= ~tsflags;
1515 shinfo2->tx_flags |= tsflags;
1516 swap(shinfo->tskey, shinfo2->tskey);
1517 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1518 TCP_SKB_CB(skb)->txstamp_ack = 0;
1519 }
1520 }
1521
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1522 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1523 {
1524 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1525 TCP_SKB_CB(skb)->eor = 0;
1526 }
1527
1528 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1529 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1530 struct sk_buff *buff,
1531 struct sock *sk,
1532 enum tcp_queue tcp_queue)
1533 {
1534 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1535 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1536 else
1537 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1538 }
1539
1540 /* Function to create two new TCP segments. Shrinks the given segment
1541 * to the specified size and appends a new segment with the rest of the
1542 * packet to the list. This won't be called frequently, I hope.
1543 * Remember, these are still headerless SKBs at this point.
1544 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1545 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1546 struct sk_buff *skb, u32 len,
1547 unsigned int mss_now, gfp_t gfp)
1548 {
1549 struct tcp_sock *tp = tcp_sk(sk);
1550 struct sk_buff *buff;
1551 int old_factor;
1552 long limit;
1553 int nlen;
1554 u8 flags;
1555
1556 if (WARN_ON(len > skb->len))
1557 return -EINVAL;
1558
1559 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1560
1561 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1562 * We need some allowance to not penalize applications setting small
1563 * SO_SNDBUF values.
1564 * Also allow first and last skb in retransmit queue to be split.
1565 */
1566 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1567 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1568 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1569 skb != tcp_rtx_queue_head(sk) &&
1570 skb != tcp_rtx_queue_tail(sk))) {
1571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1572 return -ENOMEM;
1573 }
1574
1575 if (skb_unclone_keeptruesize(skb, gfp))
1576 return -ENOMEM;
1577
1578 /* Get a new skb... force flag on. */
1579 buff = tcp_stream_alloc_skb(sk, gfp, true);
1580 if (!buff)
1581 return -ENOMEM; /* We'll just try again later. */
1582 skb_copy_decrypted(buff, skb);
1583 mptcp_skb_ext_copy(buff, skb);
1584
1585 sk_wmem_queued_add(sk, buff->truesize);
1586 sk_mem_charge(sk, buff->truesize);
1587 nlen = skb->len - len;
1588 buff->truesize += nlen;
1589 skb->truesize -= nlen;
1590
1591 /* Correct the sequence numbers. */
1592 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1593 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1594 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1595
1596 /* PSH and FIN should only be set in the second packet. */
1597 flags = TCP_SKB_CB(skb)->tcp_flags;
1598 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1599 TCP_SKB_CB(buff)->tcp_flags = flags;
1600 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1601 tcp_skb_fragment_eor(skb, buff);
1602
1603 skb_split(skb, buff, len);
1604
1605 skb_set_delivery_time(buff, skb->tstamp, true);
1606 tcp_fragment_tstamp(skb, buff);
1607
1608 old_factor = tcp_skb_pcount(skb);
1609
1610 /* Fix up tso_factor for both original and new SKB. */
1611 tcp_set_skb_tso_segs(skb, mss_now);
1612 tcp_set_skb_tso_segs(buff, mss_now);
1613
1614 /* Update delivered info for the new segment */
1615 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1616
1617 /* If this packet has been sent out already, we must
1618 * adjust the various packet counters.
1619 */
1620 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1621 int diff = old_factor - tcp_skb_pcount(skb) -
1622 tcp_skb_pcount(buff);
1623
1624 if (diff)
1625 tcp_adjust_pcount(sk, skb, diff);
1626 }
1627
1628 /* Link BUFF into the send queue. */
1629 __skb_header_release(buff);
1630 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1631 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1632 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1633
1634 return 0;
1635 }
1636
1637 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1638 * data is not copied, but immediately discarded.
1639 */
__pskb_trim_head(struct sk_buff * skb,int len)1640 static int __pskb_trim_head(struct sk_buff *skb, int len)
1641 {
1642 struct skb_shared_info *shinfo;
1643 int i, k, eat;
1644
1645 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1646 eat = len;
1647 k = 0;
1648 shinfo = skb_shinfo(skb);
1649 for (i = 0; i < shinfo->nr_frags; i++) {
1650 int size = skb_frag_size(&shinfo->frags[i]);
1651
1652 if (size <= eat) {
1653 skb_frag_unref(skb, i);
1654 eat -= size;
1655 } else {
1656 shinfo->frags[k] = shinfo->frags[i];
1657 if (eat) {
1658 skb_frag_off_add(&shinfo->frags[k], eat);
1659 skb_frag_size_sub(&shinfo->frags[k], eat);
1660 eat = 0;
1661 }
1662 k++;
1663 }
1664 }
1665 shinfo->nr_frags = k;
1666
1667 skb->data_len -= len;
1668 skb->len = skb->data_len;
1669 return len;
1670 }
1671
1672 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1673 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1674 {
1675 u32 delta_truesize;
1676
1677 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1678 return -ENOMEM;
1679
1680 delta_truesize = __pskb_trim_head(skb, len);
1681
1682 TCP_SKB_CB(skb)->seq += len;
1683
1684 skb->truesize -= delta_truesize;
1685 sk_wmem_queued_add(sk, -delta_truesize);
1686 if (!skb_zcopy_pure(skb))
1687 sk_mem_uncharge(sk, delta_truesize);
1688
1689 /* Any change of skb->len requires recalculation of tso factor. */
1690 if (tcp_skb_pcount(skb) > 1)
1691 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1692
1693 return 0;
1694 }
1695
1696 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1697 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1698 {
1699 const struct tcp_sock *tp = tcp_sk(sk);
1700 const struct inet_connection_sock *icsk = inet_csk(sk);
1701 int mss_now;
1702
1703 /* Calculate base mss without TCP options:
1704 It is MMS_S - sizeof(tcphdr) of rfc1122
1705 */
1706 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1707
1708 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1709 if (icsk->icsk_af_ops->net_frag_header_len) {
1710 const struct dst_entry *dst = __sk_dst_get(sk);
1711
1712 if (dst && dst_allfrag(dst))
1713 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1714 }
1715
1716 /* Clamp it (mss_clamp does not include tcp options) */
1717 if (mss_now > tp->rx_opt.mss_clamp)
1718 mss_now = tp->rx_opt.mss_clamp;
1719
1720 /* Now subtract optional transport overhead */
1721 mss_now -= icsk->icsk_ext_hdr_len;
1722
1723 /* Then reserve room for full set of TCP options and 8 bytes of data */
1724 mss_now = max(mss_now,
1725 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1726 return mss_now;
1727 }
1728
1729 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1730 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1731 {
1732 /* Subtract TCP options size, not including SACKs */
1733 return __tcp_mtu_to_mss(sk, pmtu) -
1734 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1735 }
1736 EXPORT_SYMBOL(tcp_mtu_to_mss);
1737
1738 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1739 int tcp_mss_to_mtu(struct sock *sk, int mss)
1740 {
1741 const struct tcp_sock *tp = tcp_sk(sk);
1742 const struct inet_connection_sock *icsk = inet_csk(sk);
1743 int mtu;
1744
1745 mtu = mss +
1746 tp->tcp_header_len +
1747 icsk->icsk_ext_hdr_len +
1748 icsk->icsk_af_ops->net_header_len;
1749
1750 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1751 if (icsk->icsk_af_ops->net_frag_header_len) {
1752 const struct dst_entry *dst = __sk_dst_get(sk);
1753
1754 if (dst && dst_allfrag(dst))
1755 mtu += icsk->icsk_af_ops->net_frag_header_len;
1756 }
1757 return mtu;
1758 }
1759 EXPORT_SYMBOL(tcp_mss_to_mtu);
1760
1761 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1762 void tcp_mtup_init(struct sock *sk)
1763 {
1764 struct tcp_sock *tp = tcp_sk(sk);
1765 struct inet_connection_sock *icsk = inet_csk(sk);
1766 struct net *net = sock_net(sk);
1767
1768 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1769 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1770 icsk->icsk_af_ops->net_header_len;
1771 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1772 icsk->icsk_mtup.probe_size = 0;
1773 if (icsk->icsk_mtup.enabled)
1774 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1775 }
1776 EXPORT_SYMBOL(tcp_mtup_init);
1777
1778 /* This function synchronize snd mss to current pmtu/exthdr set.
1779
1780 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1781 for TCP options, but includes only bare TCP header.
1782
1783 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1784 It is minimum of user_mss and mss received with SYN.
1785 It also does not include TCP options.
1786
1787 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1788
1789 tp->mss_cache is current effective sending mss, including
1790 all tcp options except for SACKs. It is evaluated,
1791 taking into account current pmtu, but never exceeds
1792 tp->rx_opt.mss_clamp.
1793
1794 NOTE1. rfc1122 clearly states that advertised MSS
1795 DOES NOT include either tcp or ip options.
1796
1797 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1798 are READ ONLY outside this function. --ANK (980731)
1799 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1800 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1801 {
1802 struct tcp_sock *tp = tcp_sk(sk);
1803 struct inet_connection_sock *icsk = inet_csk(sk);
1804 int mss_now;
1805
1806 if (icsk->icsk_mtup.search_high > pmtu)
1807 icsk->icsk_mtup.search_high = pmtu;
1808
1809 mss_now = tcp_mtu_to_mss(sk, pmtu);
1810 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1811
1812 /* And store cached results */
1813 icsk->icsk_pmtu_cookie = pmtu;
1814 if (icsk->icsk_mtup.enabled)
1815 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1816 tp->mss_cache = mss_now;
1817
1818 return mss_now;
1819 }
1820 EXPORT_SYMBOL(tcp_sync_mss);
1821
1822 /* Compute the current effective MSS, taking SACKs and IP options,
1823 * and even PMTU discovery events into account.
1824 */
tcp_current_mss(struct sock * sk)1825 unsigned int tcp_current_mss(struct sock *sk)
1826 {
1827 const struct tcp_sock *tp = tcp_sk(sk);
1828 const struct dst_entry *dst = __sk_dst_get(sk);
1829 u32 mss_now;
1830 unsigned int header_len;
1831 struct tcp_out_options opts;
1832 struct tcp_md5sig_key *md5;
1833
1834 mss_now = tp->mss_cache;
1835
1836 if (dst) {
1837 u32 mtu = dst_mtu(dst);
1838 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1839 mss_now = tcp_sync_mss(sk, mtu);
1840 }
1841
1842 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1843 sizeof(struct tcphdr);
1844 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1845 * some common options. If this is an odd packet (because we have SACK
1846 * blocks etc) then our calculated header_len will be different, and
1847 * we have to adjust mss_now correspondingly */
1848 if (header_len != tp->tcp_header_len) {
1849 int delta = (int) header_len - tp->tcp_header_len;
1850 mss_now -= delta;
1851 }
1852
1853 return mss_now;
1854 }
1855
1856 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1857 * As additional protections, we do not touch cwnd in retransmission phases,
1858 * and if application hit its sndbuf limit recently.
