1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
243 */
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247
248 do_div(val, skb->truesize);
249 tcp_sk(sk)->scaling_ratio = val ? val : 1;
250
251 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 struct tcp_sock *tp = tcp_sk(sk);
253
254 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 tcp_set_window_clamp(sk, val);
256
257 if (tp->window_clamp < tp->rcvq_space.space)
258 tp->rcvq_space.space = tp->window_clamp;
259 }
260 }
261 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 tcp_sk(sk)->advmss);
263 /* Account for possibly-removed options */
264 if (unlikely(len > icsk->icsk_ack.rcv_mss +
265 MAX_TCP_OPTION_SPACE))
266 tcp_gro_dev_warn(sk, skb, len);
267 /* If the skb has a len of exactly 1*MSS and has the PSH bit
268 * set then it is likely the end of an application write. So
269 * more data may not be arriving soon, and yet the data sender
270 * may be waiting for an ACK if cwnd-bound or using TX zero
271 * copy. So we set ICSK_ACK_PUSHED here so that
272 * tcp_cleanup_rbuf() will send an ACK immediately if the app
273 * reads all of the data and is not ping-pong. If len > MSS
274 * then this logic does not matter (and does not hurt) because
275 * tcp_cleanup_rbuf() will always ACK immediately if the app
276 * reads data and there is more than an MSS of unACKed data.
277 */
278 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
279 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
280 } else {
281 /* Otherwise, we make more careful check taking into account,
282 * that SACKs block is variable.
283 *
284 * "len" is invariant segment length, including TCP header.
285 */
286 len += skb->data - skb_transport_header(skb);
287 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
288 /* If PSH is not set, packet should be
289 * full sized, provided peer TCP is not badly broken.
290 * This observation (if it is correct 8)) allows
291 * to handle super-low mtu links fairly.
292 */
293 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
294 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
295 /* Subtract also invariant (if peer is RFC compliant),
296 * tcp header plus fixed timestamp option length.
297 * Resulting "len" is MSS free of SACK jitter.
298 */
299 len -= tcp_sk(sk)->tcp_header_len;
300 icsk->icsk_ack.last_seg_size = len;
301 if (len == lss) {
302 icsk->icsk_ack.rcv_mss = len;
303 return;
304 }
305 }
306 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
307 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
308 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
309 }
310 }
311
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
313 {
314 struct inet_connection_sock *icsk = inet_csk(sk);
315 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
316
317 if (quickacks == 0)
318 quickacks = 2;
319 quickacks = min(quickacks, max_quickacks);
320 if (quickacks > icsk->icsk_ack.quick)
321 icsk->icsk_ack.quick = quickacks;
322 }
323
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
325 {
326 struct inet_connection_sock *icsk = inet_csk(sk);
327
328 tcp_incr_quickack(sk, max_quickacks);
329 inet_csk_exit_pingpong_mode(sk);
330 icsk->icsk_ack.ato = TCP_ATO_MIN;
331 }
332
333 /* Send ACKs quickly, if "quick" count is not exhausted
334 * and the session is not interactive.
335 */
336
tcp_in_quickack_mode(struct sock * sk)337 static bool tcp_in_quickack_mode(struct sock *sk)
338 {
339 const struct inet_connection_sock *icsk = inet_csk(sk);
340 const struct dst_entry *dst = __sk_dst_get(sk);
341
342 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
343 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
344 }
345
tcp_ecn_queue_cwr(struct tcp_sock * tp)346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
347 {
348 if (tp->ecn_flags & TCP_ECN_OK)
349 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
350 }
351
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
353 {
354 if (tcp_hdr(skb)->cwr) {
355 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
356
357 /* If the sender is telling us it has entered CWR, then its
358 * cwnd may be very low (even just 1 packet), so we should ACK
359 * immediately.
360 */
361 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
362 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
363 }
364 }
365
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
367 {
368 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 }
370
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 struct tcp_sock *tp = tcp_sk(sk);
374
375 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
376 case INET_ECN_NOT_ECT:
377 /* Funny extension: if ECT is not set on a segment,
378 * and we already seen ECT on a previous segment,
379 * it is probably a retransmit.
380 */
381 if (tp->ecn_flags & TCP_ECN_SEEN)
382 tcp_enter_quickack_mode(sk, 2);
383 break;
384 case INET_ECN_CE:
385 if (tcp_ca_needs_ecn(sk))
386 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
387
388 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
389 /* Better not delay acks, sender can have a very low cwnd */
390 tcp_enter_quickack_mode(sk, 2);
391 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
392 }
393 tp->ecn_flags |= TCP_ECN_SEEN;
394 break;
395 default:
396 if (tcp_ca_needs_ecn(sk))
397 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
398 tp->ecn_flags |= TCP_ECN_SEEN;
399 break;
400 }
401 }
402
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
404 {
405 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
406 __tcp_ecn_check_ce(sk, skb);
407 }
408
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
418 tp->ecn_flags &= ~TCP_ECN_OK;
419 }
420
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
422 {
423 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
424 return true;
425 return false;
426 }
427
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)428 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
429 {
430 tp->delivered_ce += ecn_count;
431 }
432
433 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)434 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
435 bool ece_ack)
436 {
437 tp->delivered += delivered;
438 if (ece_ack)
439 tcp_count_delivered_ce(tp, delivered);
440 }
441
442 /* Buffer size and advertised window tuning.
443 *
444 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
445 */
446
tcp_sndbuf_expand(struct sock * sk)447 static void tcp_sndbuf_expand(struct sock *sk)
448 {
449 const struct tcp_sock *tp = tcp_sk(sk);
450 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
451 int sndmem, per_mss;
452 u32 nr_segs;
453
454 /* Worst case is non GSO/TSO : each frame consumes one skb
455 * and skb->head is kmalloced using power of two area of memory
456 */
457 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
458 MAX_TCP_HEADER +
459 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
460
461 per_mss = roundup_pow_of_two(per_mss) +
462 SKB_DATA_ALIGN(sizeof(struct sk_buff));
463
464 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
465 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
466
467 /* Fast Recovery (RFC 5681 3.2) :
468 * Cubic needs 1.7 factor, rounded to 2 to include
469 * extra cushion (application might react slowly to EPOLLOUT)
470 */
471 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
472 sndmem *= nr_segs * per_mss;
473
474 if (sk->sk_sndbuf < sndmem)
475 WRITE_ONCE(sk->sk_sndbuf,
476 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
477 }
478
479 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
480 *
481 * All tcp_full_space() is split to two parts: "network" buffer, allocated
482 * forward and advertised in receiver window (tp->rcv_wnd) and
483 * "application buffer", required to isolate scheduling/application
484 * latencies from network.
485 * window_clamp is maximal advertised window. It can be less than
486 * tcp_full_space(), in this case tcp_full_space() - window_clamp
487 * is reserved for "application" buffer. The less window_clamp is
488 * the smoother our behaviour from viewpoint of network, but the lower
489 * throughput and the higher sensitivity of the connection to losses. 8)
490 *
491 * rcv_ssthresh is more strict window_clamp used at "slow start"
492 * phase to predict further behaviour of this connection.
493 * It is used for two goals:
494 * - to enforce header prediction at sender, even when application
495 * requires some significant "application buffer". It is check #1.
496 * - to prevent pruning of receive queue because of misprediction
497 * of receiver window. Check #2.
498 *
499 * The scheme does not work when sender sends good segments opening
500 * window and then starts to feed us spaghetti. But it should work
501 * in common situations. Otherwise, we have to rely on queue collapsing.
502 */
503
504 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)505 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
506 unsigned int skbtruesize)
507 {
508 const struct tcp_sock *tp = tcp_sk(sk);
509 /* Optimize this! */
510 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
511 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
512
513 while (tp->rcv_ssthresh <= window) {
514 if (truesize <= skb->len)
515 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
516
517 truesize >>= 1;
518 window >>= 1;
519 }
520 return 0;
521 }
522
523 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
524 * can play nice with us, as sk_buff and skb->head might be either
525 * freed or shared with up to MAX_SKB_FRAGS segments.
526 * Only give a boost to drivers using page frag(s) to hold the frame(s),
527 * and if no payload was pulled in skb->head before reaching us.
528 */
truesize_adjust(bool adjust,const struct sk_buff * skb)529 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
530 {
531 u32 truesize = skb->truesize;
532
533 if (adjust && !skb_headlen(skb)) {
534 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
535 /* paranoid check, some drivers might be buggy */
536 if (unlikely((int)truesize < (int)skb->len))
537 truesize = skb->truesize;
538 }
539 return truesize;
540 }
541
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)542 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
543 bool adjust)
544 {
545 struct tcp_sock *tp = tcp_sk(sk);
546 int room;
547
548 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
549
550 if (room <= 0)
551 return;
552
553 /* Check #1 */
554 if (!tcp_under_memory_pressure(sk)) {
555 unsigned int truesize = truesize_adjust(adjust, skb);
556 int incr;
557
558 /* Check #2. Increase window, if skb with such overhead
559 * will fit to rcvbuf in future.
560 */
561 if (tcp_win_from_space(sk, truesize) <= skb->len)
562 incr = 2 * tp->advmss;
563 else
564 incr = __tcp_grow_window(sk, skb, truesize);
565
566 if (incr) {
567 incr = max_t(int, incr, 2 * skb->len);
568 tp->rcv_ssthresh += min(room, incr);
569 inet_csk(sk)->icsk_ack.quick |= 1;
570 }
571 } else {
572 /* Under pressure:
573 * Adjust rcv_ssthresh according to reserved mem
574 */
575 tcp_adjust_rcv_ssthresh(sk);
576 }
577 }
578
579 /* 3. Try to fixup all. It is made immediately after connection enters
580 * established state.
581 */
tcp_init_buffer_space(struct sock * sk)582 static void tcp_init_buffer_space(struct sock *sk)
583 {
584 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
585 struct tcp_sock *tp = tcp_sk(sk);
586 int maxwin;
587
588 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
589 tcp_sndbuf_expand(sk);
590
591 tcp_mstamp_refresh(tp);
592 tp->rcvq_space.time = tp->tcp_mstamp;
593 tp->rcvq_space.seq = tp->copied_seq;
594
595 maxwin = tcp_full_space(sk);
596
597 if (tp->window_clamp >= maxwin) {
598 WRITE_ONCE(tp->window_clamp, maxwin);
599
600 if (tcp_app_win && maxwin > 4 * tp->advmss)
601 WRITE_ONCE(tp->window_clamp,
602 max(maxwin - (maxwin >> tcp_app_win),
603 4 * tp->advmss));
604 }
605
606 /* Force reservation of one segment. */
607 if (tcp_app_win &&
608 tp->window_clamp > 2 * tp->advmss &&
609 tp->window_clamp + tp->advmss > maxwin)
610 WRITE_ONCE(tp->window_clamp,
611 max(2 * tp->advmss, maxwin - tp->advmss));
612
613 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
614 tp->snd_cwnd_stamp = tcp_jiffies32;
615 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
616 (u32)TCP_INIT_CWND * tp->advmss);
617 }
618
619 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)620 static void tcp_clamp_window(struct sock *sk)
621 {
622 struct tcp_sock *tp = tcp_sk(sk);
623 struct inet_connection_sock *icsk = inet_csk(sk);
624 struct net *net = sock_net(sk);
625 int rmem2;
626
627 icsk->icsk_ack.quick = 0;
628 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
629
630 if (sk->sk_rcvbuf < rmem2 &&
631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
632 !tcp_under_memory_pressure(sk) &&
633 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
634 WRITE_ONCE(sk->sk_rcvbuf,
635 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
636 }
637 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
638 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
639 }
640
641 /* Initialize RCV_MSS value.
642 * RCV_MSS is an our guess about MSS used by the peer.
643 * We haven't any direct information about the MSS.
644 * It's better to underestimate the RCV_MSS rather than overestimate.
645 * Overestimations make us ACKing less frequently than needed.
646 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
647 */
tcp_initialize_rcv_mss(struct sock * sk)648 void tcp_initialize_rcv_mss(struct sock *sk)
649 {
650 const struct tcp_sock *tp = tcp_sk(sk);
651 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
652
653 hint = min(hint, tp->rcv_wnd / 2);
654 hint = min(hint, TCP_MSS_DEFAULT);
655 hint = max(hint, TCP_MIN_MSS);
656
657 inet_csk(sk)->icsk_ack.rcv_mss = hint;
658 }
659 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
660
661 /* Receiver "autotuning" code.
662 *
663 * The algorithm for RTT estimation w/o timestamps is based on
664 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
665 * <https://public.lanl.gov/radiant/pubs.html#DRS>
666 *
667 * More detail on this code can be found at
668 * <http://staff.psc.edu/jheffner/>,
669 * though this reference is out of date. A new paper
670 * is pending.
671 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)672 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
673 {
674 u32 new_sample = tp->rcv_rtt_est.rtt_us;
675 long m = sample;
676
677 if (new_sample != 0) {
678 /* If we sample in larger samples in the non-timestamp
679 * case, we could grossly overestimate the RTT especially
680 * with chatty applications or bulk transfer apps which
681 * are stalled on filesystem I/O.
682 *
683 * Also, since we are only going for a minimum in the
684 * non-timestamp case, we do not smooth things out
685 * else with timestamps disabled convergence takes too
686 * long.
687 */
688 if (!win_dep) {
689 m -= (new_sample >> 3);
690 new_sample += m;
691 } else {
692 m <<= 3;
693 if (m < new_sample)
694 new_sample = m;
695 }
696 } else {
697 /* No previous measure. */
698 new_sample = m << 3;
699 }
700
701 tp->rcv_rtt_est.rtt_us = new_sample;
702 }
703
tcp_rcv_rtt_measure(struct tcp_sock * tp)704 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
705 {
706 u32 delta_us;
707
708 if (tp->rcv_rtt_est.time == 0)
709 goto new_measure;
710 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
711 return;
712 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
713 if (!delta_us)
714 delta_us = 1;
715 tcp_rcv_rtt_update(tp, delta_us, 1);
716
717 new_measure:
718 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
719 tp->rcv_rtt_est.time = tp->tcp_mstamp;
720 }
721
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)722 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
723 const struct sk_buff *skb)
724 {
725 struct tcp_sock *tp = tcp_sk(sk);
726
727 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
728 return;
729 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
730
731 if (TCP_SKB_CB(skb)->end_seq -
732 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
733 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
734 u32 delta_us;
735
736 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
737 if (!delta)
738 delta = 1;
739 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
740 tcp_rcv_rtt_update(tp, delta_us, 0);
741 }
742 }
743 }
744
745 /*
746 * This function should be called every time data is copied to user space.
747 * It calculates the appropriate TCP receive buffer space.
748 */
tcp_rcv_space_adjust(struct sock * sk)749 void tcp_rcv_space_adjust(struct sock *sk)
750 {
751 struct tcp_sock *tp = tcp_sk(sk);
752 u32 copied;
753 int time;
754
755 trace_tcp_rcv_space_adjust(sk);
756
757 tcp_mstamp_refresh(tp);
758 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
759 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
760 return;
761
762 /* Number of bytes copied to user in last RTT */
763 copied = tp->copied_seq - tp->rcvq_space.seq;
764 if (copied <= tp->rcvq_space.space)
765 goto new_measure;
766
767 /* A bit of theory :
768 * copied = bytes received in previous RTT, our base window
769 * To cope with packet losses, we need a 2x factor
770 * To cope with slow start, and sender growing its cwin by 100 %
771 * every RTT, we need a 4x factor, because the ACK we are sending
772 * now is for the next RTT, not the current one :
773 * <prev RTT . ><current RTT .. ><next RTT .... >
774 */
775
776 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
777 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
778 u64 rcvwin, grow;
779 int rcvbuf;
780
781 /* minimal window to cope with packet losses, assuming
782 * steady state. Add some cushion because of small variations.
783 */
784 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
785
786 /* Accommodate for sender rate increase (eg. slow start) */
787 grow = rcvwin * (copied - tp->rcvq_space.space);
788 do_div(grow, tp->rcvq_space.space);
789 rcvwin += (grow << 1);
790
791 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
792 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
793 if (rcvbuf > sk->sk_rcvbuf) {
794 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
795
796 /* Make the window clamp follow along. */
797 WRITE_ONCE(tp->window_clamp,
798 tcp_win_from_space(sk, rcvbuf));
799 }
800 }
801 tp->rcvq_space.space = copied;
802
803 new_measure:
804 tp->rcvq_space.seq = tp->copied_seq;
805 tp->rcvq_space.time = tp->tcp_mstamp;
806 }
807
808 /* There is something which you must keep in mind when you analyze the
809 * behavior of the tp->ato delayed ack timeout interval. When a
810 * connection starts up, we want to ack as quickly as possible. The
811 * problem is that "good" TCP's do slow start at the beginning of data
812 * transmission. The means that until we send the first few ACK's the
813 * sender will sit on his end and only queue most of his data, because
814 * he can only send snd_cwnd unacked packets at any given time. For
815 * each ACK we send, he increments snd_cwnd and transmits more of his
816 * queue. -DaveM
817 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)818 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
819 {
820 struct tcp_sock *tp = tcp_sk(sk);
821 struct inet_connection_sock *icsk = inet_csk(sk);
822 u32 now;
823
824 inet_csk_schedule_ack(sk);
825
826 tcp_measure_rcv_mss(sk, skb);
827
828 tcp_rcv_rtt_measure(tp);
829
830 now = tcp_jiffies32;
831
832 if (!icsk->icsk_ack.ato) {
833 /* The _first_ data packet received, initialize
834 * delayed ACK engine.
835 */
836 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
837 icsk->icsk_ack.ato = TCP_ATO_MIN;
838 } else {
839 int m = now - icsk->icsk_ack.lrcvtime;
840
841 if (m <= TCP_ATO_MIN / 2) {
842 /* The fastest case is the first. */
843 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
844 } else if (m < icsk->icsk_ack.ato) {
845 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
846 if (icsk->icsk_ack.ato > icsk->icsk_rto)
847 icsk->icsk_ack.ato = icsk->icsk_rto;
848 } else if (m > icsk->icsk_rto) {
849 /* Too long gap. Apparently sender failed to
850 * restart window, so that we send ACKs quickly.
851 */
852 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
853 }
854 }
855 icsk->icsk_ack.lrcvtime = now;
856
857 tcp_ecn_check_ce(sk, skb);
858
859 if (skb->len >= 128)
860 tcp_grow_window(sk, skb, true);
861 }
862
863 /* Called to compute a smoothed rtt estimate. The data fed to this
864 * routine either comes from timestamps, or from segments that were
865 * known _not_ to have been retransmitted [see Karn/Partridge
866 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
867 * piece by Van Jacobson.
868 * NOTE: the next three routines used to be one big routine.
869 * To save cycles in the RFC 1323 implementation it was better to break
870 * it up into three procedures. -- erics
871 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)872 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
873 {
874 struct tcp_sock *tp = tcp_sk(sk);
875 long m = mrtt_us; /* RTT */
876 u32 srtt = tp->srtt_us;
877
878 /* The following amusing code comes from Jacobson's
879 * article in SIGCOMM '88. Note that rtt and mdev
880 * are scaled versions of rtt and mean deviation.
881 * This is designed to be as fast as possible
882 * m stands for "measurement".
883 *
884 * On a 1990 paper the rto value is changed to:
885 * RTO = rtt + 4 * mdev
886 *
887 * Funny. This algorithm seems to be very broken.
888 * These formulae increase RTO, when it should be decreased, increase
889 * too slowly, when it should be increased quickly, decrease too quickly
890 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
891 * does not matter how to _calculate_ it. Seems, it was trap
892 * that VJ failed to avoid. 8)
893 */
894 if (srtt != 0) {
895 m -= (srtt >> 3); /* m is now error in rtt est */
896 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
897 if (m < 0) {
898 m = -m; /* m is now abs(error) */
899 m -= (tp->mdev_us >> 2); /* similar update on mdev */
900 /* This is similar to one of Eifel findings.
901 * Eifel blocks mdev updates when rtt decreases.
902 * This solution is a bit different: we use finer gain
903 * for mdev in this case (alpha*beta).
904 * Like Eifel it also prevents growth of rto,
905 * but also it limits too fast rto decreases,
906 * happening in pure Eifel.
907 */
908 if (m > 0)
909 m >>= 3;
910 } else {
911 m -= (tp->mdev_us >> 2); /* similar update on mdev */
912 }
913 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
914 if (tp->mdev_us > tp->mdev_max_us) {
915 tp->mdev_max_us = tp->mdev_us;
916 if (tp->mdev_max_us > tp->rttvar_us)
917 tp->rttvar_us = tp->mdev_max_us;
918 }
919 if (after(tp->snd_una, tp->rtt_seq)) {
920 if (tp->mdev_max_us < tp->rttvar_us)
921 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
922 tp->rtt_seq = tp->snd_nxt;
923 tp->mdev_max_us = tcp_rto_min_us(sk);
924
925 tcp_bpf_rtt(sk);
926 }
927 } else {
928 /* no previous measure. */
929 srtt = m << 3; /* take the measured time to be rtt */
930 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
931 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
932 tp->mdev_max_us = tp->rttvar_us;
933 tp->rtt_seq = tp->snd_nxt;
934
935 tcp_bpf_rtt(sk);
936 }
937 tp->srtt_us = max(1U, srtt);
938 }
939
tcp_update_pacing_rate(struct sock * sk)940 static void tcp_update_pacing_rate(struct sock *sk)
941 {
942 const struct tcp_sock *tp = tcp_sk(sk);
943 u64 rate;
944
945 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
946 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
947
948 /* current rate is (cwnd * mss) / srtt
949 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
950 * In Congestion Avoidance phase, set it to 120 % the current rate.
951 *
952 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
953 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
954 * end of slow start and should slow down.
955 */
956 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
957 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
958 else
959 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
960
961 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
962
963 if (likely(tp->srtt_us))
964 do_div(rate, tp->srtt_us);
965
966 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
967 * without any lock. We want to make sure compiler wont store
968 * intermediate values in this location.
969 */
970 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
971 sk->sk_max_pacing_rate));
972 }
973
974 /* Calculate rto without backoff. This is the second half of Van Jacobson's
975 * routine referred to above.
976 */
tcp_set_rto(struct sock * sk)977 static void tcp_set_rto(struct sock *sk)
978 {
979 const struct tcp_sock *tp = tcp_sk(sk);
980 /* Old crap is replaced with new one. 8)
981 *
982 * More seriously:
983 * 1. If rtt variance happened to be less 50msec, it is hallucination.
984 * It cannot be less due to utterly erratic ACK generation made
985 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
986 * to do with delayed acks, because at cwnd>2 true delack timeout
987 * is invisible. Actually, Linux-2.4 also generates erratic
988 * ACKs in some circumstances.
989 */
990 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
991
992 /* 2. Fixups made earlier cannot be right.
993 * If we do not estimate RTO correctly without them,
994 * all the algo is pure shit and should be replaced
995 * with correct one. It is exactly, which we pretend to do.
996 */
997
998 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
999 * guarantees that rto is higher.
1000 */
1001 tcp_bound_rto(sk);
1002 }
1003
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1004 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1005 {
1006 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1007
1008 if (!cwnd)
1009 cwnd = TCP_INIT_CWND;
1010 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1011 }
1012
1013 struct tcp_sacktag_state {
1014 /* Timestamps for earliest and latest never-retransmitted segment
1015 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1016 * but congestion control should still get an accurate delay signal.
1017 */
1018 u64 first_sackt;
1019 u64 last_sackt;
1020 u32 reord;
1021 u32 sack_delivered;
1022 int flag;
1023 unsigned int mss_now;
1024 struct rate_sample *rate;
1025 };
1026
1027 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1028 * and spurious retransmission information if this DSACK is unlikely caused by
1029 * sender's action:
1030 * - DSACKed sequence range is larger than maximum receiver's window.
1031 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1032 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1033 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1034 u32 end_seq, struct tcp_sacktag_state *state)
1035 {
1036 u32 seq_len, dup_segs = 1;
1037
1038 if (!before(start_seq, end_seq))
1039 return 0;
1040
1041 seq_len = end_seq - start_seq;
1042 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1043 if (seq_len > tp->max_window)
1044 return 0;
1045 if (seq_len > tp->mss_cache)
1046 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1047 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1048 state->flag |= FLAG_DSACK_TLP;
1049
1050 tp->dsack_dups += dup_segs;
1051 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1052 if (tp->dsack_dups > tp->total_retrans)
1053 return 0;
1054
1055 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1056 /* We increase the RACK ordering window in rounds where we receive
1057 * DSACKs that may have been due to reordering causing RACK to trigger
1058 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1059 * without having seen reordering, or that match TLP probes (TLP
1060 * is timer-driven, not triggered by RACK).
1061 */
1062 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1063 tp->rack.dsack_seen = 1;
1064
1065 state->flag |= FLAG_DSACKING_ACK;
1066 /* A spurious retransmission is delivered */
1067 state->sack_delivered += dup_segs;
1068
1069 return dup_segs;
1070 }
1071
1072 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1073 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1074 * distance is approximated in full-mss packet distance ("reordering").
1075 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1076 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1077 const int ts)
1078 {
1079 struct tcp_sock *tp = tcp_sk(sk);
1080 const u32 mss = tp->mss_cache;
1081 u32 fack, metric;
1082
1083 fack = tcp_highest_sack_seq(tp);
1084 if (!before(low_seq, fack))
1085 return;
1086
1087 metric = fack - low_seq;
1088 if ((metric > tp->reordering * mss) && mss) {
1089 #if FASTRETRANS_DEBUG > 1
1090 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1091 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1092 tp->reordering,
1093 0,
1094 tp->sacked_out,
1095 tp->undo_marker ? tp->undo_retrans : 0);
1096 #endif
1097 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1098 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1099 }
1100
1101 /* This exciting event is worth to be remembered. 8) */
1102 tp->reord_seen++;
1103 NET_INC_STATS(sock_net(sk),
1104 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1105 }
1106
1107 /* This must be called before lost_out or retrans_out are updated
1108 * on a new loss, because we want to know if all skbs previously
1109 * known to be lost have already been retransmitted, indicating
1110 * that this newly lost skb is our next skb to retransmit.
1111 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1112 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1113 {
1114 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1115 (tp->retransmit_skb_hint &&
1116 before(TCP_SKB_CB(skb)->seq,
1117 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1118 tp->retransmit_skb_hint = skb;
1119 }
1120
1121 /* Sum the number of packets on the wire we have marked as lost, and
1122 * notify the congestion control module that the given skb was marked lost.
