1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 tcp_scaling_ratio_init(sk);
461
462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466
tcp_tx_timestamp(struct sock * sk,u16 tsflags)467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 struct sk_buff *skb = tcp_write_queue_tail(sk);
470
471 if (tsflags && skb) {
472 struct skb_shared_info *shinfo = skb_shinfo(skb);
473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474
475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 tcb->txstamp_ack = 1;
478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 }
481 }
482
tcp_stream_is_readable(struct sock * sk,int target)483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 if (tcp_epollin_ready(sk, target))
486 return true;
487 return sk_is_readable(sk);
488 }
489
490 /*
491 * Wait for a TCP event.
492 *
493 * Note that we don't need to lock the socket, as the upper poll layers
494 * take care of normal races (between the test and the event) and we don't
495 * go look at any of the socket buffers directly.
496 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 __poll_t mask;
500 struct sock *sk = sock->sk;
501 const struct tcp_sock *tp = tcp_sk(sk);
502 u8 shutdown;
503 int state;
504
505 sock_poll_wait(file, sock, wait);
506
507 state = inet_sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * EPOLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that EPOLLHUP is incompatible
524 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 shutdown = READ_ONCE(sk->sk_shutdown);
546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555 u16 urg_data = READ_ONCE(tp->urg_data);
556
557 if (unlikely(urg_data) &&
558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 !sock_flag(sk, SOCK_URGINLINE))
560 target++;
561
562 if (tcp_stream_is_readable(sk, target))
563 mask |= EPOLLIN | EPOLLRDNORM;
564
565 if (!(shutdown & SEND_SHUTDOWN)) {
566 if (__sk_stream_is_writeable(sk, 1)) {
567 mask |= EPOLLOUT | EPOLLWRNORM;
568 } else { /* send SIGIO later */
569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571
572 /* Race breaker. If space is freed after
573 * wspace test but before the flags are set,
574 * IO signal will be lost. Memory barrier
575 * pairs with the input side.
576 */
577 smp_mb__after_atomic();
578 if (__sk_stream_is_writeable(sk, 1))
579 mask |= EPOLLOUT | EPOLLWRNORM;
580 }
581 } else
582 mask |= EPOLLOUT | EPOLLWRNORM;
583
584 if (urg_data & TCP_URG_VALID)
585 mask |= EPOLLPRI;
586 } else if (state == TCP_SYN_SENT &&
587 inet_test_bit(DEFER_CONNECT, sk)) {
588 /* Active TCP fastopen socket with defer_connect
589 * Return EPOLLOUT so application can call write()
590 * in order for kernel to generate SYN+data
591 */
592 mask |= EPOLLOUT | EPOLLWRNORM;
593 }
594 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
595 smp_rmb();
596 if (READ_ONCE(sk->sk_err) ||
597 !skb_queue_empty_lockless(&sk->sk_error_queue))
598 mask |= EPOLLERR;
599
600 return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603
tcp_ioctl(struct sock * sk,int cmd,int * karg)604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 int answ;
608 bool slow;
609
610 switch (cmd) {
611 case SIOCINQ:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 slow = lock_sock_fast(sk);
616 answ = tcp_inq(sk);
617 unlock_sock_fast(sk, slow);
618 break;
619 case SIOCATMARK:
620 answ = READ_ONCE(tp->urg_data) &&
621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = READ_ONCE(tp->write_seq) -
640 READ_ONCE(tp->snd_nxt);
641 break;
642 default:
643 return -ENOIOCTLCMD;
644 }
645
646 *karg = answ;
647 return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 tcb->seq = tcb->end_seq = tp->write_seq;
668 tcb->tcp_flags = TCPHDR_ACK;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk_wmem_queued_add(sk, skb->truesize);
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677 }
678
tcp_mark_urg(struct tcp_sock * tp,int flags)679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683 }
684
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697 {
698 return skb->len < size_goal &&
699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 tcp_skb_can_collapse_to(skb);
703 }
704
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 int nonagle, int size_goal)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct sk_buff *skb;
710
711 skb = tcp_write_queue_tail(sk);
712 if (!skb)
713 return;
714 if (!(flags & MSG_MORE) || forced_push(tp))
715 tcp_mark_push(tp, skb);
716
717 tcp_mark_urg(tp, flags);
718
719 if (tcp_should_autocork(sk, skb, size_goal)) {
720
721 /* avoid atomic op if TSQ_THROTTLED bit is already set */
722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 smp_mb__after_atomic();
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 ret = sk_wait_data(sk, &timeo, NULL);
836 if (ret < 0)
837 break;
838 if (signal_pending(current)) {
839 ret = sock_intr_errno(timeo);
840 break;
841 }
842 continue;
843 }
844 tss.len -= ret;
845 spliced += ret;
846
847 if (!tss.len || !timeo)
848 break;
849 release_sock(sk);
850 lock_sock(sk);
851
852 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 signal_pending(current))
855 break;
856 }
857
858 release_sock(sk);
859
860 if (spliced)
861 return spliced;
862
863 return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
868 bool force_schedule)
869 {
870 struct sk_buff *skb;
871
872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
873 if (likely(skb)) {
874 bool mem_scheduled;
875
876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 if (force_schedule) {
878 mem_scheduled = true;
879 sk_forced_mem_schedule(sk, skb->truesize);
880 } else {
881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
882 }
883 if (likely(mem_scheduled)) {
884 skb_reserve(skb, MAX_TCP_HEADER);
885 skb->ip_summed = CHECKSUM_PARTIAL;
886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
887 return skb;
888 }
889 __kfree_skb(skb);
890 } else {
891 sk->sk_prot->enter_memory_pressure(sk);
892 sk_stream_moderate_sndbuf(sk);
893 }
894 return NULL;
895 }
896
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898 int large_allowed)
899 {
900 struct tcp_sock *tp = tcp_sk(sk);
901 u32 new_size_goal, size_goal;
902
903 if (!large_allowed)
904 return mss_now;
905
906 /* Note : tcp_tso_autosize() will eventually split this later */
907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
908
909 /* We try hard to avoid divides here */
910 size_goal = tp->gso_segs * mss_now;
911 if (unlikely(new_size_goal < size_goal ||
912 new_size_goal >= size_goal + mss_now)) {
913 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914 sk->sk_gso_max_segs);
915 size_goal = tp->gso_segs * mss_now;
916 }
917
918 return max(size_goal, mss_now);
919 }
920
tcp_send_mss(struct sock * sk,int * size_goal,int flags)921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922 {
923 int mss_now;
924
925 mss_now = tcp_current_mss(sk);
926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927
928 return mss_now;
929 }
930
931 /* In some cases, sendmsg() could have added an skb to the write queue,
932 * but failed adding payload on it. We need to remove it to consume less
933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
934 * epoll() users. Another reason is that tcp_write_xmit() does not like
935 * finding an empty skb in the write queue.
936 */
tcp_remove_empty_skb(struct sock * sk)937 void tcp_remove_empty_skb(struct sock *sk)
938 {
939 struct sk_buff *skb = tcp_write_queue_tail(sk);
940
941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
942 tcp_unlink_write_queue(skb, sk);
943 if (tcp_write_queue_empty(sk))
944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 tcp_wmem_free_skb(sk, skb);
946 }
947 }
948
949 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
951 {
952 if (unlikely(skb_zcopy_pure(skb))) {
953 u32 extra = skb->truesize -
954 SKB_TRUESIZE(skb_end_offset(skb));
955
956 if (!sk_wmem_schedule(sk, extra))
957 return -ENOMEM;
958
959 sk_mem_charge(sk, extra);
960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
961 }
962 return 0;
963 }
964
965
tcp_wmem_schedule(struct sock * sk,int copy)966 int tcp_wmem_schedule(struct sock *sk, int copy)
967 {
968 int left;
969
970 if (likely(sk_wmem_schedule(sk, copy)))
971 return copy;
972
973 /* We could be in trouble if we have nothing queued.
974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
975 * to guarantee some progress.
976 */
977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
978 if (left > 0)
979 sk_forced_mem_schedule(sk, min(left, copy));
980 return min(copy, sk->sk_forward_alloc);
981 }
982
tcp_free_fastopen_req(struct tcp_sock * tp)983 void tcp_free_fastopen_req(struct tcp_sock *tp)
984 {
985 if (tp->fastopen_req) {
986 kfree(tp->fastopen_req);
987 tp->fastopen_req = NULL;
988 }
989 }
990
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
992 size_t size, struct ubuf_info *uarg)
993 {
994 struct tcp_sock *tp = tcp_sk(sk);
995 struct inet_sock *inet = inet_sk(sk);
996 struct sockaddr *uaddr = msg->msg_name;
997 int err, flags;
998
999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000 TFO_CLIENT_ENABLE) ||
1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002 uaddr->sa_family == AF_UNSPEC))
1003 return -EOPNOTSUPP;
1004 if (tp->fastopen_req)
1005 return -EALREADY; /* Another Fast Open is in progress */
1006
1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008 sk->sk_allocation);
1009 if (unlikely(!tp->fastopen_req))
1010 return -ENOBUFS;
1011 tp->fastopen_req->data = msg;
1012 tp->fastopen_req->size = size;
1013 tp->fastopen_req->uarg = uarg;
1014
1015 if (inet_test_bit(DEFER_CONNECT, sk)) {
1016 err = tcp_connect(sk);
1017 /* Same failure procedure as in tcp_v4/6_connect */
1018 if (err) {
1019 tcp_set_state(sk, TCP_CLOSE);
1020 inet->inet_dport = 0;
1021 sk->sk_route_caps = 0;
1022 }
1023 }
1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025 err = __inet_stream_connect(sk->sk_socket, uaddr,
1026 msg->msg_namelen, flags, 1);
1027 /* fastopen_req could already be freed in __inet_stream_connect
1028 * if the connection times out or gets rst
1029 */
1030 if (tp->fastopen_req) {
1031 *copied = tp->fastopen_req->copied;
1032 tcp_free_fastopen_req(tp);
1033 inet_clear_bit(DEFER_CONNECT, sk);
1034 }
1035 return err;
1036 }
1037
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039 {
1040 struct tcp_sock *tp = tcp_sk(sk);
1041 struct ubuf_info *uarg = NULL;
1042 struct sk_buff *skb;
1043 struct sockcm_cookie sockc;
1044 int flags, err, copied = 0;
1045 int mss_now = 0, size_goal, copied_syn = 0;
1046 int process_backlog = 0;
1047 int zc = 0;
1048 long timeo;
1049
1050 flags = msg->msg_flags;
1051
1052 if ((flags & MSG_ZEROCOPY) && size) {
1053 if (msg->msg_ubuf) {
1054 uarg = msg->msg_ubuf;
1055 if (sk->sk_route_caps & NETIF_F_SG)
1056 zc = MSG_ZEROCOPY;
1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058 skb = tcp_write_queue_tail(sk);
1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060 if (!uarg) {
1061 err = -ENOBUFS;
1062 goto out_err;
1063 }
1064 if (sk->sk_route_caps & NETIF_F_SG)
1065 zc = MSG_ZEROCOPY;
1066 else
1067 uarg_to_msgzc(uarg)->zerocopy = 0;
1068 }
1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070 if (sk->sk_route_caps & NETIF_F_SG)
1071 zc = MSG_SPLICE_PAGES;
1072 }
1073
1074 if (unlikely(flags & MSG_FASTOPEN ||
1075 inet_test_bit(DEFER_CONNECT, sk)) &&
1076 !tp->repair) {
1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078 if (err == -EINPROGRESS && copied_syn > 0)
1079 goto out;
1080 else if (err)
1081 goto out_err;
1082 }
1083
1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085
1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1087
1088 /* Wait for a connection to finish. One exception is TCP Fast Open
1089 * (passive side) where data is allowed to be sent before a connection
1090 * is fully established.