1859 */
tcp_cwnd_application_limited(struct sock * sk)1860 static void tcp_cwnd_application_limited(struct sock *sk)
1861 {
1862 struct tcp_sock *tp = tcp_sk(sk);
1863
1864 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1865 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1866 /* Limited by application or receiver window. */
1867 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1868 u32 win_used = max(tp->snd_cwnd_used, init_win);
1869 if (win_used < tcp_snd_cwnd(tp)) {
1870 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1871 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1872 }
1873 tp->snd_cwnd_used = 0;
1874 }
1875 tp->snd_cwnd_stamp = tcp_jiffies32;
1876 }
1877
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1878 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1879 {
1880 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1881 struct tcp_sock *tp = tcp_sk(sk);
1882
1883 /* Track the strongest available signal of the degree to which the cwnd
1884 * is fully utilized. If cwnd-limited then remember that fact for the
1885 * current window. If not cwnd-limited then track the maximum number of
1886 * outstanding packets in the current window. (If cwnd-limited then we
1887 * chose to not update tp->max_packets_out to avoid an extra else
1888 * clause with no functional impact.)
1889 */
1890 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1891 is_cwnd_limited ||
1892 (!tp->is_cwnd_limited &&
1893 tp->packets_out > tp->max_packets_out)) {
1894 tp->is_cwnd_limited = is_cwnd_limited;
1895 tp->max_packets_out = tp->packets_out;
1896 tp->cwnd_usage_seq = tp->snd_nxt;
1897 }
1898
1899 if (tcp_is_cwnd_limited(sk)) {
1900 /* Network is feed fully. */
1901 tp->snd_cwnd_used = 0;
1902 tp->snd_cwnd_stamp = tcp_jiffies32;
1903 } else {
1904 /* Network starves. */
1905 if (tp->packets_out > tp->snd_cwnd_used)
1906 tp->snd_cwnd_used = tp->packets_out;
1907
1908 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1909 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1910 !ca_ops->cong_control)
1911 tcp_cwnd_application_limited(sk);
1912
1913 /* The following conditions together indicate the starvation
1914 * is caused by insufficient sender buffer:
1915 * 1) just sent some data (see tcp_write_xmit)
1916 * 2) not cwnd limited (this else condition)
1917 * 3) no more data to send (tcp_write_queue_empty())
1918 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1919 */
1920 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1921 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1922 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1923 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1924 }
1925 }
1926
1927 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1928 static bool tcp_minshall_check(const struct tcp_sock *tp)
1929 {
1930 return after(tp->snd_sml, tp->snd_una) &&
1931 !after(tp->snd_sml, tp->snd_nxt);
1932 }
1933
1934 /* Update snd_sml if this skb is under mss
1935 * Note that a TSO packet might end with a sub-mss segment
1936 * The test is really :
1937 * if ((skb->len % mss) != 0)
1938 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939 * But we can avoid doing the divide again given we already have
1940 * skb_pcount = skb->len / mss_now
1941 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1942 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1943 const struct sk_buff *skb)
1944 {
1945 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1946 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1947 }
1948
1949 /* Return false, if packet can be sent now without violation Nagle's rules:
1950 * 1. It is full sized. (provided by caller in %partial bool)
1951 * 2. Or it contains FIN. (already checked by caller)
1952 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1953 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1954 * With Minshall's modification: all sent small packets are ACKed.
1955 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1956 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1957 int nonagle)
1958 {
1959 return partial &&
1960 ((nonagle & TCP_NAGLE_CORK) ||
1961 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1962 }
1963
1964 /* Return how many segs we'd like on a TSO packet,
1965 * depending on current pacing rate, and how close the peer is.
1966 *
1967 * Rationale is:
1968 * - For close peers, we rather send bigger packets to reduce
1969 * cpu costs, because occasional losses will be repaired fast.
1970 * - For long distance/rtt flows, we would like to get ACK clocking
1971 * with 1 ACK per ms.
1972 *
1973 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1974 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1975 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1976 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1977 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1978 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1979 int min_tso_segs)
1980 {
1981 unsigned long bytes;
1982 u32 r;
1983
1984 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1985
1986 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1987 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1988 bytes += sk->sk_gso_max_size >> r;
1989
1990 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1991
1992 return max_t(u32, bytes / mss_now, min_tso_segs);
1993 }
1994
1995 /* Return the number of segments we want in the skb we are transmitting.
1996 * See if congestion control module wants to decide; otherwise, autosize.
1997 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1998 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1999 {
2000 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2001 u32 min_tso, tso_segs;
2002
2003 min_tso = ca_ops->min_tso_segs ?
2004 ca_ops->min_tso_segs(sk) :
2005 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2006
2007 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2008 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2009 }
2010
2011 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2012 static unsigned int tcp_mss_split_point(const struct sock *sk,
2013 const struct sk_buff *skb,
2014 unsigned int mss_now,
2015 unsigned int max_segs,
2016 int nonagle)
2017 {
2018 const struct tcp_sock *tp = tcp_sk(sk);
2019 u32 partial, needed, window, max_len;
2020
2021 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2022 max_len = mss_now * max_segs;
2023
2024 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2025 return max_len;
2026
2027 needed = min(skb->len, window);
2028
2029 if (max_len <= needed)
2030 return max_len;
2031
2032 partial = needed % mss_now;
2033 /* If last segment is not a full MSS, check if Nagle rules allow us
2034 * to include this last segment in this skb.
2035 * Otherwise, we'll split the skb at last MSS boundary
2036 */
2037 if (tcp_nagle_check(partial != 0, tp, nonagle))
2038 return needed - partial;
2039
2040 return needed;
2041 }
2042
2043 /* Can at least one segment of SKB be sent right now, according to the
2044 * congestion window rules? If so, return how many segments are allowed.
2045 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2046 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2047 const struct sk_buff *skb)
2048 {
2049 u32 in_flight, cwnd, halfcwnd;
2050
2051 /* Don't be strict about the congestion window for the final FIN. */
2052 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2053 tcp_skb_pcount(skb) == 1)
2054 return 1;
2055
2056 in_flight = tcp_packets_in_flight(tp);
2057 cwnd = tcp_snd_cwnd(tp);
2058 if (in_flight >= cwnd)
2059 return 0;
2060
2061 /* For better scheduling, ensure we have at least
2062 * 2 GSO packets in flight.
2063 */
2064 halfcwnd = max(cwnd >> 1, 1U);
2065 return min(halfcwnd, cwnd - in_flight);
2066 }
2067
2068 /* Initialize TSO state of a skb.
2069 * This must be invoked the first time we consider transmitting
2070 * SKB onto the wire.
2071 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2072 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2073 {
2074 int tso_segs = tcp_skb_pcount(skb);
2075
2076 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2077 tcp_set_skb_tso_segs(skb, mss_now);
2078 tso_segs = tcp_skb_pcount(skb);
2079 }
2080 return tso_segs;
2081 }
2082
2083
2084 /* Return true if the Nagle test allows this packet to be
2085 * sent now.
2086 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2087 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2088 unsigned int cur_mss, int nonagle)
2089 {
2090 /* Nagle rule does not apply to frames, which sit in the middle of the
2091 * write_queue (they have no chances to get new data).
2092 *
2093 * This is implemented in the callers, where they modify the 'nonagle'
2094 * argument based upon the location of SKB in the send queue.
2095 */
2096 if (nonagle & TCP_NAGLE_PUSH)
2097 return true;
2098
2099 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2100 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2101 return true;
2102
2103 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2104 return true;
2105
2106 return false;
2107 }
2108
2109 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2110 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2111 const struct sk_buff *skb,
2112 unsigned int cur_mss)
2113 {
2114 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2115
2116 if (skb->len > cur_mss)
2117 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2118
2119 return !after(end_seq, tcp_wnd_end(tp));
2120 }
2121
2122 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2123 * which is put after SKB on the list. It is very much like
2124 * tcp_fragment() except that it may make several kinds of assumptions
2125 * in order to speed up the splitting operation. In particular, we
2126 * know that all the data is in scatter-gather pages, and that the
2127 * packet has never been sent out before (and thus is not cloned).
2128 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2129 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2130 unsigned int mss_now, gfp_t gfp)
2131 {
2132 int nlen = skb->len - len;
2133 struct sk_buff *buff;
2134 u8 flags;
2135
2136 /* All of a TSO frame must be composed of paged data. */
2137 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2138
2139 buff = tcp_stream_alloc_skb(sk, gfp, true);
2140 if (unlikely(!buff))
2141 return -ENOMEM;
2142 skb_copy_decrypted(buff, skb);
2143 mptcp_skb_ext_copy(buff, skb);
2144
2145 sk_wmem_queued_add(sk, buff->truesize);
2146 sk_mem_charge(sk, buff->truesize);
2147 buff->truesize += nlen;
2148 skb->truesize -= nlen;
2149
2150 /* Correct the sequence numbers. */
2151 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2152 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2153 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2154
2155 /* PSH and FIN should only be set in the second packet. */
2156 flags = TCP_SKB_CB(skb)->tcp_flags;
2157 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2158 TCP_SKB_CB(buff)->tcp_flags = flags;
2159
2160 tcp_skb_fragment_eor(skb, buff);
2161
2162 skb_split(skb, buff, len);
2163 tcp_fragment_tstamp(skb, buff);
2164
2165 /* Fix up tso_factor for both original and new SKB. */
2166 tcp_set_skb_tso_segs(skb, mss_now);
2167 tcp_set_skb_tso_segs(buff, mss_now);
2168
2169 /* Link BUFF into the send queue. */
2170 __skb_header_release(buff);
2171 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2172
2173 return 0;
2174 }
2175
2176 /* Try to defer sending, if possible, in order to minimize the amount
2177 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2178 *
2179 * This algorithm is from John Heffner.
2180 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2181 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2182 bool *is_cwnd_limited,
2183 bool *is_rwnd_limited,
2184 u32 max_segs)
2185 {
2186 const struct inet_connection_sock *icsk = inet_csk(sk);
2187 u32 send_win, cong_win, limit, in_flight;
2188 struct tcp_sock *tp = tcp_sk(sk);
2189 struct sk_buff *head;
2190 int win_divisor;
2191 s64 delta;
2192
2193 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2194 goto send_now;
2195
2196 /* Avoid bursty behavior by allowing defer
2197 * only if the last write was recent (1 ms).