1123 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1124 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1125 {
1126 tp->lost += tcp_skb_pcount(skb);
1127 }
1128
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1129 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1130 {
1131 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1132 struct tcp_sock *tp = tcp_sk(sk);
1133
1134 if (sacked & TCPCB_SACKED_ACKED)
1135 return;
1136
1137 tcp_verify_retransmit_hint(tp, skb);
1138 if (sacked & TCPCB_LOST) {
1139 if (sacked & TCPCB_SACKED_RETRANS) {
1140 /* Account for retransmits that are lost again */
1141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1142 tp->retrans_out -= tcp_skb_pcount(skb);
1143 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1144 tcp_skb_pcount(skb));
1145 tcp_notify_skb_loss_event(tp, skb);
1146 }
1147 } else {
1148 tp->lost_out += tcp_skb_pcount(skb);
1149 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1150 tcp_notify_skb_loss_event(tp, skb);
1151 }
1152 }
1153
1154 /* This procedure tags the retransmission queue when SACKs arrive.
1155 *
1156 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1157 * Packets in queue with these bits set are counted in variables
1158 * sacked_out, retrans_out and lost_out, correspondingly.
1159 *
1160 * Valid combinations are:
1161 * Tag InFlight Description
1162 * 0 1 - orig segment is in flight.
1163 * S 0 - nothing flies, orig reached receiver.
1164 * L 0 - nothing flies, orig lost by net.
1165 * R 2 - both orig and retransmit are in flight.
1166 * L|R 1 - orig is lost, retransmit is in flight.
1167 * S|R 1 - orig reached receiver, retrans is still in flight.
1168 * (L|S|R is logically valid, it could occur when L|R is sacked,
1169 * but it is equivalent to plain S and code short-curcuits it to S.
1170 * L|S is logically invalid, it would mean -1 packet in flight 8))
1171 *
1172 * These 6 states form finite state machine, controlled by the following events:
1173 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1174 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1175 * 3. Loss detection event of two flavors:
1176 * A. Scoreboard estimator decided the packet is lost.
1177 * A'. Reno "three dupacks" marks head of queue lost.
1178 * B. SACK arrives sacking SND.NXT at the moment, when the
1179 * segment was retransmitted.
1180 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1181 *
1182 * It is pleasant to note, that state diagram turns out to be commutative,
1183 * so that we are allowed not to be bothered by order of our actions,
1184 * when multiple events arrive simultaneously. (see the function below).
1185 *
1186 * Reordering detection.
1187 * --------------------
1188 * Reordering metric is maximal distance, which a packet can be displaced
1189 * in packet stream. With SACKs we can estimate it:
1190 *
1191 * 1. SACK fills old hole and the corresponding segment was not
1192 * ever retransmitted -> reordering. Alas, we cannot use it
1193 * when segment was retransmitted.
1194 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1195 * for retransmitted and already SACKed segment -> reordering..
1196 * Both of these heuristics are not used in Loss state, when we cannot
1197 * account for retransmits accurately.
1198 *
1199 * SACK block validation.
1200 * ----------------------
1201 *
1202 * SACK block range validation checks that the received SACK block fits to
1203 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1204 * Note that SND.UNA is not included to the range though being valid because
1205 * it means that the receiver is rather inconsistent with itself reporting
1206 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1207 * perfectly valid, however, in light of RFC2018 which explicitly states
1208 * that "SACK block MUST reflect the newest segment. Even if the newest
1209 * segment is going to be discarded ...", not that it looks very clever
1210 * in case of head skb. Due to potentional receiver driven attacks, we
1211 * choose to avoid immediate execution of a walk in write queue due to
1212 * reneging and defer head skb's loss recovery to standard loss recovery
1213 * procedure that will eventually trigger (nothing forbids us doing this).
1214 *
1215 * Implements also blockage to start_seq wrap-around. Problem lies in the
1216 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1217 * there's no guarantee that it will be before snd_nxt (n). The problem
1218 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1219 * wrap (s_w):
1220 *
1221 * <- outs wnd -> <- wrapzone ->
1222 * u e n u_w e_w s n_w
1223 * | | | | | | |
1224 * |<------------+------+----- TCP seqno space --------------+---------->|
1225 * ...-- <2^31 ->| |<--------...
1226 * ...---- >2^31 ------>| |<--------...
1227 *
1228 * Current code wouldn't be vulnerable but it's better still to discard such
1229 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1230 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1231 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1232 * equal to the ideal case (infinite seqno space without wrap caused issues).
1233 *
1234 * With D-SACK the lower bound is extended to cover sequence space below
1235 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1236 * again, D-SACK block must not to go across snd_una (for the same reason as
1237 * for the normal SACK blocks, explained above). But there all simplicity
1238 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1239 * fully below undo_marker they do not affect behavior in anyway and can
1240 * therefore be safely ignored. In rare cases (which are more or less
1241 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1242 * fragmentation and packet reordering past skb's retransmission. To consider
1243 * them correctly, the acceptable range must be extended even more though
1244 * the exact amount is rather hard to quantify. However, tp->max_window can
1245 * be used as an exaggerated estimate.
1246 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1247 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1248 u32 start_seq, u32 end_seq)
1249 {
1250 /* Too far in future, or reversed (interpretation is ambiguous) */
1251 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1252 return false;
1253
1254 /* Nasty start_seq wrap-around check (see comments above) */
1255 if (!before(start_seq, tp->snd_nxt))
1256 return false;
1257
1258 /* In outstanding window? ...This is valid exit for D-SACKs too.
1259 * start_seq == snd_una is non-sensical (see comments above)
1260 */
1261 if (after(start_seq, tp->snd_una))
1262 return true;
1263
1264 if (!is_dsack || !tp->undo_marker)
1265 return false;
1266
1267 /* ...Then it's D-SACK, and must reside below snd_una completely */
1268 if (after(end_seq, tp->snd_una))
1269 return false;
1270
1271 if (!before(start_seq, tp->undo_marker))
1272 return true;
1273
1274 /* Too old */
1275 if (!after(end_seq, tp->undo_marker))
1276 return false;
1277
1278 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1279 * start_seq < undo_marker and end_seq >= undo_marker.
1280 */
1281 return !before(start_seq, end_seq - tp->max_window);
1282 }
1283
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1284 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1285 struct tcp_sack_block_wire *sp, int num_sacks,
1286 u32 prior_snd_una, struct tcp_sacktag_state *state)
1287 {
1288 struct tcp_sock *tp = tcp_sk(sk);
1289 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1290 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1291 u32 dup_segs;
1292
1293 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1295 } else if (num_sacks > 1) {
1296 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1297 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1298
1299 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1300 return false;
1301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1302 } else {
1303 return false;
1304 }
1305
1306 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1307 if (!dup_segs) { /* Skip dubious DSACK */
1308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1309 return false;
1310 }
1311
1312 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1313
1314 /* D-SACK for already forgotten data... Do dumb counting. */
1315 if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 !after(end_seq_0, prior_snd_una) &&
1317 after(end_seq_0, tp->undo_marker))
1318 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1319
1320 return true;
1321 }
1322
1323 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1324 * the incoming SACK may not exactly match but we can find smaller MSS
1325 * aligned portion of it that matches. Therefore we might need to fragment
1326 * which may fail and creates some hassle (caller must handle error case
1327 * returns).
1328 *
1329 * FIXME: this could be merged to shift decision code
1330 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1331 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1332 u32 start_seq, u32 end_seq)
1333 {
1334 int err;
1335 bool in_sack;
1336 unsigned int pkt_len;
1337 unsigned int mss;
1338
1339 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1340 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1341
1342 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1343 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1344 mss = tcp_skb_mss(skb);
1345 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1346
1347 if (!in_sack) {
1348 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1349 if (pkt_len < mss)
1350 pkt_len = mss;
1351 } else {
1352 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1353 if (pkt_len < mss)
1354 return -EINVAL;
1355 }
1356
1357 /* Round if necessary so that SACKs cover only full MSSes
1358 * and/or the remaining small portion (if present)
1359 */
1360 if (pkt_len > mss) {
1361 unsigned int new_len = (pkt_len / mss) * mss;
1362 if (!in_sack && new_len < pkt_len)
1363 new_len += mss;
1364 pkt_len = new_len;
1365 }
1366
1367 if (pkt_len >= skb->len && !in_sack)
1368 return 0;
1369
1370 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1371 pkt_len, mss, GFP_ATOMIC);
1372 if (err < 0)
1373 return err;
1374 }
1375
1376 return in_sack;
1377 }
1378
1379 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1380 static u8 tcp_sacktag_one(struct sock *sk,
1381 struct tcp_sacktag_state *state, u8 sacked,
1382 u32 start_seq, u32 end_seq,
1383 int dup_sack, int pcount,
1384 u64 xmit_time)
1385 {
1386 struct tcp_sock *tp = tcp_sk(sk);
1387
1388 /* Account D-SACK for retransmitted packet. */
1389 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1390 if (tp->undo_marker && tp->undo_retrans > 0 &&
1391 after(end_seq, tp->undo_marker))
1392 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1393 if ((sacked & TCPCB_SACKED_ACKED) &&
1394 before(start_seq, state->reord))
1395 state->reord = start_seq;
1396 }
1397
1398 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1399 if (!after(end_seq, tp->snd_una))
1400 return sacked;
1401
1402 if (!(sacked & TCPCB_SACKED_ACKED)) {
1403 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1404
1405 if (sacked & TCPCB_SACKED_RETRANS) {
1406 /* If the segment is not tagged as lost,
1407 * we do not clear RETRANS, believing
1408 * that retransmission is still in flight.
1409 */
1410 if (sacked & TCPCB_LOST) {
1411 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1412 tp->lost_out -= pcount;
1413 tp->retrans_out -= pcount;
1414 }
1415 } else {
1416 if (!(sacked & TCPCB_RETRANS)) {
1417 /* New sack for not retransmitted frame,
1418 * which was in hole. It is reordering.
1419 */
1420 if (before(start_seq,
1421 tcp_highest_sack_seq(tp)) &&
1422 before(start_seq, state->reord))
1423 state->reord = start_seq;
1424
1425 if (!after(end_seq, tp->high_seq))
1426 state->flag |= FLAG_ORIG_SACK_ACKED;
1427 if (state->first_sackt == 0)
1428 state->first_sackt = xmit_time;
1429 state->last_sackt = xmit_time;
1430 }
1431
1432 if (sacked & TCPCB_LOST) {
1433 sacked &= ~TCPCB_LOST;
1434 tp->lost_out -= pcount;
1435 }
1436 }
1437
1438 sacked |= TCPCB_SACKED_ACKED;
1439 state->flag |= FLAG_DATA_SACKED;
1440 tp->sacked_out += pcount;
1441 /* Out-of-order packets delivered */
1442 state->sack_delivered += pcount;
1443
1444 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1445 if (tp->lost_skb_hint &&
1446 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1447 tp->lost_cnt_hint += pcount;
1448 }
1449
1450 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1451 * frames and clear it. undo_retrans is decreased above, L|R frames
1452 * are accounted above as well.
1453 */
1454 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1455 sacked &= ~TCPCB_SACKED_RETRANS;
1456 tp->retrans_out -= pcount;
1457 }
1458
1459 return sacked;
1460 }
1461
1462 /* Shift newly-SACKed bytes from this skb to the immediately previous
1463 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1464 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1465 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1466 struct sk_buff *skb,
1467 struct tcp_sacktag_state *state,
1468 unsigned int pcount, int shifted, int mss,
1469 bool dup_sack)
1470 {
1471 struct tcp_sock *tp = tcp_sk(sk);
1472 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1473 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1474
1475 BUG_ON(!pcount);
1476
1477 /* Adjust counters and hints for the newly sacked sequence
1478 * range but discard the return value since prev is already
1479 * marked. We must tag the range first because the seq
1480 * advancement below implicitly advances
1481 * tcp_highest_sack_seq() when skb is highest_sack.
1482 */
1483 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1484 start_seq, end_seq, dup_sack, pcount,
1485 tcp_skb_timestamp_us(skb));
1486 tcp_rate_skb_delivered(sk, skb, state->rate);
1487
1488 if (skb == tp->lost_skb_hint)
1489 tp->lost_cnt_hint += pcount;
1490
1491 TCP_SKB_CB(prev)->end_seq += shifted;
1492 TCP_SKB_CB(skb)->seq += shifted;
1493
1494 tcp_skb_pcount_add(prev, pcount);
1495 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1496 tcp_skb_pcount_add(skb, -pcount);
1497
1498 /* When we're adding to gso_segs == 1, gso_size will be zero,
1499 * in theory this shouldn't be necessary but as long as DSACK
1500 * code can come after this skb later on it's better to keep
1501 * setting gso_size to something.
1502 */
1503 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1504 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1505
1506 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1507 if (tcp_skb_pcount(skb) <= 1)
1508 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1509
1510 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1511 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1512
1513 if (skb->len > 0) {
1514 BUG_ON(!tcp_skb_pcount(skb));
1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1516 return false;
1517 }
1518
1519 /* Whole SKB was eaten :-) */
1520
1521 if (skb == tp->retransmit_skb_hint)
1522 tp->retransmit_skb_hint = prev;
1523 if (skb == tp->lost_skb_hint) {
1524 tp->lost_skb_hint = prev;
1525 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1526 }
1527
1528 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1529 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1530 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1531 TCP_SKB_CB(prev)->end_seq++;
1532
1533 if (skb == tcp_highest_sack(sk))
1534 tcp_advance_highest_sack(sk, skb);
1535
1536 tcp_skb_collapse_tstamp(prev, skb);
1537 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1538 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1539
1540 tcp_rtx_queue_unlink_and_free(skb, sk);
1541
1542 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1543
1544 return true;
1545 }
1546
1547 /* I wish gso_size would have a bit more sane initialization than
1548 * something-or-zero which complicates things
1549 */
tcp_skb_seglen(const struct sk_buff * skb)1550 static int tcp_skb_seglen(const struct sk_buff *skb)
1551 {
1552 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1553 }
1554
1555 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1556 static int skb_can_shift(const struct sk_buff *skb)
1557 {
1558 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1559 }
1560
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1561 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1562 int pcount, int shiftlen)
1563 {
1564 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1565 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1566 * to make sure not storing more than 65535 * 8 bytes per skb,
1567 * even if current MSS is bigger.
1568 */
1569 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1570 return 0;
1571 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1572 return 0;
1573 return skb_shift(to, from, shiftlen);
1574 }
1575
1576 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1577 * skb.
1578 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1579 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1580 struct tcp_sacktag_state *state,
1581 u32 start_seq, u32 end_seq,
1582 bool dup_sack)
1583 {
1584 struct tcp_sock *tp = tcp_sk(sk);
1585 struct sk_buff *prev;
1586 int mss;
1587 int pcount = 0;
1588 int len;
1589 int in_sack;
1590
1591 /* Normally R but no L won't result in plain S */
1592 if (!dup_sack &&
1593 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1594 goto fallback;
1595 if (!skb_can_shift(skb))
1596 goto fallback;
1597 /* This frame is about to be dropped (was ACKed). */
1598 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1599 goto fallback;
1600
1601 /* Can only happen with delayed DSACK + discard craziness */
1602 prev = skb_rb_prev(skb);
1603 if (!prev)
1604 goto fallback;
1605
1606 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1607 goto fallback;
1608
1609 if (!tcp_skb_can_collapse(prev, skb))
1610 goto fallback;
1611
1612 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1613 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1614
1615 if (in_sack) {
1616 len = skb->len;
1617 pcount = tcp_skb_pcount(skb);
1618 mss = tcp_skb_seglen(skb);
1619
1620 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1621 * drop this restriction as unnecessary
1622 */
1623 if (mss != tcp_skb_seglen(prev))
1624 goto fallback;
1625 } else {
1626 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1627 goto noop;
1628 /* CHECKME: This is non-MSS split case only?, this will
1629 * cause skipped skbs due to advancing loop btw, original
1630 * has that feature too
1631 */
1632 if (tcp_skb_pcount(skb) <= 1)
1633 goto noop;
1634
1635 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1636 if (!in_sack) {
1637 /* TODO: head merge to next could be attempted here
1638 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1639 * though it might not be worth of the additional hassle
1640 *
1641 * ...we can probably just fallback to what was done
1642 * previously. We could try merging non-SACKed ones
1643 * as well but it probably isn't going to buy off
1644 * because later SACKs might again split them, and
1645 * it would make skb timestamp tracking considerably
1646 * harder problem.
1647 */
1648 goto fallback;
1649 }
1650
1651 len = end_seq - TCP_SKB_CB(skb)->seq;
1652 BUG_ON(len < 0);
1653 BUG_ON(len > skb->len);
1654
1655 /* MSS boundaries should be honoured or else pcount will
1656 * severely break even though it makes things bit trickier.
1657 * Optimize common case to avoid most of the divides
1658 */
1659 mss = tcp_skb_mss(skb);
1660
1661 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1662 * drop this restriction as unnecessary
1663 */
1664 if (mss != tcp_skb_seglen(prev))
1665 goto fallback;
1666
1667 if (len == mss) {
1668 pcount = 1;
1669 } else if (len < mss) {
1670 goto noop;
1671 } else {
1672 pcount = len / mss;
1673 len = pcount * mss;
1674 }
1675 }
1676
1677 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1678 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1679 goto fallback;
1680
1681 if (!tcp_skb_shift(prev, skb, pcount, len))
1682 goto fallback;
1683 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1684 goto out;
1685
1686 /* Hole filled allows collapsing with the next as well, this is very
1687 * useful when hole on every nth skb pattern happens
1688 */
1689 skb = skb_rb_next(prev);
1690 if (!skb)
1691 goto out;
1692
1693 if (!skb_can_shift(skb) ||
1694 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1695 (mss != tcp_skb_seglen(skb)))
1696 goto out;
1697
1698 if (!tcp_skb_can_collapse(prev, skb))
1699 goto out;
1700 len = skb->len;
1701 pcount = tcp_skb_pcount(skb);
1702 if (tcp_skb_shift(prev, skb, pcount, len))
1703 tcp_shifted_skb(sk, prev, skb, state, pcount,
1704 len, mss, 0);
1705
1706 out:
1707 return prev;
1708
1709 noop:
1710 return skb;
1711
1712 fallback:
1713 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1714 return NULL;
1715 }
1716
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1717 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1718 struct tcp_sack_block *next_dup,
1719 struct tcp_sacktag_state *state,
1720 u32 start_seq, u32 end_seq,
1721 bool dup_sack_in)
1722 {
1723 struct tcp_sock *tp = tcp_sk(sk);
1724 struct sk_buff *tmp;
1725
1726 skb_rbtree_walk_from(skb) {
1727 int in_sack = 0;
1728 bool dup_sack = dup_sack_in;
1729
1730 /* queue is in-order => we can short-circuit the walk early */
1731 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1732 break;
1733
1734 if (next_dup &&
1735 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1736 in_sack = tcp_match_skb_to_sack(sk, skb,
1737 next_dup->start_seq,
1738 next_dup->end_seq);
1739 if (in_sack > 0)
1740 dup_sack = true;
1741 }
1742
1743 /* skb reference here is a bit tricky to get right, since
1744 * shifting can eat and free both this skb and the next,
1745 * so not even _safe variant of the loop is enough.
1746 */
1747 if (in_sack <= 0) {
1748 tmp = tcp_shift_skb_data(sk, skb, state,
1749 start_seq, end_seq, dup_sack);
1750 if (tmp) {
1751 if (tmp != skb) {
1752 skb = tmp;
1753 continue;
1754 }
1755
1756 in_sack = 0;
1757 } else {
1758 in_sack = tcp_match_skb_to_sack(sk, skb,
1759 start_seq,
1760 end_seq);
1761 }
1762 }
1763
1764 if (unlikely(in_sack < 0))
1765 break;
1766
1767 if (in_sack) {
1768 TCP_SKB_CB(skb)->sacked =
1769 tcp_sacktag_one(sk,
1770 state,
1771 TCP_SKB_CB(skb)->sacked,
1772 TCP_SKB_CB(skb)->seq,
1773 TCP_SKB_CB(skb)->end_seq,
1774 dup_sack,
1775 tcp_skb_pcount(skb),
1776 tcp_skb_timestamp_us(skb));
1777 tcp_rate_skb_delivered(sk, skb, state->rate);
1778 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1779 list_del_init(&skb->tcp_tsorted_anchor);
1780
1781 if (!before(TCP_SKB_CB(skb)->seq,
1782 tcp_highest_sack_seq(tp)))
1783 tcp_advance_highest_sack(sk, skb);
1784 }
1785 }
1786 return skb;
1787 }
1788
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1789 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1790 {
1791 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1792 struct sk_buff *skb;
1793
1794 while (*p) {
1795 parent = *p;
1796 skb = rb_to_skb(parent);
1797 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1798 p = &parent->rb_left;
1799 continue;
1800 }
1801 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1802 p = &parent->rb_right;
1803 continue;
1804 }
1805 return skb;
1806 }
1807 return NULL;
1808 }
1809
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1810 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1811 u32 skip_to_seq)
1812 {
1813 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1814 return skb;
1815
1816 return tcp_sacktag_bsearch(sk, skip_to_seq);
1817 }
1818
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1819 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1820 struct sock *sk,
1821 struct tcp_sack_block *next_dup,
1822 struct tcp_sacktag_state *state,
1823 u32 skip_to_seq)
1824 {
1825 if (!next_dup)
1826 return skb;
1827
1828 if (before(next_dup->start_seq, skip_to_seq)) {
1829 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1830 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1831 next_dup->start_seq, next_dup->end_seq,
1832 1);
1833 }
1834
1835 return skb;
1836 }
1837
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1838 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1839 {
1840 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1841 }
1842
1843 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1844 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1845 u32 prior_snd_una, struct tcp_sacktag_state *state)
1846 {
1847 struct tcp_sock *tp = tcp_sk(sk);
1848 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1849 TCP_SKB_CB(ack_skb)->sacked);
1850 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1851 struct tcp_sack_block sp[TCP_NUM_SACKS];
1852 struct tcp_sack_block *cache;
1853 struct sk_buff *skb;
1854 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1855 int used_sacks;
1856 bool found_dup_sack = false;
1857 int i, j;
1858 int first_sack_index;
1859
1860 state->flag = 0;
1861 state->reord = tp->snd_nxt;
1862
1863 if (!tp->sacked_out)
1864 tcp_highest_sack_reset(sk);
1865
1866 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1867 num_sacks, prior_snd_una, state);
1868
1869 /* Eliminate too old ACKs, but take into
1870 * account more or less fresh ones, they can
1871 * contain valid SACK info.
1872 */
1873 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1874 return 0;
1875
1876 if (!tp->packets_out)
1877 goto out;
1878
1879 used_sacks = 0;
1880 first_sack_index = 0;
1881 for (i = 0; i < num_sacks; i++) {
1882 bool dup_sack = !i && found_dup_sack;
1883
1884 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1885 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1886
1887 if (!tcp_is_sackblock_valid(tp, dup_sack,
1888 sp[used_sacks].start_seq,
1889 sp[used_sacks].end_seq)) {
1890 int mib_idx;
1891
1892 if (dup_sack) {
1893 if (!tp->undo_marker)
1894 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1895 else
1896 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1897 } else {
1898 /* Don't count olds caused by ACK reordering */
1899 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1900 !after(sp[used_sacks].end_seq, tp->snd_una))
1901 continue;
1902 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1903 }
1904
1905 NET_INC_STATS(sock_net(sk), mib_idx);
1906 if (i == 0)
1907 first_sack_index = -1;
1908 continue;
1909 }
1910
1911 /* Ignore very old stuff early */
1912 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1913 if (i == 0)
1914 first_sack_index = -1;
1915 continue;
1916 }
1917
1918 used_sacks++;
1919 }
1920
1921 /* order SACK blocks to allow in order walk of the retrans queue */
1922 for (i = used_sacks - 1; i > 0; i--) {
1923 for (j = 0; j < i; j++) {
1924 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1925 swap(sp[j], sp[j + 1]);
1926
1927 /* Track where the first SACK block goes to */
1928 if (j == first_sack_index)
1929 first_sack_index = j + 1;
1930 }
1931 }
1932 }
1933
1934 state->mss_now = tcp_current_mss(sk);
1935 skb = NULL;
1936 i = 0;
1937
1938 if (!tp->sacked_out) {
1939 /* It's already past, so skip checking against it */
1940 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1941 } else {
1942 cache = tp->recv_sack_cache;
1943 /* Skip empty blocks in at head of the cache */
1944 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1945 !cache->end_seq)
1946 cache++;
1947 }
1948
1949 while (i < used_sacks) {
1950 u32 start_seq = sp[i].start_seq;
1951 u32 end_seq = sp[i].end_seq;
1952 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1953 struct tcp_sack_block *next_dup = NULL;
1954
1955 if (found_dup_sack && ((i + 1) == first_sack_index))
1956 next_dup = &sp[i + 1];
1957
1958 /* Skip too early cached blocks */
1959 while (tcp_sack_cache_ok(tp, cache) &&
1960 !before(start_seq, cache->end_seq))
1961 cache++;
1962
1963 /* Can skip some work by looking recv_sack_cache? */
1964 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1965 after(end_seq, cache->start_seq)) {
1966
1967 /* Head todo? */
1968 if (before(start_seq, cache->start_seq)) {
1969 skb = tcp_sacktag_skip(skb, sk, start_seq);
1970 skb = tcp_sacktag_walk(skb, sk, next_dup,
1971 state,
1972 start_seq,
1973 cache->start_seq,
1974 dup_sack);
1975 }
1976
1977 /* Rest of the block already fully processed? */
1978 if (!after(end_seq, cache->end_seq))
1979 goto advance_sp;
1980
1981 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1982 state,
1983 cache->end_seq);
1984
1985 /* ...tail remains todo... */
1986 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1987 /* ...but better entrypoint exists! */
1988 skb = tcp_highest_sack(sk);
1989 if (!skb)
1990 break;
1991 cache++;
1992 goto walk;
1993 }
1994
1995 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1996 /* Check overlap against next cached too (past this one already) */
1997 cache++;
1998 continue;
1999 }
2000
2001 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2002 skb = tcp_highest_sack(sk);
2003 if (!skb)
2004 break;
2005 }
2006 skb = tcp_sacktag_skip(skb, sk, start_seq);
2007
2008 walk:
2009 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2010 start_seq, end_seq, dup_sack);
2011
2012 advance_sp:
2013 i++;
2014 }
2015
2016 /* Clear the head of the cache sack blocks so we can skip it next time */
2017 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2018 tp->recv_sack_cache[i].start_seq = 0;
2019 tp->recv_sack_cache[i].end_seq = 0;
2020 }
2021 for (j = 0; j < used_sacks; j++)
2022 tp->recv_sack_cache[i++] = sp[j];
2023
2024 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2025 tcp_check_sack_reordering(sk, state->reord, 0);
2026
2027 tcp_verify_left_out(tp);
2028 out:
2029
2030 #if FASTRETRANS_DEBUG > 0
2031 WARN_ON((int)tp->sacked_out < 0);
2032 WARN_ON((int)tp->lost_out < 0);
2033 WARN_ON((int)tp->retrans_out < 0);
2034 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2035 #endif
2036 return state->flag;
2037 }
2038
2039 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2040 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2041 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2042 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2043 {
2044 u32 holes;
2045
2046 holes = max(tp->lost_out, 1U);
2047 holes = min(holes, tp->packets_out);
2048
2049 if ((tp->sacked_out + holes) > tp->packets_out) {
2050 tp->sacked_out = tp->packets_out - holes;
2051 return true;
2052 }
2053 return false;
2054 }
2055
2056 /* If we receive more dupacks than we expected counting segments
2057 * in assumption of absent reordering, interpret this as reordering.