1091 */
1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093 !tcp_passive_fastopen(sk)) {
1094 err = sk_stream_wait_connect(sk, &timeo);
1095 if (err != 0)
1096 goto do_error;
1097 }
1098
1099 if (unlikely(tp->repair)) {
1100 if (tp->repair_queue == TCP_RECV_QUEUE) {
1101 copied = tcp_send_rcvq(sk, msg, size);
1102 goto out_nopush;
1103 }
1104
1105 err = -EINVAL;
1106 if (tp->repair_queue == TCP_NO_QUEUE)
1107 goto out_err;
1108
1109 /* 'common' sending to sendq */
1110 }
1111
1112 sockcm_init(&sockc, sk);
1113 if (msg->msg_controllen) {
1114 err = sock_cmsg_send(sk, msg, &sockc);
1115 if (unlikely(err)) {
1116 err = -EINVAL;
1117 goto out_err;
1118 }
1119 }
1120
1121 /* This should be in poll */
1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123
1124 /* Ok commence sending. */
1125 copied = 0;
1126
1127 restart:
1128 mss_now = tcp_send_mss(sk, &size_goal, flags);
1129
1130 err = -EPIPE;
1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 goto do_error;
1133
1134 while (msg_data_left(msg)) {
1135 ssize_t copy = 0;
1136
1137 skb = tcp_write_queue_tail(sk);
1138 if (skb)
1139 copy = size_goal - skb->len;
1140
1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142 bool first_skb;
1143
1144 new_segment:
1145 if (!sk_stream_memory_free(sk))
1146 goto wait_for_space;
1147
1148 if (unlikely(process_backlog >= 16)) {
1149 process_backlog = 0;
1150 if (sk_flush_backlog(sk))
1151 goto restart;
1152 }
1153 first_skb = tcp_rtx_and_write_queues_empty(sk);
1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155 first_skb);
1156 if (!skb)
1157 goto wait_for_space;
1158
1159 process_backlog++;
1160
1161 #ifdef CONFIG_SKB_DECRYPTED
1162 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1163 #endif
1164 tcp_skb_entail(sk, skb);
1165 copy = size_goal;
1166
1167 /* All packets are restored as if they have
1168 * already been sent. skb_mstamp_ns isn't set to
1169 * avoid wrong rtt estimation.
1170 */
1171 if (tp->repair)
1172 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1173 }
1174
1175 /* Try to append data to the end of skb. */
1176 if (copy > msg_data_left(msg))
1177 copy = msg_data_left(msg);
1178
1179 if (zc == 0) {
1180 bool merge = true;
1181 int i = skb_shinfo(skb)->nr_frags;
1182 struct page_frag *pfrag = sk_page_frag(sk);
1183
1184 if (!sk_page_frag_refill(sk, pfrag))
1185 goto wait_for_space;
1186
1187 if (!skb_can_coalesce(skb, i, pfrag->page,
1188 pfrag->offset)) {
1189 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1190 tcp_mark_push(tp, skb);
1191 goto new_segment;
1192 }
1193 merge = false;
1194 }
1195
1196 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1197
1198 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1199 if (tcp_downgrade_zcopy_pure(sk, skb))
1200 goto wait_for_space;
1201 skb_zcopy_downgrade_managed(skb);
1202 }
1203
1204 copy = tcp_wmem_schedule(sk, copy);
1205 if (!copy)
1206 goto wait_for_space;
1207
1208 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1209 pfrag->page,
1210 pfrag->offset,
1211 copy);
1212 if (err)
1213 goto do_error;
1214
1215 /* Update the skb. */
1216 if (merge) {
1217 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1218 } else {
1219 skb_fill_page_desc(skb, i, pfrag->page,
1220 pfrag->offset, copy);
1221 page_ref_inc(pfrag->page);
1222 }
1223 pfrag->offset += copy;
1224 } else if (zc == MSG_ZEROCOPY) {
1225 /* First append to a fragless skb builds initial
1226 * pure zerocopy skb
1227 */
1228 if (!skb->len)
1229 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1230
1231 if (!skb_zcopy_pure(skb)) {
1232 copy = tcp_wmem_schedule(sk, copy);
1233 if (!copy)
1234 goto wait_for_space;
1235 }
1236
1237 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1238 if (err == -EMSGSIZE || err == -EEXIST) {
1239 tcp_mark_push(tp, skb);
1240 goto new_segment;
1241 }
1242 if (err < 0)
1243 goto do_error;
1244 copy = err;
1245 } else if (zc == MSG_SPLICE_PAGES) {
1246 /* Splice in data if we can; copy if we can't. */
1247 if (tcp_downgrade_zcopy_pure(sk, skb))
1248 goto wait_for_space;
1249 copy = tcp_wmem_schedule(sk, copy);
1250 if (!copy)
1251 goto wait_for_space;
1252
1253 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1254 sk->sk_allocation);
1255 if (err < 0) {
1256 if (err == -EMSGSIZE) {
1257 tcp_mark_push(tp, skb);
1258 goto new_segment;
1259 }
1260 goto do_error;
1261 }
1262 copy = err;
1263
1264 if (!(flags & MSG_NO_SHARED_FRAGS))
1265 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1266
1267 sk_wmem_queued_add(sk, copy);
1268 sk_mem_charge(sk, copy);
1269 }
1270
1271 if (!copied)
1272 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1273
1274 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1275 TCP_SKB_CB(skb)->end_seq += copy;
1276 tcp_skb_pcount_set(skb, 0);
1277
1278 copied += copy;
1279 if (!msg_data_left(msg)) {
1280 if (unlikely(flags & MSG_EOR))
1281 TCP_SKB_CB(skb)->eor = 1;
1282 goto out;
1283 }
1284
1285 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1286 continue;
1287
1288 if (forced_push(tp)) {
1289 tcp_mark_push(tp, skb);
1290 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1291 } else if (skb == tcp_send_head(sk))
1292 tcp_push_one(sk, mss_now);
1293 continue;
1294
1295 wait_for_space:
1296 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1297 tcp_remove_empty_skb(sk);
1298 if (copied)
1299 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1300 TCP_NAGLE_PUSH, size_goal);
1301
1302 err = sk_stream_wait_memory(sk, &timeo);
1303 if (err != 0)
1304 goto do_error;
1305
1306 mss_now = tcp_send_mss(sk, &size_goal, flags);
1307 }
1308
1309 out:
1310 if (copied) {
1311 tcp_tx_timestamp(sk, sockc.tsflags);
1312 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1313 }
1314 out_nopush:
1315 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1316 if (uarg && !msg->msg_ubuf)
1317 net_zcopy_put(uarg);
1318 return copied + copied_syn;
1319
1320 do_error:
1321 tcp_remove_empty_skb(sk);
1322
1323 if (copied + copied_syn)
1324 goto out;
1325 out_err:
1326 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1327 if (uarg && !msg->msg_ubuf)
1328 net_zcopy_put_abort(uarg, true);
1329 err = sk_stream_error(sk, flags, err);
1330 /* make sure we wake any epoll edge trigger waiter */
1331 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1332 sk->sk_write_space(sk);
1333 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1334 }
1335 return err;
1336 }
1337 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1338
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1340 {
1341 int ret;
1342
1343 lock_sock(sk);
1344 ret = tcp_sendmsg_locked(sk, msg, size);
1345 release_sock(sk);
1346
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(tcp_sendmsg);
1350
tcp_splice_eof(struct socket * sock)1351 void tcp_splice_eof(struct socket *sock)
1352 {
1353 struct sock *sk = sock->sk;
1354 struct tcp_sock *tp = tcp_sk(sk);
1355 int mss_now, size_goal;
1356
1357 if (!tcp_write_queue_tail(sk))
1358 return;
1359
1360 lock_sock(sk);
1361 mss_now = tcp_send_mss(sk, &size_goal, 0);
1362 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1363 release_sock(sk);
1364 }
1365 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1366
1367 /*
1368 * Handle reading urgent data. BSD has very simple semantics for
1369 * this, no blocking and very strange errors 8)
1370 */
1371
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1372 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1373 {
1374 struct tcp_sock *tp = tcp_sk(sk);
1375
1376 /* No URG data to read. */
1377 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1378 tp->urg_data == TCP_URG_READ)
1379 return -EINVAL; /* Yes this is right ! */
1380
1381 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1382 return -ENOTCONN;
1383
1384 if (tp->urg_data & TCP_URG_VALID) {
1385 int err = 0;
1386 char c = tp->urg_data;
1387
1388 if (!(flags & MSG_PEEK))
1389 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1390
1391 /* Read urgent data. */
1392 msg->msg_flags |= MSG_OOB;
1393
1394 if (len > 0) {
1395 if (!(flags & MSG_TRUNC))
1396 err = memcpy_to_msg(msg, &c, 1);
1397 len = 1;
1398 } else
1399 msg->msg_flags |= MSG_TRUNC;
1400
1401 return err ? -EFAULT : len;
1402 }
1403
1404 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1405 return 0;
1406
1407 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1408 * the available implementations agree in this case:
1409 * this call should never block, independent of the
1410 * blocking state of the socket.
1411 * Mike <pall@rz.uni-karlsruhe.de>
1412 */
1413 return -EAGAIN;
1414 }
1415
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1416 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1417 {
1418 struct sk_buff *skb;
1419 int copied = 0, err = 0;
1420
1421 /* XXX -- need to support SO_PEEK_OFF */
1422
1423 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1424 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1425 if (err)
1426 return err;
1427 copied += skb->len;
1428 }
1429
1430 skb_queue_walk(&sk->sk_write_queue, skb) {
1431 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 if (err)
1433 break;
1434
1435 copied += skb->len;
1436 }
1437
1438 return err ?: copied;
1439 }
1440
1441 /* Clean up the receive buffer for full frames taken by the user,
1442 * then send an ACK if necessary. COPIED is the number of bytes
1443 * tcp_recvmsg has given to the user so far, it speeds up the
1444 * calculation of whether or not we must ACK for the sake of
1445 * a window update.
1446 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1448 {
1449 struct tcp_sock *tp = tcp_sk(sk);
1450 bool time_to_ack = false;
1451
1452 if (inet_csk_ack_scheduled(sk)) {
1453 const struct inet_connection_sock *icsk = inet_csk(sk);
1454
1455 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1456 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1457 /*
1458 * If this read emptied read buffer, we send ACK, if
1459 * connection is not bidirectional, user drained
1460 * receive buffer and there was a small segment
1461 * in queue.
1462 */
1463 (copied > 0 &&
1464 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1465 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1466 !inet_csk_in_pingpong_mode(sk))) &&
1467 !atomic_read(&sk->sk_rmem_alloc)))
1468 time_to_ack = true;
1469 }
1470
1471 /* We send an ACK if we can now advertise a non-zero window
1472 * which has been raised "significantly".
1473 *
1474 * Even if window raised up to infinity, do not send window open ACK
1475 * in states, where we will not receive more. It is useless.
1476 */
1477 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1478 __u32 rcv_window_now = tcp_receive_window(tp);
1479
1480 /* Optimize, __tcp_select_window() is not cheap. */
1481 if (2*rcv_window_now <= tp->window_clamp) {
1482 __u32 new_window = __tcp_select_window(sk);
1483
1484 /* Send ACK now, if this read freed lots of space
1485 * in our buffer. Certainly, new_window is new window.
1486 * We can advertise it now, if it is not less than current one.
1487 * "Lots" means "at least twice" here.
1488 */
1489 if (new_window && new_window >= 2 * rcv_window_now)
1490 time_to_ack = true;
1491 }
1492 }
1493 if (time_to_ack)
1494 tcp_send_ack(sk);
1495 }
1496
tcp_cleanup_rbuf(struct sock * sk,int copied)1497 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1500 struct tcp_sock *tp = tcp_sk(sk);
1501
1502 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1503 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1504 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1505 __tcp_cleanup_rbuf(sk, copied);
1506 }
1507
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1509 {
1510 __skb_unlink(skb, &sk->sk_receive_queue);
1511 if (likely(skb->destructor == sock_rfree)) {
1512 sock_rfree(skb);
1513 skb->destructor = NULL;
1514 skb->sk = NULL;
1515 return skb_attempt_defer_free(skb);
1516 }
1517 __kfree_skb(skb);
1518 }
1519
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1521 {
1522 struct sk_buff *skb;
1523 u32 offset;
1524
1525 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1526 offset = seq - TCP_SKB_CB(skb)->seq;
1527 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1528 pr_err_once("%s: found a SYN, please report !\n", __func__);
1529 offset--;
1530 }
1531 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1532 *off = offset;
1533 return skb;
1534 }
1535 /* This looks weird, but this can happen if TCP collapsing
1536 * splitted a fat GRO packet, while we released socket lock
1537 * in skb_splice_bits()
1538 */
1539 tcp_eat_recv_skb(sk, skb);
1540 }
1541 return NULL;
1542 }
1543 EXPORT_SYMBOL(tcp_recv_skb);
1544
1545 /*
1546 * This routine provides an alternative to tcp_recvmsg() for routines
1547 * that would like to handle copying from skbuffs directly in 'sendfile'
1548 * fashion.