2198 * Note that tp->tcp_wstamp_ns can be in the future if we have
2199 * packets waiting in a qdisc or device for EDT delivery.
2200 */
2201 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2202 if (delta > 0)
2203 goto send_now;
2204
2205 in_flight = tcp_packets_in_flight(tp);
2206
2207 BUG_ON(tcp_skb_pcount(skb) <= 1);
2208 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2209
2210 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2211
2212 /* From in_flight test above, we know that cwnd > in_flight. */
2213 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2214
2215 limit = min(send_win, cong_win);
2216
2217 /* If a full-sized TSO skb can be sent, do it. */
2218 if (limit >= max_segs * tp->mss_cache)
2219 goto send_now;
2220
2221 /* Middle in queue won't get any more data, full sendable already? */
2222 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2223 goto send_now;
2224
2225 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2226 if (win_divisor) {
2227 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2228
2229 /* If at least some fraction of a window is available,
2230 * just use it.
2231 */
2232 chunk /= win_divisor;
2233 if (limit >= chunk)
2234 goto send_now;
2235 } else {
2236 /* Different approach, try not to defer past a single
2237 * ACK. Receiver should ACK every other full sized
2238 * frame, so if we have space for more than 3 frames
2239 * then send now.
2240 */
2241 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2242 goto send_now;
2243 }
2244
2245 /* TODO : use tsorted_sent_queue ? */
2246 head = tcp_rtx_queue_head(sk);
2247 if (!head)
2248 goto send_now;
2249 delta = tp->tcp_clock_cache - head->tstamp;
2250 /* If next ACK is likely to come too late (half srtt), do not defer */
2251 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2252 goto send_now;
2253
2254 /* Ok, it looks like it is advisable to defer.
2255 * Three cases are tracked :
2256 * 1) We are cwnd-limited
2257 * 2) We are rwnd-limited
2258 * 3) We are application limited.
2259 */
2260 if (cong_win < send_win) {
2261 if (cong_win <= skb->len) {
2262 *is_cwnd_limited = true;
2263 return true;
2264 }
2265 } else {
2266 if (send_win <= skb->len) {
2267 *is_rwnd_limited = true;
2268 return true;
2269 }
2270 }
2271
2272 /* If this packet won't get more data, do not wait. */
2273 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2274 TCP_SKB_CB(skb)->eor)
2275 goto send_now;
2276
2277 return true;
2278
2279 send_now:
2280 return false;
2281 }
2282
tcp_mtu_check_reprobe(struct sock * sk)2283 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2284 {
2285 struct inet_connection_sock *icsk = inet_csk(sk);
2286 struct tcp_sock *tp = tcp_sk(sk);
2287 struct net *net = sock_net(sk);
2288 u32 interval;
2289 s32 delta;
2290
2291 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2292 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2293 if (unlikely(delta >= interval * HZ)) {
2294 int mss = tcp_current_mss(sk);
2295
2296 /* Update current search range */
2297 icsk->icsk_mtup.probe_size = 0;
2298 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2299 sizeof(struct tcphdr) +
2300 icsk->icsk_af_ops->net_header_len;
2301 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2302
2303 /* Update probe time stamp */
2304 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2305 }
2306 }
2307
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2308 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2309 {
2310 struct sk_buff *skb, *next;
2311
2312 skb = tcp_send_head(sk);
2313 tcp_for_write_queue_from_safe(skb, next, sk) {
2314 if (len <= skb->len)
2315 break;
2316
2317 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2318 return false;
2319
2320 len -= skb->len;
2321 }
2322
2323 return true;
2324 }
2325
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2326 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2327 int probe_size)
2328 {
2329 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2330 int i, todo, len = 0, nr_frags = 0;
2331 const struct sk_buff *skb;
2332
2333 if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2334 return -ENOMEM;
2335
2336 skb_queue_walk(&sk->sk_write_queue, skb) {
2337 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2338
2339 if (skb_headlen(skb))
2340 return -EINVAL;
2341
2342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2343 if (len >= probe_size)
2344 goto commit;
2345 todo = min_t(int, skb_frag_size(fragfrom),
2346 probe_size - len);
2347 len += todo;
2348 if (lastfrag &&
2349 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2350 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2351 skb_frag_size(lastfrag)) {
2352 skb_frag_size_add(lastfrag, todo);
2353 continue;
2354 }
2355 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2356 return -E2BIG;
2357 skb_frag_page_copy(fragto, fragfrom);
2358 skb_frag_off_copy(fragto, fragfrom);
2359 skb_frag_size_set(fragto, todo);
2360 nr_frags++;
2361 lastfrag = fragto++;
2362 }
2363 }
2364 commit:
2365 WARN_ON_ONCE(len != probe_size);
2366 for (i = 0; i < nr_frags; i++)
2367 skb_frag_ref(to, i);
2368
2369 skb_shinfo(to)->nr_frags = nr_frags;
2370 to->truesize += probe_size;
2371 to->len += probe_size;
2372 to->data_len += probe_size;
2373 __skb_header_release(to);
2374 return 0;
2375 }
2376
2377 /* Create a new MTU probe if we are ready.
2378 * MTU probe is regularly attempting to increase the path MTU by
2379 * deliberately sending larger packets. This discovers routing
2380 * changes resulting in larger path MTUs.
2381 *
2382 * Returns 0 if we should wait to probe (no cwnd available),
2383 * 1 if a probe was sent,
2384 * -1 otherwise
2385 */
tcp_mtu_probe(struct sock * sk)2386 static int tcp_mtu_probe(struct sock *sk)
2387 {
2388 struct inet_connection_sock *icsk = inet_csk(sk);
2389 struct tcp_sock *tp = tcp_sk(sk);
2390 struct sk_buff *skb, *nskb, *next;
2391 struct net *net = sock_net(sk);
2392 int probe_size;
2393 int size_needed;
2394 int copy, len;
2395 int mss_now;
2396 int interval;
2397
2398 /* Not currently probing/verifying,
2399 * not in recovery,
2400 * have enough cwnd, and
2401 * not SACKing (the variable headers throw things off)
2402 */
2403 if (likely(!icsk->icsk_mtup.enabled ||
2404 icsk->icsk_mtup.probe_size ||
2405 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2406 tcp_snd_cwnd(tp) < 11 ||
2407 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2408 return -1;
2409
2410 /* Use binary search for probe_size between tcp_mss_base,
2411 * and current mss_clamp. if (search_high - search_low)
2412 * smaller than a threshold, backoff from probing.
2413 */
2414 mss_now = tcp_current_mss(sk);
2415 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2416 icsk->icsk_mtup.search_low) >> 1);
2417 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2418 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2419 /* When misfortune happens, we are reprobing actively,
2420 * and then reprobe timer has expired. We stick with current
2421 * probing process by not resetting search range to its orignal.
2422 */
2423 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2424 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2425 /* Check whether enough time has elaplased for
2426 * another round of probing.
2427 */
2428 tcp_mtu_check_reprobe(sk);
2429 return -1;
2430 }
2431
2432 /* Have enough data in the send queue to probe? */
2433 if (tp->write_seq - tp->snd_nxt < size_needed)
2434 return -1;
2435
2436 if (tp->snd_wnd < size_needed)
2437 return -1;
2438 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2439 return 0;
2440
2441 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2442 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2443 if (!tcp_packets_in_flight(tp))
2444 return -1;
2445 else
2446 return 0;
2447 }
2448
2449 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2450 return -1;
2451
2452 /* We're allowed to probe. Build it now. */
2453 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2454 if (!nskb)
2455 return -1;
2456
2457 /* build the payload, and be prepared to abort if this fails. */
2458 if (tcp_clone_payload(sk, nskb, probe_size)) {
2459 tcp_skb_tsorted_anchor_cleanup(nskb);
2460 consume_skb(nskb);
2461 return -1;
2462 }
2463 sk_wmem_queued_add(sk, nskb->truesize);
2464 sk_mem_charge(sk, nskb->truesize);
2465
2466 skb = tcp_send_head(sk);
2467 skb_copy_decrypted(nskb, skb);
2468 mptcp_skb_ext_copy(nskb, skb);
2469
2470 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2471 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2472 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2473
2474 tcp_insert_write_queue_before(nskb, skb, sk);
2475 tcp_highest_sack_replace(sk, skb, nskb);
2476
2477 len = 0;
2478 tcp_for_write_queue_from_safe(skb, next, sk) {
2479 copy = min_t(int, skb->len, probe_size - len);
2480
2481 if (skb->len <= copy) {
2482 /* We've eaten all the data from this skb.
2483 * Throw it away. */
2484 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2485 /* If this is the last SKB we copy and eor is set
2486 * we need to propagate it to the new skb.
2487 */
2488 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2489 tcp_skb_collapse_tstamp(nskb, skb);
2490 tcp_unlink_write_queue(skb, sk);
2491 tcp_wmem_free_skb(sk, skb);
2492 } else {
2493 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2494 ~(TCPHDR_FIN|TCPHDR_PSH);
2495 __pskb_trim_head(skb, copy);
2496 tcp_set_skb_tso_segs(skb, mss_now);
2497 TCP_SKB_CB(skb)->seq += copy;
2498 }
2499
2500 len += copy;
2501
2502 if (len >= probe_size)
2503 break;
2504 }
2505 tcp_init_tso_segs(nskb, nskb->len);
2506
2507 /* We're ready to send. If this fails, the probe will
2508 * be resegmented into mss-sized pieces by tcp_write_xmit().
2509 */
2510 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2511 /* Decrement cwnd here because we are sending
2512 * effectively two packets. */
2513 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2514 tcp_event_new_data_sent(sk, nskb);
2515
2516 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2517 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2518 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2519
2520 return 1;
2521 }
2522
2523 return -1;
2524 }
2525
tcp_pacing_check(struct sock * sk)2526 static bool tcp_pacing_check(struct sock *sk)
2527 {
2528 struct tcp_sock *tp = tcp_sk(sk);
2529
2530 if (!tcp_needs_internal_pacing(sk))
2531 return false;
2532
2533 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2534 return false;
2535
2536 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2537 hrtimer_start(&tp->pacing_timer,
2538 ns_to_ktime(tp->tcp_wstamp_ns),
2539 HRTIMER_MODE_ABS_PINNED_SOFT);
2540 sock_hold(sk);
2541 }
2542 return true;
2543 }
2544
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2545 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2546 {
2547 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2548
2549 /* No skb in the rtx queue. */
2550 if (!node)
2551 return true;
2552
2553 /* Only one skb in rtx queue. */
2554 return !node->rb_left && !node->rb_right;
2555 }
2556
2557 /* TCP Small Queues :
2558 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2559 * (These limits are doubled for retransmits)
2560 * This allows for :
2561 * - better RTT estimation and ACK scheduling
2562 * - faster recovery
2563 * - high rates
2564 * Alas, some drivers / subsystems require a fair amount
2565 * of queued bytes to ensure line rate.