2058 * The only another reason could be bug in receiver TCP.
2059 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2060 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2061 {
2062 struct tcp_sock *tp = tcp_sk(sk);
2063
2064 if (!tcp_limit_reno_sacked(tp))
2065 return;
2066
2067 tp->reordering = min_t(u32, tp->packets_out + addend,
2068 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2069 tp->reord_seen++;
2070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2071 }
2072
2073 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2074
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2075 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2076 {
2077 if (num_dupack) {
2078 struct tcp_sock *tp = tcp_sk(sk);
2079 u32 prior_sacked = tp->sacked_out;
2080 s32 delivered;
2081
2082 tp->sacked_out += num_dupack;
2083 tcp_check_reno_reordering(sk, 0);
2084 delivered = tp->sacked_out - prior_sacked;
2085 if (delivered > 0)
2086 tcp_count_delivered(tp, delivered, ece_ack);
2087 tcp_verify_left_out(tp);
2088 }
2089 }
2090
2091 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2092
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2093 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2094 {
2095 struct tcp_sock *tp = tcp_sk(sk);
2096
2097 if (acked > 0) {
2098 /* One ACK acked hole. The rest eat duplicate ACKs. */
2099 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2100 ece_ack);
2101 if (acked - 1 >= tp->sacked_out)
2102 tp->sacked_out = 0;
2103 else
2104 tp->sacked_out -= acked - 1;
2105 }
2106 tcp_check_reno_reordering(sk, acked);
2107 tcp_verify_left_out(tp);
2108 }
2109
tcp_reset_reno_sack(struct tcp_sock * tp)2110 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2111 {
2112 tp->sacked_out = 0;
2113 }
2114
tcp_clear_retrans(struct tcp_sock * tp)2115 void tcp_clear_retrans(struct tcp_sock *tp)
2116 {
2117 tp->retrans_out = 0;
2118 tp->lost_out = 0;
2119 tp->undo_marker = 0;
2120 tp->undo_retrans = -1;
2121 tp->sacked_out = 0;
2122 tp->rto_stamp = 0;
2123 tp->total_rto = 0;
2124 tp->total_rto_recoveries = 0;
2125 tp->total_rto_time = 0;
2126 }
2127
tcp_init_undo(struct tcp_sock * tp)2128 static inline void tcp_init_undo(struct tcp_sock *tp)
2129 {
2130 tp->undo_marker = tp->snd_una;
2131
2132 /* Retransmission still in flight may cause DSACKs later. */
2133 /* First, account for regular retransmits in flight: */
2134 tp->undo_retrans = tp->retrans_out;
2135 /* Next, account for TLP retransmits in flight: */
2136 if (tp->tlp_high_seq && tp->tlp_retrans)
2137 tp->undo_retrans++;
2138 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2139 if (!tp->undo_retrans)
2140 tp->undo_retrans = -1;
2141 }
2142
tcp_is_rack(const struct sock * sk)2143 static bool tcp_is_rack(const struct sock *sk)
2144 {
2145 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2146 TCP_RACK_LOSS_DETECTION;
2147 }
2148
2149 /* If we detect SACK reneging, forget all SACK information
2150 * and reset tags completely, otherwise preserve SACKs. If receiver
2151 * dropped its ofo queue, we will know this due to reneging detection.
2152 */
tcp_timeout_mark_lost(struct sock * sk)2153 static void tcp_timeout_mark_lost(struct sock *sk)
2154 {
2155 struct tcp_sock *tp = tcp_sk(sk);
2156 struct sk_buff *skb, *head;
2157 bool is_reneg; /* is receiver reneging on SACKs? */
2158
2159 head = tcp_rtx_queue_head(sk);
2160 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2161 if (is_reneg) {
2162 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2163 tp->sacked_out = 0;
2164 /* Mark SACK reneging until we recover from this loss event. */
2165 tp->is_sack_reneg = 1;
2166 } else if (tcp_is_reno(tp)) {
2167 tcp_reset_reno_sack(tp);
2168 }
2169
2170 skb = head;
2171 skb_rbtree_walk_from(skb) {
2172 if (is_reneg)
2173 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2174 else if (tcp_is_rack(sk) && skb != head &&
2175 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2176 continue; /* Don't mark recently sent ones lost yet */
2177 tcp_mark_skb_lost(sk, skb);
2178 }
2179 tcp_verify_left_out(tp);
2180 tcp_clear_all_retrans_hints(tp);
2181 }
2182
2183 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2184 void tcp_enter_loss(struct sock *sk)
2185 {
2186 const struct inet_connection_sock *icsk = inet_csk(sk);
2187 struct tcp_sock *tp = tcp_sk(sk);
2188 struct net *net = sock_net(sk);
2189 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2190 u8 reordering;
2191
2192 tcp_timeout_mark_lost(sk);
2193
2194 /* Reduce ssthresh if it has not yet been made inside this window. */
2195 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2196 !after(tp->high_seq, tp->snd_una) ||
2197 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2198 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2199 tp->prior_cwnd = tcp_snd_cwnd(tp);
2200 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2201 tcp_ca_event(sk, CA_EVENT_LOSS);
2202 tcp_init_undo(tp);
2203 }
2204 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2205 tp->snd_cwnd_cnt = 0;
2206 tp->snd_cwnd_stamp = tcp_jiffies32;
2207
2208 /* Timeout in disordered state after receiving substantial DUPACKs
2209 * suggests that the degree of reordering is over-estimated.
2210 */
2211 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2212 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2213 tp->sacked_out >= reordering)
2214 tp->reordering = min_t(unsigned int, tp->reordering,
2215 reordering);
2216
2217 tcp_set_ca_state(sk, TCP_CA_Loss);
2218 tp->high_seq = tp->snd_nxt;
2219 tp->tlp_high_seq = 0;
2220 tcp_ecn_queue_cwr(tp);
2221
2222 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2223 * loss recovery is underway except recurring timeout(s) on
2224 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2225 */
2226 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2227 (new_recovery || icsk->icsk_retransmits) &&
2228 !inet_csk(sk)->icsk_mtup.probe_size;
2229 }
2230
2231 /* If ACK arrived pointing to a remembered SACK, it means that our
2232 * remembered SACKs do not reflect real state of receiver i.e.
2233 * receiver _host_ is heavily congested (or buggy).
2234 *
2235 * To avoid big spurious retransmission bursts due to transient SACK
2236 * scoreboard oddities that look like reneging, we give the receiver a
2237 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2238 * restore sanity to the SACK scoreboard. If the apparent reneging
2239 * persists until this RTO then we'll clear the SACK scoreboard.
2240 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2241 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2242 {
2243 if (*ack_flag & FLAG_SACK_RENEGING &&
2244 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2247 msecs_to_jiffies(10));
2248
2249 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2250 delay, TCP_RTO_MAX);
2251 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2252 return true;
2253 }
2254 return false;
2255 }
2256
2257 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2258 * counter when SACK is enabled (without SACK, sacked_out is used for
2259 * that purpose).
2260 *
2261 * With reordering, holes may still be in flight, so RFC3517 recovery
2262 * uses pure sacked_out (total number of SACKed segments) even though
2263 * it violates the RFC that uses duplicate ACKs, often these are equal
2264 * but when e.g. out-of-window ACKs or packet duplication occurs,
2265 * they differ. Since neither occurs due to loss, TCP should really
2266 * ignore them.
2267 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2268 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2269 {
2270 return tp->sacked_out + 1;
2271 }
2272
2273 /* Linux NewReno/SACK/ECN state machine.
2274 * --------------------------------------
2275 *
2276 * "Open" Normal state, no dubious events, fast path.
2277 * "Disorder" In all the respects it is "Open",
2278 * but requires a bit more attention. It is entered when
2279 * we see some SACKs or dupacks. It is split of "Open"
2280 * mainly to move some processing from fast path to slow one.
2281 * "CWR" CWND was reduced due to some Congestion Notification event.
2282 * It can be ECN, ICMP source quench, local device congestion.
2283 * "Recovery" CWND was reduced, we are fast-retransmitting.
2284 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2285 *
2286 * tcp_fastretrans_alert() is entered:
2287 * - each incoming ACK, if state is not "Open"
2288 * - when arrived ACK is unusual, namely:
2289 * * SACK
2290 * * Duplicate ACK.
2291 * * ECN ECE.
2292 *
2293 * Counting packets in flight is pretty simple.
2294 *
2295 * in_flight = packets_out - left_out + retrans_out
2296 *
2297 * packets_out is SND.NXT-SND.UNA counted in packets.
2298 *
2299 * retrans_out is number of retransmitted segments.
2300 *
2301 * left_out is number of segments left network, but not ACKed yet.
2302 *
2303 * left_out = sacked_out + lost_out
2304 *
2305 * sacked_out: Packets, which arrived to receiver out of order
2306 * and hence not ACKed. With SACKs this number is simply
2307 * amount of SACKed data. Even without SACKs
2308 * it is easy to give pretty reliable estimate of this number,
2309 * counting duplicate ACKs.
2310 *
2311 * lost_out: Packets lost by network. TCP has no explicit
2312 * "loss notification" feedback from network (for now).
2313 * It means that this number can be only _guessed_.
2314 * Actually, it is the heuristics to predict lossage that
2315 * distinguishes different algorithms.
2316 *
2317 * F.e. after RTO, when all the queue is considered as lost,
2318 * lost_out = packets_out and in_flight = retrans_out.
2319 *
2320 * Essentially, we have now a few algorithms detecting
2321 * lost packets.
2322 *
2323 * If the receiver supports SACK:
2324 *
2325 * RFC6675/3517: It is the conventional algorithm. A packet is
2326 * considered lost if the number of higher sequence packets
2327 * SACKed is greater than or equal the DUPACK thoreshold
2328 * (reordering). This is implemented in tcp_mark_head_lost and
2329 * tcp_update_scoreboard.
2330 *
2331 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2332 * (2017-) that checks timing instead of counting DUPACKs.
2333 * Essentially a packet is considered lost if it's not S/ACKed
2334 * after RTT + reordering_window, where both metrics are
2335 * dynamically measured and adjusted. This is implemented in
2336 * tcp_rack_mark_lost.
2337 *
2338 * If the receiver does not support SACK:
2339 *
2340 * NewReno (RFC6582): in Recovery we assume that one segment
2341 * is lost (classic Reno). While we are in Recovery and
2342 * a partial ACK arrives, we assume that one more packet
2343 * is lost (NewReno). This heuristics are the same in NewReno
2344 * and SACK.
2345 *
2346 * Really tricky (and requiring careful tuning) part of algorithm
2347 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2348 * The first determines the moment _when_ we should reduce CWND and,
2349 * hence, slow down forward transmission. In fact, it determines the moment
2350 * when we decide that hole is caused by loss, rather than by a reorder.
2351 *
2352 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2353 * holes, caused by lost packets.
2354 *
2355 * And the most logically complicated part of algorithm is undo
2356 * heuristics. We detect false retransmits due to both too early
2357 * fast retransmit (reordering) and underestimated RTO, analyzing
2358 * timestamps and D-SACKs. When we detect that some segments were
2359 * retransmitted by mistake and CWND reduction was wrong, we undo
2360 * window reduction and abort recovery phase. This logic is hidden
2361 * inside several functions named tcp_try_undo_<something>.
2362 */
2363
2364 /* This function decides, when we should leave Disordered state
2365 * and enter Recovery phase, reducing congestion window.
2366 *
2367 * Main question: may we further continue forward transmission
2368 * with the same cwnd?
2369 */
tcp_time_to_recover(struct sock * sk,int flag)2370 static bool tcp_time_to_recover(struct sock *sk, int flag)
2371 {
2372 struct tcp_sock *tp = tcp_sk(sk);
2373
2374 /* Trick#1: The loss is proven. */
2375 if (tp->lost_out)
2376 return true;
2377
2378 /* Not-A-Trick#2 : Classic rule... */
2379 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2380 return true;
2381
2382 return false;
2383 }
2384
2385 /* Detect loss in event "A" above by marking head of queue up as lost.
2386 * For RFC3517 SACK, a segment is considered lost if it
2387 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2388 * the maximum SACKed segments to pass before reaching this limit.
2389 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2390 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2391 {
2392 struct tcp_sock *tp = tcp_sk(sk);
2393 struct sk_buff *skb;
2394 int cnt;
2395 /* Use SACK to deduce losses of new sequences sent during recovery */
2396 const u32 loss_high = tp->snd_nxt;
2397
2398 WARN_ON(packets > tp->packets_out);
2399 skb = tp->lost_skb_hint;
2400 if (skb) {
2401 /* Head already handled? */
2402 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2403 return;
2404 cnt = tp->lost_cnt_hint;
2405 } else {
2406 skb = tcp_rtx_queue_head(sk);
2407 cnt = 0;
2408 }
2409
2410 skb_rbtree_walk_from(skb) {
2411 /* TODO: do this better */
2412 /* this is not the most efficient way to do this... */
2413 tp->lost_skb_hint = skb;
2414 tp->lost_cnt_hint = cnt;
2415
2416 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2417 break;
2418
2419 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2420 cnt += tcp_skb_pcount(skb);
2421
2422 if (cnt > packets)
2423 break;
2424
2425 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2426 tcp_mark_skb_lost(sk, skb);
2427
2428 if (mark_head)
2429 break;
2430 }
2431 tcp_verify_left_out(tp);
2432 }
2433
2434 /* Account newly detected lost packet(s) */
2435
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2436 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2437 {
2438 struct tcp_sock *tp = tcp_sk(sk);
2439
2440 if (tcp_is_sack(tp)) {
2441 int sacked_upto = tp->sacked_out - tp->reordering;
2442 if (sacked_upto >= 0)
2443 tcp_mark_head_lost(sk, sacked_upto, 0);
2444 else if (fast_rexmit)
2445 tcp_mark_head_lost(sk, 1, 1);
2446 }
2447 }
2448
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2449 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2450 {
2451 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2452 before(tp->rx_opt.rcv_tsecr, when);
2453 }
2454
2455 /* skb is spurious retransmitted if the returned timestamp echo
2456 * reply is prior to the skb transmission time
2457 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2458 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2459 const struct sk_buff *skb)
2460 {
2461 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2462 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2463 }
2464
2465 /* Nothing was retransmitted or returned timestamp is less
2466 * than timestamp of the first retransmission.
2467 */
tcp_packet_delayed(const struct tcp_sock * tp)2468 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2469 {
2470 const struct sock *sk = (const struct sock *)tp;
2471
2472 if (tp->retrans_stamp &&
2473 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2474 return true; /* got echoed TS before first retransmission */
2475
2476 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2477 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2478 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2479 * retrans_stamp even if we had retransmitted the SYN.
2480 */
2481 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2482 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2483 return true; /* nothing was retransmitted */
2484
2485 return false;
2486 }
2487
2488 /* Undo procedures. */
2489
2490 /* We can clear retrans_stamp when there are no retransmissions in the
2491 * window. It would seem that it is trivially available for us in
2492 * tp->retrans_out, however, that kind of assumptions doesn't consider
2493 * what will happen if errors occur when sending retransmission for the
2494 * second time. ...It could the that such segment has only
2495 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2496 * the head skb is enough except for some reneging corner cases that
2497 * are not worth the effort.
2498 *
2499 * Main reason for all this complexity is the fact that connection dying
2500 * time now depends on the validity of the retrans_stamp, in particular,
2501 * that successive retransmissions of a segment must not advance
2502 * retrans_stamp under any conditions.
2503 */
tcp_any_retrans_done(const struct sock * sk)2504 static bool tcp_any_retrans_done(const struct sock *sk)
2505 {
2506 const struct tcp_sock *tp = tcp_sk(sk);
2507 struct sk_buff *skb;
2508
2509 if (tp->retrans_out)
2510 return true;
2511
2512 skb = tcp_rtx_queue_head(sk);
2513 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2514 return true;
2515
2516 return false;
2517 }
2518
2519 /* If loss recovery is finished and there are no retransmits out in the
2520 * network, then we clear retrans_stamp so that upon the next loss recovery
2521 * retransmits_timed_out() and timestamp-undo are using the correct value.
2522 */
tcp_retrans_stamp_cleanup(struct sock * sk)2523 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2524 {
2525 if (!tcp_any_retrans_done(sk))
2526 tcp_sk(sk)->retrans_stamp = 0;
2527 }
2528
DBGUNDO(struct sock * sk,const char * msg)2529 static void DBGUNDO(struct sock *sk, const char *msg)
2530 {
2531 #if FASTRETRANS_DEBUG > 1
2532 struct tcp_sock *tp = tcp_sk(sk);
2533 struct inet_sock *inet = inet_sk(sk);
2534
2535 if (sk->sk_family == AF_INET) {
2536 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2537 msg,
2538 &inet->inet_daddr, ntohs(inet->inet_dport),
2539 tcp_snd_cwnd(tp), tcp_left_out(tp),
2540 tp->snd_ssthresh, tp->prior_ssthresh,
2541 tp->packets_out);
2542 }
2543 #if IS_ENABLED(CONFIG_IPV6)
2544 else if (sk->sk_family == AF_INET6) {
2545 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2546 msg,
2547 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2548 tcp_snd_cwnd(tp), tcp_left_out(tp),
2549 tp->snd_ssthresh, tp->prior_ssthresh,
2550 tp->packets_out);
2551 }
2552 #endif
2553 #endif
2554 }
2555
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2556 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 if (unmark_loss) {
2561 struct sk_buff *skb;
2562
2563 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2564 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2565 }
2566 tp->lost_out = 0;
2567 tcp_clear_all_retrans_hints(tp);
2568 }
2569
2570 if (tp->prior_ssthresh) {
2571 const struct inet_connection_sock *icsk = inet_csk(sk);
2572
2573 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2574
2575 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2576 tp->snd_ssthresh = tp->prior_ssthresh;
2577 tcp_ecn_withdraw_cwr(tp);
2578 }
2579 }
2580 tp->snd_cwnd_stamp = tcp_jiffies32;
2581 tp->undo_marker = 0;
2582 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2583 }
2584
tcp_may_undo(const struct tcp_sock * tp)2585 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2586 {
2587 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2588 }
2589
tcp_is_non_sack_preventing_reopen(struct sock * sk)2590 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2591 {
2592 struct tcp_sock *tp = tcp_sk(sk);
2593
2594 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2595 /* Hold old state until something *above* high_seq
2596 * is ACKed. For Reno it is MUST to prevent false
2597 * fast retransmits (RFC2582). SACK TCP is safe. */
2598 if (!tcp_any_retrans_done(sk))
2599 tp->retrans_stamp = 0;
2600 return true;
2601 }
2602 return false;
2603 }
2604
2605 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2606 static bool tcp_try_undo_recovery(struct sock *sk)
2607 {
2608 struct tcp_sock *tp = tcp_sk(sk);
2609
2610 if (tcp_may_undo(tp)) {
2611 int mib_idx;
2612
2613 /* Happy end! We did not retransmit anything
2614 * or our original transmission succeeded.
2615 */
2616 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2617 tcp_undo_cwnd_reduction(sk, false);
2618 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2619 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2620 else
2621 mib_idx = LINUX_MIB_TCPFULLUNDO;
2622
2623 NET_INC_STATS(sock_net(sk), mib_idx);
2624 } else if (tp->rack.reo_wnd_persist) {
2625 tp->rack.reo_wnd_persist--;
2626 }
2627 if (tcp_is_non_sack_preventing_reopen(sk))
2628 return true;
2629 tcp_set_ca_state(sk, TCP_CA_Open);
2630 tp->is_sack_reneg = 0;
2631 return false;
2632 }
2633
2634 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2635 static bool tcp_try_undo_dsack(struct sock *sk)
2636 {
2637 struct tcp_sock *tp = tcp_sk(sk);
2638
2639 if (tp->undo_marker && !tp->undo_retrans) {
2640 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2641 tp->rack.reo_wnd_persist + 1);
2642 DBGUNDO(sk, "D-SACK");
2643 tcp_undo_cwnd_reduction(sk, false);
2644 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2645 return true;
2646 }
2647 return false;
2648 }
2649
2650 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2651 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2652 {
2653 struct tcp_sock *tp = tcp_sk(sk);
2654
2655 if (frto_undo || tcp_may_undo(tp)) {
2656 tcp_undo_cwnd_reduction(sk, true);
2657
2658 DBGUNDO(sk, "partial loss");
2659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2660 if (frto_undo)
2661 NET_INC_STATS(sock_net(sk),
2662 LINUX_MIB_TCPSPURIOUSRTOS);
2663 inet_csk(sk)->icsk_retransmits = 0;
2664 if (tcp_is_non_sack_preventing_reopen(sk))
2665 return true;
2666 if (frto_undo || tcp_is_sack(tp)) {
2667 tcp_set_ca_state(sk, TCP_CA_Open);
2668 tp->is_sack_reneg = 0;
2669 }
2670 return true;
2671 }
2672 return false;
2673 }
2674
2675 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2676 * It computes the number of packets to send (sndcnt) based on packets newly
2677 * delivered:
2678 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2679 * cwnd reductions across a full RTT.
2680 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2681 * But when SND_UNA is acked without further losses,
2682 * slow starts cwnd up to ssthresh to speed up the recovery.
2683 */
tcp_init_cwnd_reduction(struct sock * sk)2684 static void tcp_init_cwnd_reduction(struct sock *sk)
2685 {
2686 struct tcp_sock *tp = tcp_sk(sk);
2687
2688 tp->high_seq = tp->snd_nxt;
2689 tp->tlp_high_seq = 0;
2690 tp->snd_cwnd_cnt = 0;
2691 tp->prior_cwnd = tcp_snd_cwnd(tp);
2692 tp->prr_delivered = 0;
2693 tp->prr_out = 0;
2694 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2695 tcp_ecn_queue_cwr(tp);
2696 }
2697
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2698 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2699 {
2700 struct tcp_sock *tp = tcp_sk(sk);
2701 int sndcnt = 0;
2702 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2703
2704 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2705 return;
2706
2707 tp->prr_delivered += newly_acked_sacked;
2708 if (delta < 0) {
2709 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2710 tp->prior_cwnd - 1;
2711 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2712 } else {
2713 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2714 newly_acked_sacked);
2715 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2716 sndcnt++;
2717 sndcnt = min(delta, sndcnt);
2718 }
2719 /* Force a fast retransmit upon entering fast recovery */
2720 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2721 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2722 }
2723
tcp_end_cwnd_reduction(struct sock * sk)2724 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2725 {
2726 struct tcp_sock *tp = tcp_sk(sk);
2727
2728 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2729 return;
2730
2731 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2732 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2733 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2734 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2735 tp->snd_cwnd_stamp = tcp_jiffies32;
2736 }
2737 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2738 }
2739
2740 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2741 void tcp_enter_cwr(struct sock *sk)
2742 {
2743 struct tcp_sock *tp = tcp_sk(sk);
2744
2745 tp->prior_ssthresh = 0;
2746 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2747 tp->undo_marker = 0;
2748 tcp_init_cwnd_reduction(sk);
2749 tcp_set_ca_state(sk, TCP_CA_CWR);
2750 }
2751 }
2752 EXPORT_SYMBOL(tcp_enter_cwr);
2753
tcp_try_keep_open(struct sock * sk)2754 static void tcp_try_keep_open(struct sock *sk)
2755 {
2756 struct tcp_sock *tp = tcp_sk(sk);
2757 int state = TCP_CA_Open;
2758
2759 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2760 state = TCP_CA_Disorder;
2761
2762 if (inet_csk(sk)->icsk_ca_state != state) {
2763 tcp_set_ca_state(sk, state);
2764 tp->high_seq = tp->snd_nxt;
2765 }
2766 }
2767
tcp_try_to_open(struct sock * sk,int flag)2768 static void tcp_try_to_open(struct sock *sk, int flag)
2769 {
2770 struct tcp_sock *tp = tcp_sk(sk);
2771
2772 tcp_verify_left_out(tp);
2773
2774 if (!tcp_any_retrans_done(sk))
2775 tp->retrans_stamp = 0;
2776
2777 if (flag & FLAG_ECE)
2778 tcp_enter_cwr(sk);
2779
2780 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2781 tcp_try_keep_open(sk);
2782 }
2783 }
2784
tcp_mtup_probe_failed(struct sock * sk)2785 static void tcp_mtup_probe_failed(struct sock *sk)
2786 {
2787 struct inet_connection_sock *icsk = inet_csk(sk);
2788
2789 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2790 icsk->icsk_mtup.probe_size = 0;
2791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2792 }
2793
tcp_mtup_probe_success(struct sock * sk)2794 static void tcp_mtup_probe_success(struct sock *sk)
2795 {
2796 struct tcp_sock *tp = tcp_sk(sk);
2797 struct inet_connection_sock *icsk = inet_csk(sk);
2798 u64 val;
2799
2800 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2801
2802 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2803 do_div(val, icsk->icsk_mtup.probe_size);
2804 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2805 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2806
2807 tp->snd_cwnd_cnt = 0;
2808 tp->snd_cwnd_stamp = tcp_jiffies32;
2809 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2810
2811 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2812 icsk->icsk_mtup.probe_size = 0;
2813 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2815 }
2816
2817 /* Sometimes we deduce that packets have been dropped due to reasons other than
2818 * congestion, like path MTU reductions or failed client TFO attempts. In these
2819 * cases we call this function to retransmit as many packets as cwnd allows,
2820 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2821 * non-zero value (and may do so in a later calling context due to TSQ), we
2822 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2823 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2824 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2825 * prematurely).