1549 * Note:
1550 * - It is assumed that the socket was locked by the caller.
1551 * - The routine does not block.
1552 * - At present, there is no support for reading OOB data
1553 * or for 'peeking' the socket using this routine
1554 * (although both would be easy to implement).
1555 */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1556 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 sk_read_actor_t recv_actor, bool noack,
1558 u32 *copied_seq)
1559 {
1560 struct sk_buff *skb;
1561 struct tcp_sock *tp = tcp_sk(sk);
1562 u32 seq = *copied_seq;
1563 u32 offset;
1564 int copied = 0;
1565
1566 if (sk->sk_state == TCP_LISTEN)
1567 return -ENOTCONN;
1568 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1569 if (offset < skb->len) {
1570 int used;
1571 size_t len;
1572
1573 len = skb->len - offset;
1574 /* Stop reading if we hit a patch of urgent data */
1575 if (unlikely(tp->urg_data)) {
1576 u32 urg_offset = tp->urg_seq - seq;
1577 if (urg_offset < len)
1578 len = urg_offset;
1579 if (!len)
1580 break;
1581 }
1582 used = recv_actor(desc, skb, offset, len);
1583 if (used <= 0) {
1584 if (!copied)
1585 copied = used;
1586 break;
1587 }
1588 if (WARN_ON_ONCE(used > len))
1589 used = len;
1590 seq += used;
1591 copied += used;
1592 offset += used;
1593
1594 /* If recv_actor drops the lock (e.g. TCP splice
1595 * receive) the skb pointer might be invalid when
1596 * getting here: tcp_collapse might have deleted it
1597 * while aggregating skbs from the socket queue.
1598 */
1599 skb = tcp_recv_skb(sk, seq - 1, &offset);
1600 if (!skb)
1601 break;
1602 /* TCP coalescing might have appended data to the skb.
1603 * Try to splice more frags
1604 */
1605 if (offset + 1 != skb->len)
1606 continue;
1607 }
1608 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1609 tcp_eat_recv_skb(sk, skb);
1610 ++seq;
1611 break;
1612 }
1613 tcp_eat_recv_skb(sk, skb);
1614 if (!desc->count)
1615 break;
1616 WRITE_ONCE(*copied_seq, seq);
1617 }
1618 WRITE_ONCE(*copied_seq, seq);
1619
1620 if (noack)
1621 goto out;
1622
1623 tcp_rcv_space_adjust(sk);
1624
1625 /* Clean up data we have read: This will do ACK frames. */
1626 if (copied > 0) {
1627 tcp_recv_skb(sk, seq, &offset);
1628 tcp_cleanup_rbuf(sk, copied);
1629 }
1630 out:
1631 return copied;
1632 }
1633
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1634 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1635 sk_read_actor_t recv_actor)
1636 {
1637 return __tcp_read_sock(sk, desc, recv_actor, false,
1638 &tcp_sk(sk)->copied_seq);
1639 }
1640 EXPORT_SYMBOL(tcp_read_sock);
1641
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1642 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1643 sk_read_actor_t recv_actor, bool noack,
1644 u32 *copied_seq)
1645 {
1646 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1647 }
1648
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1649 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1650 {
1651 struct sk_buff *skb;
1652 int copied = 0;
1653
1654 if (sk->sk_state == TCP_LISTEN)
1655 return -ENOTCONN;
1656
1657 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1658 u8 tcp_flags;
1659 int used;
1660
1661 __skb_unlink(skb, &sk->sk_receive_queue);
1662 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1663 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1664 used = recv_actor(sk, skb);
1665 if (used < 0) {
1666 if (!copied)
1667 copied = used;
1668 break;
1669 }
1670 copied += used;
1671
1672 if (tcp_flags & TCPHDR_FIN)
1673 break;
1674 }
1675 return copied;
1676 }
1677 EXPORT_SYMBOL(tcp_read_skb);
1678
tcp_read_done(struct sock * sk,size_t len)1679 void tcp_read_done(struct sock *sk, size_t len)
1680 {
1681 struct tcp_sock *tp = tcp_sk(sk);
1682 u32 seq = tp->copied_seq;
1683 struct sk_buff *skb;
1684 size_t left;
1685 u32 offset;
1686
1687 if (sk->sk_state == TCP_LISTEN)
1688 return;
1689
1690 left = len;
1691 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1692 int used;
1693
1694 used = min_t(size_t, skb->len - offset, left);
1695 seq += used;
1696 left -= used;
1697
1698 if (skb->len > offset + used)
1699 break;
1700
1701 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1702 tcp_eat_recv_skb(sk, skb);
1703 ++seq;
1704 break;
1705 }
1706 tcp_eat_recv_skb(sk, skb);
1707 }
1708 WRITE_ONCE(tp->copied_seq, seq);
1709
1710 tcp_rcv_space_adjust(sk);
1711
1712 /* Clean up data we have read: This will do ACK frames. */
1713 if (left != len)
1714 tcp_cleanup_rbuf(sk, len - left);
1715 }
1716 EXPORT_SYMBOL(tcp_read_done);
1717
tcp_peek_len(struct socket * sock)1718 int tcp_peek_len(struct socket *sock)
1719 {
1720 return tcp_inq(sock->sk);
1721 }
1722 EXPORT_SYMBOL(tcp_peek_len);
1723
1724 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1725 int tcp_set_rcvlowat(struct sock *sk, int val)
1726 {
1727 int space, cap;
1728
1729 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1730 cap = sk->sk_rcvbuf >> 1;
1731 else
1732 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1733 val = min(val, cap);
1734 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1735
1736 /* Check if we need to signal EPOLLIN right now */
1737 tcp_data_ready(sk);
1738
1739 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1740 return 0;
1741
1742 space = tcp_space_from_win(sk, val);
1743 if (space > sk->sk_rcvbuf) {
1744 WRITE_ONCE(sk->sk_rcvbuf, space);
1745 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1746 }
1747 return 0;
1748 }
1749 EXPORT_SYMBOL(tcp_set_rcvlowat);
1750
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1751 void tcp_update_recv_tstamps(struct sk_buff *skb,
1752 struct scm_timestamping_internal *tss)
1753 {
1754 if (skb->tstamp)
1755 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1756 else
1757 tss->ts[0] = (struct timespec64) {0};
1758
1759 if (skb_hwtstamps(skb)->hwtstamp)
1760 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1761 else
1762 tss->ts[2] = (struct timespec64) {0};
1763 }
1764
1765 #ifdef CONFIG_MMU
1766 static const struct vm_operations_struct tcp_vm_ops = {
1767 };
1768
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1769 int tcp_mmap(struct file *file, struct socket *sock,
1770 struct vm_area_struct *vma)
1771 {
1772 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1773 return -EPERM;
1774 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1775
1776 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1777 vm_flags_set(vma, VM_MIXEDMAP);
1778
1779 vma->vm_ops = &tcp_vm_ops;
1780 return 0;
1781 }
1782 EXPORT_SYMBOL(tcp_mmap);
1783
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1784 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1785 u32 *offset_frag)
1786 {
1787 skb_frag_t *frag;
1788
1789 if (unlikely(offset_skb >= skb->len))
1790 return NULL;
1791
1792 offset_skb -= skb_headlen(skb);
1793 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1794 return NULL;
1795
1796 frag = skb_shinfo(skb)->frags;
1797 while (offset_skb) {
1798 if (skb_frag_size(frag) > offset_skb) {
1799 *offset_frag = offset_skb;
1800 return frag;
1801 }
1802 offset_skb -= skb_frag_size(frag);
1803 ++frag;
1804 }
1805 *offset_frag = 0;
1806 return frag;
1807 }
1808
can_map_frag(const skb_frag_t * frag)1809 static bool can_map_frag(const skb_frag_t *frag)
1810 {
1811 struct page *page;
1812
1813 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1814 return false;
1815
1816 page = skb_frag_page(frag);
1817
1818 if (PageCompound(page) || page->mapping)
1819 return false;
1820
1821 return true;
1822 }
1823
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1824 static int find_next_mappable_frag(const skb_frag_t *frag,
1825 int remaining_in_skb)
1826 {
1827 int offset = 0;
1828
1829 if (likely(can_map_frag(frag)))
1830 return 0;
1831
1832 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1833 offset += skb_frag_size(frag);
1834 ++frag;
1835 }
1836 return offset;
1837 }
1838
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1839 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1840 struct tcp_zerocopy_receive *zc,
1841 struct sk_buff *skb, u32 offset)
1842 {
1843 u32 frag_offset, partial_frag_remainder = 0;
1844 int mappable_offset;
1845 skb_frag_t *frag;
1846
1847 /* worst case: skip to next skb. try to improve on this case below */
1848 zc->recv_skip_hint = skb->len - offset;
1849
1850 /* Find the frag containing this offset (and how far into that frag) */
1851 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1852 if (!frag)
1853 return;
1854
1855 if (frag_offset) {
1856 struct skb_shared_info *info = skb_shinfo(skb);
1857
1858 /* We read part of the last frag, must recvmsg() rest of skb. */
1859 if (frag == &info->frags[info->nr_frags - 1])
1860 return;
1861
1862 /* Else, we must at least read the remainder in this frag. */
1863 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1864 zc->recv_skip_hint -= partial_frag_remainder;
1865 ++frag;
1866 }
1867
1868 /* partial_frag_remainder: If part way through a frag, must read rest.
1869 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1870 * in partial_frag_remainder.
1871 */
1872 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1873 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1874 }
1875
1876 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1877 int flags, struct scm_timestamping_internal *tss,
1878 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1879 static int receive_fallback_to_copy(struct sock *sk,
1880 struct tcp_zerocopy_receive *zc, int inq,
1881 struct scm_timestamping_internal *tss)
1882 {
1883 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1884 struct msghdr msg = {};
1885 struct iovec iov;
1886 int err;
1887
1888 zc->length = 0;
1889 zc->recv_skip_hint = 0;
1890
1891 if (copy_address != zc->copybuf_address)
1892 return -EINVAL;
1893
1894 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1895 inq, &iov, &msg.msg_iter);
1896 if (err)
1897 return err;
1898
1899 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1900 tss, &zc->msg_flags);
1901 if (err < 0)
1902 return err;
1903
1904 zc->copybuf_len = err;
1905 if (likely(zc->copybuf_len)) {
1906 struct sk_buff *skb;
1907 u32 offset;
1908
1909 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1910 if (skb)
1911 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1912 }
1913 return 0;
1914 }
1915
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1916 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1917 struct sk_buff *skb, u32 copylen,
1918 u32 *offset, u32 *seq)
1919 {
1920 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1921 struct msghdr msg = {};
1922 struct iovec iov;
1923 int err;
1924
1925 if (copy_address != zc->copybuf_address)
1926 return -EINVAL;
1927
1928 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1929 copylen, &iov, &msg.msg_iter);
1930 if (err)
1931 return err;
1932 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1933 if (err)
1934 return err;
1935 zc->recv_skip_hint -= copylen;
1936 *offset += copylen;
1937 *seq += copylen;
1938 return (__s32)copylen;
1939 }
1940
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1941 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1942 struct sock *sk,
1943 struct sk_buff *skb,
1944 u32 *seq,
1945 s32 copybuf_len,
1946 struct scm_timestamping_internal *tss)
1947 {
1948 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1949
1950 if (!copylen)
1951 return 0;
1952 /* skb is null if inq < PAGE_SIZE. */
1953 if (skb) {
1954 offset = *seq - TCP_SKB_CB(skb)->seq;
1955 } else {
1956 skb = tcp_recv_skb(sk, *seq, &offset);
1957 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1958 tcp_update_recv_tstamps(skb, tss);
1959 zc->msg_flags |= TCP_CMSG_TS;
1960 }
1961 }
1962
1963 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1964 seq);
1965 return zc->copybuf_len < 0 ? 0 : copylen;
1966 }
1967
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1968 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1969 struct page **pending_pages,
1970 unsigned long pages_remaining,
1971 unsigned long *address,
1972 u32 *length,
1973 u32 *seq,
1974 struct tcp_zerocopy_receive *zc,
1975 u32 total_bytes_to_map,
1976 int err)
1977 {
1978 /* At least one page did not map. Try zapping if we skipped earlier. */
1979 if (err == -EBUSY &&
1980 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1981 u32 maybe_zap_len;
1982
1983 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1984 *length + /* Mapped or pending */
1985 (pages_remaining * PAGE_SIZE); /* Failed map. */
1986 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1987 err = 0;
1988 }
1989
1990 if (!err) {
1991 unsigned long leftover_pages = pages_remaining;
1992 int bytes_mapped;
1993
1994 /* We called zap_page_range_single, try to reinsert. */
1995 err = vm_insert_pages(vma, *address,
1996 pending_pages,
1997 &pages_remaining);
1998 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1999 *seq += bytes_mapped;
2000 *address += bytes_mapped;
2001 }
2002 if (err) {
2003 /* Either we were unable to zap, OR we zapped, retried an
2004 * insert, and still had an issue. Either ways, pages_remaining
2005 * is the number of pages we were unable to map, and we unroll
2006 * some state we speculatively touched before.