2566 * One example is wifi aggregation (802.11 AMPDU)
2567 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2568 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2569 unsigned int factor)
2570 {
2571 unsigned long limit;
2572
2573 limit = max_t(unsigned long,
2574 2 * skb->truesize,
2575 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2576 if (sk->sk_pacing_status == SK_PACING_NONE)
2577 limit = min_t(unsigned long, limit,
2578 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2579 limit <<= factor;
2580
2581 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2582 tcp_sk(sk)->tcp_tx_delay) {
2583 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2584
2585 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2586 * approximate our needs assuming an ~100% skb->truesize overhead.
2587 * USEC_PER_SEC is approximated by 2^20.
2588 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2589 */
2590 extra_bytes >>= (20 - 1);
2591 limit += extra_bytes;
2592 }
2593 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2594 /* Always send skb if rtx queue is empty or has one skb.
2595 * No need to wait for TX completion to call us back,
2596 * after softirq/tasklet schedule.
2597 * This helps when TX completions are delayed too much.
2598 */
2599 if (tcp_rtx_queue_empty_or_single_skb(sk))
2600 return false;
2601
2602 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2603 /* It is possible TX completion already happened
2604 * before we set TSQ_THROTTLED, so we must
2605 * test again the condition.
2606 */
2607 smp_mb__after_atomic();
2608 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2609 return true;
2610 }
2611 return false;
2612 }
2613
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2614 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2615 {
2616 const u32 now = tcp_jiffies32;
2617 enum tcp_chrono old = tp->chrono_type;
2618
2619 if (old > TCP_CHRONO_UNSPEC)
2620 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2621 tp->chrono_start = now;
2622 tp->chrono_type = new;
2623 }
2624
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2625 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2626 {
2627 struct tcp_sock *tp = tcp_sk(sk);
2628
2629 /* If there are multiple conditions worthy of tracking in a
2630 * chronograph then the highest priority enum takes precedence
2631 * over the other conditions. So that if something "more interesting"
2632 * starts happening, stop the previous chrono and start a new one.
2633 */
2634 if (type > tp->chrono_type)
2635 tcp_chrono_set(tp, type);
2636 }
2637
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2638 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2639 {
2640 struct tcp_sock *tp = tcp_sk(sk);
2641
2642
2643 /* There are multiple conditions worthy of tracking in a
2644 * chronograph, so that the highest priority enum takes
2645 * precedence over the other conditions (see tcp_chrono_start).
2646 * If a condition stops, we only stop chrono tracking if
2647 * it's the "most interesting" or current chrono we are
2648 * tracking and starts busy chrono if we have pending data.
2649 */
2650 if (tcp_rtx_and_write_queues_empty(sk))
2651 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2652 else if (type == tp->chrono_type)
2653 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2654 }
2655
2656 /* This routine writes packets to the network. It advances the
2657 * send_head. This happens as incoming acks open up the remote
2658 * window for us.
2659 *
2660 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2661 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2662 * account rare use of URG, this is not a big flaw.
2663 *
2664 * Send at most one packet when push_one > 0. Temporarily ignore
2665 * cwnd limit to force at most one packet out when push_one == 2.
2666
2667 * Returns true, if no segments are in flight and we have queued segments,
2668 * but cannot send anything now because of SWS or another problem.
2669 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2670 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2671 int push_one, gfp_t gfp)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 struct sk_buff *skb;
2675 unsigned int tso_segs, sent_pkts;
2676 int cwnd_quota;
2677 int result;
2678 bool is_cwnd_limited = false, is_rwnd_limited = false;
2679 u32 max_segs;
2680
2681 sent_pkts = 0;
2682
2683 tcp_mstamp_refresh(tp);
2684 if (!push_one) {
2685 /* Do MTU probing. */
2686 result = tcp_mtu_probe(sk);
2687 if (!result) {
2688 return false;
2689 } else if (result > 0) {
2690 sent_pkts = 1;
2691 }
2692 }
2693
2694 max_segs = tcp_tso_segs(sk, mss_now);
2695 while ((skb = tcp_send_head(sk))) {
2696 unsigned int limit;
2697
2698 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2699 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2700 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2701 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2702 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2703 tcp_init_tso_segs(skb, mss_now);
2704 goto repair; /* Skip network transmission */
2705 }
2706
2707 if (tcp_pacing_check(sk))
2708 break;
2709
2710 tso_segs = tcp_init_tso_segs(skb, mss_now);
2711 BUG_ON(!tso_segs);
2712
2713 cwnd_quota = tcp_cwnd_test(tp, skb);
2714 if (!cwnd_quota) {
2715 if (push_one == 2)
2716 /* Force out a loss probe pkt. */
2717 cwnd_quota = 1;
2718 else
2719 break;
2720 }
2721
2722 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2723 is_rwnd_limited = true;
2724 break;
2725 }
2726
2727 if (tso_segs == 1) {
2728 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2729 (tcp_skb_is_last(sk, skb) ?
2730 nonagle : TCP_NAGLE_PUSH))))
2731 break;
2732 } else {
2733 if (!push_one &&
2734 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2735 &is_rwnd_limited, max_segs))
2736 break;
2737 }
2738
2739 limit = mss_now;
2740 if (tso_segs > 1 && !tcp_urg_mode(tp))
2741 limit = tcp_mss_split_point(sk, skb, mss_now,
2742 min_t(unsigned int,
2743 cwnd_quota,
2744 max_segs),
2745 nonagle);
2746
2747 if (skb->len > limit &&
2748 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2749 break;
2750
2751 if (tcp_small_queue_check(sk, skb, 0))
2752 break;
2753
2754 /* Argh, we hit an empty skb(), presumably a thread
2755 * is sleeping in sendmsg()/sk_stream_wait_memory().
2756 * We do not want to send a pure-ack packet and have
2757 * a strange looking rtx queue with empty packet(s).
2758 */
2759 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2760 break;
2761
2762 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2763 break;
2764
2765 repair:
2766 /* Advance the send_head. This one is sent out.
2767 * This call will increment packets_out.
2768 */
2769 tcp_event_new_data_sent(sk, skb);
2770
2771 tcp_minshall_update(tp, mss_now, skb);
2772 sent_pkts += tcp_skb_pcount(skb);
2773
2774 if (push_one)
2775 break;
2776 }
2777
2778 if (is_rwnd_limited)
2779 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2780 else
2781 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2782
2783 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2784 if (likely(sent_pkts || is_cwnd_limited))
2785 tcp_cwnd_validate(sk, is_cwnd_limited);
2786
2787 if (likely(sent_pkts)) {
2788 if (tcp_in_cwnd_reduction(sk))
2789 tp->prr_out += sent_pkts;
2790
2791 /* Send one loss probe per tail loss episode. */
2792 if (push_one != 2)
2793 tcp_schedule_loss_probe(sk, false);
2794 return false;
2795 }
2796 return !tp->packets_out && !tcp_write_queue_empty(sk);
2797 }
2798
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2799 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2800 {
2801 struct inet_connection_sock *icsk = inet_csk(sk);
2802 struct tcp_sock *tp = tcp_sk(sk);
2803 u32 timeout, timeout_us, rto_delta_us;
2804 int early_retrans;
2805
2806 /* Don't do any loss probe on a Fast Open connection before 3WHS
2807 * finishes.
2808 */
2809 if (rcu_access_pointer(tp->fastopen_rsk))
2810 return false;
2811
2812 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2813 /* Schedule a loss probe in 2*RTT for SACK capable connections
2814 * not in loss recovery, that are either limited by cwnd or application.
2815 */
2816 if ((early_retrans != 3 && early_retrans != 4) ||
2817 !tp->packets_out || !tcp_is_sack(tp) ||
2818 (icsk->icsk_ca_state != TCP_CA_Open &&
2819 icsk->icsk_ca_state != TCP_CA_CWR))
2820 return false;
2821
2822 /* Probe timeout is 2*rtt. Add minimum RTO to account
2823 * for delayed ack when there's one outstanding packet. If no RTT
2824 * sample is available then probe after TCP_TIMEOUT_INIT.
2825 */
2826 if (tp->srtt_us) {
2827 timeout_us = tp->srtt_us >> 2;
2828 if (tp->packets_out == 1)
2829 timeout_us += tcp_rto_min_us(sk);
2830 else
2831 timeout_us += TCP_TIMEOUT_MIN_US;
2832 timeout = usecs_to_jiffies(timeout_us);
2833 } else {
2834 timeout = TCP_TIMEOUT_INIT;
2835 }
2836
2837 /* If the RTO formula yields an earlier time, then use that time. */
2838 rto_delta_us = advancing_rto ?
2839 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2840 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2841 if (rto_delta_us > 0)
2842 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2843
2844 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2845 return true;
2846 }
2847
2848 /* Thanks to skb fast clones, we can detect if a prior transmit of
2849 * a packet is still in a qdisc or driver queue.
2850 * In this case, there is very little point doing a retransmit !
2851 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2852 static bool skb_still_in_host_queue(struct sock *sk,
2853 const struct sk_buff *skb)
2854 {
2855 if (unlikely(skb_fclone_busy(sk, skb))) {
2856 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2857 smp_mb__after_atomic();
2858 if (skb_fclone_busy(sk, skb)) {
2859 NET_INC_STATS(sock_net(sk),
2860 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2861 return true;
2862 }
2863 }
2864 return false;
2865 }
2866
2867 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2868 * retransmit the last segment.
2869 */
tcp_send_loss_probe(struct sock * sk)2870 void tcp_send_loss_probe(struct sock *sk)
2871 {
2872 struct tcp_sock *tp = tcp_sk(sk);
2873 struct sk_buff *skb;
2874 int pcount;
2875 int mss = tcp_current_mss(sk);
2876
2877 /* At most one outstanding TLP */
2878 if (tp->tlp_high_seq)
2879 goto rearm_timer;
2880
2881 tp->tlp_retrans = 0;
2882 skb = tcp_send_head(sk);
2883 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2884 pcount = tp->packets_out;
2885 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2886 if (tp->packets_out > pcount)
2887 goto probe_sent;
2888 goto rearm_timer;
2889 }
2890 skb = skb_rb_last(&sk->tcp_rtx_queue);
2891 if (unlikely(!skb)) {
2892 WARN_ONCE(tp->packets_out,
2893 "invalid inflight: %u state %u cwnd %u mss %d\n",
2894 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2895 inet_csk(sk)->icsk_pending = 0;
2896 return;
2897 }
2898
2899 if (skb_still_in_host_queue(sk, skb))
2900 goto rearm_timer;
2901
2902 pcount = tcp_skb_pcount(skb);
2903 if (WARN_ON(!pcount))
2904 goto rearm_timer;
2905
2906 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2907 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2908 (pcount - 1) * mss, mss,
2909 GFP_ATOMIC)))
2910 goto rearm_timer;
2911 skb = skb_rb_next(skb);
2912 }
2913
2914 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2915 goto rearm_timer;
2916
2917 if (__tcp_retransmit_skb(sk, skb, 1))
2918 goto rearm_timer;
2919
2920 tp->tlp_retrans = 1;
2921
2922 probe_sent:
2923 /* Record snd_nxt for loss detection. */
2924 tp->tlp_high_seq = tp->snd_nxt;
2925
2926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2927 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2928 inet_csk(sk)->icsk_pending = 0;
2929 rearm_timer:
2930 tcp_rearm_rto(sk);
2931 }
2932
2933 /* Push out any pending frames which were held back due to
2934 * TCP_CORK or attempt at coalescing tiny packets.