2826 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2827 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2828 {
2829 const struct inet_connection_sock *icsk = inet_csk(sk);
2830 struct tcp_sock *tp = tcp_sk(sk);
2831
2832 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2833 tp->high_seq = tp->snd_nxt;
2834 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2835 tp->prior_ssthresh = 0;
2836 tp->undo_marker = 0;
2837 tcp_set_ca_state(sk, TCP_CA_Loss);
2838 }
2839 tcp_xmit_retransmit_queue(sk);
2840 }
2841
2842 /* Do a simple retransmit without using the backoff mechanisms in
2843 * tcp_timer. This is used for path mtu discovery.
2844 * The socket is already locked here.
2845 */
tcp_simple_retransmit(struct sock * sk)2846 void tcp_simple_retransmit(struct sock *sk)
2847 {
2848 struct tcp_sock *tp = tcp_sk(sk);
2849 struct sk_buff *skb;
2850 int mss;
2851
2852 /* A fastopen SYN request is stored as two separate packets within
2853 * the retransmit queue, this is done by tcp_send_syn_data().
2854 * As a result simply checking the MSS of the frames in the queue
2855 * will not work for the SYN packet.
2856 *
2857 * Us being here is an indication of a path MTU issue so we can
2858 * assume that the fastopen SYN was lost and just mark all the
2859 * frames in the retransmit queue as lost. We will use an MSS of
2860 * -1 to mark all frames as lost, otherwise compute the current MSS.
2861 */
2862 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2863 mss = -1;
2864 else
2865 mss = tcp_current_mss(sk);
2866
2867 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2868 if (tcp_skb_seglen(skb) > mss)
2869 tcp_mark_skb_lost(sk, skb);
2870 }
2871
2872 tcp_clear_retrans_hints_partial(tp);
2873
2874 if (!tp->lost_out)
2875 return;
2876
2877 if (tcp_is_reno(tp))
2878 tcp_limit_reno_sacked(tp);
2879
2880 tcp_verify_left_out(tp);
2881
2882 /* Don't muck with the congestion window here.
2883 * Reason is that we do not increase amount of _data_
2884 * in network, but units changed and effective
2885 * cwnd/ssthresh really reduced now.
2886 */
2887 tcp_non_congestion_loss_retransmit(sk);
2888 }
2889 EXPORT_SYMBOL(tcp_simple_retransmit);
2890
tcp_enter_recovery(struct sock * sk,bool ece_ack)2891 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2892 {
2893 struct tcp_sock *tp = tcp_sk(sk);
2894 int mib_idx;
2895
2896 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2897 tcp_retrans_stamp_cleanup(sk);
2898
2899 if (tcp_is_reno(tp))
2900 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2901 else
2902 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2903
2904 NET_INC_STATS(sock_net(sk), mib_idx);
2905
2906 tp->prior_ssthresh = 0;
2907 tcp_init_undo(tp);
2908
2909 if (!tcp_in_cwnd_reduction(sk)) {
2910 if (!ece_ack)
2911 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2912 tcp_init_cwnd_reduction(sk);
2913 }
2914 tcp_set_ca_state(sk, TCP_CA_Recovery);
2915 }
2916
tcp_update_rto_time(struct tcp_sock * tp)2917 static void tcp_update_rto_time(struct tcp_sock *tp)
2918 {
2919 if (tp->rto_stamp) {
2920 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2921 tp->rto_stamp = 0;
2922 }
2923 }
2924
2925 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2926 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2927 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2928 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2929 int *rexmit)
2930 {
2931 struct tcp_sock *tp = tcp_sk(sk);
2932 bool recovered = !before(tp->snd_una, tp->high_seq);
2933
2934 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2935 tcp_try_undo_loss(sk, false))
2936 return;
2937
2938 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2939 /* Step 3.b. A timeout is spurious if not all data are
2940 * lost, i.e., never-retransmitted data are (s)acked.
2941 */
2942 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2943 tcp_try_undo_loss(sk, true))
2944 return;
2945
2946 if (after(tp->snd_nxt, tp->high_seq)) {
2947 if (flag & FLAG_DATA_SACKED || num_dupack)
2948 tp->frto = 0; /* Step 3.a. loss was real */
2949 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2950 tp->high_seq = tp->snd_nxt;
2951 /* Step 2.b. Try send new data (but deferred until cwnd
2952 * is updated in tcp_ack()). Otherwise fall back to
2953 * the conventional recovery.
2954 */
2955 if (!tcp_write_queue_empty(sk) &&
2956 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2957 *rexmit = REXMIT_NEW;
2958 return;
2959 }
2960 tp->frto = 0;
2961 }
2962 }
2963
2964 if (recovered) {
2965 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2966 tcp_try_undo_recovery(sk);
2967 return;
2968 }
2969 if (tcp_is_reno(tp)) {
2970 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2971 * delivered. Lower inflight to clock out (re)transmissions.
2972 */
2973 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2974 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2975 else if (flag & FLAG_SND_UNA_ADVANCED)
2976 tcp_reset_reno_sack(tp);
2977 }
2978 *rexmit = REXMIT_LOST;
2979 }
2980
tcp_force_fast_retransmit(struct sock * sk)2981 static bool tcp_force_fast_retransmit(struct sock *sk)
2982 {
2983 struct tcp_sock *tp = tcp_sk(sk);
2984
2985 return after(tcp_highest_sack_seq(tp),
2986 tp->snd_una + tp->reordering * tp->mss_cache);
2987 }
2988
2989 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2990 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2991 bool *do_lost)
2992 {
2993 struct tcp_sock *tp = tcp_sk(sk);
2994
2995 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2996 /* Plain luck! Hole if filled with delayed
2997 * packet, rather than with a retransmit. Check reordering.
2998 */
2999 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3000
3001 /* We are getting evidence that the reordering degree is higher
3002 * than we realized. If there are no retransmits out then we
3003 * can undo. Otherwise we clock out new packets but do not
3004 * mark more packets lost or retransmit more.
3005 */
3006 if (tp->retrans_out)
3007 return true;
3008
3009 if (!tcp_any_retrans_done(sk))
3010 tp->retrans_stamp = 0;
3011
3012 DBGUNDO(sk, "partial recovery");
3013 tcp_undo_cwnd_reduction(sk, true);
3014 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3015 tcp_try_keep_open(sk);
3016 } else {
3017 /* Partial ACK arrived. Force fast retransmit. */
3018 *do_lost = tcp_force_fast_retransmit(sk);
3019 }
3020 return false;
3021 }
3022
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3023 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3024 {
3025 struct tcp_sock *tp = tcp_sk(sk);
3026
3027 if (tcp_rtx_queue_empty(sk))
3028 return;
3029
3030 if (unlikely(tcp_is_reno(tp))) {
3031 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3032 } else if (tcp_is_rack(sk)) {
3033 u32 prior_retrans = tp->retrans_out;
3034
3035 if (tcp_rack_mark_lost(sk))
3036 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3037 if (prior_retrans > tp->retrans_out)
3038 *ack_flag |= FLAG_LOST_RETRANS;
3039 }
3040 }
3041
3042 /* Process an event, which can update packets-in-flight not trivially.
3043 * Main goal of this function is to calculate new estimate for left_out,
3044 * taking into account both packets sitting in receiver's buffer and
3045 * packets lost by network.
3046 *
3047 * Besides that it updates the congestion state when packet loss or ECN
3048 * is detected. But it does not reduce the cwnd, it is done by the
3049 * congestion control later.
3050 *
3051 * It does _not_ decide what to send, it is made in function
3052 * tcp_xmit_retransmit_queue().
3053 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3054 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3055 int num_dupack, int *ack_flag, int *rexmit)
3056 {
3057 struct inet_connection_sock *icsk = inet_csk(sk);
3058 struct tcp_sock *tp = tcp_sk(sk);
3059 int fast_rexmit = 0, flag = *ack_flag;
3060 bool ece_ack = flag & FLAG_ECE;
3061 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3062 tcp_force_fast_retransmit(sk));
3063
3064 if (!tp->packets_out && tp->sacked_out)
3065 tp->sacked_out = 0;
3066
3067 /* Now state machine starts.
3068 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3069 if (ece_ack)
3070 tp->prior_ssthresh = 0;
3071
3072 /* B. In all the states check for reneging SACKs. */
3073 if (tcp_check_sack_reneging(sk, ack_flag))
3074 return;
3075
3076 /* C. Check consistency of the current state. */
3077 tcp_verify_left_out(tp);
3078
3079 /* D. Check state exit conditions. State can be terminated
3080 * when high_seq is ACKed. */
3081 if (icsk->icsk_ca_state == TCP_CA_Open) {
3082 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3083 tp->retrans_stamp = 0;
3084 } else if (!before(tp->snd_una, tp->high_seq)) {
3085 switch (icsk->icsk_ca_state) {
3086 case TCP_CA_CWR:
3087 /* CWR is to be held something *above* high_seq
3088 * is ACKed for CWR bit to reach receiver. */
3089 if (tp->snd_una != tp->high_seq) {
3090 tcp_end_cwnd_reduction(sk);
3091 tcp_set_ca_state(sk, TCP_CA_Open);
3092 }
3093 break;
3094
3095 case TCP_CA_Recovery:
3096 if (tcp_is_reno(tp))
3097 tcp_reset_reno_sack(tp);
3098 if (tcp_try_undo_recovery(sk))
3099 return;
3100 tcp_end_cwnd_reduction(sk);
3101 break;
3102 }
3103 }
3104
3105 /* E. Process state. */
3106 switch (icsk->icsk_ca_state) {
3107 case TCP_CA_Recovery:
3108 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3109 if (tcp_is_reno(tp))
3110 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3111 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3112 return;
3113
3114 if (tcp_try_undo_dsack(sk))
3115 tcp_try_to_open(sk, flag);
3116
3117 tcp_identify_packet_loss(sk, ack_flag);
3118 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3119 if (!tcp_time_to_recover(sk, flag))
3120 return;
3121 /* Undo reverts the recovery state. If loss is evident,
3122 * starts a new recovery (e.g. reordering then loss);
3123 */
3124 tcp_enter_recovery(sk, ece_ack);
3125 }
3126 break;
3127 case TCP_CA_Loss:
3128 tcp_process_loss(sk, flag, num_dupack, rexmit);
3129 if (icsk->icsk_ca_state != TCP_CA_Loss)
3130 tcp_update_rto_time(tp);
3131 tcp_identify_packet_loss(sk, ack_flag);
3132 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3133 (*ack_flag & FLAG_LOST_RETRANS)))
3134 return;
3135 /* Change state if cwnd is undone or retransmits are lost */
3136 fallthrough;
3137 default:
3138 if (tcp_is_reno(tp)) {
3139 if (flag & FLAG_SND_UNA_ADVANCED)
3140 tcp_reset_reno_sack(tp);
3141 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3142 }
3143
3144 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3145 tcp_try_undo_dsack(sk);
3146
3147 tcp_identify_packet_loss(sk, ack_flag);
3148 if (!tcp_time_to_recover(sk, flag)) {
3149 tcp_try_to_open(sk, flag);
3150 return;
3151 }
3152
3153 /* MTU probe failure: don't reduce cwnd */
3154 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3155 icsk->icsk_mtup.probe_size &&
3156 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3157 tcp_mtup_probe_failed(sk);
3158 /* Restores the reduction we did in tcp_mtup_probe() */
3159 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3160 tcp_simple_retransmit(sk);
3161 return;
3162 }
3163
3164 /* Otherwise enter Recovery state */
3165 tcp_enter_recovery(sk, ece_ack);
3166 fast_rexmit = 1;
3167 }
3168
3169 if (!tcp_is_rack(sk) && do_lost)
3170 tcp_update_scoreboard(sk, fast_rexmit);
3171 *rexmit = REXMIT_LOST;
3172 }
3173
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3174 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3175 {
3176 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3177 struct tcp_sock *tp = tcp_sk(sk);
3178
3179 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3180 /* If the remote keeps returning delayed ACKs, eventually
3181 * the min filter would pick it up and overestimate the
3182 * prop. delay when it expires. Skip suspected delayed ACKs.
3183 */
3184 return;
3185 }
3186 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3187 rtt_us ? : jiffies_to_usecs(1));
3188 }
3189
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3190 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3191 long seq_rtt_us, long sack_rtt_us,
3192 long ca_rtt_us, struct rate_sample *rs)
3193 {
3194 const struct tcp_sock *tp = tcp_sk(sk);
3195
3196 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3197 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3198 * Karn's algorithm forbids taking RTT if some retransmitted data
3199 * is acked (RFC6298).
3200 */
3201 if (seq_rtt_us < 0)
3202 seq_rtt_us = sack_rtt_us;
3203
3204 /* RTTM Rule: A TSecr value received in a segment is used to
3205 * update the averaged RTT measurement only if the segment
3206 * acknowledges some new data, i.e., only if it advances the
3207 * left edge of the send window.
3208 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3209 */
3210 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3211 flag & FLAG_ACKED) {
3212 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3213
3214 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3215 if (!delta)
3216 delta = 1;
3217 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3218 ca_rtt_us = seq_rtt_us;
3219 }
3220 }
3221 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3222 if (seq_rtt_us < 0)
3223 return false;
3224
3225 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3226 * always taken together with ACK, SACK, or TS-opts. Any negative
3227 * values will be skipped with the seq_rtt_us < 0 check above.
3228 */
3229 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3230 tcp_rtt_estimator(sk, seq_rtt_us);
3231 tcp_set_rto(sk);
3232
3233 /* RFC6298: only reset backoff on valid RTT measurement. */
3234 inet_csk(sk)->icsk_backoff = 0;
3235 return true;
3236 }
3237
3238 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3239 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3240 {
3241 struct rate_sample rs;
3242 long rtt_us = -1L;
3243
3244 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3245 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3246
3247 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3248 }
3249
3250
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3251 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3252 {
3253 const struct inet_connection_sock *icsk = inet_csk(sk);
3254
3255 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3256 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3257 }
3258
3259 /* Restart timer after forward progress on connection.
3260 * RFC2988 recommends to restart timer to now+rto.
3261 */
tcp_rearm_rto(struct sock * sk)3262 void tcp_rearm_rto(struct sock *sk)
3263 {
3264 const struct inet_connection_sock *icsk = inet_csk(sk);
3265 struct tcp_sock *tp = tcp_sk(sk);
3266
3267 /* If the retrans timer is currently being used by Fast Open
3268 * for SYN-ACK retrans purpose, stay put.
3269 */
3270 if (rcu_access_pointer(tp->fastopen_rsk))
3271 return;
3272
3273 if (!tp->packets_out) {
3274 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3275 } else {
3276 u32 rto = inet_csk(sk)->icsk_rto;
3277 /* Offset the time elapsed after installing regular RTO */
3278 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3279 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3280 s64 delta_us = tcp_rto_delta_us(sk);
3281 /* delta_us may not be positive if the socket is locked
3282 * when the retrans timer fires and is rescheduled.
3283 */
3284 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3285 }
3286 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3287 TCP_RTO_MAX);
3288 }
3289 }
3290
3291 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3292 static void tcp_set_xmit_timer(struct sock *sk)
3293 {
3294 if (!tcp_schedule_loss_probe(sk, true))
3295 tcp_rearm_rto(sk);
3296 }
3297
3298 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3299 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3300 {
3301 struct tcp_sock *tp = tcp_sk(sk);
3302 u32 packets_acked;
3303
3304 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3305
3306 packets_acked = tcp_skb_pcount(skb);
3307 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308 return 0;
3309 packets_acked -= tcp_skb_pcount(skb);
3310
3311 if (packets_acked) {
3312 BUG_ON(tcp_skb_pcount(skb) == 0);
3313 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3314 }
3315
3316 return packets_acked;
3317 }
3318
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3319 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3320 const struct sk_buff *ack_skb, u32 prior_snd_una)
3321 {
3322 const struct skb_shared_info *shinfo;
3323
3324 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3325 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3326 return;
3327
3328 shinfo = skb_shinfo(skb);
3329 if (!before(shinfo->tskey, prior_snd_una) &&
3330 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3331 tcp_skb_tsorted_save(skb) {
3332 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3333 } tcp_skb_tsorted_restore(skb);
3334 }
3335 }
3336
3337 /* Remove acknowledged frames from the retransmission queue. If our packet
3338 * is before the ack sequence we can discard it as it's confirmed to have
3339 * arrived at the other end.
3340 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3341 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3342 u32 prior_fack, u32 prior_snd_una,
3343 struct tcp_sacktag_state *sack, bool ece_ack)
3344 {
3345 const struct inet_connection_sock *icsk = inet_csk(sk);
3346 u64 first_ackt, last_ackt;
3347 struct tcp_sock *tp = tcp_sk(sk);
3348 u32 prior_sacked = tp->sacked_out;
3349 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3350 struct sk_buff *skb, *next;
3351 bool fully_acked = true;
3352 long sack_rtt_us = -1L;
3353 long seq_rtt_us = -1L;
3354 long ca_rtt_us = -1L;
3355 u32 pkts_acked = 0;
3356 bool rtt_update;
3357 int flag = 0;
3358
3359 first_ackt = 0;
3360
3361 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3362 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3363 const u32 start_seq = scb->seq;
3364 u8 sacked = scb->sacked;
3365 u32 acked_pcount;
3366
3367 /* Determine how many packets and what bytes were acked, tso and else */
3368 if (after(scb->end_seq, tp->snd_una)) {
3369 if (tcp_skb_pcount(skb) == 1 ||
3370 !after(tp->snd_una, scb->seq))
3371 break;
3372
3373 acked_pcount = tcp_tso_acked(sk, skb);
3374 if (!acked_pcount)
3375 break;
3376 fully_acked = false;
3377 } else {
3378 acked_pcount = tcp_skb_pcount(skb);
3379 }
3380
3381 if (unlikely(sacked & TCPCB_RETRANS)) {
3382 if (sacked & TCPCB_SACKED_RETRANS)
3383 tp->retrans_out -= acked_pcount;
3384 flag |= FLAG_RETRANS_DATA_ACKED;
3385 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3386 last_ackt = tcp_skb_timestamp_us(skb);
3387 WARN_ON_ONCE(last_ackt == 0);
3388 if (!first_ackt)
3389 first_ackt = last_ackt;
3390
3391 if (before(start_seq, reord))
3392 reord = start_seq;
3393 if (!after(scb->end_seq, tp->high_seq))
3394 flag |= FLAG_ORIG_SACK_ACKED;
3395 }
3396
3397 if (sacked & TCPCB_SACKED_ACKED) {
3398 tp->sacked_out -= acked_pcount;
3399 } else if (tcp_is_sack(tp)) {
3400 tcp_count_delivered(tp, acked_pcount, ece_ack);
3401 if (!tcp_skb_spurious_retrans(tp, skb))
3402 tcp_rack_advance(tp, sacked, scb->end_seq,
3403 tcp_skb_timestamp_us(skb));
3404 }
3405 if (sacked & TCPCB_LOST)
3406 tp->lost_out -= acked_pcount;
3407
3408 tp->packets_out -= acked_pcount;
3409 pkts_acked += acked_pcount;
3410 tcp_rate_skb_delivered(sk, skb, sack->rate);
3411
3412 /* Initial outgoing SYN's get put onto the write_queue
3413 * just like anything else we transmit. It is not
3414 * true data, and if we misinform our callers that
3415 * this ACK acks real data, we will erroneously exit
3416 * connection startup slow start one packet too
3417 * quickly. This is severely frowned upon behavior.
3418 */
3419 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3420 flag |= FLAG_DATA_ACKED;
3421 } else {
3422 flag |= FLAG_SYN_ACKED;
3423 tp->retrans_stamp = 0;
3424 }
3425
3426 if (!fully_acked)
3427 break;
3428
3429 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3430
3431 next = skb_rb_next(skb);
3432 if (unlikely(skb == tp->retransmit_skb_hint))
3433 tp->retransmit_skb_hint = NULL;
3434 if (unlikely(skb == tp->lost_skb_hint))
3435 tp->lost_skb_hint = NULL;
3436 tcp_highest_sack_replace(sk, skb, next);
3437 tcp_rtx_queue_unlink_and_free(skb, sk);
3438 }
3439
3440 if (!skb)
3441 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3442
3443 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3444 tp->snd_up = tp->snd_una;
3445
3446 if (skb) {
3447 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3448 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3449 flag |= FLAG_SACK_RENEGING;
3450 }
3451
3452 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3453 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3454 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3455
3456 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3457 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3458 sack->rate->prior_delivered + 1 == tp->delivered &&
3459 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3460 /* Conservatively mark a delayed ACK. It's typically
3461 * from a lone runt packet over the round trip to
3462 * a receiver w/o out-of-order or CE events.
3463 */
3464 flag |= FLAG_ACK_MAYBE_DELAYED;
3465 }
3466 }
3467 if (sack->first_sackt) {
3468 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3469 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3470 }
3471 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3472 ca_rtt_us, sack->rate);
3473
3474 if (flag & FLAG_ACKED) {
3475 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3476 if (unlikely(icsk->icsk_mtup.probe_size &&
3477 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3478 tcp_mtup_probe_success(sk);
3479 }
3480
3481 if (tcp_is_reno(tp)) {
3482 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3483
3484 /* If any of the cumulatively ACKed segments was
3485 * retransmitted, non-SACK case cannot confirm that
3486 * progress was due to original transmission due to
3487 * lack of TCPCB_SACKED_ACKED bits even if some of
3488 * the packets may have been never retransmitted.
3489 */
3490 if (flag & FLAG_RETRANS_DATA_ACKED)
3491 flag &= ~FLAG_ORIG_SACK_ACKED;
3492 } else {
3493 int delta;
3494
3495 /* Non-retransmitted hole got filled? That's reordering */
3496 if (before(reord, prior_fack))
3497 tcp_check_sack_reordering(sk, reord, 0);
3498
3499 delta = prior_sacked - tp->sacked_out;
3500 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3501 }
3502 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3503 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3504 tcp_skb_timestamp_us(skb))) {
3505 /* Do not re-arm RTO if the sack RTT is measured from data sent
3506 * after when the head was last (re)transmitted. Otherwise the
3507 * timeout may continue to extend in loss recovery.
3508 */
3509 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3510 }
3511
3512 if (icsk->icsk_ca_ops->pkts_acked) {
3513 struct ack_sample sample = { .pkts_acked = pkts_acked,
3514 .rtt_us = sack->rate->rtt_us };
3515
3516 sample.in_flight = tp->mss_cache *
3517 (tp->delivered - sack->rate->prior_delivered);
3518 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3519 }
3520
3521 #if FASTRETRANS_DEBUG > 0
3522 WARN_ON((int)tp->sacked_out < 0);
3523 WARN_ON((int)tp->lost_out < 0);
3524 WARN_ON((int)tp->retrans_out < 0);
3525 if (!tp->packets_out && tcp_is_sack(tp)) {
3526 icsk = inet_csk(sk);
3527 if (tp->lost_out) {
3528 pr_debug("Leak l=%u %d\n",
3529 tp->lost_out, icsk->icsk_ca_state);
3530 tp->lost_out = 0;
3531 }
3532 if (tp->sacked_out) {
3533 pr_debug("Leak s=%u %d\n",
3534 tp->sacked_out, icsk->icsk_ca_state);
3535 tp->sacked_out = 0;
3536 }
3537 if (tp->retrans_out) {
3538 pr_debug("Leak r=%u %d\n",
3539 tp->retrans_out, icsk->icsk_ca_state);
3540 tp->retrans_out = 0;
3541 }
3542 }
3543 #endif
3544 return flag;
3545 }
3546
tcp_ack_probe(struct sock * sk)3547 static void tcp_ack_probe(struct sock *sk)
3548 {
3549 struct inet_connection_sock *icsk = inet_csk(sk);
3550 struct sk_buff *head = tcp_send_head(sk);
3551 const struct tcp_sock *tp = tcp_sk(sk);
3552
3553 /* Was it a usable window open? */
3554 if (!head)
3555 return;
3556 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3557 icsk->icsk_backoff = 0;
3558 icsk->icsk_probes_tstamp = 0;
3559 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3560 /* Socket must be waked up by subsequent tcp_data_snd_check().
3561 * This function is not for random using!
3562 */
3563 } else {
3564 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3565
3566 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3567 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3568 }
3569 }
3570
tcp_ack_is_dubious(const struct sock * sk,const int flag)3571 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3572 {
3573 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3574 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3575 }
3576
3577 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3578 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3579 {
3580 /* If reordering is high then always grow cwnd whenever data is
3581 * delivered regardless of its ordering. Otherwise stay conservative
3582 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3583 * new SACK or ECE mark may first advance cwnd here and later reduce
3584 * cwnd in tcp_fastretrans_alert() based on more states.
3585 */
3586 if (tcp_sk(sk)->reordering >
3587 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3588 return flag & FLAG_FORWARD_PROGRESS;
3589
3590 return flag & FLAG_DATA_ACKED;
3591 }
3592
3593 /* The "ultimate" congestion control function that aims to replace the rigid
3594 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3595 * It's called toward the end of processing an ACK with precise rate
3596 * information. All transmission or retransmission are delayed afterwards.
3597 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3598 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3599 int flag, const struct rate_sample *rs)
3600 {
3601 const struct inet_connection_sock *icsk = inet_csk(sk);
3602
3603 if (icsk->icsk_ca_ops->cong_control) {
3604 icsk->icsk_ca_ops->cong_control(sk, rs);
3605 return;
3606 }
3607
3608 if (tcp_in_cwnd_reduction(sk)) {
3609 /* Reduce cwnd if state mandates */
3610 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3611 } else if (tcp_may_raise_cwnd(sk, flag)) {
3612 /* Advance cwnd if state allows */
3613 tcp_cong_avoid(sk, ack, acked_sacked);
3614 }
3615 tcp_update_pacing_rate(sk);
3616 }
3617
3618 /* Check that window update is acceptable.
3619 * The function assumes that snd_una<=ack<=snd_next.
3620 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3621 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3622 const u32 ack, const u32 ack_seq,
3623 const u32 nwin)
3624 {
3625 return after(ack, tp->snd_una) ||
3626 after(ack_seq, tp->snd_wl1) ||
3627 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3628 }
3629
3630 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3631 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3632 {
3633 u32 delta = ack - tp->snd_una;
3634
3635 sock_owned_by_me((struct sock *)tp);
3636 tp->bytes_acked += delta;
3637 tp->snd_una = ack;
3638 }
3639
3640 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3641 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3642 {
3643 u32 delta = seq - tp->rcv_nxt;
3644
3645 sock_owned_by_me((struct sock *)tp);
3646 tp->bytes_received += delta;
3647 WRITE_ONCE(tp->rcv_nxt, seq);
3648 }
3649
3650 /* Update our send window.