2007 */
2008 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2009
2010 *length -= bytes_not_mapped;
2011 zc->recv_skip_hint += bytes_not_mapped;
2012 }
2013 return err;
2014 }
2015
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2016 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2017 struct page **pages,
2018 unsigned int pages_to_map,
2019 unsigned long *address,
2020 u32 *length,
2021 u32 *seq,
2022 struct tcp_zerocopy_receive *zc,
2023 u32 total_bytes_to_map)
2024 {
2025 unsigned long pages_remaining = pages_to_map;
2026 unsigned int pages_mapped;
2027 unsigned int bytes_mapped;
2028 int err;
2029
2030 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2031 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2032 bytes_mapped = PAGE_SIZE * pages_mapped;
2033 /* Even if vm_insert_pages fails, it may have partially succeeded in
2034 * mapping (some but not all of the pages).
2035 */
2036 *seq += bytes_mapped;
2037 *address += bytes_mapped;
2038
2039 if (likely(!err))
2040 return 0;
2041
2042 /* Error: maybe zap and retry + rollback state for failed inserts. */
2043 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2044 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2045 err);
2046 }
2047
2048 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2049 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2050 struct tcp_zerocopy_receive *zc,
2051 struct scm_timestamping_internal *tss)
2052 {
2053 unsigned long msg_control_addr;
2054 struct msghdr cmsg_dummy;
2055
2056 msg_control_addr = (unsigned long)zc->msg_control;
2057 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2058 cmsg_dummy.msg_controllen =
2059 (__kernel_size_t)zc->msg_controllen;
2060 cmsg_dummy.msg_flags = in_compat_syscall()
2061 ? MSG_CMSG_COMPAT : 0;
2062 cmsg_dummy.msg_control_is_user = true;
2063 zc->msg_flags = 0;
2064 if (zc->msg_control == msg_control_addr &&
2065 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2066 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2067 zc->msg_control = (__u64)
2068 ((uintptr_t)cmsg_dummy.msg_control_user);
2069 zc->msg_controllen =
2070 (__u64)cmsg_dummy.msg_controllen;
2071 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2072 }
2073 }
2074
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2075 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2076 unsigned long address,
2077 bool *mmap_locked)
2078 {
2079 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2080
2081 if (vma) {
2082 if (vma->vm_ops != &tcp_vm_ops) {
2083 vma_end_read(vma);
2084 return NULL;
2085 }
2086 *mmap_locked = false;
2087 return vma;
2088 }
2089
2090 mmap_read_lock(mm);
2091 vma = vma_lookup(mm, address);
2092 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2093 mmap_read_unlock(mm);
2094 return NULL;
2095 }
2096 *mmap_locked = true;
2097 return vma;
2098 }
2099
2100 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2101 static int tcp_zerocopy_receive(struct sock *sk,
2102 struct tcp_zerocopy_receive *zc,
2103 struct scm_timestamping_internal *tss)
2104 {
2105 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2106 unsigned long address = (unsigned long)zc->address;
2107 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2108 s32 copybuf_len = zc->copybuf_len;
2109 struct tcp_sock *tp = tcp_sk(sk);
2110 const skb_frag_t *frags = NULL;
2111 unsigned int pages_to_map = 0;
2112 struct vm_area_struct *vma;
2113 struct sk_buff *skb = NULL;
2114 u32 seq = tp->copied_seq;
2115 u32 total_bytes_to_map;
2116 int inq = tcp_inq(sk);
2117 bool mmap_locked;
2118 int ret;
2119
2120 zc->copybuf_len = 0;
2121 zc->msg_flags = 0;
2122
2123 if (address & (PAGE_SIZE - 1) || address != zc->address)
2124 return -EINVAL;
2125
2126 if (sk->sk_state == TCP_LISTEN)
2127 return -ENOTCONN;
2128
2129 sock_rps_record_flow(sk);
2130
2131 if (inq && inq <= copybuf_len)
2132 return receive_fallback_to_copy(sk, zc, inq, tss);
2133
2134 if (inq < PAGE_SIZE) {
2135 zc->length = 0;
2136 zc->recv_skip_hint = inq;
2137 if (!inq && sock_flag(sk, SOCK_DONE))
2138 return -EIO;
2139 return 0;
2140 }
2141
2142 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2143 if (!vma)
2144 return -EINVAL;
2145
2146 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2147 avail_len = min_t(u32, vma_len, inq);
2148 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2149 if (total_bytes_to_map) {
2150 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2151 zap_page_range_single(vma, address, total_bytes_to_map,
2152 NULL);
2153 zc->length = total_bytes_to_map;
2154 zc->recv_skip_hint = 0;
2155 } else {
2156 zc->length = avail_len;
2157 zc->recv_skip_hint = avail_len;
2158 }
2159 ret = 0;
2160 while (length + PAGE_SIZE <= zc->length) {
2161 int mappable_offset;
2162 struct page *page;
2163
2164 if (zc->recv_skip_hint < PAGE_SIZE) {
2165 u32 offset_frag;
2166
2167 if (skb) {
2168 if (zc->recv_skip_hint > 0)
2169 break;
2170 skb = skb->next;
2171 offset = seq - TCP_SKB_CB(skb)->seq;
2172 } else {
2173 skb = tcp_recv_skb(sk, seq, &offset);
2174 }
2175
2176 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2177 tcp_update_recv_tstamps(skb, tss);
2178 zc->msg_flags |= TCP_CMSG_TS;
2179 }
2180 zc->recv_skip_hint = skb->len - offset;
2181 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2182 if (!frags || offset_frag)
2183 break;
2184 }
2185
2186 mappable_offset = find_next_mappable_frag(frags,
2187 zc->recv_skip_hint);
2188 if (mappable_offset) {
2189 zc->recv_skip_hint = mappable_offset;
2190 break;
2191 }
2192 page = skb_frag_page(frags);
2193 prefetchw(page);
2194 pages[pages_to_map++] = page;
2195 length += PAGE_SIZE;
2196 zc->recv_skip_hint -= PAGE_SIZE;
2197 frags++;
2198 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2199 zc->recv_skip_hint < PAGE_SIZE) {
2200 /* Either full batch, or we're about to go to next skb
2201 * (and we cannot unroll failed ops across skbs).
2202 */
2203 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2204 pages_to_map,
2205 &address, &length,
2206 &seq, zc,
2207 total_bytes_to_map);
2208 if (ret)
2209 goto out;
2210 pages_to_map = 0;
2211 }
2212 }
2213 if (pages_to_map) {
2214 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2215 &address, &length, &seq,
2216 zc, total_bytes_to_map);
2217 }
2218 out:
2219 if (mmap_locked)
2220 mmap_read_unlock(current->mm);
2221 else
2222 vma_end_read(vma);
2223 /* Try to copy straggler data. */
2224 if (!ret)
2225 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2226
2227 if (length + copylen) {
2228 WRITE_ONCE(tp->copied_seq, seq);
2229 tcp_rcv_space_adjust(sk);
2230
2231 /* Clean up data we have read: This will do ACK frames. */
2232 tcp_recv_skb(sk, seq, &offset);
2233 tcp_cleanup_rbuf(sk, length + copylen);
2234 ret = 0;
2235 if (length == zc->length)
2236 zc->recv_skip_hint = 0;
2237 } else {
2238 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2239 ret = -EIO;
2240 }
2241 zc->length = length;
2242 return ret;
2243 }
2244 #endif
2245
2246 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2247 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2248 struct scm_timestamping_internal *tss)
2249 {
2250 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2251 bool has_timestamping = false;
2252
2253 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2254 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2255 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2256 if (new_tstamp) {
2257 struct __kernel_timespec kts = {
2258 .tv_sec = tss->ts[0].tv_sec,
2259 .tv_nsec = tss->ts[0].tv_nsec,
2260 };
2261 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2262 sizeof(kts), &kts);
2263 } else {
2264 struct __kernel_old_timespec ts_old = {
2265 .tv_sec = tss->ts[0].tv_sec,
2266 .tv_nsec = tss->ts[0].tv_nsec,
2267 };
2268 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2269 sizeof(ts_old), &ts_old);
2270 }
2271 } else {
2272 if (new_tstamp) {
2273 struct __kernel_sock_timeval stv = {
2274 .tv_sec = tss->ts[0].tv_sec,
2275 .tv_usec = tss->ts[0].tv_nsec / 1000,
2276 };
2277 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2278 sizeof(stv), &stv);
2279 } else {
2280 struct __kernel_old_timeval tv = {
2281 .tv_sec = tss->ts[0].tv_sec,
2282 .tv_usec = tss->ts[0].tv_nsec / 1000,
2283 };
2284 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2285 sizeof(tv), &tv);
2286 }
2287 }
2288 }
2289
2290 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2291 has_timestamping = true;
2292 else
2293 tss->ts[0] = (struct timespec64) {0};
2294 }
2295
2296 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2297 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2298 has_timestamping = true;
2299 else
2300 tss->ts[2] = (struct timespec64) {0};
2301 }
2302
2303 if (has_timestamping) {
2304 tss->ts[1] = (struct timespec64) {0};
2305 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2306 put_cmsg_scm_timestamping64(msg, tss);
2307 else
2308 put_cmsg_scm_timestamping(msg, tss);
2309 }
2310 }
2311
tcp_inq_hint(struct sock * sk)2312 static int tcp_inq_hint(struct sock *sk)
2313 {
2314 const struct tcp_sock *tp = tcp_sk(sk);
2315 u32 copied_seq = READ_ONCE(tp->copied_seq);
2316 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2317 int inq;
2318
2319 inq = rcv_nxt - copied_seq;
2320 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2321 lock_sock(sk);
2322 inq = tp->rcv_nxt - tp->copied_seq;
2323 release_sock(sk);
2324 }
2325 /* After receiving a FIN, tell the user-space to continue reading
2326 * by returning a non-zero inq.
2327 */
2328 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2329 inq = 1;
2330 return inq;
2331 }
2332
2333 /*
2334 * This routine copies from a sock struct into the user buffer.
2335 *
2336 * Technical note: in 2.3 we work on _locked_ socket, so that
2337 * tricks with *seq access order and skb->users are not required.
2338 * Probably, code can be easily improved even more.