2935 * The socket must be locked by the caller.
2936 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2937 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2938 int nonagle)
2939 {
2940 /* If we are closed, the bytes will have to remain here.
2941 * In time closedown will finish, we empty the write queue and
2942 * all will be happy.
2943 */
2944 if (unlikely(sk->sk_state == TCP_CLOSE))
2945 return;
2946
2947 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2948 sk_gfp_mask(sk, GFP_ATOMIC)))
2949 tcp_check_probe_timer(sk);
2950 }
2951
2952 /* Send _single_ skb sitting at the send head. This function requires
2953 * true push pending frames to setup probe timer etc.
2954 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2955 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2956 {
2957 struct sk_buff *skb = tcp_send_head(sk);
2958
2959 BUG_ON(!skb || skb->len < mss_now);
2960
2961 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2962 }
2963
2964 /* This function returns the amount that we can raise the
2965 * usable window based on the following constraints
2966 *
2967 * 1. The window can never be shrunk once it is offered (RFC 793)
2968 * 2. We limit memory per socket
2969 *
2970 * RFC 1122:
2971 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2972 * RECV.NEXT + RCV.WIN fixed until:
2973 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2974 *
2975 * i.e. don't raise the right edge of the window until you can raise
2976 * it at least MSS bytes.
2977 *
2978 * Unfortunately, the recommended algorithm breaks header prediction,
2979 * since header prediction assumes th->window stays fixed.
2980 *
2981 * Strictly speaking, keeping th->window fixed violates the receiver
2982 * side SWS prevention criteria. The problem is that under this rule
2983 * a stream of single byte packets will cause the right side of the
2984 * window to always advance by a single byte.
2985 *
2986 * Of course, if the sender implements sender side SWS prevention
2987 * then this will not be a problem.
2988 *
2989 * BSD seems to make the following compromise:
2990 *
2991 * If the free space is less than the 1/4 of the maximum
2992 * space available and the free space is less than 1/2 mss,
2993 * then set the window to 0.
2994 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2995 * Otherwise, just prevent the window from shrinking
2996 * and from being larger than the largest representable value.
2997 *
2998 * This prevents incremental opening of the window in the regime
2999 * where TCP is limited by the speed of the reader side taking
3000 * data out of the TCP receive queue. It does nothing about
3001 * those cases where the window is constrained on the sender side
3002 * because the pipeline is full.
3003 *
3004 * BSD also seems to "accidentally" limit itself to windows that are a
3005 * multiple of MSS, at least until the free space gets quite small.
3006 * This would appear to be a side effect of the mbuf implementation.
3007 * Combining these two algorithms results in the observed behavior
3008 * of having a fixed window size at almost all times.
3009 *
3010 * Below we obtain similar behavior by forcing the offered window to
3011 * a multiple of the mss when it is feasible to do so.
3012 *
3013 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3014 * Regular options like TIMESTAMP are taken into account.
3015 */
__tcp_select_window(struct sock * sk)3016 u32 __tcp_select_window(struct sock *sk)
3017 {
3018 struct inet_connection_sock *icsk = inet_csk(sk);
3019 struct tcp_sock *tp = tcp_sk(sk);
3020 struct net *net = sock_net(sk);
3021 /* MSS for the peer's data. Previous versions used mss_clamp
3022 * here. I don't know if the value based on our guesses
3023 * of peer's MSS is better for the performance. It's more correct
3024 * but may be worse for the performance because of rcv_mss
3025 * fluctuations. --SAW 1998/11/1
3026 */
3027 int mss = icsk->icsk_ack.rcv_mss;
3028 int free_space = tcp_space(sk);
3029 int allowed_space = tcp_full_space(sk);
3030 int full_space, window;
3031
3032 if (sk_is_mptcp(sk))
3033 mptcp_space(sk, &free_space, &allowed_space);
3034
3035 full_space = min_t(int, tp->window_clamp, allowed_space);
3036
3037 if (unlikely(mss > full_space)) {
3038 mss = full_space;
3039 if (mss <= 0)
3040 return 0;
3041 }
3042
3043 /* Only allow window shrink if the sysctl is enabled and we have
3044 * a non-zero scaling factor in effect.
3045 */
3046 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3047 goto shrink_window_allowed;
3048
3049 /* do not allow window to shrink */
3050
3051 if (free_space < (full_space >> 1)) {
3052 icsk->icsk_ack.quick = 0;
3053
3054 if (tcp_under_memory_pressure(sk))
3055 tcp_adjust_rcv_ssthresh(sk);
3056
3057 /* free_space might become our new window, make sure we don't
3058 * increase it due to wscale.
3059 */
3060 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3061
3062 /* if free space is less than mss estimate, or is below 1/16th
3063 * of the maximum allowed, try to move to zero-window, else
3064 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3065 * new incoming data is dropped due to memory limits.
3066 * With large window, mss test triggers way too late in order
3067 * to announce zero window in time before rmem limit kicks in.
3068 */
3069 if (free_space < (allowed_space >> 4) || free_space < mss)
3070 return 0;
3071 }
3072
3073 if (free_space > tp->rcv_ssthresh)
3074 free_space = tp->rcv_ssthresh;
3075
3076 /* Don't do rounding if we are using window scaling, since the
3077 * scaled window will not line up with the MSS boundary anyway.
3078 */
3079 if (tp->rx_opt.rcv_wscale) {
3080 window = free_space;
3081
3082 /* Advertise enough space so that it won't get scaled away.
3083 * Import case: prevent zero window announcement if
3084 * 1<<rcv_wscale > mss.
3085 */
3086 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3087 } else {
3088 window = tp->rcv_wnd;
3089 /* Get the largest window that is a nice multiple of mss.
3090 * Window clamp already applied above.
3091 * If our current window offering is within 1 mss of the
3092 * free space we just keep it. This prevents the divide
3093 * and multiply from happening most of the time.
3094 * We also don't do any window rounding when the free space
3095 * is too small.
3096 */
3097 if (window <= free_space - mss || window > free_space)
3098 window = rounddown(free_space, mss);
3099 else if (mss == full_space &&
3100 free_space > window + (full_space >> 1))
3101 window = free_space;
3102 }
3103
3104 return window;
3105
3106 shrink_window_allowed:
3107 /* new window should always be an exact multiple of scaling factor */
3108 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3109
3110 if (free_space < (full_space >> 1)) {
3111 icsk->icsk_ack.quick = 0;
3112
3113 if (tcp_under_memory_pressure(sk))
3114 tcp_adjust_rcv_ssthresh(sk);
3115
3116 /* if free space is too low, return a zero window */
3117 if (free_space < (allowed_space >> 4) || free_space < mss ||
3118 free_space < (1 << tp->rx_opt.rcv_wscale))
3119 return 0;
3120 }
3121
3122 if (free_space > tp->rcv_ssthresh) {
3123 free_space = tp->rcv_ssthresh;
3124 /* new window should always be an exact multiple of scaling factor
3125 *
3126 * For this case, we ALIGN "up" (increase free_space) because
3127 * we know free_space is not zero here, it has been reduced from
3128 * the memory-based limit, and rcv_ssthresh is not a hard limit
3129 * (unlike sk_rcvbuf).
3130 */
3131 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3132 }
3133
3134 return free_space;
3135 }
3136
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3137 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3138 const struct sk_buff *next_skb)
3139 {
3140 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3141 const struct skb_shared_info *next_shinfo =
3142 skb_shinfo(next_skb);
3143 struct skb_shared_info *shinfo = skb_shinfo(skb);
3144
3145 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3146 shinfo->tskey = next_shinfo->tskey;
3147 TCP_SKB_CB(skb)->txstamp_ack |=
3148 TCP_SKB_CB(next_skb)->txstamp_ack;
3149 }
3150 }
3151
3152 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3153 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3154 {
3155 struct tcp_sock *tp = tcp_sk(sk);
3156 struct sk_buff *next_skb = skb_rb_next(skb);
3157 int next_skb_size;
3158
3159 next_skb_size = next_skb->len;
3160
3161 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3162
3163 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3164 return false;
3165
3166 tcp_highest_sack_replace(sk, next_skb, skb);
3167
3168 /* Update sequence range on original skb. */
3169 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3170
3171 /* Merge over control information. This moves PSH/FIN etc. over */
3172 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3173
3174 /* All done, get rid of second SKB and account for it so
3175 * packet counting does not break.
3176 */
3177 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3178 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3179
3180 /* changed transmit queue under us so clear hints */
3181 tcp_clear_retrans_hints_partial(tp);
3182 if (next_skb == tp->retransmit_skb_hint)
3183 tp->retransmit_skb_hint = skb;
3184
3185 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3186
3187 tcp_skb_collapse_tstamp(skb, next_skb);
3188
3189 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3190 return true;
3191 }
3192
3193 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3194 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3195 {
3196 if (tcp_skb_pcount(skb) > 1)
3197 return false;
3198 if (skb_cloned(skb))
3199 return false;
3200 /* Some heuristics for collapsing over SACK'd could be invented */
3201 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3202 return false;
3203
3204 return true;
3205 }
3206
3207 /* Collapse packets in the retransmit queue to make to create
3208 * less packets on the wire. This is only done on retransmission.
3209 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3210 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3211 int space)
3212 {
3213 struct tcp_sock *tp = tcp_sk(sk);
3214 struct sk_buff *skb = to, *tmp;
3215 bool first = true;
3216
3217 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3218 return;
3219 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3220 return;
3221
3222 skb_rbtree_walk_from_safe(skb, tmp) {
3223 if (!tcp_can_collapse(sk, skb))
3224 break;
3225
3226 if (!tcp_skb_can_collapse(to, skb))
3227 break;
3228
3229 space -= skb->len;
3230
3231 if (first) {
3232 first = false;
3233 continue;
3234 }
3235
3236 if (space < 0)
3237 break;
3238
3239 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3240 break;
3241
3242 if (!tcp_collapse_retrans(sk, to))
3243 break;
3244 }
3245 }
3246
3247 /* This retransmits one SKB. Policy decisions and retransmit queue
3248 * state updates are done by the caller. Returns non-zero if an
3249 * error occurred which prevented the send.