3651 *
3652 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3653 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3654 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3655 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3656 u32 ack_seq)
3657 {
3658 struct tcp_sock *tp = tcp_sk(sk);
3659 int flag = 0;
3660 u32 nwin = ntohs(tcp_hdr(skb)->window);
3661
3662 if (likely(!tcp_hdr(skb)->syn))
3663 nwin <<= tp->rx_opt.snd_wscale;
3664
3665 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3666 flag |= FLAG_WIN_UPDATE;
3667 tcp_update_wl(tp, ack_seq);
3668
3669 if (tp->snd_wnd != nwin) {
3670 tp->snd_wnd = nwin;
3671
3672 /* Note, it is the only place, where
3673 * fast path is recovered for sending TCP.
3674 */
3675 tp->pred_flags = 0;
3676 tcp_fast_path_check(sk);
3677
3678 if (!tcp_write_queue_empty(sk))
3679 tcp_slow_start_after_idle_check(sk);
3680
3681 if (nwin > tp->max_window) {
3682 tp->max_window = nwin;
3683 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3684 }
3685 }
3686 }
3687
3688 tcp_snd_una_update(tp, ack);
3689
3690 return flag;
3691 }
3692
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3693 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3694 u32 *last_oow_ack_time)
3695 {
3696 /* Paired with the WRITE_ONCE() in this function. */
3697 u32 val = READ_ONCE(*last_oow_ack_time);
3698
3699 if (val) {
3700 s32 elapsed = (s32)(tcp_jiffies32 - val);
3701
3702 if (0 <= elapsed &&
3703 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3704 NET_INC_STATS(net, mib_idx);
3705 return true; /* rate-limited: don't send yet! */
3706 }
3707 }
3708
3709 /* Paired with the prior READ_ONCE() and with itself,
3710 * as we might be lockless.
3711 */
3712 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3713
3714 return false; /* not rate-limited: go ahead, send dupack now! */
3715 }
3716
3717 /* Return true if we're currently rate-limiting out-of-window ACKs and
3718 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3719 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3720 * attacks that send repeated SYNs or ACKs for the same connection. To
3721 * do this, we do not send a duplicate SYNACK or ACK if the remote
3722 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3723 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3724 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3725 int mib_idx, u32 *last_oow_ack_time)
3726 {
3727 /* Data packets without SYNs are not likely part of an ACK loop. */
3728 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3729 !tcp_hdr(skb)->syn)
3730 return false;
3731
3732 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3733 }
3734
3735 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3736 static void tcp_send_challenge_ack(struct sock *sk)
3737 {
3738 struct tcp_sock *tp = tcp_sk(sk);
3739 struct net *net = sock_net(sk);
3740 u32 count, now, ack_limit;
3741
3742 /* First check our per-socket dupack rate limit. */
3743 if (__tcp_oow_rate_limited(net,
3744 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3745 &tp->last_oow_ack_time))
3746 return;
3747
3748 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3749 if (ack_limit == INT_MAX)
3750 goto send_ack;
3751
3752 /* Then check host-wide RFC 5961 rate limit. */
3753 now = jiffies / HZ;
3754 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3755 u32 half = (ack_limit + 1) >> 1;
3756
3757 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3758 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3759 get_random_u32_inclusive(half, ack_limit + half - 1));
3760 }
3761 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3762 if (count > 0) {
3763 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3764 send_ack:
3765 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3766 tcp_send_ack(sk);
3767 }
3768 }
3769
tcp_store_ts_recent(struct tcp_sock * tp)3770 static void tcp_store_ts_recent(struct tcp_sock *tp)
3771 {
3772 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3773 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3774 }
3775
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3776 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3777 {
3778 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3779 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3780 * extra check below makes sure this can only happen
3781 * for pure ACK frames. -DaveM
3782 *
3783 * Not only, also it occurs for expired timestamps.
3784 */
3785
3786 if (tcp_paws_check(&tp->rx_opt, 0))
3787 tcp_store_ts_recent(tp);
3788 }
3789 }
3790
3791 /* This routine deals with acks during a TLP episode and ends an episode by
3792 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3793 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3794 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3795 {
3796 struct tcp_sock *tp = tcp_sk(sk);
3797
3798 if (before(ack, tp->tlp_high_seq))
3799 return;
3800
3801 if (!tp->tlp_retrans) {
3802 /* TLP of new data has been acknowledged */
3803 tp->tlp_high_seq = 0;
3804 } else if (flag & FLAG_DSACK_TLP) {
3805 /* This DSACK means original and TLP probe arrived; no loss */
3806 tp->tlp_high_seq = 0;
3807 } else if (after(ack, tp->tlp_high_seq)) {
3808 /* ACK advances: there was a loss, so reduce cwnd. Reset
3809 * tlp_high_seq in tcp_init_cwnd_reduction()
3810 */
3811 tcp_init_cwnd_reduction(sk);
3812 tcp_set_ca_state(sk, TCP_CA_CWR);
3813 tcp_end_cwnd_reduction(sk);
3814 tcp_try_keep_open(sk);
3815 NET_INC_STATS(sock_net(sk),
3816 LINUX_MIB_TCPLOSSPROBERECOVERY);
3817 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3818 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3819 /* Pure dupack: original and TLP probe arrived; no loss */
3820 tp->tlp_high_seq = 0;
3821 }
3822 }
3823
tcp_in_ack_event(struct sock * sk,int flag)3824 static void tcp_in_ack_event(struct sock *sk, int flag)
3825 {
3826 const struct inet_connection_sock *icsk = inet_csk(sk);
3827
3828 if (icsk->icsk_ca_ops->in_ack_event) {
3829 u32 ack_ev_flags = 0;
3830
3831 if (flag & FLAG_WIN_UPDATE)
3832 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3833 if (flag & FLAG_SLOWPATH) {
3834 ack_ev_flags |= CA_ACK_SLOWPATH;
3835 if (flag & FLAG_ECE)
3836 ack_ev_flags |= CA_ACK_ECE;
3837 }
3838
3839 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3840 }
3841 }
3842
3843 /* Congestion control has updated the cwnd already. So if we're in
3844 * loss recovery then now we do any new sends (for FRTO) or
3845 * retransmits (for CA_Loss or CA_recovery) that make sense.
3846 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3847 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3848 {
3849 struct tcp_sock *tp = tcp_sk(sk);
3850
3851 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3852 return;
3853
3854 if (unlikely(rexmit == REXMIT_NEW)) {
3855 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3856 TCP_NAGLE_OFF);
3857 if (after(tp->snd_nxt, tp->high_seq))
3858 return;
3859 tp->frto = 0;
3860 }
3861 tcp_xmit_retransmit_queue(sk);
3862 }
3863
3864 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3865 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3866 {
3867 const struct net *net = sock_net(sk);
3868 struct tcp_sock *tp = tcp_sk(sk);
3869 u32 delivered;
3870
3871 delivered = tp->delivered - prior_delivered;
3872 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3873 if (flag & FLAG_ECE)
3874 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3875
3876 return delivered;
3877 }
3878
3879 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3880 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3881 {
3882 struct inet_connection_sock *icsk = inet_csk(sk);
3883 struct tcp_sock *tp = tcp_sk(sk);
3884 struct tcp_sacktag_state sack_state;
3885 struct rate_sample rs = { .prior_delivered = 0 };
3886 u32 prior_snd_una = tp->snd_una;
3887 bool is_sack_reneg = tp->is_sack_reneg;
3888 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3889 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3890 int num_dupack = 0;
3891 int prior_packets = tp->packets_out;
3892 u32 delivered = tp->delivered;
3893 u32 lost = tp->lost;
3894 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3895 u32 prior_fack;
3896
3897 sack_state.first_sackt = 0;
3898 sack_state.rate = &rs;
3899 sack_state.sack_delivered = 0;
3900
3901 /* We very likely will need to access rtx queue. */
3902 prefetch(sk->tcp_rtx_queue.rb_node);
3903
3904 /* If the ack is older than previous acks
3905 * then we can probably ignore it.
3906 */
3907 if (before(ack, prior_snd_una)) {
3908 u32 max_window;
3909
3910 /* do not accept ACK for bytes we never sent. */
3911 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3912 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3913 if (before(ack, prior_snd_una - max_window)) {
3914 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3915 tcp_send_challenge_ack(sk);
3916 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3917 }
3918 goto old_ack;
3919 }
3920
3921 /* If the ack includes data we haven't sent yet, discard
3922 * this segment (RFC793 Section 3.9).
3923 */
3924 if (after(ack, tp->snd_nxt))
3925 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3926
3927 if (after(ack, prior_snd_una)) {
3928 flag |= FLAG_SND_UNA_ADVANCED;
3929 icsk->icsk_retransmits = 0;
3930
3931 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3932 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3933 if (icsk->icsk_clean_acked)
3934 icsk->icsk_clean_acked(sk, ack);
3935 #endif
3936 }
3937
3938 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3939 rs.prior_in_flight = tcp_packets_in_flight(tp);
3940
3941 /* ts_recent update must be made after we are sure that the packet
3942 * is in window.
3943 */
3944 if (flag & FLAG_UPDATE_TS_RECENT)
3945 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3946
3947 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3948 FLAG_SND_UNA_ADVANCED) {
3949 /* Window is constant, pure forward advance.
3950 * No more checks are required.
3951 * Note, we use the fact that SND.UNA>=SND.WL2.
3952 */
3953 tcp_update_wl(tp, ack_seq);
3954 tcp_snd_una_update(tp, ack);
3955 flag |= FLAG_WIN_UPDATE;
3956
3957 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3958 } else {
3959 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3960 flag |= FLAG_DATA;
3961 else
3962 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3963
3964 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3965
3966 if (TCP_SKB_CB(skb)->sacked)
3967 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3968 &sack_state);
3969
3970 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3971 flag |= FLAG_ECE;
3972
3973 if (sack_state.sack_delivered)
3974 tcp_count_delivered(tp, sack_state.sack_delivered,
3975 flag & FLAG_ECE);
3976 }
3977
3978 /* This is a deviation from RFC3168 since it states that:
3979 * "When the TCP data sender is ready to set the CWR bit after reducing
3980 * the congestion window, it SHOULD set the CWR bit only on the first
3981 * new data packet that it transmits."
3982 * We accept CWR on pure ACKs to be more robust
3983 * with widely-deployed TCP implementations that do this.
3984 */
3985 tcp_ecn_accept_cwr(sk, skb);
3986
3987 /* We passed data and got it acked, remove any soft error
3988 * log. Something worked...
3989 */
3990 WRITE_ONCE(sk->sk_err_soft, 0);
3991 icsk->icsk_probes_out = 0;
3992 tp->rcv_tstamp = tcp_jiffies32;
3993 if (!prior_packets)
3994 goto no_queue;
3995
3996 /* See if we can take anything off of the retransmit queue. */
3997 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3998 &sack_state, flag & FLAG_ECE);
3999
4000 tcp_rack_update_reo_wnd(sk, &rs);
4001
4002 tcp_in_ack_event(sk, flag);
4003
4004 if (tp->tlp_high_seq)
4005 tcp_process_tlp_ack(sk, ack, flag);
4006
4007 if (tcp_ack_is_dubious(sk, flag)) {
4008 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4009 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4010 num_dupack = 1;
4011 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4012 if (!(flag & FLAG_DATA))
4013 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4014 }
4015 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4016 &rexmit);
4017 }
4018
4019 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4020 if (flag & FLAG_SET_XMIT_TIMER)
4021 tcp_set_xmit_timer(sk);
4022
4023 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4024 sk_dst_confirm(sk);
4025
4026 delivered = tcp_newly_delivered(sk, delivered, flag);
4027 lost = tp->lost - lost; /* freshly marked lost */
4028 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4029 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4030 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4031 tcp_xmit_recovery(sk, rexmit);
4032 return 1;
4033
4034 no_queue:
4035 tcp_in_ack_event(sk, flag);
4036 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4037 if (flag & FLAG_DSACKING_ACK) {
4038 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4039 &rexmit);
4040 tcp_newly_delivered(sk, delivered, flag);
4041 }
4042 /* If this ack opens up a zero window, clear backoff. It was
4043 * being used to time the probes, and is probably far higher than
4044 * it needs to be for normal retransmission.
4045 */
4046 tcp_ack_probe(sk);
4047
4048 if (tp->tlp_high_seq)
4049 tcp_process_tlp_ack(sk, ack, flag);
4050 return 1;
4051
4052 old_ack:
4053 /* If data was SACKed, tag it and see if we should send more data.
4054 * If data was DSACKed, see if we can undo a cwnd reduction.
4055 */
4056 if (TCP_SKB_CB(skb)->sacked) {
4057 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4058 &sack_state);
4059 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4060 &rexmit);
4061 tcp_newly_delivered(sk, delivered, flag);
4062 tcp_xmit_recovery(sk, rexmit);
4063 }
4064
4065 return 0;
4066 }
4067
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4068 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4069 bool syn, struct tcp_fastopen_cookie *foc,
4070 bool exp_opt)
4071 {
4072 /* Valid only in SYN or SYN-ACK with an even length. */
4073 if (!foc || !syn || len < 0 || (len & 1))
4074 return;
4075
4076 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4077 len <= TCP_FASTOPEN_COOKIE_MAX)
4078 memcpy(foc->val, cookie, len);
4079 else if (len != 0)
4080 len = -1;
4081 foc->len = len;
4082 foc->exp = exp_opt;
4083 }
4084
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4085 static bool smc_parse_options(const struct tcphdr *th,
4086 struct tcp_options_received *opt_rx,
4087 const unsigned char *ptr,
4088 int opsize)
4089 {
4090 #if IS_ENABLED(CONFIG_SMC)
4091 if (static_branch_unlikely(&tcp_have_smc)) {
4092 if (th->syn && !(opsize & 1) &&
4093 opsize >= TCPOLEN_EXP_SMC_BASE &&
4094 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4095 opt_rx->smc_ok = 1;
4096 return true;
4097 }
4098 }
4099 #endif
4100 return false;
4101 }
4102
4103 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4104 * value on success.
4105 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4106 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4107 {
4108 const unsigned char *ptr = (const unsigned char *)(th + 1);
4109 int length = (th->doff * 4) - sizeof(struct tcphdr);
4110 u16 mss = 0;
4111
4112 while (length > 0) {
4113 int opcode = *ptr++;
4114 int opsize;
4115
4116 switch (opcode) {
4117 case TCPOPT_EOL:
4118 return mss;
4119 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4120 length--;
4121 continue;
4122 default:
4123 if (length < 2)
4124 return mss;
4125 opsize = *ptr++;
4126 if (opsize < 2) /* "silly options" */
4127 return mss;
4128 if (opsize > length)
4129 return mss; /* fail on partial options */
4130 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4131 u16 in_mss = get_unaligned_be16(ptr);
4132
4133 if (in_mss) {
4134 if (user_mss && user_mss < in_mss)
4135 in_mss = user_mss;
4136 mss = in_mss;
4137 }
4138 }
4139 ptr += opsize - 2;
4140 length -= opsize;
4141 }
4142 }
4143 return mss;
4144 }
4145 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4146
4147 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4148 * But, this can also be called on packets in the established flow when
4149 * the fast version below fails.
4150 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4151 void tcp_parse_options(const struct net *net,
4152 const struct sk_buff *skb,
4153 struct tcp_options_received *opt_rx, int estab,
4154 struct tcp_fastopen_cookie *foc)
4155 {
4156 const unsigned char *ptr;
4157 const struct tcphdr *th = tcp_hdr(skb);
4158 int length = (th->doff * 4) - sizeof(struct tcphdr);
4159
4160 ptr = (const unsigned char *)(th + 1);
4161 opt_rx->saw_tstamp = 0;
4162 opt_rx->saw_unknown = 0;
4163
4164 while (length > 0) {
4165 int opcode = *ptr++;
4166 int opsize;
4167
4168 switch (opcode) {
4169 case TCPOPT_EOL:
4170 return;
4171 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4172 length--;
4173 continue;
4174 default:
4175 if (length < 2)
4176 return;
4177 opsize = *ptr++;
4178 if (opsize < 2) /* "silly options" */
4179 return;
4180 if (opsize > length)
4181 return; /* don't parse partial options */
4182 switch (opcode) {
4183 case TCPOPT_MSS:
4184 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4185 u16 in_mss = get_unaligned_be16(ptr);
4186 if (in_mss) {
4187 if (opt_rx->user_mss &&
4188 opt_rx->user_mss < in_mss)
4189 in_mss = opt_rx->user_mss;
4190 opt_rx->mss_clamp = in_mss;
4191 }
4192 }
4193 break;
4194 case TCPOPT_WINDOW:
4195 if (opsize == TCPOLEN_WINDOW && th->syn &&
4196 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4197 __u8 snd_wscale = *(__u8 *)ptr;
4198 opt_rx->wscale_ok = 1;
4199 if (snd_wscale > TCP_MAX_WSCALE) {
4200 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4201 __func__,
4202 snd_wscale,
4203 TCP_MAX_WSCALE);
4204 snd_wscale = TCP_MAX_WSCALE;
4205 }
4206 opt_rx->snd_wscale = snd_wscale;
4207 }
4208 break;
4209 case TCPOPT_TIMESTAMP:
4210 if ((opsize == TCPOLEN_TIMESTAMP) &&
4211 ((estab && opt_rx->tstamp_ok) ||
4212 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4213 opt_rx->saw_tstamp = 1;
4214 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4215 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4216 }
4217 break;
4218 case TCPOPT_SACK_PERM:
4219 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4220 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4221 opt_rx->sack_ok = TCP_SACK_SEEN;
4222 tcp_sack_reset(opt_rx);
4223 }
4224 break;
4225
4226 case TCPOPT_SACK:
4227 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4228 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4229 opt_rx->sack_ok) {
4230 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4231 }
4232 break;
4233 #ifdef CONFIG_TCP_MD5SIG
4234 case TCPOPT_MD5SIG:
4235 /* The MD5 Hash has already been
4236 * checked (see tcp_v{4,6}_rcv()).
4237 */
4238 break;
4239 #endif
4240 case TCPOPT_FASTOPEN:
4241 tcp_parse_fastopen_option(
4242 opsize - TCPOLEN_FASTOPEN_BASE,
4243 ptr, th->syn, foc, false);
4244 break;
4245
4246 case TCPOPT_EXP:
4247 /* Fast Open option shares code 254 using a
4248 * 16 bits magic number.
4249 */
4250 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4251 get_unaligned_be16(ptr) ==
4252 TCPOPT_FASTOPEN_MAGIC) {
4253 tcp_parse_fastopen_option(opsize -
4254 TCPOLEN_EXP_FASTOPEN_BASE,
4255 ptr + 2, th->syn, foc, true);
4256 break;
4257 }
4258
4259 if (smc_parse_options(th, opt_rx, ptr, opsize))
4260 break;
4261
4262 opt_rx->saw_unknown = 1;
4263 break;
4264
4265 default:
4266 opt_rx->saw_unknown = 1;
4267 }
4268 ptr += opsize-2;
4269 length -= opsize;
4270 }
4271 }
4272 }
4273 EXPORT_SYMBOL(tcp_parse_options);
4274
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4275 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4276 {
4277 const __be32 *ptr = (const __be32 *)(th + 1);
4278
4279 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4280 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4281 tp->rx_opt.saw_tstamp = 1;
4282 ++ptr;
4283 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4284 ++ptr;
4285 if (*ptr)
4286 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4287 else
4288 tp->rx_opt.rcv_tsecr = 0;
4289 return true;
4290 }
4291 return false;
4292 }
4293
4294 /* Fast parse options. This hopes to only see timestamps.
4295 * If it is wrong it falls back on tcp_parse_options().
4296 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4297 static bool tcp_fast_parse_options(const struct net *net,
4298 const struct sk_buff *skb,
4299 const struct tcphdr *th, struct tcp_sock *tp)
4300 {
4301 /* In the spirit of fast parsing, compare doff directly to constant
4302 * values. Because equality is used, short doff can be ignored here.
4303 */
4304 if (th->doff == (sizeof(*th) / 4)) {
4305 tp->rx_opt.saw_tstamp = 0;
4306 return false;
4307 } else if (tp->rx_opt.tstamp_ok &&
4308 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4309 if (tcp_parse_aligned_timestamp(tp, th))
4310 return true;
4311 }
4312
4313 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4314 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4315 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4316
4317 return true;
4318 }
4319
4320 #ifdef CONFIG_TCP_MD5SIG
4321 /*
4322 * Parse MD5 Signature option
4323 */
tcp_parse_md5sig_option(const struct tcphdr * th)4324 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4325 {
4326 int length = (th->doff << 2) - sizeof(*th);
4327 const u8 *ptr = (const u8 *)(th + 1);
4328
4329 /* If not enough data remaining, we can short cut */
4330 while (length >= TCPOLEN_MD5SIG) {
4331 int opcode = *ptr++;
4332 int opsize;
4333
4334 switch (opcode) {
4335 case TCPOPT_EOL:
4336 return NULL;
4337 case TCPOPT_NOP:
4338 length--;
4339 continue;
4340 default:
4341 opsize = *ptr++;
4342 if (opsize < 2 || opsize > length)
4343 return NULL;
4344 if (opcode == TCPOPT_MD5SIG)
4345 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4346 }
4347 ptr += opsize - 2;
4348 length -= opsize;
4349 }
4350 return NULL;
4351 }
4352 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4353 #endif
4354
4355 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4356 *
4357 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4358 * it can pass through stack. So, the following predicate verifies that
4359 * this segment is not used for anything but congestion avoidance or
4360 * fast retransmit. Moreover, we even are able to eliminate most of such
4361 * second order effects, if we apply some small "replay" window (~RTO)
4362 * to timestamp space.
4363 *
4364 * All these measures still do not guarantee that we reject wrapped ACKs
4365 * on networks with high bandwidth, when sequence space is recycled fastly,
4366 * but it guarantees that such events will be very rare and do not affect
4367 * connection seriously. This doesn't look nice, but alas, PAWS is really
4368 * buggy extension.
4369 *
4370 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4371 * states that events when retransmit arrives after original data are rare.
4372 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4373 * the biggest problem on large power networks even with minor reordering.
4374 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4375 * up to bandwidth of 18Gigabit/sec. 8) ]
4376 */
4377
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4378 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4379 {
4380 const struct tcp_sock *tp = tcp_sk(sk);
4381 const struct tcphdr *th = tcp_hdr(skb);
4382 u32 seq = TCP_SKB_CB(skb)->seq;
4383 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4384
4385 return (/* 1. Pure ACK with correct sequence number. */
4386 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4387
4388 /* 2. ... and duplicate ACK. */
4389 ack == tp->snd_una &&
4390
4391 /* 3. ... and does not update window. */
4392 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4393
4394 /* 4. ... and sits in replay window. */
4395 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4396 }
4397
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4398 static inline bool tcp_paws_discard(const struct sock *sk,
4399 const struct sk_buff *skb)
4400 {
4401 const struct tcp_sock *tp = tcp_sk(sk);
4402
4403 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4404 !tcp_disordered_ack(sk, skb);
4405 }
4406
4407 /* Check segment sequence number for validity.
4408 *
4409 * Segment controls are considered valid, if the segment
4410 * fits to the window after truncation to the window. Acceptability
4411 * of data (and SYN, FIN, of course) is checked separately.
4412 * See tcp_data_queue(), for example.
4413 *
4414 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4415 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4416 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4417 * (borrowed from freebsd)
4418 */
4419
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4420 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4421 u32 seq, u32 end_seq)
4422 {
4423 if (before(end_seq, tp->rcv_wup))
4424 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4425
4426 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4427 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4428
4429 return SKB_NOT_DROPPED_YET;
4430 }
4431
4432
tcp_done_with_error(struct sock * sk,int err)4433 void tcp_done_with_error(struct sock *sk, int err)
4434 {
4435 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4436 WRITE_ONCE(sk->sk_err, err);
4437 smp_wmb();
4438
4439 tcp_write_queue_purge(sk);
4440 tcp_done(sk);
4441
4442 if (!sock_flag(sk, SOCK_DEAD))
4443 sk_error_report(sk);
4444 }
4445 EXPORT_SYMBOL(tcp_done_with_error);
4446
4447 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4448 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4449 {
4450 int err;
4451
4452 trace_tcp_receive_reset(sk);
4453
4454 /* mptcp can't tell us to ignore reset pkts,
4455 * so just ignore the return value of mptcp_incoming_options().
4456 */
4457 if (sk_is_mptcp(sk))
4458 mptcp_incoming_options(sk, skb);
4459
4460 /* We want the right error as BSD sees it (and indeed as we do). */
4461 switch (sk->sk_state) {
4462 case TCP_SYN_SENT:
4463 err = ECONNREFUSED;
4464 break;
4465 case TCP_CLOSE_WAIT:
4466 err = EPIPE;
4467 break;
4468 case TCP_CLOSE:
4469 return;
4470 default:
4471 err = ECONNRESET;
4472 }
4473 tcp_done_with_error(sk, err);
4474 }
4475
4476 /*
4477 * Process the FIN bit. This now behaves as it is supposed to work
4478 * and the FIN takes effect when it is validly part of sequence
4479 * space. Not before when we get holes.
4480 *
4481 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4482 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4483 * TIME-WAIT)
4484 *
4485 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4486 * close and we go into CLOSING (and later onto TIME-WAIT)
4487 *
4488 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4489 */
tcp_fin(struct sock * sk)4490 void tcp_fin(struct sock *sk)
4491 {
4492 struct tcp_sock *tp = tcp_sk(sk);
4493
4494 inet_csk_schedule_ack(sk);
4495
4496 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4497 sock_set_flag(sk, SOCK_DONE);
4498
4499 switch (sk->sk_state) {
4500 case TCP_SYN_RECV:
4501 case TCP_ESTABLISHED:
4502 /* Move to CLOSE_WAIT */
4503 tcp_set_state(sk, TCP_CLOSE_WAIT);
4504 inet_csk_enter_pingpong_mode(sk);
4505 break;
4506
4507 case TCP_CLOSE_WAIT:
4508 case TCP_CLOSING:
4509 /* Received a retransmission of the FIN, do
4510 * nothing.
4511 */
4512 break;
4513 case TCP_LAST_ACK:
4514 /* RFC793: Remain in the LAST-ACK state. */
4515 break;
4516
4517 case TCP_FIN_WAIT1:
4518 /* This case occurs when a simultaneous close
4519 * happens, we must ack the received FIN and
4520 * enter the CLOSING state.
4521 */
4522 tcp_send_ack(sk);
4523 tcp_set_state(sk, TCP_CLOSING);
4524 break;
4525 case TCP_FIN_WAIT2:
4526 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4527 tcp_send_ack(sk);
4528 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4529 break;
4530 default:
4531 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4532 * cases we should never reach this piece of code.
4533 */
4534 pr_err("%s: Impossible, sk->sk_state=%d\n",
4535 __func__, sk->sk_state);
4536 break;
4537 }
4538
4539 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4540 * Probably, we should reset in this case. For now drop them.