2339 */
2340
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2341 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2342 int flags, struct scm_timestamping_internal *tss,
2343 int *cmsg_flags)
2344 {
2345 struct tcp_sock *tp = tcp_sk(sk);
2346 int copied = 0;
2347 u32 peek_seq;
2348 u32 *seq;
2349 unsigned long used;
2350 int err;
2351 int target; /* Read at least this many bytes */
2352 long timeo;
2353 struct sk_buff *skb, *last;
2354 u32 urg_hole = 0;
2355
2356 err = -ENOTCONN;
2357 if (sk->sk_state == TCP_LISTEN)
2358 goto out;
2359
2360 if (tp->recvmsg_inq) {
2361 *cmsg_flags = TCP_CMSG_INQ;
2362 msg->msg_get_inq = 1;
2363 }
2364 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2365
2366 /* Urgent data needs to be handled specially. */
2367 if (flags & MSG_OOB)
2368 goto recv_urg;
2369
2370 if (unlikely(tp->repair)) {
2371 err = -EPERM;
2372 if (!(flags & MSG_PEEK))
2373 goto out;
2374
2375 if (tp->repair_queue == TCP_SEND_QUEUE)
2376 goto recv_sndq;
2377
2378 err = -EINVAL;
2379 if (tp->repair_queue == TCP_NO_QUEUE)
2380 goto out;
2381
2382 /* 'common' recv queue MSG_PEEK-ing */
2383 }
2384
2385 seq = &tp->copied_seq;
2386 if (flags & MSG_PEEK) {
2387 peek_seq = tp->copied_seq;
2388 seq = &peek_seq;
2389 }
2390
2391 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2392
2393 do {
2394 u32 offset;
2395
2396 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2397 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2398 if (copied)
2399 break;
2400 if (signal_pending(current)) {
2401 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2402 break;
2403 }
2404 }
2405
2406 /* Next get a buffer. */
2407
2408 last = skb_peek_tail(&sk->sk_receive_queue);
2409 skb_queue_walk(&sk->sk_receive_queue, skb) {
2410 last = skb;
2411 /* Now that we have two receive queues this
2412 * shouldn't happen.
2413 */
2414 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2415 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2416 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2417 flags))
2418 break;
2419
2420 offset = *seq - TCP_SKB_CB(skb)->seq;
2421 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2422 pr_err_once("%s: found a SYN, please report !\n", __func__);
2423 offset--;
2424 }
2425 if (offset < skb->len)
2426 goto found_ok_skb;
2427 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2428 goto found_fin_ok;
2429 WARN(!(flags & MSG_PEEK),
2430 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2431 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2432 }
2433
2434 /* Well, if we have backlog, try to process it now yet. */
2435
2436 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2437 break;
2438
2439 if (copied) {
2440 if (!timeo ||
2441 sk->sk_err ||
2442 sk->sk_state == TCP_CLOSE ||
2443 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2444 signal_pending(current))
2445 break;
2446 } else {
2447 if (sock_flag(sk, SOCK_DONE))
2448 break;
2449
2450 if (sk->sk_err) {
2451 copied = sock_error(sk);
2452 break;
2453 }
2454
2455 if (sk->sk_shutdown & RCV_SHUTDOWN)
2456 break;
2457
2458 if (sk->sk_state == TCP_CLOSE) {
2459 /* This occurs when user tries to read
2460 * from never connected socket.
2461 */
2462 copied = -ENOTCONN;
2463 break;
2464 }
2465
2466 if (!timeo) {
2467 copied = -EAGAIN;
2468 break;
2469 }
2470
2471 if (signal_pending(current)) {
2472 copied = sock_intr_errno(timeo);
2473 break;
2474 }
2475 }
2476
2477 if (copied >= target) {
2478 /* Do not sleep, just process backlog. */
2479 __sk_flush_backlog(sk);
2480 } else {
2481 tcp_cleanup_rbuf(sk, copied);
2482 err = sk_wait_data(sk, &timeo, last);
2483 if (err < 0) {
2484 err = copied ? : err;
2485 goto out;
2486 }
2487 }
2488
2489 if ((flags & MSG_PEEK) &&
2490 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2491 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2492 current->comm,
2493 task_pid_nr(current));
2494 peek_seq = tp->copied_seq;
2495 }
2496 continue;
2497
2498 found_ok_skb:
2499 /* Ok so how much can we use? */
2500 used = skb->len - offset;
2501 if (len < used)
2502 used = len;
2503
2504 /* Do we have urgent data here? */
2505 if (unlikely(tp->urg_data)) {
2506 u32 urg_offset = tp->urg_seq - *seq;
2507 if (urg_offset < used) {
2508 if (!urg_offset) {
2509 if (!sock_flag(sk, SOCK_URGINLINE)) {
2510 WRITE_ONCE(*seq, *seq + 1);
2511 urg_hole++;
2512 offset++;
2513 used--;
2514 if (!used)
2515 goto skip_copy;
2516 }
2517 } else
2518 used = urg_offset;
2519 }
2520 }
2521
2522 if (!(flags & MSG_TRUNC)) {
2523 err = skb_copy_datagram_msg(skb, offset, msg, used);
2524 if (err) {
2525 /* Exception. Bailout! */
2526 if (!copied)
2527 copied = -EFAULT;
2528 break;
2529 }
2530 }
2531
2532 WRITE_ONCE(*seq, *seq + used);
2533 copied += used;
2534 len -= used;
2535
2536 tcp_rcv_space_adjust(sk);
2537
2538 skip_copy:
2539 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2540 WRITE_ONCE(tp->urg_data, 0);
2541 tcp_fast_path_check(sk);
2542 }
2543
2544 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2545 tcp_update_recv_tstamps(skb, tss);
2546 *cmsg_flags |= TCP_CMSG_TS;
2547 }
2548
2549 if (used + offset < skb->len)
2550 continue;
2551
2552 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2553 goto found_fin_ok;
2554 if (!(flags & MSG_PEEK))
2555 tcp_eat_recv_skb(sk, skb);
2556 continue;
2557
2558 found_fin_ok:
2559 /* Process the FIN. */
2560 WRITE_ONCE(*seq, *seq + 1);
2561 if (!(flags & MSG_PEEK))
2562 tcp_eat_recv_skb(sk, skb);
2563 break;
2564 } while (len > 0);
2565
2566 /* According to UNIX98, msg_name/msg_namelen are ignored
2567 * on connected socket. I was just happy when found this 8) --ANK
2568 */
2569
2570 /* Clean up data we have read: This will do ACK frames. */
2571 tcp_cleanup_rbuf(sk, copied);
2572 return copied;
2573
2574 out:
2575 return err;
2576
2577 recv_urg:
2578 err = tcp_recv_urg(sk, msg, len, flags);
2579 goto out;
2580
2581 recv_sndq:
2582 err = tcp_peek_sndq(sk, msg, len);
2583 goto out;
2584 }
2585
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2586 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2587 int *addr_len)
2588 {
2589 int cmsg_flags = 0, ret;
2590 struct scm_timestamping_internal tss;
2591
2592 if (unlikely(flags & MSG_ERRQUEUE))
2593 return inet_recv_error(sk, msg, len, addr_len);
2594
2595 if (sk_can_busy_loop(sk) &&
2596 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2597 sk->sk_state == TCP_ESTABLISHED)
2598 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2599
2600 lock_sock(sk);
2601 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2602 release_sock(sk);
2603
2604 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2605 if (cmsg_flags & TCP_CMSG_TS)
2606 tcp_recv_timestamp(msg, sk, &tss);
2607 if (msg->msg_get_inq) {
2608 msg->msg_inq = tcp_inq_hint(sk);
2609 if (cmsg_flags & TCP_CMSG_INQ)
2610 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2611 sizeof(msg->msg_inq), &msg->msg_inq);
2612 }
2613 }
2614 return ret;
2615 }
2616 EXPORT_SYMBOL(tcp_recvmsg);
2617
tcp_set_state(struct sock * sk,int state)2618 void tcp_set_state(struct sock *sk, int state)
2619 {
2620 int oldstate = sk->sk_state;
2621
2622 /* We defined a new enum for TCP states that are exported in BPF
2623 * so as not force the internal TCP states to be frozen. The
2624 * following checks will detect if an internal state value ever
2625 * differs from the BPF value. If this ever happens, then we will
2626 * need to remap the internal value to the BPF value before calling
2627 * tcp_call_bpf_2arg.
2628 */
2629 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2630 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2631 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2632 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2633 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2634 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2635 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2636 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2637 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2638 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2639 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2640 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2641 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2642
2643 /* bpf uapi header bpf.h defines an anonymous enum with values
2644 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2645 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2646 * But clang built vmlinux does not have this enum in DWARF
2647 * since clang removes the above code before generating IR/debuginfo.
2648 * Let us explicitly emit the type debuginfo to ensure the
2649 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2650 * regardless of which compiler is used.
2651 */
2652 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2653
2654 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2655 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2656
2657 switch (state) {
2658 case TCP_ESTABLISHED:
2659 if (oldstate != TCP_ESTABLISHED)
2660 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2661 break;
2662 case TCP_CLOSE_WAIT:
2663 if (oldstate == TCP_SYN_RECV)
2664 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2665 break;
2666
2667 case TCP_CLOSE:
2668 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2669 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2670
2671 sk->sk_prot->unhash(sk);
2672 if (inet_csk(sk)->icsk_bind_hash &&
2673 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2674 inet_put_port(sk);
2675 fallthrough;
2676 default:
2677 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2678 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2679 }
2680
2681 /* Change state AFTER socket is unhashed to avoid closed
2682 * socket sitting in hash tables.
2683 */
2684 inet_sk_state_store(sk, state);
2685 }
2686 EXPORT_SYMBOL_GPL(tcp_set_state);
2687
2688 /*
2689 * State processing on a close. This implements the state shift for
2690 * sending our FIN frame. Note that we only send a FIN for some
2691 * states. A shutdown() may have already sent the FIN, or we may be
2692 * closed.
2693 */
2694
2695 static const unsigned char new_state[16] = {
2696 /* current state: new state: action: */
2697 [0 /* (Invalid) */] = TCP_CLOSE,
2698 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2699 [TCP_SYN_SENT] = TCP_CLOSE,
2700 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2701 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2702 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2703 [TCP_TIME_WAIT] = TCP_CLOSE,
2704 [TCP_CLOSE] = TCP_CLOSE,
2705 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2706 [TCP_LAST_ACK] = TCP_LAST_ACK,
2707 [TCP_LISTEN] = TCP_CLOSE,
2708 [TCP_CLOSING] = TCP_CLOSING,
2709 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2710 };
2711
tcp_close_state(struct sock * sk)2712 static int tcp_close_state(struct sock *sk)
2713 {
2714 int next = (int)new_state[sk->sk_state];
2715 int ns = next & TCP_STATE_MASK;
2716
2717 tcp_set_state(sk, ns);
2718
2719 return next & TCP_ACTION_FIN;
2720 }
2721
2722 /*
2723 * Shutdown the sending side of a connection. Much like close except
2724 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2725 */
2726
tcp_shutdown(struct sock * sk,int how)2727 void tcp_shutdown(struct sock *sk, int how)
2728 {
2729 /* We need to grab some memory, and put together a FIN,
2730 * and then put it into the queue to be sent.
2731 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2732 */
2733 if (!(how & SEND_SHUTDOWN))
2734 return;
2735
2736 /* If we've already sent a FIN, or it's a closed state, skip this. */
2737 if ((1 << sk->sk_state) &
2738 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2739 TCPF_CLOSE_WAIT)) {
2740 /* Clear out any half completed packets. FIN if needed. */
2741 if (tcp_close_state(sk))
2742 tcp_send_fin(sk);
2743 }
2744 }
2745 EXPORT_SYMBOL(tcp_shutdown);
2746
tcp_orphan_count_sum(void)2747 int tcp_orphan_count_sum(void)
2748 {
2749 int i, total = 0;
2750
2751 for_each_possible_cpu(i)
2752 total += per_cpu(tcp_orphan_count, i);
2753
2754 return max(total, 0);
2755 }
2756
2757 static int tcp_orphan_cache;
2758 static struct timer_list tcp_orphan_timer;
2759 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2760
tcp_orphan_update(struct timer_list * unused)2761 static void tcp_orphan_update(struct timer_list *unused)
2762 {
2763 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2764 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2765 }
2766
tcp_too_many_orphans(int shift)2767 static bool tcp_too_many_orphans(int shift)
2768 {
2769 return READ_ONCE(tcp_orphan_cache) << shift >
2770 READ_ONCE(sysctl_tcp_max_orphans);
2771 }
2772
tcp_check_oom(struct sock * sk,int shift)2773 bool tcp_check_oom(struct sock *sk, int shift)
2774 {
2775 bool too_many_orphans, out_of_socket_memory;
2776
2777 too_many_orphans = tcp_too_many_orphans(shift);
2778 out_of_socket_memory = tcp_out_of_memory(sk);
2779
2780 if (too_many_orphans)
2781 net_info_ratelimited("too many orphaned sockets\n");
2782 if (out_of_socket_memory)
2783 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2784 return too_many_orphans || out_of_socket_memory;
2785 }
2786
__tcp_close(struct sock * sk,long timeout)2787 void __tcp_close(struct sock *sk, long timeout)
2788 {
2789 struct sk_buff *skb;
2790 int data_was_unread = 0;
2791 int state;
2792
2793 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2794
2795 if (sk->sk_state == TCP_LISTEN) {
2796 tcp_set_state(sk, TCP_CLOSE);
2797
2798 /* Special case. */
2799 inet_csk_listen_stop(sk);
2800
2801 goto adjudge_to_death;
2802 }
2803
2804 /* We need to flush the recv. buffs. We do this only on the
2805 * descriptor close, not protocol-sourced closes, because the
2806 * reader process may not have drained the data yet!