3250 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3251 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3252 {
3253 struct inet_connection_sock *icsk = inet_csk(sk);
3254 struct tcp_sock *tp = tcp_sk(sk);
3255 unsigned int cur_mss;
3256 int diff, len, err;
3257 int avail_wnd;
3258
3259 /* Inconclusive MTU probe */
3260 if (icsk->icsk_mtup.probe_size)
3261 icsk->icsk_mtup.probe_size = 0;
3262
3263 if (skb_still_in_host_queue(sk, skb))
3264 return -EBUSY;
3265
3266 start:
3267 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3268 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3270 TCP_SKB_CB(skb)->seq++;
3271 goto start;
3272 }
3273 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3274 WARN_ON_ONCE(1);
3275 return -EINVAL;
3276 }
3277 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3278 return -ENOMEM;
3279 }
3280
3281 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3282 return -EHOSTUNREACH; /* Routing failure or similar. */
3283
3284 cur_mss = tcp_current_mss(sk);
3285 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3286
3287 /* If receiver has shrunk his window, and skb is out of
3288 * new window, do not retransmit it. The exception is the
3289 * case, when window is shrunk to zero. In this case
3290 * our retransmit of one segment serves as a zero window probe.
3291 */
3292 if (avail_wnd <= 0) {
3293 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3294 return -EAGAIN;
3295 avail_wnd = cur_mss;
3296 }
3297
3298 len = cur_mss * segs;
3299 if (len > avail_wnd) {
3300 len = rounddown(avail_wnd, cur_mss);
3301 if (!len)
3302 len = avail_wnd;
3303 }
3304 if (skb->len > len) {
3305 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3306 cur_mss, GFP_ATOMIC))
3307 return -ENOMEM; /* We'll try again later. */
3308 } else {
3309 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3310 return -ENOMEM;
3311
3312 diff = tcp_skb_pcount(skb);
3313 tcp_set_skb_tso_segs(skb, cur_mss);
3314 diff -= tcp_skb_pcount(skb);
3315 if (diff)
3316 tcp_adjust_pcount(sk, skb, diff);
3317 avail_wnd = min_t(int, avail_wnd, cur_mss);
3318 if (skb->len < avail_wnd)
3319 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3320 }
3321
3322 /* RFC3168, section 6.1.1.1. ECN fallback */
3323 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3324 tcp_ecn_clear_syn(sk, skb);
3325
3326 /* Update global and local TCP statistics. */
3327 segs = tcp_skb_pcount(skb);
3328 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3329 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3330 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3331 tp->total_retrans += segs;
3332 tp->bytes_retrans += skb->len;
3333
3334 /* make sure skb->data is aligned on arches that require it
3335 * and check if ack-trimming & collapsing extended the headroom
3336 * beyond what csum_start can cover.
3337 */
3338 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3339 skb_headroom(skb) >= 0xFFFF)) {
3340 struct sk_buff *nskb;
3341
3342 tcp_skb_tsorted_save(skb) {
3343 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3344 if (nskb) {
3345 nskb->dev = NULL;
3346 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3347 } else {
3348 err = -ENOBUFS;
3349 }
3350 } tcp_skb_tsorted_restore(skb);
3351
3352 if (!err) {
3353 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3354 tcp_rate_skb_sent(sk, skb);
3355 }
3356 } else {
3357 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3358 }
3359
3360 /* To avoid taking spuriously low RTT samples based on a timestamp
3361 * for a transmit that never happened, always mark EVER_RETRANS
3362 */
3363 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3364
3365 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3366 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3367 TCP_SKB_CB(skb)->seq, segs, err);
3368
3369 if (likely(!err)) {
3370 trace_tcp_retransmit_skb(sk, skb);
3371 } else if (err != -EBUSY) {
3372 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3373 }
3374 return err;
3375 }
3376
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3377 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3378 {
3379 struct tcp_sock *tp = tcp_sk(sk);
3380 int err = __tcp_retransmit_skb(sk, skb, segs);
3381
3382 if (err == 0) {
3383 #if FASTRETRANS_DEBUG > 0
3384 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3385 net_dbg_ratelimited("retrans_out leaked\n");
3386 }
3387 #endif
3388 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3389 tp->retrans_out += tcp_skb_pcount(skb);
3390 }
3391
3392 /* Save stamp of the first (attempted) retransmit. */
3393 if (!tp->retrans_stamp)
3394 tp->retrans_stamp = tcp_skb_timestamp(skb);
3395
3396 if (tp->undo_retrans < 0)
3397 tp->undo_retrans = 0;
3398 tp->undo_retrans += tcp_skb_pcount(skb);
3399 return err;
3400 }
3401
3402 /* This gets called after a retransmit timeout, and the initially
3403 * retransmitted data is acknowledged. It tries to continue
3404 * resending the rest of the retransmit queue, until either
3405 * we've sent it all or the congestion window limit is reached.
3406 */
tcp_xmit_retransmit_queue(struct sock * sk)3407 void tcp_xmit_retransmit_queue(struct sock *sk)
3408 {
3409 const struct inet_connection_sock *icsk = inet_csk(sk);
3410 struct sk_buff *skb, *rtx_head, *hole = NULL;
3411 struct tcp_sock *tp = tcp_sk(sk);
3412 bool rearm_timer = false;
3413 u32 max_segs;
3414 int mib_idx;
3415
3416 if (!tp->packets_out)
3417 return;
3418
3419 rtx_head = tcp_rtx_queue_head(sk);
3420 skb = tp->retransmit_skb_hint ?: rtx_head;
3421 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3422 skb_rbtree_walk_from(skb) {
3423 __u8 sacked;
3424 int segs;
3425
3426 if (tcp_pacing_check(sk))
3427 break;
3428
3429 /* we could do better than to assign each time */
3430 if (!hole)
3431 tp->retransmit_skb_hint = skb;
3432
3433 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3434 if (segs <= 0)
3435 break;
3436 sacked = TCP_SKB_CB(skb)->sacked;
3437 /* In case tcp_shift_skb_data() have aggregated large skbs,
3438 * we need to make sure not sending too bigs TSO packets
3439 */
3440 segs = min_t(int, segs, max_segs);
3441
3442 if (tp->retrans_out >= tp->lost_out) {
3443 break;
3444 } else if (!(sacked & TCPCB_LOST)) {
3445 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3446 hole = skb;
3447 continue;
3448
3449 } else {
3450 if (icsk->icsk_ca_state != TCP_CA_Loss)
3451 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3452 else
3453 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3454 }
3455
3456 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3457 continue;
3458
3459 if (tcp_small_queue_check(sk, skb, 1))
3460 break;
3461
3462 if (tcp_retransmit_skb(sk, skb, segs))
3463 break;
3464
3465 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3466
3467 if (tcp_in_cwnd_reduction(sk))
3468 tp->prr_out += tcp_skb_pcount(skb);
3469
3470 if (skb == rtx_head &&
3471 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3472 rearm_timer = true;
3473
3474 }
3475 if (rearm_timer)
3476 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3477 inet_csk(sk)->icsk_rto,
3478 TCP_RTO_MAX);
3479 }
3480
3481 /* We allow to exceed memory limits for FIN packets to expedite
3482 * connection tear down and (memory) recovery.
3483 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3484 * or even be forced to close flow without any FIN.
3485 * In general, we want to allow one skb per socket to avoid hangs
3486 * with edge trigger epoll()
3487 */
sk_forced_mem_schedule(struct sock * sk,int size)3488 void sk_forced_mem_schedule(struct sock *sk, int size)
3489 {
3490 int delta, amt;
3491
3492 delta = size - sk->sk_forward_alloc;
3493 if (delta <= 0)
3494 return;
3495 amt = sk_mem_pages(delta);
3496 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3497 sk_memory_allocated_add(sk, amt);
3498
3499 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3500 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3501 gfp_memcg_charge() | __GFP_NOFAIL);
3502 }
3503
3504 /* Send a FIN. The caller locks the socket for us.
3505 * We should try to send a FIN packet really hard, but eventually give up.
3506 */
tcp_send_fin(struct sock * sk)3507 void tcp_send_fin(struct sock *sk)
3508 {
3509 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3510 struct tcp_sock *tp = tcp_sk(sk);
3511
3512 /* Optimization, tack on the FIN if we have one skb in write queue and
3513 * this skb was not yet sent, or we are under memory pressure.
3514 * Note: in the latter case, FIN packet will be sent after a timeout,
3515 * as TCP stack thinks it has already been transmitted.
3516 */
3517 tskb = tail;
3518 if (!tskb && tcp_under_memory_pressure(sk))
3519 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3520
3521 if (tskb) {
3522 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3523 TCP_SKB_CB(tskb)->end_seq++;
3524 tp->write_seq++;
3525 if (!tail) {
3526 /* This means tskb was already sent.
3527 * Pretend we included the FIN on previous transmit.
3528 * We need to set tp->snd_nxt to the value it would have
3529 * if FIN had been sent. This is because retransmit path
3530 * does not change tp->snd_nxt.
3531 */
3532 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3533 return;
3534 }
3535 } else {
3536 skb = alloc_skb_fclone(MAX_TCP_HEADER,
3537 sk_gfp_mask(sk, GFP_ATOMIC |
3538 __GFP_NOWARN));
3539 if (unlikely(!skb))
3540 return;
3541
3542 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3543 skb_reserve(skb, MAX_TCP_HEADER);
3544 sk_forced_mem_schedule(sk, skb->truesize);
3545 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3546 tcp_init_nondata_skb(skb, tp->write_seq,
3547 TCPHDR_ACK | TCPHDR_FIN);
3548 tcp_queue_skb(sk, skb);
3549 }
3550 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3551 }
3552
3553 /* We get here when a process closes a file descriptor (either due to
3554 * an explicit close() or as a byproduct of exit()'ing) and there
3555 * was unread data in the receive queue. This behavior is recommended
3556 * by RFC 2525, section 2.17. -DaveM
3557 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3558 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3559 {
3560 struct sk_buff *skb;
3561
3562 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3563
3564 /* NOTE: No TCP options attached and we never retransmit this. */
3565 skb = alloc_skb(MAX_TCP_HEADER, priority);
3566 if (!skb) {
3567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3568 return;
3569 }
3570
3571 /* Reserve space for headers and prepare control bits. */
3572 skb_reserve(skb, MAX_TCP_HEADER);
3573 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3574 TCPHDR_ACK | TCPHDR_RST);
3575 tcp_mstamp_refresh(tcp_sk(sk));
3576 /* Send it off. */
3577 if (tcp_transmit_skb(sk, skb, 0, priority))
3578 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3579
3580 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3581 * skb here is different to the troublesome skb, so use NULL
3582 */
3583 trace_tcp_send_reset(sk, NULL);
3584 }
3585
3586 /* Send a crossed SYN-ACK during socket establishment.