4541 */
4542 skb_rbtree_purge(&tp->out_of_order_queue);
4543 if (tcp_is_sack(tp))
4544 tcp_sack_reset(&tp->rx_opt);
4545
4546 if (!sock_flag(sk, SOCK_DEAD)) {
4547 sk->sk_state_change(sk);
4548
4549 /* Do not send POLL_HUP for half duplex close. */
4550 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4551 sk->sk_state == TCP_CLOSE)
4552 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4553 else
4554 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4555 }
4556 }
4557
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4558 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4559 u32 end_seq)
4560 {
4561 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4562 if (before(seq, sp->start_seq))
4563 sp->start_seq = seq;
4564 if (after(end_seq, sp->end_seq))
4565 sp->end_seq = end_seq;
4566 return true;
4567 }
4568 return false;
4569 }
4570
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4571 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4572 {
4573 struct tcp_sock *tp = tcp_sk(sk);
4574
4575 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4576 int mib_idx;
4577
4578 if (before(seq, tp->rcv_nxt))
4579 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4580 else
4581 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4582
4583 NET_INC_STATS(sock_net(sk), mib_idx);
4584
4585 tp->rx_opt.dsack = 1;
4586 tp->duplicate_sack[0].start_seq = seq;
4587 tp->duplicate_sack[0].end_seq = end_seq;
4588 }
4589 }
4590
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4591 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4592 {
4593 struct tcp_sock *tp = tcp_sk(sk);
4594
4595 if (!tp->rx_opt.dsack)
4596 tcp_dsack_set(sk, seq, end_seq);
4597 else
4598 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4599 }
4600
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4601 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4602 {
4603 /* When the ACK path fails or drops most ACKs, the sender would
4604 * timeout and spuriously retransmit the same segment repeatedly.
4605 * The receiver remembers and reflects via DSACKs. Leverage the
4606 * DSACK state and change the txhash to re-route speculatively.
4607 */
4608 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4609 sk_rethink_txhash(sk))
4610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4611 }
4612
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4613 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4614 {
4615 struct tcp_sock *tp = tcp_sk(sk);
4616
4617 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4618 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4619 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4620 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4621
4622 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4623 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4624
4625 tcp_rcv_spurious_retrans(sk, skb);
4626 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4627 end_seq = tp->rcv_nxt;
4628 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4629 }
4630 }
4631
4632 tcp_send_ack(sk);
4633 }
4634
4635 /* These routines update the SACK block as out-of-order packets arrive or
4636 * in-order packets close up the sequence space.
4637 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4638 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4639 {
4640 int this_sack;
4641 struct tcp_sack_block *sp = &tp->selective_acks[0];
4642 struct tcp_sack_block *swalk = sp + 1;
4643
4644 /* See if the recent change to the first SACK eats into
4645 * or hits the sequence space of other SACK blocks, if so coalesce.
4646 */
4647 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4648 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4649 int i;
4650
4651 /* Zap SWALK, by moving every further SACK up by one slot.
4652 * Decrease num_sacks.
4653 */
4654 tp->rx_opt.num_sacks--;
4655 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4656 sp[i] = sp[i + 1];
4657 continue;
4658 }
4659 this_sack++;
4660 swalk++;
4661 }
4662 }
4663
tcp_sack_compress_send_ack(struct sock * sk)4664 void tcp_sack_compress_send_ack(struct sock *sk)
4665 {
4666 struct tcp_sock *tp = tcp_sk(sk);
4667
4668 if (!tp->compressed_ack)
4669 return;
4670
4671 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4672 __sock_put(sk);
4673
4674 /* Since we have to send one ack finally,
4675 * substract one from tp->compressed_ack to keep
4676 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4677 */
4678 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4679 tp->compressed_ack - 1);
4680
4681 tp->compressed_ack = 0;
4682 tcp_send_ack(sk);
4683 }
4684
4685 /* Reasonable amount of sack blocks included in TCP SACK option
4686 * The max is 4, but this becomes 3 if TCP timestamps are there.
4687 * Given that SACK packets might be lost, be conservative and use 2.
4688 */
4689 #define TCP_SACK_BLOCKS_EXPECTED 2
4690
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4691 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4692 {
4693 struct tcp_sock *tp = tcp_sk(sk);
4694 struct tcp_sack_block *sp = &tp->selective_acks[0];
4695 int cur_sacks = tp->rx_opt.num_sacks;
4696 int this_sack;
4697
4698 if (!cur_sacks)
4699 goto new_sack;
4700
4701 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4702 if (tcp_sack_extend(sp, seq, end_seq)) {
4703 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4704 tcp_sack_compress_send_ack(sk);
4705 /* Rotate this_sack to the first one. */
4706 for (; this_sack > 0; this_sack--, sp--)
4707 swap(*sp, *(sp - 1));
4708 if (cur_sacks > 1)
4709 tcp_sack_maybe_coalesce(tp);
4710 return;
4711 }
4712 }
4713
4714 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4715 tcp_sack_compress_send_ack(sk);
4716
4717 /* Could not find an adjacent existing SACK, build a new one,
4718 * put it at the front, and shift everyone else down. We
4719 * always know there is at least one SACK present already here.
4720 *
4721 * If the sack array is full, forget about the last one.
4722 */
4723 if (this_sack >= TCP_NUM_SACKS) {
4724 this_sack--;
4725 tp->rx_opt.num_sacks--;
4726 sp--;
4727 }
4728 for (; this_sack > 0; this_sack--, sp--)
4729 *sp = *(sp - 1);
4730
4731 new_sack:
4732 /* Build the new head SACK, and we're done. */
4733 sp->start_seq = seq;
4734 sp->end_seq = end_seq;
4735 tp->rx_opt.num_sacks++;
4736 }
4737
4738 /* RCV.NXT advances, some SACKs should be eaten. */
4739
tcp_sack_remove(struct tcp_sock * tp)4740 static void tcp_sack_remove(struct tcp_sock *tp)
4741 {
4742 struct tcp_sack_block *sp = &tp->selective_acks[0];
4743 int num_sacks = tp->rx_opt.num_sacks;
4744 int this_sack;
4745
4746 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4747 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4748 tp->rx_opt.num_sacks = 0;
4749 return;
4750 }
4751
4752 for (this_sack = 0; this_sack < num_sacks;) {
4753 /* Check if the start of the sack is covered by RCV.NXT. */
4754 if (!before(tp->rcv_nxt, sp->start_seq)) {
4755 int i;
4756
4757 /* RCV.NXT must cover all the block! */
4758 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4759
4760 /* Zap this SACK, by moving forward any other SACKS. */
4761 for (i = this_sack+1; i < num_sacks; i++)
4762 tp->selective_acks[i-1] = tp->selective_acks[i];
4763 num_sacks--;
4764 continue;
4765 }
4766 this_sack++;
4767 sp++;
4768 }
4769 tp->rx_opt.num_sacks = num_sacks;
4770 }
4771
4772 /**
4773 * tcp_try_coalesce - try to merge skb to prior one
4774 * @sk: socket
4775 * @to: prior buffer
4776 * @from: buffer to add in queue
4777 * @fragstolen: pointer to boolean
4778 *
4779 * Before queueing skb @from after @to, try to merge them
4780 * to reduce overall memory use and queue lengths, if cost is small.
4781 * Packets in ofo or receive queues can stay a long time.
4782 * Better try to coalesce them right now to avoid future collapses.
4783 * Returns true if caller should free @from instead of queueing it
4784 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4785 static bool tcp_try_coalesce(struct sock *sk,
4786 struct sk_buff *to,
4787 struct sk_buff *from,
4788 bool *fragstolen)
4789 {
4790 int delta;
4791
4792 *fragstolen = false;
4793
4794 /* Its possible this segment overlaps with prior segment in queue */
4795 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4796 return false;
4797
4798 if (!mptcp_skb_can_collapse(to, from))
4799 return false;
4800
4801 #ifdef CONFIG_TLS_DEVICE
4802 if (from->decrypted != to->decrypted)
4803 return false;
4804 #endif
4805
4806 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4807 return false;
4808
4809 atomic_add(delta, &sk->sk_rmem_alloc);
4810 sk_mem_charge(sk, delta);
4811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4812 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4813 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4814 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4815
4816 if (TCP_SKB_CB(from)->has_rxtstamp) {
4817 TCP_SKB_CB(to)->has_rxtstamp = true;
4818 to->tstamp = from->tstamp;
4819 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4820 }
4821
4822 return true;
4823 }
4824
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4825 static bool tcp_ooo_try_coalesce(struct sock *sk,
4826 struct sk_buff *to,
4827 struct sk_buff *from,
4828 bool *fragstolen)
4829 {
4830 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4831
4832 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4833 if (res) {
4834 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4835 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4836
4837 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4838 }
4839 return res;
4840 }
4841
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4842 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4843 enum skb_drop_reason reason)
4844 {
4845 sk_drops_add(sk, skb);
4846 kfree_skb_reason(skb, reason);
4847 }
4848
4849 /* This one checks to see if we can put data from the
4850 * out_of_order queue into the receive_queue.
4851 */
tcp_ofo_queue(struct sock * sk)4852 static void tcp_ofo_queue(struct sock *sk)
4853 {
4854 struct tcp_sock *tp = tcp_sk(sk);
4855 __u32 dsack_high = tp->rcv_nxt;
4856 bool fin, fragstolen, eaten;
4857 struct sk_buff *skb, *tail;
4858 struct rb_node *p;
4859
4860 p = rb_first(&tp->out_of_order_queue);
4861 while (p) {
4862 skb = rb_to_skb(p);
4863 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4864 break;
4865
4866 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4867 __u32 dsack = dsack_high;
4868 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4869 dsack_high = TCP_SKB_CB(skb)->end_seq;
4870 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4871 }
4872 p = rb_next(p);
4873 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4874
4875 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4876 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4877 continue;
4878 }
4879
4880 tail = skb_peek_tail(&sk->sk_receive_queue);
4881 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4882 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4883 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4884 if (!eaten)
4885 tcp_add_receive_queue(sk, skb);
4886 else
4887 kfree_skb_partial(skb, fragstolen);
4888
4889 if (unlikely(fin)) {
4890 tcp_fin(sk);
4891 /* tcp_fin() purges tp->out_of_order_queue,
4892 * so we must end this loop right now.
4893 */
4894 break;
4895 }
4896 }
4897 }
4898
4899 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4900 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4901
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4902 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4903 unsigned int size)
4904 {
4905 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4906 !sk_rmem_schedule(sk, skb, size)) {
4907
4908 if (tcp_prune_queue(sk, skb) < 0)
4909 return -1;
4910
4911 while (!sk_rmem_schedule(sk, skb, size)) {
4912 if (!tcp_prune_ofo_queue(sk, skb))
4913 return -1;
4914 }
4915 }
4916 return 0;
4917 }
4918
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4919 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4920 {
4921 struct tcp_sock *tp = tcp_sk(sk);
4922 struct rb_node **p, *parent;
4923 struct sk_buff *skb1;
4924 u32 seq, end_seq;
4925 bool fragstolen;
4926
4927 tcp_ecn_check_ce(sk, skb);
4928
4929 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4931 sk->sk_data_ready(sk);
4932 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4933 return;
4934 }
4935
4936 /* Disable header prediction. */
4937 tp->pred_flags = 0;
4938 inet_csk_schedule_ack(sk);
4939
4940 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4942 seq = TCP_SKB_CB(skb)->seq;
4943 end_seq = TCP_SKB_CB(skb)->end_seq;
4944
4945 p = &tp->out_of_order_queue.rb_node;
4946 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4947 /* Initial out of order segment, build 1 SACK. */
4948 if (tcp_is_sack(tp)) {
4949 tp->rx_opt.num_sacks = 1;
4950 tp->selective_acks[0].start_seq = seq;
4951 tp->selective_acks[0].end_seq = end_seq;
4952 }
4953 rb_link_node(&skb->rbnode, NULL, p);
4954 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4955 tp->ooo_last_skb = skb;
4956 goto end;
4957 }
4958
4959 /* In the typical case, we are adding an skb to the end of the list.
4960 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4961 */
4962 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4963 skb, &fragstolen)) {
4964 coalesce_done:
4965 /* For non sack flows, do not grow window to force DUPACK
4966 * and trigger fast retransmit.
4967 */
4968 if (tcp_is_sack(tp))
4969 tcp_grow_window(sk, skb, true);
4970 kfree_skb_partial(skb, fragstolen);
4971 skb = NULL;
4972 goto add_sack;
4973 }
4974 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4975 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4976 parent = &tp->ooo_last_skb->rbnode;
4977 p = &parent->rb_right;
4978 goto insert;
4979 }
4980
4981 /* Find place to insert this segment. Handle overlaps on the way. */
4982 parent = NULL;
4983 while (*p) {
4984 parent = *p;
4985 skb1 = rb_to_skb(parent);
4986 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4987 p = &parent->rb_left;
4988 continue;
4989 }
4990 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4991 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4992 /* All the bits are present. Drop. */
4993 NET_INC_STATS(sock_net(sk),
4994 LINUX_MIB_TCPOFOMERGE);
4995 tcp_drop_reason(sk, skb,
4996 SKB_DROP_REASON_TCP_OFOMERGE);
4997 skb = NULL;
4998 tcp_dsack_set(sk, seq, end_seq);
4999 goto add_sack;
5000 }
5001 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5002 /* Partial overlap. */
5003 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5004 } else {
5005 /* skb's seq == skb1's seq and skb covers skb1.
5006 * Replace skb1 with skb.
5007 */
5008 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5009 &tp->out_of_order_queue);
5010 tcp_dsack_extend(sk,
5011 TCP_SKB_CB(skb1)->seq,
5012 TCP_SKB_CB(skb1)->end_seq);
5013 NET_INC_STATS(sock_net(sk),
5014 LINUX_MIB_TCPOFOMERGE);
5015 tcp_drop_reason(sk, skb1,
5016 SKB_DROP_REASON_TCP_OFOMERGE);
5017 goto merge_right;
5018 }
5019 } else if (tcp_ooo_try_coalesce(sk, skb1,
5020 skb, &fragstolen)) {
5021 goto coalesce_done;
5022 }
5023 p = &parent->rb_right;
5024 }
5025 insert:
5026 /* Insert segment into RB tree. */
5027 rb_link_node(&skb->rbnode, parent, p);
5028 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5029
5030 merge_right:
5031 /* Remove other segments covered by skb. */
5032 while ((skb1 = skb_rb_next(skb)) != NULL) {
5033 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5034 break;
5035 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5036 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5037 end_seq);
5038 break;
5039 }
5040 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5041 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5042 TCP_SKB_CB(skb1)->end_seq);
5043 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5044 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5045 }
5046 /* If there is no skb after us, we are the last_skb ! */
5047 if (!skb1)
5048 tp->ooo_last_skb = skb;
5049
5050 add_sack:
5051 if (tcp_is_sack(tp))
5052 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5053 end:
5054 if (skb) {
5055 /* For non sack flows, do not grow window to force DUPACK
5056 * and trigger fast retransmit.
5057 */
5058 if (tcp_is_sack(tp))
5059 tcp_grow_window(sk, skb, false);
5060 skb_condense(skb);
5061 skb_set_owner_r(skb, sk);
5062 }
5063 }
5064
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5065 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5066 bool *fragstolen)
5067 {
5068 int eaten;
5069 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5070
5071 eaten = (tail &&
5072 tcp_try_coalesce(sk, tail,
5073 skb, fragstolen)) ? 1 : 0;
5074 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5075 if (!eaten) {
5076 tcp_add_receive_queue(sk, skb);
5077 skb_set_owner_r(skb, sk);
5078 }
5079 return eaten;
5080 }
5081
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5082 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5083 {
5084 struct sk_buff *skb;
5085 int err = -ENOMEM;
5086 int data_len = 0;
5087 bool fragstolen;
5088
5089 if (size == 0)
5090 return 0;
5091
5092 if (size > PAGE_SIZE) {
5093 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5094
5095 data_len = npages << PAGE_SHIFT;
5096 size = data_len + (size & ~PAGE_MASK);
5097 }
5098 skb = alloc_skb_with_frags(size - data_len, data_len,
5099 PAGE_ALLOC_COSTLY_ORDER,
5100 &err, sk->sk_allocation);
5101 if (!skb)
5102 goto err;
5103
5104 skb_put(skb, size - data_len);
5105 skb->data_len = data_len;
5106 skb->len = size;
5107
5108 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5109 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5110 goto err_free;
5111 }
5112
5113 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5114 if (err)
5115 goto err_free;
5116
5117 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5118 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5119 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5120
5121 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5122 WARN_ON_ONCE(fragstolen); /* should not happen */
5123 __kfree_skb(skb);
5124 }
5125 return size;
5126
5127 err_free:
5128 kfree_skb(skb);
5129 err:
5130 return err;
5131
5132 }
5133
tcp_data_ready(struct sock * sk)5134 void tcp_data_ready(struct sock *sk)
5135 {
5136 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5137 sk->sk_data_ready(sk);
5138 }
5139
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5140 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5141 {
5142 struct tcp_sock *tp = tcp_sk(sk);
5143 enum skb_drop_reason reason;
5144 bool fragstolen;
5145 int eaten;
5146
5147 /* If a subflow has been reset, the packet should not continue
5148 * to be processed, drop the packet.
5149 */
5150 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5151 __kfree_skb(skb);
5152 return;
5153 }
5154
5155 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5156 __kfree_skb(skb);
5157 return;
5158 }
5159 tcp_cleanup_skb(skb);
5160 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5161
5162 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5163 tp->rx_opt.dsack = 0;
5164
5165 /* Queue data for delivery to the user.
5166 * Packets in sequence go to the receive queue.
5167 * Out of sequence packets to the out_of_order_queue.
5168 */
5169 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5170 if (tcp_receive_window(tp) == 0) {
5171 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5172 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5173 goto out_of_window;
5174 }
5175
5176 /* Ok. In sequence. In window. */
5177 queue_and_out:
5178 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5179 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5180 inet_csk(sk)->icsk_ack.pending |=
5181 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5182 inet_csk_schedule_ack(sk);
5183 sk->sk_data_ready(sk);
5184
5185 if (skb_queue_len(&sk->sk_receive_queue)) {
5186 reason = SKB_DROP_REASON_PROTO_MEM;
5187 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5188 goto drop;
5189 }
5190 sk_forced_mem_schedule(sk, skb->truesize);
5191 }
5192
5193 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5194 if (skb->len)
5195 tcp_event_data_recv(sk, skb);
5196 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5197 tcp_fin(sk);
5198
5199 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5200 tcp_ofo_queue(sk);
5201
5202 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5203 * gap in queue is filled.
5204 */
5205 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5206 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5207 }
5208
5209 if (tp->rx_opt.num_sacks)
5210 tcp_sack_remove(tp);
5211
5212 tcp_fast_path_check(sk);
5213
5214 if (eaten > 0)
5215 kfree_skb_partial(skb, fragstolen);
5216 if (!sock_flag(sk, SOCK_DEAD))
5217 tcp_data_ready(sk);
5218 return;
5219 }
5220
5221 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5222 tcp_rcv_spurious_retrans(sk, skb);
5223 /* A retransmit, 2nd most common case. Force an immediate ack. */
5224 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5225 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5226 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5227
5228 out_of_window:
5229 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5230 inet_csk_schedule_ack(sk);
5231 drop:
5232 tcp_drop_reason(sk, skb, reason);
5233 return;
5234 }
5235
5236 /* Out of window. F.e. zero window probe. */
5237 if (!before(TCP_SKB_CB(skb)->seq,
5238 tp->rcv_nxt + tcp_receive_window(tp))) {
5239 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5240 goto out_of_window;
5241 }
5242
5243 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5244 /* Partial packet, seq < rcv_next < end_seq */
5245 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5246
5247 /* If window is closed, drop tail of packet. But after
5248 * remembering D-SACK for its head made in previous line.
5249 */
5250 if (!tcp_receive_window(tp)) {
5251 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5253 goto out_of_window;
5254 }
5255 goto queue_and_out;
5256 }
5257
5258 tcp_data_queue_ofo(sk, skb);
5259 }
5260
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5261 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5262 {
5263 if (list)
5264 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5265
5266 return skb_rb_next(skb);
5267 }
5268
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5269 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5270 struct sk_buff_head *list,
5271 struct rb_root *root)
5272 {
5273 struct sk_buff *next = tcp_skb_next(skb, list);
5274
5275 if (list)
5276 __skb_unlink(skb, list);
5277 else
5278 rb_erase(&skb->rbnode, root);
5279
5280 __kfree_skb(skb);
5281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5282
5283 return next;
5284 }
5285
5286 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5287 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5288 {
5289 struct rb_node **p = &root->rb_node;
5290 struct rb_node *parent = NULL;
5291 struct sk_buff *skb1;
5292
5293 while (*p) {
5294 parent = *p;
5295 skb1 = rb_to_skb(parent);
5296 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5297 p = &parent->rb_left;
5298 else
5299 p = &parent->rb_right;
5300 }
5301 rb_link_node(&skb->rbnode, parent, p);
5302 rb_insert_color(&skb->rbnode, root);
5303 }
5304
5305 /* Collapse contiguous sequence of skbs head..tail with
5306 * sequence numbers start..end.
5307 *
5308 * If tail is NULL, this means until the end of the queue.
5309 *
5310 * Segments with FIN/SYN are not collapsed (only because this
5311 * simplifies code)
5312 */
5313 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5314 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5315 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5316 {
5317 struct sk_buff *skb = head, *n;
5318 struct sk_buff_head tmp;
5319 bool end_of_skbs;
5320
5321 /* First, check that queue is collapsible and find
5322 * the point where collapsing can be useful.
5323 */
5324 restart:
5325 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5326 n = tcp_skb_next(skb, list);
5327
5328 /* No new bits? It is possible on ofo queue. */
5329 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5330 skb = tcp_collapse_one(sk, skb, list, root);
5331 if (!skb)
5332 break;
5333 goto restart;
5334 }
5335
5336 /* The first skb to collapse is:
5337 * - not SYN/FIN and
5338 * - bloated or contains data before "start" or
5339 * overlaps to the next one and mptcp allow collapsing.
5340 */
5341 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5342 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5343 before(TCP_SKB_CB(skb)->seq, start))) {
5344 end_of_skbs = false;
5345 break;
5346 }
5347
5348 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5349 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5350 end_of_skbs = false;
5351 break;
5352 }
5353
5354 /* Decided to skip this, advance start seq. */
5355 start = TCP_SKB_CB(skb)->end_seq;
5356 }
5357 if (end_of_skbs ||
5358 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5359 return;
5360
5361 __skb_queue_head_init(&tmp);
5362
5363 while (before(start, end)) {
5364 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5365 struct sk_buff *nskb;
5366
5367 nskb = alloc_skb(copy, GFP_ATOMIC);
5368 if (!nskb)
5369 break;
5370
5371 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5372 #ifdef CONFIG_TLS_DEVICE
5373 nskb->decrypted = skb->decrypted;
5374 #endif
5375 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5376 if (list)
5377 __skb_queue_before(list, skb, nskb);
5378 else
5379 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5380 skb_set_owner_r(nskb, sk);
5381 mptcp_skb_ext_move(nskb, skb);
5382
5383 /* Copy data, releasing collapsed skbs. */
5384 while (copy > 0) {
5385 int offset = start - TCP_SKB_CB(skb)->seq;
5386 int size = TCP_SKB_CB(skb)->end_seq - start;
5387
5388 BUG_ON(offset < 0);
5389 if (size > 0) {
5390 size = min(copy, size);
5391 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5392 BUG();
5393 TCP_SKB_CB(nskb)->end_seq += size;
5394 copy -= size;
5395 start += size;
5396 }
5397 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5398 skb = tcp_collapse_one(sk, skb, list, root);
5399 if (!skb ||
5400 skb == tail ||
5401 !mptcp_skb_can_collapse(nskb, skb) ||
5402 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5403 goto end;
5404 #ifdef CONFIG_TLS_DEVICE
5405 if (skb->decrypted != nskb->decrypted)
5406 goto end;
5407 #endif
5408 }
5409 }
5410 }
5411 end:
5412 skb_queue_walk_safe(&tmp, skb, n)
5413 tcp_rbtree_insert(root, skb);
5414 }
5415
5416 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5417 * and tcp_collapse() them until all the queue is collapsed.
5418 */
tcp_collapse_ofo_queue(struct sock * sk)5419 static void tcp_collapse_ofo_queue(struct sock *sk)
5420 {
5421 struct tcp_sock *tp = tcp_sk(sk);
5422 u32 range_truesize, sum_tiny = 0;
5423 struct sk_buff *skb, *head;
5424 u32 start, end;
5425
5426 skb = skb_rb_first(&tp->out_of_order_queue);
5427 new_range:
5428 if (!skb) {
5429 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5430 return;
5431 }
5432 start = TCP_SKB_CB(skb)->seq;
5433 end = TCP_SKB_CB(skb)->end_seq;
5434 range_truesize = skb->truesize;
5435
5436 for (head = skb;;) {
5437 skb = skb_rb_next(skb);
5438
5439 /* Range is terminated when we see a gap or when
5440 * we are at the queue end.
5441 */
5442 if (!skb ||
5443 after(TCP_SKB_CB(skb)->seq, end) ||
5444 before(TCP_SKB_CB(skb)->end_seq, start)) {
5445 /* Do not attempt collapsing tiny skbs */
5446 if (range_truesize != head->truesize ||
5447 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5448 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5449 head, skb, start, end);
5450 } else {
5451 sum_tiny += range_truesize;
5452 if (sum_tiny > sk->sk_rcvbuf >> 3)
5453 return;
5454 }
5455 goto new_range;
5456 }
5457
5458 range_truesize += skb->truesize;
5459 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5460 start = TCP_SKB_CB(skb)->seq;
5461 if (after(TCP_SKB_CB(skb)->end_seq, end))
5462 end = TCP_SKB_CB(skb)->end_seq;
5463 }
5464 }
5465
5466 /*
5467 * Clean the out-of-order queue to make room.
5468 * We drop high sequences packets to :
5469 * 1) Let a chance for holes to be filled.
5470 * This means we do not drop packets from ooo queue if their sequence
5471 * is before incoming packet sequence.
5472 * 2) not add too big latencies if thousands of packets sit there.
5473 * (But if application shrinks SO_RCVBUF, we could still end up
5474 * freeing whole queue here)
5475 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5476 *
5477 * Return true if queue has shrunk.