2807 */
2808 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2809 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2810
2811 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2812 len--;
2813 data_was_unread += len;
2814 __kfree_skb(skb);
2815 }
2816
2817 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2818 if (sk->sk_state == TCP_CLOSE)
2819 goto adjudge_to_death;
2820
2821 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2822 * data was lost. To witness the awful effects of the old behavior of
2823 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2824 * GET in an FTP client, suspend the process, wait for the client to
2825 * advertise a zero window, then kill -9 the FTP client, wheee...
2826 * Note: timeout is always zero in such a case.
2827 */
2828 if (unlikely(tcp_sk(sk)->repair)) {
2829 sk->sk_prot->disconnect(sk, 0);
2830 } else if (data_was_unread) {
2831 /* Unread data was tossed, zap the connection. */
2832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2833 tcp_set_state(sk, TCP_CLOSE);
2834 tcp_send_active_reset(sk, sk->sk_allocation);
2835 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2836 /* Check zero linger _after_ checking for unread data. */
2837 sk->sk_prot->disconnect(sk, 0);
2838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2839 } else if (tcp_close_state(sk)) {
2840 /* We FIN if the application ate all the data before
2841 * zapping the connection.
2842 */
2843
2844 /* RED-PEN. Formally speaking, we have broken TCP state
2845 * machine. State transitions:
2846 *
2847 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2848 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
2849 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2850 *
2851 * are legal only when FIN has been sent (i.e. in window),
2852 * rather than queued out of window. Purists blame.
2853 *
2854 * F.e. "RFC state" is ESTABLISHED,
2855 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2856 *
2857 * The visible declinations are that sometimes
2858 * we enter time-wait state, when it is not required really
2859 * (harmless), do not send active resets, when they are
2860 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2861 * they look as CLOSING or LAST_ACK for Linux)
2862 * Probably, I missed some more holelets.
2863 * --ANK
2864 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2865 * in a single packet! (May consider it later but will
2866 * probably need API support or TCP_CORK SYN-ACK until
2867 * data is written and socket is closed.)
2868 */
2869 tcp_send_fin(sk);
2870 }
2871
2872 sk_stream_wait_close(sk, timeout);
2873
2874 adjudge_to_death:
2875 state = sk->sk_state;
2876 sock_hold(sk);
2877 sock_orphan(sk);
2878
2879 local_bh_disable();
2880 bh_lock_sock(sk);
2881 /* remove backlog if any, without releasing ownership. */
2882 __release_sock(sk);
2883
2884 this_cpu_inc(tcp_orphan_count);
2885
2886 /* Have we already been destroyed by a softirq or backlog? */
2887 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2888 goto out;
2889
2890 /* This is a (useful) BSD violating of the RFC. There is a
2891 * problem with TCP as specified in that the other end could
2892 * keep a socket open forever with no application left this end.
2893 * We use a 1 minute timeout (about the same as BSD) then kill
2894 * our end. If they send after that then tough - BUT: long enough
2895 * that we won't make the old 4*rto = almost no time - whoops
2896 * reset mistake.
2897 *
2898 * Nope, it was not mistake. It is really desired behaviour
2899 * f.e. on http servers, when such sockets are useless, but
2900 * consume significant resources. Let's do it with special
2901 * linger2 option. --ANK
2902 */
2903
2904 if (sk->sk_state == TCP_FIN_WAIT2) {
2905 struct tcp_sock *tp = tcp_sk(sk);
2906 if (READ_ONCE(tp->linger2) < 0) {
2907 tcp_set_state(sk, TCP_CLOSE);
2908 tcp_send_active_reset(sk, GFP_ATOMIC);
2909 __NET_INC_STATS(sock_net(sk),
2910 LINUX_MIB_TCPABORTONLINGER);
2911 } else {
2912 const int tmo = tcp_fin_time(sk);
2913
2914 if (tmo > TCP_TIMEWAIT_LEN) {
2915 inet_csk_reset_keepalive_timer(sk,
2916 tmo - TCP_TIMEWAIT_LEN);
2917 } else {
2918 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2919 goto out;
2920 }
2921 }
2922 }
2923 if (sk->sk_state != TCP_CLOSE) {
2924 if (tcp_check_oom(sk, 0)) {
2925 tcp_set_state(sk, TCP_CLOSE);
2926 tcp_send_active_reset(sk, GFP_ATOMIC);
2927 __NET_INC_STATS(sock_net(sk),
2928 LINUX_MIB_TCPABORTONMEMORY);
2929 } else if (!check_net(sock_net(sk))) {
2930 /* Not possible to send reset; just close */
2931 tcp_set_state(sk, TCP_CLOSE);
2932 }
2933 }
2934
2935 if (sk->sk_state == TCP_CLOSE) {
2936 struct request_sock *req;
2937
2938 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2939 lockdep_sock_is_held(sk));
2940 /* We could get here with a non-NULL req if the socket is
2941 * aborted (e.g., closed with unread data) before 3WHS
2942 * finishes.
2943 */
2944 if (req)
2945 reqsk_fastopen_remove(sk, req, false);
2946 inet_csk_destroy_sock(sk);
2947 }
2948 /* Otherwise, socket is reprieved until protocol close. */
2949
2950 out:
2951 bh_unlock_sock(sk);
2952 local_bh_enable();
2953 }
2954
tcp_close(struct sock * sk,long timeout)2955 void tcp_close(struct sock *sk, long timeout)
2956 {
2957 lock_sock(sk);
2958 __tcp_close(sk, timeout);
2959 release_sock(sk);
2960 if (!sk->sk_net_refcnt)
2961 inet_csk_clear_xmit_timers_sync(sk);
2962 sock_put(sk);
2963 }
2964 EXPORT_SYMBOL(tcp_close);
2965
2966 /* These states need RST on ABORT according to RFC793 */
2967
tcp_need_reset(int state)2968 static inline bool tcp_need_reset(int state)
2969 {
2970 return (1 << state) &
2971 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2972 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2973 }
2974
tcp_rtx_queue_purge(struct sock * sk)2975 static void tcp_rtx_queue_purge(struct sock *sk)
2976 {
2977 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2978
2979 tcp_sk(sk)->highest_sack = NULL;
2980 while (p) {
2981 struct sk_buff *skb = rb_to_skb(p);
2982
2983 p = rb_next(p);
2984 /* Since we are deleting whole queue, no need to
2985 * list_del(&skb->tcp_tsorted_anchor)
2986 */
2987 tcp_rtx_queue_unlink(skb, sk);
2988 tcp_wmem_free_skb(sk, skb);
2989 }
2990 }
2991
tcp_write_queue_purge(struct sock * sk)2992 void tcp_write_queue_purge(struct sock *sk)
2993 {
2994 struct sk_buff *skb;
2995
2996 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2997 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2998 tcp_skb_tsorted_anchor_cleanup(skb);
2999 tcp_wmem_free_skb(sk, skb);
3000 }
3001 tcp_rtx_queue_purge(sk);
3002 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3003 tcp_clear_all_retrans_hints(tcp_sk(sk));
3004 tcp_sk(sk)->packets_out = 0;
3005 inet_csk(sk)->icsk_backoff = 0;
3006 }
3007
tcp_disconnect(struct sock * sk,int flags)3008 int tcp_disconnect(struct sock *sk, int flags)
3009 {
3010 struct inet_sock *inet = inet_sk(sk);
3011 struct inet_connection_sock *icsk = inet_csk(sk);
3012 struct tcp_sock *tp = tcp_sk(sk);
3013 int old_state = sk->sk_state;
3014 u32 seq;
3015
3016 if (old_state != TCP_CLOSE)
3017 tcp_set_state(sk, TCP_CLOSE);
3018
3019 /* ABORT function of RFC793 */
3020 if (old_state == TCP_LISTEN) {
3021 inet_csk_listen_stop(sk);
3022 } else if (unlikely(tp->repair)) {
3023 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3024 } else if (tcp_need_reset(old_state) ||
3025 (tp->snd_nxt != tp->write_seq &&
3026 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3027 /* The last check adjusts for discrepancy of Linux wrt. RFC
3028 * states
3029 */
3030 tcp_send_active_reset(sk, gfp_any());
3031 WRITE_ONCE(sk->sk_err, ECONNRESET);
3032 } else if (old_state == TCP_SYN_SENT)
3033 WRITE_ONCE(sk->sk_err, ECONNRESET);
3034
3035 tcp_clear_xmit_timers(sk);
3036 __skb_queue_purge(&sk->sk_receive_queue);
3037 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3038 WRITE_ONCE(tp->urg_data, 0);
3039 tcp_write_queue_purge(sk);
3040 tcp_fastopen_active_disable_ofo_check(sk);
3041 skb_rbtree_purge(&tp->out_of_order_queue);
3042
3043 inet->inet_dport = 0;
3044
3045 inet_bhash2_reset_saddr(sk);
3046
3047 WRITE_ONCE(sk->sk_shutdown, 0);
3048 sock_reset_flag(sk, SOCK_DONE);
3049 tp->srtt_us = 0;
3050 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3051 tp->rcv_rtt_last_tsecr = 0;
3052
3053 seq = tp->write_seq + tp->max_window + 2;
3054 if (!seq)
3055 seq = 1;
3056 WRITE_ONCE(tp->write_seq, seq);
3057
3058 icsk->icsk_backoff = 0;
3059 icsk->icsk_probes_out = 0;
3060 icsk->icsk_probes_tstamp = 0;
3061 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3062 icsk->icsk_rto_min = TCP_RTO_MIN;
3063 icsk->icsk_delack_max = TCP_DELACK_MAX;
3064 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3065 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3066 tp->snd_cwnd_cnt = 0;
3067 tp->is_cwnd_limited = 0;
3068 tp->max_packets_out = 0;
3069 tp->window_clamp = 0;
3070 tp->delivered = 0;
3071 tp->delivered_ce = 0;
3072 if (icsk->icsk_ca_ops->release)
3073 icsk->icsk_ca_ops->release(sk);
3074 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3075 icsk->icsk_ca_initialized = 0;
3076 tcp_set_ca_state(sk, TCP_CA_Open);
3077 tp->is_sack_reneg = 0;
3078 tcp_clear_retrans(tp);
3079 tp->total_retrans = 0;
3080 inet_csk_delack_init(sk);
3081 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3082 * issue in __tcp_select_window()
3083 */
3084 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3085 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3086 __sk_dst_reset(sk);
3087 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3088 tcp_saved_syn_free(tp);
3089 tp->compressed_ack = 0;
3090 tp->segs_in = 0;
3091 tp->segs_out = 0;
3092 tp->bytes_sent = 0;
3093 tp->bytes_acked = 0;
3094 tp->bytes_received = 0;
3095 tp->bytes_retrans = 0;
3096 tp->data_segs_in = 0;
3097 tp->data_segs_out = 0;
3098 tp->duplicate_sack[0].start_seq = 0;
3099 tp->duplicate_sack[0].end_seq = 0;
3100 tp->dsack_dups = 0;
3101 tp->reord_seen = 0;
3102 tp->retrans_out = 0;
3103 tp->sacked_out = 0;
3104 tp->tlp_high_seq = 0;
3105 tp->last_oow_ack_time = 0;
3106 tp->plb_rehash = 0;
3107 /* There's a bubble in the pipe until at least the first ACK. */
3108 tp->app_limited = ~0U;
3109 tp->rate_app_limited = 1;
3110 tp->rack.mstamp = 0;
3111 tp->rack.advanced = 0;
3112 tp->rack.reo_wnd_steps = 1;
3113 tp->rack.last_delivered = 0;
3114 tp->rack.reo_wnd_persist = 0;
3115 tp->rack.dsack_seen = 0;
3116 tp->syn_data_acked = 0;
3117 tp->rx_opt.saw_tstamp = 0;
3118 tp->rx_opt.dsack = 0;
3119 tp->rx_opt.num_sacks = 0;
3120 tp->rcv_ooopack = 0;
3121
3122
3123 /* Clean up fastopen related fields */
3124 tcp_free_fastopen_req(tp);
3125 inet_clear_bit(DEFER_CONNECT, sk);