3587 * WARNING: This routine must only be called when we have already sent
3588 * a SYN packet that crossed the incoming SYN that caused this routine
3589 * to get called. If this assumption fails then the initial rcv_wnd
3590 * and rcv_wscale values will not be correct.
3591 */
tcp_send_synack(struct sock * sk)3592 int tcp_send_synack(struct sock *sk)
3593 {
3594 struct sk_buff *skb;
3595
3596 skb = tcp_rtx_queue_head(sk);
3597 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3598 pr_err("%s: wrong queue state\n", __func__);
3599 return -EFAULT;
3600 }
3601 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3602 if (skb_cloned(skb)) {
3603 struct sk_buff *nskb;
3604
3605 tcp_skb_tsorted_save(skb) {
3606 nskb = skb_copy(skb, GFP_ATOMIC);
3607 } tcp_skb_tsorted_restore(skb);
3608 if (!nskb)
3609 return -ENOMEM;
3610 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3611 tcp_highest_sack_replace(sk, skb, nskb);
3612 tcp_rtx_queue_unlink_and_free(skb, sk);
3613 __skb_header_release(nskb);
3614 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3615 sk_wmem_queued_add(sk, nskb->truesize);
3616 sk_mem_charge(sk, nskb->truesize);
3617 skb = nskb;
3618 }
3619
3620 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3621 tcp_ecn_send_synack(sk, skb);
3622 }
3623 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3624 }
3625
3626 /**
3627 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3628 * @sk: listener socket
3629 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3630 * should not use it again.
3631 * @req: request_sock pointer
3632 * @foc: cookie for tcp fast open
3633 * @synack_type: Type of synack to prepare
3634 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3635 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3636 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3637 struct request_sock *req,
3638 struct tcp_fastopen_cookie *foc,
3639 enum tcp_synack_type synack_type,
3640 struct sk_buff *syn_skb)
3641 {
3642 struct inet_request_sock *ireq = inet_rsk(req);
3643 const struct tcp_sock *tp = tcp_sk(sk);
3644 struct tcp_md5sig_key *md5 = NULL;
3645 struct tcp_out_options opts;
3646 struct sk_buff *skb;
3647 int tcp_header_size;
3648 struct tcphdr *th;
3649 int mss;
3650 u64 now;
3651
3652 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3653 if (unlikely(!skb)) {
3654 dst_release(dst);
3655 return NULL;
3656 }
3657 /* Reserve space for headers. */
3658 skb_reserve(skb, MAX_TCP_HEADER);
3659
3660 switch (synack_type) {
3661 case TCP_SYNACK_NORMAL:
3662 skb_set_owner_w(skb, req_to_sk(req));
3663 break;
3664 case TCP_SYNACK_COOKIE:
3665 /* Under synflood, we do not attach skb to a socket,
3666 * to avoid false sharing.
3667 */
3668 break;
3669 case TCP_SYNACK_FASTOPEN:
3670 /* sk is a const pointer, because we want to express multiple
3671 * cpu might call us concurrently.
3672 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3673 */
3674 skb_set_owner_w(skb, (struct sock *)sk);
3675 break;
3676 }
3677 skb_dst_set(skb, dst);
3678
3679 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3680
3681 memset(&opts, 0, sizeof(opts));
3682 now = tcp_clock_ns();
3683 #ifdef CONFIG_SYN_COOKIES
3684 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3685 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3686 true);
3687 else
3688 #endif
3689 {
3690 skb_set_delivery_time(skb, now, true);
3691 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3692 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3693 }
3694
3695 #ifdef CONFIG_TCP_MD5SIG
3696 rcu_read_lock();
3697 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3698 #endif
3699 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3700 /* bpf program will be interested in the tcp_flags */
3701 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3702 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3703 foc, synack_type,
3704 syn_skb) + sizeof(*th);
3705
3706 skb_push(skb, tcp_header_size);
3707 skb_reset_transport_header(skb);
3708
3709 th = (struct tcphdr *)skb->data;
3710 memset(th, 0, sizeof(struct tcphdr));
3711 th->syn = 1;
3712 th->ack = 1;
3713 tcp_ecn_make_synack(req, th);
3714 th->source = htons(ireq->ir_num);
3715 th->dest = ireq->ir_rmt_port;
3716 skb->mark = ireq->ir_mark;
3717 skb->ip_summed = CHECKSUM_PARTIAL;
3718 th->seq = htonl(tcp_rsk(req)->snt_isn);
3719 /* XXX data is queued and acked as is. No buffer/window check */
3720 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3721
3722 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3723 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3724 tcp_options_write(th, NULL, &opts);
3725 th->doff = (tcp_header_size >> 2);
3726 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3727
3728 #ifdef CONFIG_TCP_MD5SIG
3729 /* Okay, we have all we need - do the md5 hash if needed */
3730 if (md5)
3731 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3732 md5, req_to_sk(req), skb);
3733 rcu_read_unlock();
3734 #endif
3735
3736 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3737 synack_type, &opts);
3738
3739 skb_set_delivery_time(skb, now, true);
3740 tcp_add_tx_delay(skb, tp);
3741
3742 return skb;
3743 }
3744 EXPORT_SYMBOL(tcp_make_synack);
3745
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3746 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3747 {
3748 struct inet_connection_sock *icsk = inet_csk(sk);
3749 const struct tcp_congestion_ops *ca;
3750 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3751
3752 if (ca_key == TCP_CA_UNSPEC)
3753 return;
3754
3755 rcu_read_lock();
3756 ca = tcp_ca_find_key(ca_key);
3757 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3758 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3759 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3760 icsk->icsk_ca_ops = ca;
3761 }
3762 rcu_read_unlock();
3763 }
3764
3765 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3766 static void tcp_connect_init(struct sock *sk)
3767 {
3768 const struct dst_entry *dst = __sk_dst_get(sk);
3769 struct tcp_sock *tp = tcp_sk(sk);
3770 __u8 rcv_wscale;
3771 u32 rcv_wnd;
3772
3773 /* We'll fix this up when we get a response from the other end.
3774 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3775 */
3776 tp->tcp_header_len = sizeof(struct tcphdr);
3777 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3778 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3779
3780 /* If user gave his TCP_MAXSEG, record it to clamp */
3781 if (tp->rx_opt.user_mss)
3782 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3783 tp->max_window = 0;
3784 tcp_mtup_init(sk);
3785 tcp_sync_mss(sk, dst_mtu(dst));
3786
3787 tcp_ca_dst_init(sk, dst);
3788
3789 if (!tp->window_clamp)
3790 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3791 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3792
3793 tcp_initialize_rcv_mss(sk);
3794
3795 /* limit the window selection if the user enforce a smaller rx buffer */
3796 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3797 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3798 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3799
3800 rcv_wnd = tcp_rwnd_init_bpf(sk);
3801 if (rcv_wnd == 0)
3802 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3803
3804 tcp_select_initial_window(sk, tcp_full_space(sk),
3805 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3806 &tp->rcv_wnd,
3807 &tp->window_clamp,
3808 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3809 &rcv_wscale,
3810 rcv_wnd);
3811
3812 tp->rx_opt.rcv_wscale = rcv_wscale;
3813 tp->rcv_ssthresh = tp->rcv_wnd;
3814
3815 WRITE_ONCE(sk->sk_err, 0);
3816 sock_reset_flag(sk, SOCK_DONE);
3817 tp->snd_wnd = 0;
3818 tcp_init_wl(tp, 0);
3819 tcp_write_queue_purge(sk);
3820 tp->snd_una = tp->write_seq;
3821 tp->snd_sml = tp->write_seq;
3822 tp->snd_up = tp->write_seq;
3823 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3824
3825 if (likely(!tp->repair))
3826 tp->rcv_nxt = 0;
3827 else
3828 tp->rcv_tstamp = tcp_jiffies32;
3829 tp->rcv_wup = tp->rcv_nxt;
3830 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3831
3832 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3833 inet_csk(sk)->icsk_retransmits = 0;
3834 tcp_clear_retrans(tp);
3835 }
3836
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3837 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3838 {
3839 struct tcp_sock *tp = tcp_sk(sk);
3840 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3841
3842 tcb->end_seq += skb->len;
3843 __skb_header_release(skb);
3844 sk_wmem_queued_add(sk, skb->truesize);
3845 sk_mem_charge(sk, skb->truesize);
3846 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3847 tp->packets_out += tcp_skb_pcount(skb);
3848 }
3849
3850 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3851 * queue a data-only packet after the regular SYN, such that regular SYNs
3852 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3853 * only the SYN sequence, the data are retransmitted in the first ACK.
3854 * If cookie is not cached or other error occurs, falls back to send a
3855 * regular SYN with Fast Open cookie request option.
3856 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3857 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3858 {
3859 struct inet_connection_sock *icsk = inet_csk(sk);
3860 struct tcp_sock *tp = tcp_sk(sk);
3861 struct tcp_fastopen_request *fo = tp->fastopen_req;
3862 struct page_frag *pfrag = sk_page_frag(sk);
3863 struct sk_buff *syn_data;
3864 int space, err = 0;
3865
3866 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3867 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3868 goto fallback;
3869
3870 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3871 * user-MSS. Reserve maximum option space for middleboxes that add
3872 * private TCP options. The cost is reduced data space in SYN :(
3873 */
3874 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3875 /* Sync mss_cache after updating the mss_clamp */
3876 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3877
3878 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3879 MAX_TCP_OPTION_SPACE;
3880
3881 space = min_t(size_t, space, fo->size);
3882
3883 if (space &&
3884 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3885 pfrag, sk->sk_allocation))
3886 goto fallback;
3887 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3888 if (!syn_data)
3889 goto fallback;
3890 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3891 if (space) {
3892 space = min_t(size_t, space, pfrag->size - pfrag->offset);
3893 space = tcp_wmem_schedule(sk, space);
3894 }
3895 if (space) {
3896 space = copy_page_from_iter(pfrag->page, pfrag->offset,
3897 space, &fo->data->msg_iter);
3898 if (unlikely(!space)) {
3899 tcp_skb_tsorted_anchor_cleanup(syn_data);
3900 kfree_skb(syn_data);
3901 goto fallback;
3902 }
3903 skb_fill_page_desc(syn_data, 0, pfrag->page,
3904 pfrag->offset, space);
3905 page_ref_inc(pfrag->page);
3906 pfrag->offset += space;
3907 skb_len_add(syn_data, space);
3908 skb_zcopy_set(syn_data, fo->uarg, NULL);
3909 }
3910 /* No more data pending in inet_wait_for_connect() */
3911 if (space == fo->size)
3912 fo->data = NULL;
3913 fo->copied = space;
3914
3915 tcp_connect_queue_skb(sk, syn_data);
3916 if (syn_data->len)
3917 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3918
3919 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3920
3921 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3922
3923 /* Now full SYN+DATA was cloned and sent (or not),
3924 * remove the SYN from the original skb (syn_data)
3925 * we keep in write queue in case of a retransmit, as we
3926 * also have the SYN packet (with no data) in the same queue.