5478 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5479 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5480 {
5481 struct tcp_sock *tp = tcp_sk(sk);
5482 struct rb_node *node, *prev;
5483 bool pruned = false;
5484 int goal;
5485
5486 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5487 return false;
5488
5489 goal = sk->sk_rcvbuf >> 3;
5490 node = &tp->ooo_last_skb->rbnode;
5491
5492 do {
5493 struct sk_buff *skb = rb_to_skb(node);
5494
5495 /* If incoming skb would land last in ofo queue, stop pruning. */
5496 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5497 break;
5498 pruned = true;
5499 prev = rb_prev(node);
5500 rb_erase(node, &tp->out_of_order_queue);
5501 goal -= skb->truesize;
5502 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5503 tp->ooo_last_skb = rb_to_skb(prev);
5504 if (!prev || goal <= 0) {
5505 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5506 !tcp_under_memory_pressure(sk))
5507 break;
5508 goal = sk->sk_rcvbuf >> 3;
5509 }
5510 node = prev;
5511 } while (node);
5512
5513 if (pruned) {
5514 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5515 /* Reset SACK state. A conforming SACK implementation will
5516 * do the same at a timeout based retransmit. When a connection
5517 * is in a sad state like this, we care only about integrity
5518 * of the connection not performance.
5519 */
5520 if (tp->rx_opt.sack_ok)
5521 tcp_sack_reset(&tp->rx_opt);
5522 }
5523 return pruned;
5524 }
5525
5526 /* Reduce allocated memory if we can, trying to get
5527 * the socket within its memory limits again.
5528 *
5529 * Return less than zero if we should start dropping frames
5530 * until the socket owning process reads some of the data
5531 * to stabilize the situation.
5532 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5533 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5534 {
5535 struct tcp_sock *tp = tcp_sk(sk);
5536
5537 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5538
5539 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5540 tcp_clamp_window(sk);
5541 else if (tcp_under_memory_pressure(sk))
5542 tcp_adjust_rcv_ssthresh(sk);
5543
5544 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5545 return 0;
5546
5547 tcp_collapse_ofo_queue(sk);
5548 if (!skb_queue_empty(&sk->sk_receive_queue))
5549 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5550 skb_peek(&sk->sk_receive_queue),
5551 NULL,
5552 tp->copied_seq, tp->rcv_nxt);
5553
5554 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5555 return 0;
5556
5557 /* Collapsing did not help, destructive actions follow.
5558 * This must not ever occur. */
5559
5560 tcp_prune_ofo_queue(sk, in_skb);
5561
5562 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5563 return 0;
5564
5565 /* If we are really being abused, tell the caller to silently
5566 * drop receive data on the floor. It will get retransmitted
5567 * and hopefully then we'll have sufficient space.
5568 */
5569 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5570
5571 /* Massive buffer overcommit. */
5572 tp->pred_flags = 0;
5573 return -1;
5574 }
5575
tcp_should_expand_sndbuf(struct sock * sk)5576 static bool tcp_should_expand_sndbuf(struct sock *sk)
5577 {
5578 const struct tcp_sock *tp = tcp_sk(sk);
5579
5580 /* If the user specified a specific send buffer setting, do
5581 * not modify it.
5582 */
5583 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5584 return false;
5585
5586 /* If we are under global TCP memory pressure, do not expand. */
5587 if (tcp_under_memory_pressure(sk)) {
5588 int unused_mem = sk_unused_reserved_mem(sk);
5589
5590 /* Adjust sndbuf according to reserved mem. But make sure
5591 * it never goes below SOCK_MIN_SNDBUF.
5592 * See sk_stream_moderate_sndbuf() for more details.
5593 */
5594 if (unused_mem > SOCK_MIN_SNDBUF)
5595 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5596
5597 return false;
5598 }
5599
5600 /* If we are under soft global TCP memory pressure, do not expand. */
5601 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5602 return false;
5603
5604 /* If we filled the congestion window, do not expand. */
5605 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5606 return false;
5607
5608 return true;
5609 }
5610
tcp_new_space(struct sock * sk)5611 static void tcp_new_space(struct sock *sk)
5612 {
5613 struct tcp_sock *tp = tcp_sk(sk);
5614
5615 if (tcp_should_expand_sndbuf(sk)) {
5616 tcp_sndbuf_expand(sk);
5617 tp->snd_cwnd_stamp = tcp_jiffies32;
5618 }
5619
5620 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5621 }
5622
5623 /* Caller made space either from:
5624 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5625 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5626 *
5627 * We might be able to generate EPOLLOUT to the application if:
5628 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5629 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5630 * small enough that tcp_stream_memory_free() decides it
5631 * is time to generate EPOLLOUT.
5632 */
tcp_check_space(struct sock * sk)5633 void tcp_check_space(struct sock *sk)
5634 {
5635 /* pairs with tcp_poll() */
5636 smp_mb();
5637 if (sk->sk_socket &&
5638 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5639 tcp_new_space(sk);
5640 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5641 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5642 }
5643 }
5644
tcp_data_snd_check(struct sock * sk)5645 static inline void tcp_data_snd_check(struct sock *sk)
5646 {
5647 tcp_push_pending_frames(sk);
5648 tcp_check_space(sk);
5649 }
5650
5651 /*
5652 * Check if sending an ack is needed.
5653 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5654 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5655 {
5656 struct tcp_sock *tp = tcp_sk(sk);
5657 unsigned long rtt, delay;
5658
5659 /* More than one full frame received... */
5660 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5661 /* ... and right edge of window advances far enough.
5662 * (tcp_recvmsg() will send ACK otherwise).
5663 * If application uses SO_RCVLOWAT, we want send ack now if
5664 * we have not received enough bytes to satisfy the condition.
5665 */
5666 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5667 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5668 /* We ACK each frame or... */
5669 tcp_in_quickack_mode(sk) ||
5670 /* Protocol state mandates a one-time immediate ACK */
5671 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5672 send_now:
5673 tcp_send_ack(sk);
5674 return;
5675 }
5676
5677 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5678 tcp_send_delayed_ack(sk);
5679 return;
5680 }
5681
5682 if (!tcp_is_sack(tp) ||
5683 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5684 goto send_now;
5685
5686 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5687 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5688 tp->dup_ack_counter = 0;
5689 }
5690 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5691 tp->dup_ack_counter++;
5692 goto send_now;
5693 }
5694 tp->compressed_ack++;
5695 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5696 return;
5697
5698 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5699
5700 rtt = tp->rcv_rtt_est.rtt_us;
5701 if (tp->srtt_us && tp->srtt_us < rtt)
5702 rtt = tp->srtt_us;
5703
5704 delay = min_t(unsigned long,
5705 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5706 rtt * (NSEC_PER_USEC >> 3)/20);
5707 sock_hold(sk);
5708 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5709 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5710 HRTIMER_MODE_REL_PINNED_SOFT);
5711 }
5712
tcp_ack_snd_check(struct sock * sk)5713 static inline void tcp_ack_snd_check(struct sock *sk)
5714 {
5715 if (!inet_csk_ack_scheduled(sk)) {
5716 /* We sent a data segment already. */
5717 return;
5718 }
5719 __tcp_ack_snd_check(sk, 1);
5720 }
5721
5722 /*
5723 * This routine is only called when we have urgent data
5724 * signaled. Its the 'slow' part of tcp_urg. It could be
5725 * moved inline now as tcp_urg is only called from one
5726 * place. We handle URGent data wrong. We have to - as
5727 * BSD still doesn't use the correction from RFC961.
5728 * For 1003.1g we should support a new option TCP_STDURG to permit
5729 * either form (or just set the sysctl tcp_stdurg).
5730 */
5731
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5732 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5733 {
5734 struct tcp_sock *tp = tcp_sk(sk);
5735 u32 ptr = ntohs(th->urg_ptr);
5736
5737 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5738 ptr--;
5739 ptr += ntohl(th->seq);
5740
5741 /* Ignore urgent data that we've already seen and read. */
5742 if (after(tp->copied_seq, ptr))
5743 return;
5744
5745 /* Do not replay urg ptr.
5746 *
5747 * NOTE: interesting situation not covered by specs.
5748 * Misbehaving sender may send urg ptr, pointing to segment,
5749 * which we already have in ofo queue. We are not able to fetch
5750 * such data and will stay in TCP_URG_NOTYET until will be eaten
5751 * by recvmsg(). Seems, we are not obliged to handle such wicked
5752 * situations. But it is worth to think about possibility of some
5753 * DoSes using some hypothetical application level deadlock.
5754 */
5755 if (before(ptr, tp->rcv_nxt))
5756 return;
5757
5758 /* Do we already have a newer (or duplicate) urgent pointer? */
5759 if (tp->urg_data && !after(ptr, tp->urg_seq))
5760 return;
5761
5762 /* Tell the world about our new urgent pointer. */
5763 sk_send_sigurg(sk);
5764
5765 /* We may be adding urgent data when the last byte read was
5766 * urgent. To do this requires some care. We cannot just ignore
5767 * tp->copied_seq since we would read the last urgent byte again
5768 * as data, nor can we alter copied_seq until this data arrives
5769 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5770 *
5771 * NOTE. Double Dutch. Rendering to plain English: author of comment
5772 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5773 * and expect that both A and B disappear from stream. This is _wrong_.
5774 * Though this happens in BSD with high probability, this is occasional.
5775 * Any application relying on this is buggy. Note also, that fix "works"
5776 * only in this artificial test. Insert some normal data between A and B and we will
5777 * decline of BSD again. Verdict: it is better to remove to trap
5778 * buggy users.
5779 */
5780 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5781 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5782 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5783 tp->copied_seq++;
5784 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5785 __skb_unlink(skb, &sk->sk_receive_queue);
5786 __kfree_skb(skb);
5787 }
5788 }
5789
5790 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5791 WRITE_ONCE(tp->urg_seq, ptr);
5792
5793 /* Disable header prediction. */
5794 tp->pred_flags = 0;
5795 }
5796
5797 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5798 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5799 {
5800 struct tcp_sock *tp = tcp_sk(sk);
5801
5802 /* Check if we get a new urgent pointer - normally not. */
5803 if (unlikely(th->urg))
5804 tcp_check_urg(sk, th);
5805
5806 /* Do we wait for any urgent data? - normally not... */
5807 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5808 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5809 th->syn;
5810
5811 /* Is the urgent pointer pointing into this packet? */
5812 if (ptr < skb->len) {
5813 u8 tmp;
5814 if (skb_copy_bits(skb, ptr, &tmp, 1))
5815 BUG();
5816 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5817 if (!sock_flag(sk, SOCK_DEAD))
5818 sk->sk_data_ready(sk);
5819 }
5820 }
5821 }
5822
5823 /* Accept RST for rcv_nxt - 1 after a FIN.
5824 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5825 * FIN is sent followed by a RST packet. The RST is sent with the same
5826 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5827 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5828 * ACKs on the closed socket. In addition middleboxes can drop either the
5829 * challenge ACK or a subsequent RST.
5830 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5831 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5832 {
5833 const struct tcp_sock *tp = tcp_sk(sk);
5834
5835 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5836 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5837 TCPF_CLOSING));
5838 }
5839
5840 /* Does PAWS and seqno based validation of an incoming segment, flags will
5841 * play significant role here.
5842 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5843 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5844 const struct tcphdr *th, int syn_inerr)
5845 {
5846 struct tcp_sock *tp = tcp_sk(sk);
5847 SKB_DR(reason);
5848
5849 /* RFC1323: H1. Apply PAWS check first. */
5850 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5851 tp->rx_opt.saw_tstamp &&
5852 tcp_paws_discard(sk, skb)) {
5853 if (!th->rst) {
5854 if (unlikely(th->syn))
5855 goto syn_challenge;
5856 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5857 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5858 LINUX_MIB_TCPACKSKIPPEDPAWS,
5859 &tp->last_oow_ack_time))
5860 tcp_send_dupack(sk, skb);
5861 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5862 goto discard;
5863 }
5864 /* Reset is accepted even if it did not pass PAWS. */
5865 }
5866
5867 /* Step 1: check sequence number */
5868 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5869 if (reason) {
5870 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5871 * (RST) segments are validated by checking their SEQ-fields."
5872 * And page 69: "If an incoming segment is not acceptable,
5873 * an acknowledgment should be sent in reply (unless the RST
5874 * bit is set, if so drop the segment and return)".
5875 */
5876 if (!th->rst) {
5877 if (th->syn)
5878 goto syn_challenge;
5879 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5880 LINUX_MIB_TCPACKSKIPPEDSEQ,
5881 &tp->last_oow_ack_time))
5882 tcp_send_dupack(sk, skb);
5883 } else if (tcp_reset_check(sk, skb)) {
5884 goto reset;
5885 }
5886 goto discard;
5887 }
5888
5889 /* Step 2: check RST bit */
5890 if (th->rst) {
5891 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5892 * FIN and SACK too if available):
5893 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5894 * the right-most SACK block,
5895 * then
5896 * RESET the connection
5897 * else
5898 * Send a challenge ACK
5899 */
5900 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5901 tcp_reset_check(sk, skb))
5902 goto reset;
5903
5904 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5905 struct tcp_sack_block *sp = &tp->selective_acks[0];
5906 int max_sack = sp[0].end_seq;
5907 int this_sack;
5908
5909 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5910 ++this_sack) {
5911 max_sack = after(sp[this_sack].end_seq,
5912 max_sack) ?
5913 sp[this_sack].end_seq : max_sack;
5914 }
5915
5916 if (TCP_SKB_CB(skb)->seq == max_sack)
5917 goto reset;
5918 }
5919
5920 /* Disable TFO if RST is out-of-order
5921 * and no data has been received
5922 * for current active TFO socket
5923 */
5924 if (tp->syn_fastopen && !tp->data_segs_in &&
5925 sk->sk_state == TCP_ESTABLISHED)
5926 tcp_fastopen_active_disable(sk);
5927 tcp_send_challenge_ack(sk);
5928 SKB_DR_SET(reason, TCP_RESET);
5929 goto discard;
5930 }
5931
5932 /* step 3: check security and precedence [ignored] */
5933
5934 /* step 4: Check for a SYN
5935 * RFC 5961 4.2 : Send a challenge ack
5936 */
5937 if (th->syn) {
5938 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5939 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5940 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5941 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5942 goto pass;
5943 syn_challenge:
5944 if (syn_inerr)
5945 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5946 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5947 tcp_send_challenge_ack(sk);
5948 SKB_DR_SET(reason, TCP_INVALID_SYN);
5949 goto discard;
5950 }
5951
5952 pass:
5953 bpf_skops_parse_hdr(sk, skb);
5954
5955 return true;
5956
5957 discard:
5958 tcp_drop_reason(sk, skb, reason);
5959 return false;
5960
5961 reset:
5962 tcp_reset(sk, skb);
5963 __kfree_skb(skb);
5964 return false;
5965 }
5966
5967 /*
5968 * TCP receive function for the ESTABLISHED state.
5969 *
5970 * It is split into a fast path and a slow path. The fast path is
5971 * disabled when:
5972 * - A zero window was announced from us - zero window probing
5973 * is only handled properly in the slow path.
5974 * - Out of order segments arrived.
5975 * - Urgent data is expected.
5976 * - There is no buffer space left
5977 * - Unexpected TCP flags/window values/header lengths are received
5978 * (detected by checking the TCP header against pred_flags)
5979 * - Data is sent in both directions. Fast path only supports pure senders
5980 * or pure receivers (this means either the sequence number or the ack
5981 * value must stay constant)
5982 * - Unexpected TCP option.
5983 *
5984 * When these conditions are not satisfied it drops into a standard
5985 * receive procedure patterned after RFC793 to handle all cases.
5986 * The first three cases are guaranteed by proper pred_flags setting,
5987 * the rest is checked inline. Fast processing is turned on in
5988 * tcp_data_queue when everything is OK.
5989 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5990 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5991 {
5992 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5993 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5994 struct tcp_sock *tp = tcp_sk(sk);
5995 unsigned int len = skb->len;
5996
5997 /* TCP congestion window tracking */
5998 trace_tcp_probe(sk, skb);
5999
6000 tcp_mstamp_refresh(tp);
6001 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6002 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6003 /*
6004 * Header prediction.
6005 * The code loosely follows the one in the famous
6006 * "30 instruction TCP receive" Van Jacobson mail.
6007 *
6008 * Van's trick is to deposit buffers into socket queue
6009 * on a device interrupt, to call tcp_recv function
6010 * on the receive process context and checksum and copy
6011 * the buffer to user space. smart...
6012 *
6013 * Our current scheme is not silly either but we take the
6014 * extra cost of the net_bh soft interrupt processing...
6015 * We do checksum and copy also but from device to kernel.
6016 */
6017
6018 tp->rx_opt.saw_tstamp = 0;
6019
6020 /* pred_flags is 0xS?10 << 16 + snd_wnd
6021 * if header_prediction is to be made
6022 * 'S' will always be tp->tcp_header_len >> 2
6023 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6024 * turn it off (when there are holes in the receive
6025 * space for instance)
6026 * PSH flag is ignored.
6027 */
6028
6029 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6030 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6031 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6032 int tcp_header_len = tp->tcp_header_len;
6033
6034 /* Timestamp header prediction: tcp_header_len
6035 * is automatically equal to th->doff*4 due to pred_flags
6036 * match.
6037 */
6038
6039 /* Check timestamp */
6040 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6041 /* No? Slow path! */
6042 if (!tcp_parse_aligned_timestamp(tp, th))
6043 goto slow_path;
6044
6045 /* If PAWS failed, check it more carefully in slow path */
6046 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6047 goto slow_path;
6048
6049 /* DO NOT update ts_recent here, if checksum fails
6050 * and timestamp was corrupted part, it will result
6051 * in a hung connection since we will drop all
6052 * future packets due to the PAWS test.
6053 */
6054 }
6055
6056 if (len <= tcp_header_len) {
6057 /* Bulk data transfer: sender */
6058 if (len == tcp_header_len) {
6059 /* Predicted packet is in window by definition.
6060 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6061 * Hence, check seq<=rcv_wup reduces to:
6062 */
6063 if (tcp_header_len ==
6064 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6065 tp->rcv_nxt == tp->rcv_wup)
6066 tcp_store_ts_recent(tp);
6067
6068 /* We know that such packets are checksummed
6069 * on entry.
6070 */
6071 tcp_ack(sk, skb, 0);
6072 __kfree_skb(skb);
6073 tcp_data_snd_check(sk);
6074 /* When receiving pure ack in fast path, update
6075 * last ts ecr directly instead of calling
6076 * tcp_rcv_rtt_measure_ts()
6077 */
6078 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6079 return;
6080 } else { /* Header too small */
6081 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6082 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6083 goto discard;
6084 }
6085 } else {
6086 int eaten = 0;
6087 bool fragstolen = false;
6088
6089 if (tcp_checksum_complete(skb))
6090 goto csum_error;
6091
6092 if ((int)skb->truesize > sk->sk_forward_alloc)
6093 goto step5;
6094
6095 /* Predicted packet is in window by definition.
6096 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6097 * Hence, check seq<=rcv_wup reduces to:
6098 */
6099 if (tcp_header_len ==
6100 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6101 tp->rcv_nxt == tp->rcv_wup)
6102 tcp_store_ts_recent(tp);
6103
6104 tcp_rcv_rtt_measure_ts(sk, skb);
6105
6106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6107
6108 /* Bulk data transfer: receiver */
6109 tcp_cleanup_skb(skb);
6110 __skb_pull(skb, tcp_header_len);
6111 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6112
6113 tcp_event_data_recv(sk, skb);
6114
6115 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6116 /* Well, only one small jumplet in fast path... */
6117 tcp_ack(sk, skb, FLAG_DATA);
6118 tcp_data_snd_check(sk);
6119 if (!inet_csk_ack_scheduled(sk))
6120 goto no_ack;
6121 } else {
6122 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6123 }
6124
6125 __tcp_ack_snd_check(sk, 0);
6126 no_ack:
6127 if (eaten)
6128 kfree_skb_partial(skb, fragstolen);
6129 tcp_data_ready(sk);
6130 return;
6131 }
6132 }
6133
6134 slow_path:
6135 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6136 goto csum_error;
6137
6138 if (!th->ack && !th->rst && !th->syn) {
6139 reason = SKB_DROP_REASON_TCP_FLAGS;
6140 goto discard;
6141 }
6142
6143 /*
6144 * Standard slow path.
6145 */
6146
6147 if (!tcp_validate_incoming(sk, skb, th, 1))
6148 return;
6149
6150 step5:
6151 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6152 if ((int)reason < 0) {
6153 reason = -reason;
6154 goto discard;
6155 }
6156 tcp_rcv_rtt_measure_ts(sk, skb);
6157
6158 /* Process urgent data. */
6159 tcp_urg(sk, skb, th);
6160
6161 /* step 7: process the segment text */
6162 tcp_data_queue(sk, skb);
6163
6164 tcp_data_snd_check(sk);
6165 tcp_ack_snd_check(sk);
6166 return;
6167
6168 csum_error:
6169 reason = SKB_DROP_REASON_TCP_CSUM;
6170 trace_tcp_bad_csum(skb);
6171 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6172 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6173
6174 discard:
6175 tcp_drop_reason(sk, skb, reason);
6176 }
6177 EXPORT_SYMBOL(tcp_rcv_established);
6178
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6179 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6180 {
6181 struct inet_connection_sock *icsk = inet_csk(sk);
6182 struct tcp_sock *tp = tcp_sk(sk);
6183
6184 tcp_mtup_init(sk);
6185 icsk->icsk_af_ops->rebuild_header(sk);
6186 tcp_init_metrics(sk);
6187
6188 /* Initialize the congestion window to start the transfer.
6189 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6190 * retransmitted. In light of RFC6298 more aggressive 1sec
6191 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6192 * retransmission has occurred.
6193 */
6194 if (tp->total_retrans > 1 && tp->undo_marker)
6195 tcp_snd_cwnd_set(tp, 1);
6196 else
6197 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6198 tp->snd_cwnd_stamp = tcp_jiffies32;
6199
6200 bpf_skops_established(sk, bpf_op, skb);
6201 /* Initialize congestion control unless BPF initialized it already: */
6202 if (!icsk->icsk_ca_initialized)
6203 tcp_init_congestion_control(sk);
6204 tcp_init_buffer_space(sk);
6205 }
6206
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6207 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6208 {
6209 struct tcp_sock *tp = tcp_sk(sk);
6210 struct inet_connection_sock *icsk = inet_csk(sk);
6211
6212 tcp_set_state(sk, TCP_ESTABLISHED);
6213 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6214
6215 if (skb) {
6216 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6217 security_inet_conn_established(sk, skb);
6218 sk_mark_napi_id(sk, skb);
6219 }
6220
6221 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6222
6223 /* Prevent spurious tcp_cwnd_restart() on first data
6224 * packet.
6225 */
6226 tp->lsndtime = tcp_jiffies32;
6227
6228 if (sock_flag(sk, SOCK_KEEPOPEN))
6229 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6230
6231 if (!tp->rx_opt.snd_wscale)
6232 __tcp_fast_path_on(tp, tp->snd_wnd);
6233 else
6234 tp->pred_flags = 0;
6235 }
6236
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6237 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6238 struct tcp_fastopen_cookie *cookie)
6239 {
6240 struct tcp_sock *tp = tcp_sk(sk);
6241 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6242 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6243 bool syn_drop = false;
6244
6245 if (mss == tp->rx_opt.user_mss) {
6246 struct tcp_options_received opt;
6247
6248 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6249 tcp_clear_options(&opt);
6250 opt.user_mss = opt.mss_clamp = 0;
6251 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6252 mss = opt.mss_clamp;
6253 }
6254
6255 if (!tp->syn_fastopen) {
6256 /* Ignore an unsolicited cookie */
6257 cookie->len = -1;
6258 } else if (tp->total_retrans) {
6259 /* SYN timed out and the SYN-ACK neither has a cookie nor
6260 * acknowledges data. Presumably the remote received only
6261 * the retransmitted (regular) SYNs: either the original
6262 * SYN-data or the corresponding SYN-ACK was dropped.
6263 */
6264 syn_drop = (cookie->len < 0 && data);
6265 } else if (cookie->len < 0 && !tp->syn_data) {
6266 /* We requested a cookie but didn't get it. If we did not use
6267 * the (old) exp opt format then try so next time (try_exp=1).
6268 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6269 */
6270 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6271 }
6272
6273 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6274
6275 if (data) { /* Retransmit unacked data in SYN */
6276 if (tp->total_retrans)
6277 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6278 else
6279 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6280 skb_rbtree_walk_from(data)
6281 tcp_mark_skb_lost(sk, data);
6282 tcp_non_congestion_loss_retransmit(sk);
6283 NET_INC_STATS(sock_net(sk),
6284 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6285 return true;
6286 }
6287 tp->syn_data_acked = tp->syn_data;
6288 if (tp->syn_data_acked) {
6289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6290 /* SYN-data is counted as two separate packets in tcp_ack() */
6291 if (tp->delivered > 1)
6292 --tp->delivered;
6293 }
6294
6295 tcp_fastopen_add_skb(sk, synack);
6296
6297 return false;
6298 }
6299
smc_check_reset_syn(struct tcp_sock * tp)6300 static void smc_check_reset_syn(struct tcp_sock *tp)
6301 {
6302 #if IS_ENABLED(CONFIG_SMC)
6303 if (static_branch_unlikely(&tcp_have_smc)) {
6304 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6305 tp->syn_smc = 0;
6306 }
6307 #endif
6308 }
6309
tcp_try_undo_spurious_syn(struct sock * sk)6310 static void tcp_try_undo_spurious_syn(struct sock *sk)
6311 {
6312 struct tcp_sock *tp = tcp_sk(sk);
6313 u32 syn_stamp;
6314
6315 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6316 * spurious if the ACK's timestamp option echo value matches the
6317 * original SYN timestamp.
6318 */
6319 syn_stamp = tp->retrans_stamp;
6320 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6321 syn_stamp == tp->rx_opt.rcv_tsecr)
6322 tp->undo_marker = 0;
6323 }
6324
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6325 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6326 const struct tcphdr *th)
6327 {
6328 struct inet_connection_sock *icsk = inet_csk(sk);
6329 struct tcp_sock *tp = tcp_sk(sk);
6330 struct tcp_fastopen_cookie foc = { .len = -1 };
6331 int saved_clamp = tp->rx_opt.mss_clamp;
6332 bool fastopen_fail;
6333 SKB_DR(reason);
6334
6335 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6336 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6337 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6338
6339 if (th->ack) {
6340 /* rfc793:
6341 * "If the state is SYN-SENT then
6342 * first check the ACK bit
6343 * If the ACK bit is set
6344 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6345 * a reset (unless the RST bit is set, if so drop
6346 * the segment and return)"
6347 */
6348 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6349 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6350 /* Previous FIN/ACK or RST/ACK might be ignored. */
6351 if (icsk->icsk_retransmits == 0)
6352 inet_csk_reset_xmit_timer(sk,
6353 ICSK_TIME_RETRANS,
6354 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6355 goto reset_and_undo;
6356 }
6357
6358 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6359 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6360 tcp_time_stamp(tp))) {
6361 NET_INC_STATS(sock_net(sk),
6362 LINUX_MIB_PAWSACTIVEREJECTED);
6363 goto reset_and_undo;
6364 }
6365
6366 /* Now ACK is acceptable.