3126 tp->fastopen_client_fail = 0;
3127
3128 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3129
3130 if (sk->sk_frag.page) {
3131 put_page(sk->sk_frag.page);
3132 sk->sk_frag.page = NULL;
3133 sk->sk_frag.offset = 0;
3134 }
3135 sk_error_report(sk);
3136 return 0;
3137 }
3138 EXPORT_SYMBOL(tcp_disconnect);
3139
tcp_can_repair_sock(const struct sock * sk)3140 static inline bool tcp_can_repair_sock(const struct sock *sk)
3141 {
3142 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3143 (sk->sk_state != TCP_LISTEN);
3144 }
3145
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3146 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3147 {
3148 struct tcp_repair_window opt;
3149
3150 if (!tp->repair)
3151 return -EPERM;
3152
3153 if (len != sizeof(opt))
3154 return -EINVAL;
3155
3156 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3157 return -EFAULT;
3158
3159 if (opt.max_window < opt.snd_wnd)
3160 return -EINVAL;
3161
3162 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3163 return -EINVAL;
3164
3165 if (after(opt.rcv_wup, tp->rcv_nxt))
3166 return -EINVAL;
3167
3168 tp->snd_wl1 = opt.snd_wl1;
3169 tp->snd_wnd = opt.snd_wnd;
3170 tp->max_window = opt.max_window;
3171
3172 tp->rcv_wnd = opt.rcv_wnd;
3173 tp->rcv_wup = opt.rcv_wup;
3174
3175 return 0;
3176 }
3177
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3178 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3179 unsigned int len)
3180 {
3181 struct tcp_sock *tp = tcp_sk(sk);
3182 struct tcp_repair_opt opt;
3183 size_t offset = 0;
3184
3185 while (len >= sizeof(opt)) {
3186 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3187 return -EFAULT;
3188
3189 offset += sizeof(opt);
3190 len -= sizeof(opt);
3191
3192 switch (opt.opt_code) {
3193 case TCPOPT_MSS:
3194 tp->rx_opt.mss_clamp = opt.opt_val;
3195 tcp_mtup_init(sk);
3196 break;
3197 case TCPOPT_WINDOW:
3198 {
3199 u16 snd_wscale = opt.opt_val & 0xFFFF;
3200 u16 rcv_wscale = opt.opt_val >> 16;
3201
3202 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3203 return -EFBIG;
3204
3205 tp->rx_opt.snd_wscale = snd_wscale;
3206 tp->rx_opt.rcv_wscale = rcv_wscale;
3207 tp->rx_opt.wscale_ok = 1;
3208 }
3209 break;
3210 case TCPOPT_SACK_PERM:
3211 if (opt.opt_val != 0)
3212 return -EINVAL;
3213
3214 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3215 break;
3216 case TCPOPT_TIMESTAMP:
3217 if (opt.opt_val != 0)
3218 return -EINVAL;
3219
3220 tp->rx_opt.tstamp_ok = 1;
3221 break;
3222 }
3223 }
3224
3225 return 0;
3226 }
3227
3228 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3229 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3230
tcp_enable_tx_delay(void)3231 static void tcp_enable_tx_delay(void)
3232 {
3233 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3234 static int __tcp_tx_delay_enabled = 0;
3235
3236 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3237 static_branch_enable(&tcp_tx_delay_enabled);
3238 pr_info("TCP_TX_DELAY enabled\n");
3239 }
3240 }
3241 }
3242
3243 /* When set indicates to always queue non-full frames. Later the user clears
3244 * this option and we transmit any pending partial frames in the queue. This is
3245 * meant to be used alongside sendfile() to get properly filled frames when the
3246 * user (for example) must write out headers with a write() call first and then
3247 * use sendfile to send out the data parts.
3248 *
3249 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3250 * TCP_NODELAY.
3251 */
__tcp_sock_set_cork(struct sock * sk,bool on)3252 void __tcp_sock_set_cork(struct sock *sk, bool on)
3253 {
3254 struct tcp_sock *tp = tcp_sk(sk);
3255
3256 if (on) {
3257 tp->nonagle |= TCP_NAGLE_CORK;
3258 } else {
3259 tp->nonagle &= ~TCP_NAGLE_CORK;
3260 if (tp->nonagle & TCP_NAGLE_OFF)
3261 tp->nonagle |= TCP_NAGLE_PUSH;
3262 tcp_push_pending_frames(sk);
3263 }
3264 }
3265
tcp_sock_set_cork(struct sock * sk,bool on)3266 void tcp_sock_set_cork(struct sock *sk, bool on)
3267 {
3268 lock_sock(sk);
3269 __tcp_sock_set_cork(sk, on);
3270 release_sock(sk);
3271 }
3272 EXPORT_SYMBOL(tcp_sock_set_cork);
3273
3274 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3275 * remembered, but it is not activated until cork is cleared.
3276 *
3277 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3278 * even TCP_CORK for currently queued segments.
3279 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3280 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3281 {
3282 if (on) {
3283 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3284 tcp_push_pending_frames(sk);
3285 } else {
3286 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3287 }
3288 }
3289
tcp_sock_set_nodelay(struct sock * sk)3290 void tcp_sock_set_nodelay(struct sock *sk)
3291 {
3292 lock_sock(sk);
3293 __tcp_sock_set_nodelay(sk, true);
3294 release_sock(sk);
3295 }
3296 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3297
__tcp_sock_set_quickack(struct sock * sk,int val)3298 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3299 {
3300 if (!val) {
3301 inet_csk_enter_pingpong_mode(sk);
3302 return;
3303 }
3304
3305 inet_csk_exit_pingpong_mode(sk);
3306 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3307 inet_csk_ack_scheduled(sk)) {
3308 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3309 tcp_cleanup_rbuf(sk, 1);
3310 if (!(val & 1))
3311 inet_csk_enter_pingpong_mode(sk);
3312 }
3313 }
3314
tcp_sock_set_quickack(struct sock * sk,int val)3315 void tcp_sock_set_quickack(struct sock *sk, int val)
3316 {
3317 lock_sock(sk);
3318 __tcp_sock_set_quickack(sk, val);
3319 release_sock(sk);
3320 }
3321 EXPORT_SYMBOL(tcp_sock_set_quickack);
3322
tcp_sock_set_syncnt(struct sock * sk,int val)3323 int tcp_sock_set_syncnt(struct sock *sk, int val)
3324 {
3325 if (val < 1 || val > MAX_TCP_SYNCNT)
3326 return -EINVAL;
3327
3328 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3329 return 0;
3330 }
3331 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3332
tcp_sock_set_user_timeout(struct sock * sk,int val)3333 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3334 {
3335 /* Cap the max time in ms TCP will retry or probe the window
3336 * before giving up and aborting (ETIMEDOUT) a connection.
3337 */
3338 if (val < 0)
3339 return -EINVAL;
3340
3341 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3342 return 0;
3343 }
3344 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3345
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3346 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3347 {
3348 struct tcp_sock *tp = tcp_sk(sk);
3349
3350 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3351 return -EINVAL;
3352
3353 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3354 WRITE_ONCE(tp->keepalive_time, val * HZ);
3355 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3356 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3357 u32 elapsed = keepalive_time_elapsed(tp);
3358
3359 if (tp->keepalive_time > elapsed)
3360 elapsed = tp->keepalive_time - elapsed;
3361 else
3362 elapsed = 0;
3363 inet_csk_reset_keepalive_timer(sk, elapsed);
3364 }
3365
3366 return 0;
3367 }
3368
tcp_sock_set_keepidle(struct sock * sk,int val)3369 int tcp_sock_set_keepidle(struct sock *sk, int val)
3370 {
3371 int err;
3372
3373 lock_sock(sk);
3374 err = tcp_sock_set_keepidle_locked(sk, val);
3375 release_sock(sk);
3376 return err;
3377 }
3378 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3379
tcp_sock_set_keepintvl(struct sock * sk,int val)3380 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3381 {
3382 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3383 return -EINVAL;
3384
3385 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3386 return 0;
3387 }
3388 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3389
tcp_sock_set_keepcnt(struct sock * sk,int val)3390 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3391 {
3392 if (val < 1 || val > MAX_TCP_KEEPCNT)
3393 return -EINVAL;
3394
3395 /* Paired with READ_ONCE() in keepalive_probes() */
3396 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3397 return 0;
3398 }
3399 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3400
tcp_set_window_clamp(struct sock * sk,int val)3401 int tcp_set_window_clamp(struct sock *sk, int val)
3402 {
3403 struct tcp_sock *tp = tcp_sk(sk);
3404
3405 if (!val) {
3406 if (sk->sk_state != TCP_CLOSE)
3407 return -EINVAL;
3408 WRITE_ONCE(tp->window_clamp, 0);
3409 } else {
3410 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3411 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3412 SOCK_MIN_RCVBUF / 2 : val;
3413
3414 if (new_window_clamp == old_window_clamp)
3415 return 0;
3416
3417 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3418 if (new_window_clamp < old_window_clamp) {
3419 /* need to apply the reserved mem provisioning only
3420 * when shrinking the window clamp
3421 */
3422 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3423
3424 } else {
3425 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3426 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3427 tp->rcv_ssthresh);
3428 }
3429 }
3430 return 0;
3431 }
3432
3433 /*
3434 * Socket option code for TCP.
3435 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3436 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3437 sockptr_t optval, unsigned int optlen)
3438 {
3439 struct tcp_sock *tp = tcp_sk(sk);
3440 struct inet_connection_sock *icsk = inet_csk(sk);
3441 struct net *net = sock_net(sk);
3442 int val;
3443 int err = 0;
3444
3445 /* These are data/string values, all the others are ints */
3446 switch (optname) {
3447 case TCP_CONGESTION: {
3448 char name[TCP_CA_NAME_MAX];
3449
3450 if (optlen < 1)
3451 return -EINVAL;
3452
3453 val = strncpy_from_sockptr(name, optval,
3454 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3455 if (val < 0)
3456 return -EFAULT;
3457 name[val] = 0;
3458
3459 sockopt_lock_sock(sk);
3460 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3461 sockopt_ns_capable(sock_net(sk)->user_ns,
3462 CAP_NET_ADMIN));
3463 sockopt_release_sock(sk);
3464 return err;
3465 }
3466 case TCP_ULP: {
3467 char name[TCP_ULP_NAME_MAX];
3468
3469 if (optlen < 1)
3470 return -EINVAL;
3471
3472 val = strncpy_from_sockptr(name, optval,
3473 min_t(long, TCP_ULP_NAME_MAX - 1,
3474 optlen));
3475 if (val < 0)
3476 return -EFAULT;
3477 name[val] = 0;
3478
3479 sockopt_lock_sock(sk);
3480 err = tcp_set_ulp(sk, name);
3481 sockopt_release_sock(sk);
3482 return err;
3483 }
3484 case TCP_FASTOPEN_KEY: {
3485 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3486 __u8 *backup_key = NULL;
3487
3488 /* Allow a backup key as well to facilitate key rotation
3489 * First key is the active one.