3927 */
3928 TCP_SKB_CB(syn_data)->seq++;
3929 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3930 if (!err) {
3931 tp->syn_data = (fo->copied > 0);
3932 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3933 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3934 goto done;
3935 }
3936
3937 /* data was not sent, put it in write_queue */
3938 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3939 tp->packets_out -= tcp_skb_pcount(syn_data);
3940
3941 fallback:
3942 /* Send a regular SYN with Fast Open cookie request option */
3943 if (fo->cookie.len > 0)
3944 fo->cookie.len = 0;
3945 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3946 if (err)
3947 tp->syn_fastopen = 0;
3948 done:
3949 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3950 return err;
3951 }
3952
3953 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3954 int tcp_connect(struct sock *sk)
3955 {
3956 struct tcp_sock *tp = tcp_sk(sk);
3957 struct sk_buff *buff;
3958 int err;
3959
3960 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3961
3962 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3963 return -EHOSTUNREACH; /* Routing failure or similar. */
3964
3965 tcp_connect_init(sk);
3966
3967 if (unlikely(tp->repair)) {
3968 tcp_finish_connect(sk, NULL);
3969 return 0;
3970 }
3971
3972 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3973 if (unlikely(!buff))
3974 return -ENOBUFS;
3975
3976 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3977 tcp_mstamp_refresh(tp);
3978 tp->retrans_stamp = tcp_time_stamp(tp);
3979 tcp_connect_queue_skb(sk, buff);
3980 tcp_ecn_send_syn(sk, buff);
3981 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3982
3983 /* Send off SYN; include data in Fast Open. */
3984 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3985 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3986 if (err == -ECONNREFUSED)
3987 return err;
3988
3989 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3990 * in order to make this packet get counted in tcpOutSegs.
3991 */
3992 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3993 tp->pushed_seq = tp->write_seq;
3994 buff = tcp_send_head(sk);
3995 if (unlikely(buff)) {
3996 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3997 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3998 }
3999 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4000
4001 /* Timer for repeating the SYN until an answer. */
4002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4003 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4004 return 0;
4005 }
4006 EXPORT_SYMBOL(tcp_connect);
4007
tcp_delack_max(const struct sock * sk)4008 u32 tcp_delack_max(const struct sock *sk)
4009 {
4010 const struct dst_entry *dst = __sk_dst_get(sk);
4011 u32 delack_max = inet_csk(sk)->icsk_delack_max;
4012
4013 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4014 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4015 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4016
4017 delack_max = min_t(u32, delack_max, delack_from_rto_min);
4018 }
4019 return delack_max;
4020 }
4021
4022 /* Send out a delayed ack, the caller does the policy checking
4023 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4024 * for details.
4025 */
tcp_send_delayed_ack(struct sock * sk)4026 void tcp_send_delayed_ack(struct sock *sk)
4027 {
4028 struct inet_connection_sock *icsk = inet_csk(sk);
4029 int ato = icsk->icsk_ack.ato;
4030 unsigned long timeout;
4031
4032 if (ato > TCP_DELACK_MIN) {
4033 const struct tcp_sock *tp = tcp_sk(sk);
4034 int max_ato = HZ / 2;
4035
4036 if (inet_csk_in_pingpong_mode(sk) ||
4037 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4038 max_ato = TCP_DELACK_MAX;
4039
4040 /* Slow path, intersegment interval is "high". */
4041
4042 /* If some rtt estimate is known, use it to bound delayed ack.
4043 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4044 * directly.
4045 */
4046 if (tp->srtt_us) {
4047 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4048 TCP_DELACK_MIN);
4049
4050 if (rtt < max_ato)
4051 max_ato = rtt;
4052 }
4053
4054 ato = min(ato, max_ato);
4055 }
4056
4057 ato = min_t(u32, ato, tcp_delack_max(sk));
4058
4059 /* Stay within the limit we were given */
4060 timeout = jiffies + ato;
4061
4062 /* Use new timeout only if there wasn't a older one earlier. */
4063 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4064 /* If delack timer is about to expire, send ACK now. */
4065 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4066 tcp_send_ack(sk);
4067 return;
4068 }
4069
4070 if (!time_before(timeout, icsk->icsk_ack.timeout))
4071 timeout = icsk->icsk_ack.timeout;
4072 }
4073 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4074 icsk->icsk_ack.timeout = timeout;
4075 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4076 }
4077
4078 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4079 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4080 {
4081 struct sk_buff *buff;
4082
4083 /* If we have been reset, we may not send again. */
4084 if (sk->sk_state == TCP_CLOSE)
4085 return;
4086
4087 /* We are not putting this on the write queue, so
4088 * tcp_transmit_skb() will set the ownership to this
4089 * sock.
4090 */
4091 buff = alloc_skb(MAX_TCP_HEADER,
4092 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4093 if (unlikely(!buff)) {
4094 struct inet_connection_sock *icsk = inet_csk(sk);
4095 unsigned long delay;
4096
4097 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4098 if (delay < TCP_RTO_MAX)
4099 icsk->icsk_ack.retry++;
4100 inet_csk_schedule_ack(sk);
4101 icsk->icsk_ack.ato = TCP_ATO_MIN;
4102 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4103 return;
4104 }
4105
4106 /* Reserve space for headers and prepare control bits. */
4107 skb_reserve(buff, MAX_TCP_HEADER);
4108 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4109
4110 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4111 * too much.
4112 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4113 */
4114 skb_set_tcp_pure_ack(buff);
4115
4116 /* Send it off, this clears delayed acks for us. */
4117 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4118 }
4119 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4120
tcp_send_ack(struct sock * sk)4121 void tcp_send_ack(struct sock *sk)
4122 {
4123 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4124 }
4125
4126 /* This routine sends a packet with an out of date sequence
4127 * number. It assumes the other end will try to ack it.
4128 *
4129 * Question: what should we make while urgent mode?
4130 * 4.4BSD forces sending single byte of data. We cannot send
4131 * out of window data, because we have SND.NXT==SND.MAX...
4132 *
4133 * Current solution: to send TWO zero-length segments in urgent mode:
4134 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4135 * out-of-date with SND.UNA-1 to probe window.
4136 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4137 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4138 {
4139 struct tcp_sock *tp = tcp_sk(sk);
4140 struct sk_buff *skb;
4141
4142 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4143 skb = alloc_skb(MAX_TCP_HEADER,
4144 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4145 if (!skb)
4146 return -1;
4147
4148 /* Reserve space for headers and set control bits. */
4149 skb_reserve(skb, MAX_TCP_HEADER);
4150 /* Use a previous sequence. This should cause the other
4151 * end to send an ack. Don't queue or clone SKB, just
4152 * send it.
4153 */
4154 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4155 NET_INC_STATS(sock_net(sk), mib);
4156 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4157 }
4158
4159 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4160 void tcp_send_window_probe(struct sock *sk)
4161 {
4162 if (sk->sk_state == TCP_ESTABLISHED) {
4163 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4164 tcp_mstamp_refresh(tcp_sk(sk));
4165 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4166 }
4167 }
4168
4169 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4170 int tcp_write_wakeup(struct sock *sk, int mib)
4171 {
4172 struct tcp_sock *tp = tcp_sk(sk);
4173 struct sk_buff *skb;
4174
4175 if (sk->sk_state == TCP_CLOSE)
4176 return -1;
4177
4178 skb = tcp_send_head(sk);
4179 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4180 int err;
4181 unsigned int mss = tcp_current_mss(sk);
4182 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4183
4184 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4185 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4186
4187 /* We are probing the opening of a window
4188 * but the window size is != 0
4189 * must have been a result SWS avoidance ( sender )
4190 */
4191 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4192 skb->len > mss) {
4193 seg_size = min(seg_size, mss);
4194 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4195 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4196 skb, seg_size, mss, GFP_ATOMIC))
4197 return -1;
4198 } else if (!tcp_skb_pcount(skb))
4199 tcp_set_skb_tso_segs(skb, mss);
4200
4201 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4202 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4203 if (!err)
4204 tcp_event_new_data_sent(sk, skb);
4205 return err;
4206 } else {
4207 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4208 tcp_xmit_probe_skb(sk, 1, mib);
4209 return tcp_xmit_probe_skb(sk, 0, mib);
4210 }
4211 }
4212
4213 /* A window probe timeout has occurred. If window is not closed send
4214 * a partial packet else a zero probe.
4215 */
tcp_send_probe0(struct sock * sk)4216 void tcp_send_probe0(struct sock *sk)
4217 {
4218 struct inet_connection_sock *icsk = inet_csk(sk);
4219 struct tcp_sock *tp = tcp_sk(sk);
4220 struct net *net = sock_net(sk);
4221 unsigned long timeout;
4222 int err;
4223
4224 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4225
4226 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4227 /* Cancel probe timer, if it is not required. */
4228 icsk->icsk_probes_out = 0;
4229 icsk->icsk_backoff = 0;
4230 icsk->icsk_probes_tstamp = 0;
4231 return;
4232 }
4233
4234 icsk->icsk_probes_out++;
4235 if (err <= 0) {
4236 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4237 icsk->icsk_backoff++;
4238 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4239 } else {
4240 /* If packet was not sent due to local congestion,
4241 * Let senders fight for local resources conservatively.
4242 */
4243 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4244 }
4245
4246 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4247 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4248 }
4249
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4250 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4251 {
4252 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4253 struct flowi fl;
4254 int res;
4255
4256 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4257 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4258 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4259 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4260 NULL);
4261 if (!res) {
4262 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4264 if (unlikely(tcp_passive_fastopen(sk))) {
4265 /* sk has const attribute because listeners are lockless.
4266 * However in this case, we are dealing with a passive fastopen
4267 * socket thus we can change total_retrans value.
4268 */
4269 tcp_sk_rw(sk)->total_retrans++;
4270 }
4271 trace_tcp_retransmit_synack(sk, req);
4272 }
4273 return res;
4274 }
4275 EXPORT_SYMBOL(tcp_rtx_synack);
4276