6367 *
6368 * "If the RST bit is set
6369 * If the ACK was acceptable then signal the user "error:
6370 * connection reset", drop the segment, enter CLOSED state,
6371 * delete TCB, and return."
6372 */
6373
6374 if (th->rst) {
6375 tcp_reset(sk, skb);
6376 consume:
6377 __kfree_skb(skb);
6378 return 0;
6379 }
6380
6381 /* rfc793:
6382 * "fifth, if neither of the SYN or RST bits is set then
6383 * drop the segment and return."
6384 *
6385 * See note below!
6386 * --ANK(990513)
6387 */
6388 if (!th->syn) {
6389 SKB_DR_SET(reason, TCP_FLAGS);
6390 goto discard_and_undo;
6391 }
6392 /* rfc793:
6393 * "If the SYN bit is on ...
6394 * are acceptable then ...
6395 * (our SYN has been ACKed), change the connection
6396 * state to ESTABLISHED..."
6397 */
6398
6399 tcp_ecn_rcv_synack(tp, th);
6400
6401 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6402 tcp_try_undo_spurious_syn(sk);
6403 tcp_ack(sk, skb, FLAG_SLOWPATH);
6404
6405 /* Ok.. it's good. Set up sequence numbers and
6406 * move to established.
6407 */
6408 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6409 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6410
6411 /* RFC1323: The window in SYN & SYN/ACK segments is
6412 * never scaled.
6413 */
6414 tp->snd_wnd = ntohs(th->window);
6415
6416 if (!tp->rx_opt.wscale_ok) {
6417 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6418 WRITE_ONCE(tp->window_clamp,
6419 min(tp->window_clamp, 65535U));
6420 }
6421
6422 if (tp->rx_opt.saw_tstamp) {
6423 tp->rx_opt.tstamp_ok = 1;
6424 tp->tcp_header_len =
6425 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6426 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6427 tcp_store_ts_recent(tp);
6428 } else {
6429 tp->tcp_header_len = sizeof(struct tcphdr);
6430 }
6431
6432 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6433 tcp_initialize_rcv_mss(sk);
6434
6435 /* Remember, tcp_poll() does not lock socket!
6436 * Change state from SYN-SENT only after copied_seq
6437 * is initialized. */
6438 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6439
6440 smc_check_reset_syn(tp);
6441
6442 smp_mb();
6443
6444 tcp_finish_connect(sk, skb);
6445
6446 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6447 tcp_rcv_fastopen_synack(sk, skb, &foc);
6448
6449 if (!sock_flag(sk, SOCK_DEAD)) {
6450 sk->sk_state_change(sk);
6451 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6452 }
6453 if (fastopen_fail)
6454 return -1;
6455 if (sk->sk_write_pending ||
6456 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6457 inet_csk_in_pingpong_mode(sk)) {
6458 /* Save one ACK. Data will be ready after
6459 * several ticks, if write_pending is set.
6460 *
6461 * It may be deleted, but with this feature tcpdumps
6462 * look so _wonderfully_ clever, that I was not able
6463 * to stand against the temptation 8) --ANK
6464 */
6465 inet_csk_schedule_ack(sk);
6466 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6467 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6468 TCP_DELACK_MAX, TCP_RTO_MAX);
6469 goto consume;
6470 }
6471 tcp_send_ack(sk);
6472 return -1;
6473 }
6474
6475 /* No ACK in the segment */
6476
6477 if (th->rst) {
6478 /* rfc793:
6479 * "If the RST bit is set
6480 *
6481 * Otherwise (no ACK) drop the segment and return."
6482 */
6483 SKB_DR_SET(reason, TCP_RESET);
6484 goto discard_and_undo;
6485 }
6486
6487 /* PAWS check. */
6488 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6489 tcp_paws_reject(&tp->rx_opt, 0)) {
6490 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6491 goto discard_and_undo;
6492 }
6493 if (th->syn) {
6494 /* We see SYN without ACK. It is attempt of
6495 * simultaneous connect with crossed SYNs.
6496 * Particularly, it can be connect to self.
6497 */
6498 tcp_set_state(sk, TCP_SYN_RECV);
6499
6500 if (tp->rx_opt.saw_tstamp) {
6501 tp->rx_opt.tstamp_ok = 1;
6502 tcp_store_ts_recent(tp);
6503 tp->tcp_header_len =
6504 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6505 } else {
6506 tp->tcp_header_len = sizeof(struct tcphdr);
6507 }
6508
6509 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6510 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6511 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6512
6513 /* RFC1323: The window in SYN & SYN/ACK segments is
6514 * never scaled.
6515 */
6516 tp->snd_wnd = ntohs(th->window);
6517 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6518 tp->max_window = tp->snd_wnd;
6519
6520 tcp_ecn_rcv_syn(tp, th);
6521
6522 tcp_mtup_init(sk);
6523 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6524 tcp_initialize_rcv_mss(sk);
6525
6526 tcp_send_synack(sk);
6527 #if 0
6528 /* Note, we could accept data and URG from this segment.
6529 * There are no obstacles to make this (except that we must
6530 * either change tcp_recvmsg() to prevent it from returning data
6531 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6532 *
6533 * However, if we ignore data in ACKless segments sometimes,
6534 * we have no reasons to accept it sometimes.
6535 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6536 * is not flawless. So, discard packet for sanity.
6537 * Uncomment this return to process the data.
6538 */
6539 return -1;
6540 #else
6541 goto consume;
6542 #endif
6543 }
6544 /* "fifth, if neither of the SYN or RST bits is set then
6545 * drop the segment and return."
6546 */
6547
6548 discard_and_undo:
6549 tcp_clear_options(&tp->rx_opt);
6550 tp->rx_opt.mss_clamp = saved_clamp;
6551 tcp_drop_reason(sk, skb, reason);
6552 return 0;
6553
6554 reset_and_undo:
6555 tcp_clear_options(&tp->rx_opt);
6556 tp->rx_opt.mss_clamp = saved_clamp;
6557 return 1;
6558 }
6559
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6560 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6561 {
6562 struct tcp_sock *tp = tcp_sk(sk);
6563 struct request_sock *req;
6564
6565 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6566 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6567 */
6568 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6569 tcp_try_undo_recovery(sk);
6570
6571 tcp_update_rto_time(tp);
6572 inet_csk(sk)->icsk_retransmits = 0;
6573 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6574 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6575 * need to zero retrans_stamp here to prevent spurious
6576 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6577 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6578 * set entering CA_Recovery, for correct retransmits_timed_out() and
6579 * undo behavior.
6580 */
6581 tcp_retrans_stamp_cleanup(sk);
6582
6583 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6584 * we no longer need req so release it.
6585 */
6586 req = rcu_dereference_protected(tp->fastopen_rsk,
6587 lockdep_sock_is_held(sk));
6588 reqsk_fastopen_remove(sk, req, false);
6589
6590 /* Re-arm the timer because data may have been sent out.
6591 * This is similar to the regular data transmission case
6592 * when new data has just been ack'ed.
6593 *
6594 * (TFO) - we could try to be more aggressive and
6595 * retransmitting any data sooner based on when they
6596 * are sent out.
6597 */
6598 tcp_rearm_rto(sk);
6599 }
6600
6601 /*
6602 * This function implements the receiving procedure of RFC 793 for
6603 * all states except ESTABLISHED and TIME_WAIT.
6604 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6605 * address independent.
6606 */
6607
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6608 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6609 {
6610 struct tcp_sock *tp = tcp_sk(sk);
6611 struct inet_connection_sock *icsk = inet_csk(sk);
6612 const struct tcphdr *th = tcp_hdr(skb);
6613 struct request_sock *req;
6614 int queued = 0;
6615 bool acceptable;
6616 SKB_DR(reason);
6617
6618 switch (sk->sk_state) {
6619 case TCP_CLOSE:
6620 SKB_DR_SET(reason, TCP_CLOSE);
6621 goto discard;
6622
6623 case TCP_LISTEN:
6624 if (th->ack)
6625 return 1;
6626
6627 if (th->rst) {
6628 SKB_DR_SET(reason, TCP_RESET);
6629 goto discard;
6630 }
6631 if (th->syn) {
6632 if (th->fin) {
6633 SKB_DR_SET(reason, TCP_FLAGS);
6634 goto discard;
6635 }
6636 /* It is possible that we process SYN packets from backlog,
6637 * so we need to make sure to disable BH and RCU right there.
6638 */
6639 rcu_read_lock();
6640 local_bh_disable();
6641 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6642 local_bh_enable();
6643 rcu_read_unlock();
6644
6645 if (!acceptable)
6646 return 1;
6647 consume_skb(skb);
6648 return 0;
6649 }
6650 SKB_DR_SET(reason, TCP_FLAGS);
6651 goto discard;
6652
6653 case TCP_SYN_SENT:
6654 tp->rx_opt.saw_tstamp = 0;
6655 tcp_mstamp_refresh(tp);
6656 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6657 if (queued >= 0)
6658 return queued;
6659
6660 /* Do step6 onward by hand. */
6661 tcp_urg(sk, skb, th);
6662 __kfree_skb(skb);
6663 tcp_data_snd_check(sk);
6664 return 0;
6665 }
6666
6667 tcp_mstamp_refresh(tp);
6668 tp->rx_opt.saw_tstamp = 0;
6669 req = rcu_dereference_protected(tp->fastopen_rsk,
6670 lockdep_sock_is_held(sk));
6671 if (req) {
6672 bool req_stolen;
6673
6674 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6675 sk->sk_state != TCP_FIN_WAIT1);
6676
6677 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6678 SKB_DR_SET(reason, TCP_FASTOPEN);
6679 goto discard;
6680 }
6681 }
6682
6683 if (!th->ack && !th->rst && !th->syn) {
6684 SKB_DR_SET(reason, TCP_FLAGS);
6685 goto discard;
6686 }
6687 if (!tcp_validate_incoming(sk, skb, th, 0))
6688 return 0;
6689
6690 /* step 5: check the ACK field */
6691 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6692 FLAG_UPDATE_TS_RECENT |
6693 FLAG_NO_CHALLENGE_ACK) > 0;
6694
6695 if (!acceptable) {
6696 if (sk->sk_state == TCP_SYN_RECV)
6697 return 1; /* send one RST */
6698 tcp_send_challenge_ack(sk);
6699 SKB_DR_SET(reason, TCP_OLD_ACK);
6700 goto discard;
6701 }
6702 switch (sk->sk_state) {
6703 case TCP_SYN_RECV:
6704 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6705 if (!tp->srtt_us)
6706 tcp_synack_rtt_meas(sk, req);
6707
6708 if (req) {
6709 tcp_rcv_synrecv_state_fastopen(sk);
6710 } else {
6711 tcp_try_undo_spurious_syn(sk);
6712 tp->retrans_stamp = 0;
6713 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6714 skb);
6715 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6716 }
6717 smp_mb();
6718 tcp_set_state(sk, TCP_ESTABLISHED);
6719 sk->sk_state_change(sk);
6720
6721 /* Note, that this wakeup is only for marginal crossed SYN case.
6722 * Passively open sockets are not waked up, because
6723 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6724 */
6725 if (sk->sk_socket)
6726 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6727
6728 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6729 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6730 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6731
6732 if (tp->rx_opt.tstamp_ok)
6733 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6734
6735 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6736 tcp_update_pacing_rate(sk);
6737
6738 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6739 tp->lsndtime = tcp_jiffies32;
6740
6741 tcp_initialize_rcv_mss(sk);
6742 tcp_fast_path_on(tp);
6743 if (sk->sk_shutdown & SEND_SHUTDOWN)
6744 tcp_shutdown(sk, SEND_SHUTDOWN);
6745 break;
6746
6747 case TCP_FIN_WAIT1: {
6748 int tmo;
6749
6750 if (req)
6751 tcp_rcv_synrecv_state_fastopen(sk);
6752
6753 if (tp->snd_una != tp->write_seq)
6754 break;
6755
6756 tcp_set_state(sk, TCP_FIN_WAIT2);
6757 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6758
6759 sk_dst_confirm(sk);
6760
6761 if (!sock_flag(sk, SOCK_DEAD)) {
6762 /* Wake up lingering close() */
6763 sk->sk_state_change(sk);
6764 break;
6765 }
6766
6767 if (READ_ONCE(tp->linger2) < 0) {
6768 tcp_done(sk);
6769 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6770 return 1;
6771 }
6772 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6773 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6774 /* Receive out of order FIN after close() */
6775 if (tp->syn_fastopen && th->fin)
6776 tcp_fastopen_active_disable(sk);
6777 tcp_done(sk);
6778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6779 return 1;
6780 }
6781
6782 tmo = tcp_fin_time(sk);
6783 if (tmo > TCP_TIMEWAIT_LEN) {
6784 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6785 } else if (th->fin || sock_owned_by_user(sk)) {
6786 /* Bad case. We could lose such FIN otherwise.
6787 * It is not a big problem, but it looks confusing
6788 * and not so rare event. We still can lose it now,
6789 * if it spins in bh_lock_sock(), but it is really
6790 * marginal case.
6791 */
6792 inet_csk_reset_keepalive_timer(sk, tmo);
6793 } else {
6794 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6795 goto consume;
6796 }
6797 break;
6798 }
6799
6800 case TCP_CLOSING:
6801 if (tp->snd_una == tp->write_seq) {
6802 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6803 goto consume;
6804 }
6805 break;
6806
6807 case TCP_LAST_ACK:
6808 if (tp->snd_una == tp->write_seq) {
6809 tcp_update_metrics(sk);
6810 tcp_done(sk);
6811 goto consume;
6812 }
6813 break;
6814 }
6815
6816 /* step 6: check the URG bit */
6817 tcp_urg(sk, skb, th);
6818
6819 /* step 7: process the segment text */
6820 switch (sk->sk_state) {
6821 case TCP_CLOSE_WAIT:
6822 case TCP_CLOSING:
6823 case TCP_LAST_ACK:
6824 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6825 /* If a subflow has been reset, the packet should not
6826 * continue to be processed, drop the packet.
6827 */
6828 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6829 goto discard;
6830 break;
6831 }
6832 fallthrough;
6833 case TCP_FIN_WAIT1:
6834 case TCP_FIN_WAIT2:
6835 /* RFC 793 says to queue data in these states,
6836 * RFC 1122 says we MUST send a reset.
6837 * BSD 4.4 also does reset.
6838 */
6839 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6840 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6841 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6842 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6843 tcp_reset(sk, skb);
6844 return 1;
6845 }
6846 }
6847 fallthrough;
6848 case TCP_ESTABLISHED:
6849 tcp_data_queue(sk, skb);
6850 queued = 1;
6851 break;
6852 }
6853
6854 /* tcp_data could move socket to TIME-WAIT */
6855 if (sk->sk_state != TCP_CLOSE) {
6856 tcp_data_snd_check(sk);
6857 tcp_ack_snd_check(sk);
6858 }
6859
6860 if (!queued) {
6861 discard:
6862 tcp_drop_reason(sk, skb, reason);
6863 }
6864 return 0;
6865
6866 consume:
6867 __kfree_skb(skb);
6868 return 0;
6869 }
6870 EXPORT_SYMBOL(tcp_rcv_state_process);
6871
pr_drop_req(struct request_sock * req,__u16 port,int family)6872 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6873 {
6874 struct inet_request_sock *ireq = inet_rsk(req);
6875
6876 if (family == AF_INET)
6877 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6878 &ireq->ir_rmt_addr, port);
6879 #if IS_ENABLED(CONFIG_IPV6)
6880 else if (family == AF_INET6)
6881 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6882 &ireq->ir_v6_rmt_addr, port);
6883 #endif
6884 }
6885
6886 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6887 *
6888 * If we receive a SYN packet with these bits set, it means a
6889 * network is playing bad games with TOS bits. In order to
6890 * avoid possible false congestion notifications, we disable
6891 * TCP ECN negotiation.
6892 *
6893 * Exception: tcp_ca wants ECN. This is required for DCTCP
6894 * congestion control: Linux DCTCP asserts ECT on all packets,
6895 * including SYN, which is most optimal solution; however,
6896 * others, such as FreeBSD do not.
6897 *
6898 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6899 * set, indicating the use of a future TCP extension (such as AccECN). See
6900 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6901 * extensions.
6902 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6903 static void tcp_ecn_create_request(struct request_sock *req,
6904 const struct sk_buff *skb,
6905 const struct sock *listen_sk,
6906 const struct dst_entry *dst)
6907 {
6908 const struct tcphdr *th = tcp_hdr(skb);
6909 const struct net *net = sock_net(listen_sk);
6910 bool th_ecn = th->ece && th->cwr;
6911 bool ect, ecn_ok;
6912 u32 ecn_ok_dst;
6913
6914 if (!th_ecn)
6915 return;
6916
6917 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6918 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6919 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6920
6921 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6922 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6923 tcp_bpf_ca_needs_ecn((struct sock *)req))
6924 inet_rsk(req)->ecn_ok = 1;
6925 }
6926
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6927 static void tcp_openreq_init(struct request_sock *req,
6928 const struct tcp_options_received *rx_opt,
6929 struct sk_buff *skb, const struct sock *sk)
6930 {
6931 struct inet_request_sock *ireq = inet_rsk(req);
6932
6933 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6934 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6935 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6936 tcp_rsk(req)->snt_synack = 0;
6937 tcp_rsk(req)->last_oow_ack_time = 0;
6938 req->mss = rx_opt->mss_clamp;
6939 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6940 ireq->tstamp_ok = rx_opt->tstamp_ok;
6941 ireq->sack_ok = rx_opt->sack_ok;
6942 ireq->snd_wscale = rx_opt->snd_wscale;
6943 ireq->wscale_ok = rx_opt->wscale_ok;
6944 ireq->acked = 0;
6945 ireq->ecn_ok = 0;
6946 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6947 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6948 ireq->ir_mark = inet_request_mark(sk, skb);
6949 #if IS_ENABLED(CONFIG_SMC)
6950 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6951 tcp_sk(sk)->smc_hs_congested(sk));
6952 #endif
6953 }
6954
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6955 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6956 struct sock *sk_listener,
6957 bool attach_listener)
6958 {
6959 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6960 attach_listener);
6961
6962 if (req) {
6963 struct inet_request_sock *ireq = inet_rsk(req);
6964
6965 ireq->ireq_opt = NULL;
6966 #if IS_ENABLED(CONFIG_IPV6)
6967 ireq->pktopts = NULL;
6968 #endif
6969 atomic64_set(&ireq->ir_cookie, 0);
6970 ireq->ireq_state = TCP_NEW_SYN_RECV;
6971 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6972 ireq->ireq_family = sk_listener->sk_family;
6973 req->timeout = TCP_TIMEOUT_INIT;
6974 }
6975
6976 return req;
6977 }
6978 EXPORT_SYMBOL(inet_reqsk_alloc);
6979
6980 /*
6981 * Return true if a syncookie should be sent
6982 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6983 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6984 {
6985 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6986 const char *msg = "Dropping request";
6987 struct net *net = sock_net(sk);
6988 bool want_cookie = false;
6989 u8 syncookies;
6990
6991 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6992
6993 #ifdef CONFIG_SYN_COOKIES
6994 if (syncookies) {
6995 msg = "Sending cookies";
6996 want_cookie = true;
6997 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6998 } else
6999 #endif
7000 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7001
7002 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7003 xchg(&queue->synflood_warned, 1) == 0) {
7004 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7005 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7006 proto, inet6_rcv_saddr(sk),
7007 sk->sk_num, msg);
7008 } else {
7009 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7010 proto, &sk->sk_rcv_saddr,
7011 sk->sk_num, msg);
7012 }
7013 }
7014
7015 return want_cookie;
7016 }
7017
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7018 static void tcp_reqsk_record_syn(const struct sock *sk,
7019 struct request_sock *req,
7020 const struct sk_buff *skb)
7021 {
7022 if (tcp_sk(sk)->save_syn) {
7023 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7024 struct saved_syn *saved_syn;
7025 u32 mac_hdrlen;
7026 void *base;
7027
7028 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7029 base = skb_mac_header(skb);
7030 mac_hdrlen = skb_mac_header_len(skb);
7031 len += mac_hdrlen;
7032 } else {
7033 base = skb_network_header(skb);
7034 mac_hdrlen = 0;
7035 }
7036
7037 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7038 GFP_ATOMIC);
7039 if (saved_syn) {
7040 saved_syn->mac_hdrlen = mac_hdrlen;
7041 saved_syn->network_hdrlen = skb_network_header_len(skb);
7042 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7043 memcpy(saved_syn->data, base, len);
7044 req->saved_syn = saved_syn;
7045 }
7046 }
7047 }
7048
7049 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7050 * used for SYN cookie generation.
7051 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7052 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7053 const struct tcp_request_sock_ops *af_ops,
7054 struct sock *sk, struct tcphdr *th)
7055 {
7056 struct tcp_sock *tp = tcp_sk(sk);
7057 u16 mss;
7058
7059 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7060 !inet_csk_reqsk_queue_is_full(sk))
7061 return 0;
7062
7063 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7064 return 0;
7065
7066 if (sk_acceptq_is_full(sk)) {
7067 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7068 return 0;
7069 }
7070
7071 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7072 if (!mss)
7073 mss = af_ops->mss_clamp;
7074
7075 return mss;
7076 }
7077 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7078
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7079 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7080 const struct tcp_request_sock_ops *af_ops,
7081 struct sock *sk, struct sk_buff *skb)
7082 {
7083 struct tcp_fastopen_cookie foc = { .len = -1 };
7084 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7085 struct tcp_options_received tmp_opt;
7086 struct tcp_sock *tp = tcp_sk(sk);
7087 struct net *net = sock_net(sk);
7088 struct sock *fastopen_sk = NULL;
7089 struct request_sock *req;
7090 bool want_cookie = false;
7091 struct dst_entry *dst;
7092 struct flowi fl;
7093 u8 syncookies;
7094
7095 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7096
7097 /* TW buckets are converted to open requests without
7098 * limitations, they conserve resources and peer is
7099 * evidently real one.
7100 */
7101 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7102 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7103 if (!want_cookie)
7104 goto drop;
7105 }
7106
7107 if (sk_acceptq_is_full(sk)) {
7108 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7109 goto drop;
7110 }
7111
7112 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7113 if (!req)
7114 goto drop;
7115
7116 req->syncookie = want_cookie;
7117 tcp_rsk(req)->af_specific = af_ops;
7118 tcp_rsk(req)->ts_off = 0;
7119 #if IS_ENABLED(CONFIG_MPTCP)
7120 tcp_rsk(req)->is_mptcp = 0;
7121 #endif
7122
7123 tcp_clear_options(&tmp_opt);
7124 tmp_opt.mss_clamp = af_ops->mss_clamp;
7125 tmp_opt.user_mss = tp->rx_opt.user_mss;
7126 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7127 want_cookie ? NULL : &foc);
7128
7129 if (want_cookie && !tmp_opt.saw_tstamp)
7130 tcp_clear_options(&tmp_opt);
7131
7132 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7133 tmp_opt.smc_ok = 0;
7134
7135 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7136 tcp_openreq_init(req, &tmp_opt, skb, sk);
7137 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7138
7139 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7140 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7141
7142 dst = af_ops->route_req(sk, skb, &fl, req);
7143 if (!dst)
7144 goto drop_and_free;
7145
7146 if (tmp_opt.tstamp_ok)
7147 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7148
7149 if (!want_cookie && !isn) {
7150 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7151
7152 /* Kill the following clause, if you dislike this way. */
7153 if (!syncookies &&
7154 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7155 (max_syn_backlog >> 2)) &&
7156 !tcp_peer_is_proven(req, dst)) {
7157 /* Without syncookies last quarter of
7158 * backlog is filled with destinations,
7159 * proven to be alive.
7160 * It means that we continue to communicate
7161 * to destinations, already remembered
7162 * to the moment of synflood.
7163 */
7164 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7165 rsk_ops->family);
7166 goto drop_and_release;
7167 }
7168
7169 isn = af_ops->init_seq(skb);
7170 }
7171
7172 tcp_ecn_create_request(req, skb, sk, dst);
7173
7174 if (want_cookie) {
7175 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7176 if (!tmp_opt.tstamp_ok)
7177 inet_rsk(req)->ecn_ok = 0;
7178 }
7179
7180 tcp_rsk(req)->snt_isn = isn;
7181 tcp_rsk(req)->txhash = net_tx_rndhash();
7182 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7183 tcp_openreq_init_rwin(req, sk, dst);
7184 sk_rx_queue_set(req_to_sk(req), skb);
7185 if (!want_cookie) {
7186 tcp_reqsk_record_syn(sk, req, skb);
7187 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7188 }
7189 if (fastopen_sk) {
7190 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7191 &foc, TCP_SYNACK_FASTOPEN, skb);
7192 /* Add the child socket directly into the accept queue */
7193 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7194 reqsk_fastopen_remove(fastopen_sk, req, false);
7195 bh_unlock_sock(fastopen_sk);
7196 sock_put(fastopen_sk);
7197 goto drop_and_free;
7198 }
7199 sk->sk_data_ready(sk);
7200 bh_unlock_sock(fastopen_sk);
7201 sock_put(fastopen_sk);
7202 } else {
7203 tcp_rsk(req)->tfo_listener = false;
7204 if (!want_cookie) {
7205 req->timeout = tcp_timeout_init((struct sock *)req);
7206 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7207 req->timeout))) {
7208 reqsk_free(req);
7209 dst_release(dst);
7210 return 0;
7211 }
7212
7213 }
7214 af_ops->send_synack(sk, dst, &fl, req, &foc,
7215 !want_cookie ? TCP_SYNACK_NORMAL :
7216 TCP_SYNACK_COOKIE,
7217 skb);
7218 if (want_cookie) {
7219 reqsk_free(req);
7220 return 0;
7221 }
7222 }
7223 reqsk_put(req);
7224 return 0;
7225
7226 drop_and_release:
7227 dst_release(dst);
7228 drop_and_free:
7229 __reqsk_free(req);
7230 drop:
7231 tcp_listendrop(sk);
7232 return 0;
7233 }
7234 EXPORT_SYMBOL(tcp_conn_request);
7235