3490 */
3491 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3492 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3493 return -EINVAL;
3494
3495 if (copy_from_sockptr(key, optval, optlen))
3496 return -EFAULT;
3497
3498 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3499 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3500
3501 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3502 }
3503 default:
3504 /* fallthru */
3505 break;
3506 }
3507
3508 if (optlen < sizeof(int))
3509 return -EINVAL;
3510
3511 if (copy_from_sockptr(&val, optval, sizeof(val)))
3512 return -EFAULT;
3513
3514 /* Handle options that can be set without locking the socket. */
3515 switch (optname) {
3516 case TCP_SYNCNT:
3517 return tcp_sock_set_syncnt(sk, val);
3518 case TCP_USER_TIMEOUT:
3519 return tcp_sock_set_user_timeout(sk, val);
3520 case TCP_KEEPINTVL:
3521 return tcp_sock_set_keepintvl(sk, val);
3522 case TCP_KEEPCNT:
3523 return tcp_sock_set_keepcnt(sk, val);
3524 case TCP_LINGER2:
3525 if (val < 0)
3526 WRITE_ONCE(tp->linger2, -1);
3527 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3528 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3529 else
3530 WRITE_ONCE(tp->linger2, val * HZ);
3531 return 0;
3532 case TCP_DEFER_ACCEPT:
3533 /* Translate value in seconds to number of retransmits */
3534 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3535 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3536 TCP_RTO_MAX / HZ));
3537 return 0;
3538 }
3539
3540 sockopt_lock_sock(sk);
3541
3542 switch (optname) {
3543 case TCP_MAXSEG:
3544 /* Values greater than interface MTU won't take effect. However
3545 * at the point when this call is done we typically don't yet
3546 * know which interface is going to be used
3547 */
3548 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3549 err = -EINVAL;
3550 break;
3551 }
3552 tp->rx_opt.user_mss = val;
3553 break;
3554
3555 case TCP_NODELAY:
3556 __tcp_sock_set_nodelay(sk, val);
3557 break;
3558
3559 case TCP_THIN_LINEAR_TIMEOUTS:
3560 if (val < 0 || val > 1)
3561 err = -EINVAL;
3562 else
3563 tp->thin_lto = val;
3564 break;
3565
3566 case TCP_THIN_DUPACK:
3567 if (val < 0 || val > 1)
3568 err = -EINVAL;
3569 break;
3570
3571 case TCP_REPAIR:
3572 if (!tcp_can_repair_sock(sk))
3573 err = -EPERM;
3574 else if (val == TCP_REPAIR_ON) {
3575 tp->repair = 1;
3576 sk->sk_reuse = SK_FORCE_REUSE;
3577 tp->repair_queue = TCP_NO_QUEUE;
3578 } else if (val == TCP_REPAIR_OFF) {
3579 tp->repair = 0;
3580 sk->sk_reuse = SK_NO_REUSE;
3581 tcp_send_window_probe(sk);
3582 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3583 tp->repair = 0;
3584 sk->sk_reuse = SK_NO_REUSE;
3585 } else
3586 err = -EINVAL;
3587
3588 break;
3589
3590 case TCP_REPAIR_QUEUE:
3591 if (!tp->repair)
3592 err = -EPERM;
3593 else if ((unsigned int)val < TCP_QUEUES_NR)
3594 tp->repair_queue = val;
3595 else
3596 err = -EINVAL;
3597 break;
3598
3599 case TCP_QUEUE_SEQ:
3600 if (sk->sk_state != TCP_CLOSE) {
3601 err = -EPERM;
3602 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3603 if (!tcp_rtx_queue_empty(sk))
3604 err = -EPERM;
3605 else
3606 WRITE_ONCE(tp->write_seq, val);
3607 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3608 if (tp->rcv_nxt != tp->copied_seq) {
3609 err = -EPERM;
3610 } else {
3611 WRITE_ONCE(tp->rcv_nxt, val);
3612 WRITE_ONCE(tp->copied_seq, val);
3613 }
3614 } else {
3615 err = -EINVAL;
3616 }
3617 break;
3618
3619 case TCP_REPAIR_OPTIONS:
3620 if (!tp->repair)
3621 err = -EINVAL;
3622 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3623 err = tcp_repair_options_est(sk, optval, optlen);
3624 else
3625 err = -EPERM;
3626 break;
3627
3628 case TCP_CORK:
3629 __tcp_sock_set_cork(sk, val);
3630 break;
3631
3632 case TCP_KEEPIDLE:
3633 err = tcp_sock_set_keepidle_locked(sk, val);
3634 break;
3635 case TCP_SAVE_SYN:
3636 /* 0: disable, 1: enable, 2: start from ether_header */
3637 if (val < 0 || val > 2)
3638 err = -EINVAL;
3639 else
3640 tp->save_syn = val;
3641 break;
3642
3643 case TCP_WINDOW_CLAMP:
3644 err = tcp_set_window_clamp(sk, val);
3645 break;
3646
3647 case TCP_QUICKACK:
3648 __tcp_sock_set_quickack(sk, val);
3649 break;
3650
3651 #ifdef CONFIG_TCP_MD5SIG
3652 case TCP_MD5SIG:
3653 case TCP_MD5SIG_EXT:
3654 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3655 break;
3656 #endif
3657 case TCP_FASTOPEN:
3658 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3659 TCPF_LISTEN))) {
3660 tcp_fastopen_init_key_once(net);
3661
3662 fastopen_queue_tune(sk, val);
3663 } else {
3664 err = -EINVAL;
3665 }
3666 break;
3667 case TCP_FASTOPEN_CONNECT:
3668 if (val > 1 || val < 0) {
3669 err = -EINVAL;
3670 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3671 TFO_CLIENT_ENABLE) {
3672 if (sk->sk_state == TCP_CLOSE)
3673 tp->fastopen_connect = val;
3674 else
3675 err = -EINVAL;
3676 } else {
3677 err = -EOPNOTSUPP;
3678 }
3679 break;
3680 case TCP_FASTOPEN_NO_COOKIE:
3681 if (val > 1 || val < 0)
3682 err = -EINVAL;
3683 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3684 err = -EINVAL;
3685 else
3686 tp->fastopen_no_cookie = val;
3687 break;
3688 case TCP_TIMESTAMP:
3689 if (!tp->repair)
3690 err = -EPERM;
3691 else
3692 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3693 break;
3694 case TCP_REPAIR_WINDOW:
3695 err = tcp_repair_set_window(tp, optval, optlen);
3696 break;
3697 case TCP_NOTSENT_LOWAT:
3698 WRITE_ONCE(tp->notsent_lowat, val);
3699 sk->sk_write_space(sk);
3700 break;
3701 case TCP_INQ:
3702 if (val > 1 || val < 0)
3703 err = -EINVAL;
3704 else
3705 tp->recvmsg_inq = val;
3706 break;
3707 case TCP_TX_DELAY:
3708 if (val)
3709 tcp_enable_tx_delay();
3710 WRITE_ONCE(tp->tcp_tx_delay, val);
3711 break;
3712 default:
3713 err = -ENOPROTOOPT;
3714 break;
3715 }
3716
3717 sockopt_release_sock(sk);
3718 return err;
3719 }
3720
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3721 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3722 unsigned int optlen)
3723 {
3724 const struct inet_connection_sock *icsk = inet_csk(sk);
3725
3726 if (level != SOL_TCP)
3727 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3728 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3729 optval, optlen);
3730 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3731 }
3732 EXPORT_SYMBOL(tcp_setsockopt);
3733
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3734 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3735 struct tcp_info *info)
3736 {
3737 u64 stats[__TCP_CHRONO_MAX], total = 0;
3738 enum tcp_chrono i;
3739
3740 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3741 stats[i] = tp->chrono_stat[i - 1];
3742 if (i == tp->chrono_type)
3743 stats[i] += tcp_jiffies32 - tp->chrono_start;
3744 stats[i] *= USEC_PER_SEC / HZ;
3745 total += stats[i];
3746 }
3747
3748 info->tcpi_busy_time = total;
3749 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3750 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3751 }
3752
3753 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3754 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3755 {
3756 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3757 const struct inet_connection_sock *icsk = inet_csk(sk);
3758 unsigned long rate;
3759 u32 now;
3760 u64 rate64;
3761 bool slow;
3762
3763 memset(info, 0, sizeof(*info));
3764 if (sk->sk_type != SOCK_STREAM)
3765 return;
3766
3767 info->tcpi_state = inet_sk_state_load(sk);
3768
3769 /* Report meaningful fields for all TCP states, including listeners */
3770 rate = READ_ONCE(sk->sk_pacing_rate);
3771 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3772 info->tcpi_pacing_rate = rate64;
3773
3774 rate = READ_ONCE(sk->sk_max_pacing_rate);
3775 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3776 info->tcpi_max_pacing_rate = rate64;
3777
3778 info->tcpi_reordering = tp->reordering;
3779 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3780
3781 if (info->tcpi_state == TCP_LISTEN) {
3782 /* listeners aliased fields :
3783 * tcpi_unacked -> Number of children ready for accept()
3784 * tcpi_sacked -> max backlog
3785 */
3786 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3787 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3788 return;
3789 }
3790
3791 slow = lock_sock_fast(sk);
3792
3793 info->tcpi_ca_state = icsk->icsk_ca_state;
3794 info->tcpi_retransmits = icsk->icsk_retransmits;
3795 info->tcpi_probes = icsk->icsk_probes_out;
3796 info->tcpi_backoff = icsk->icsk_backoff;
3797
3798 if (tp->rx_opt.tstamp_ok)
3799 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3800 if (tcp_is_sack(tp))
3801 info->tcpi_options |= TCPI_OPT_SACK;
3802 if (tp->rx_opt.wscale_ok) {
3803 info->tcpi_options |= TCPI_OPT_WSCALE;
3804 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3805 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3806 }
3807
3808 if (tp->ecn_flags & TCP_ECN_OK)
3809 info->tcpi_options |= TCPI_OPT_ECN;
3810 if (tp->ecn_flags & TCP_ECN_SEEN)
3811 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3812 if (tp->syn_data_acked)
3813 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3814
3815 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3816 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3817 tcp_delack_max(sk)));
3818 info->tcpi_snd_mss = tp->mss_cache;
3819 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3820
3821 info->tcpi_unacked = tp->packets_out;
3822 info->tcpi_sacked = tp->sacked_out;
3823
3824 info->tcpi_lost = tp->lost_out;
3825 info->tcpi_retrans = tp->retrans_out;
3826
3827 now = tcp_jiffies32;
3828 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3829 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3830 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3831
3832 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3833 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3834 info->tcpi_rtt = tp->srtt_us >> 3;
3835 info->tcpi_rttvar = tp->mdev_us >> 2;
3836 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3837 info->tcpi_advmss = tp->advmss;
3838
3839 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3840 info->tcpi_rcv_space = tp->rcvq_space.space;
3841
3842 info->tcpi_total_retrans = tp->total_retrans;
3843
3844 info->tcpi_bytes_acked = tp->bytes_acked;
3845 info->tcpi_bytes_received = tp->bytes_received;
3846 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3847 tcp_get_info_chrono_stats(tp, info);
3848
3849 info->tcpi_segs_out = tp->segs_out;
3850
3851 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3852 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3853 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3854
3855 info->tcpi_min_rtt = tcp_min_rtt(tp);
3856 info->tcpi_data_segs_out = tp->data_segs_out;
3857
3858 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3859 rate64 = tcp_compute_delivery_rate(tp);
3860 if (rate64)
3861 info->tcpi_delivery_rate = rate64;
3862 info->tcpi_delivered = tp->delivered;
3863 info->tcpi_delivered_ce = tp->delivered_ce;
3864 info->tcpi_bytes_sent = tp->bytes_sent;
3865 info->tcpi_bytes_retrans = tp->bytes_retrans;
3866 info->tcpi_dsack_dups = tp->dsack_dups;
3867 info->tcpi_reord_seen = tp->reord_seen;
3868 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3869 info->tcpi_snd_wnd = tp->snd_wnd;
3870 info->tcpi_rcv_wnd = tp->rcv_wnd;
3871 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3872 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3873
3874 info->tcpi_total_rto = tp->total_rto;
3875 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3876 info->tcpi_total_rto_time = tp->total_rto_time;
3877 if (tp->rto_stamp) {
3878 info->tcpi_total_rto_time += tcp_time_stamp_raw() -
3879 tp->rto_stamp;
3880 }
3881
3882 unlock_sock_fast(sk, slow);
3883 }
3884 EXPORT_SYMBOL_GPL(tcp_get_info);
3885
tcp_opt_stats_get_size(void)3886 static size_t tcp_opt_stats_get_size(void)
3887 {
3888 return
3889 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3891 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3892 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3893 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3895 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3897 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3898 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3899 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3900 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3901 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3902 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3903 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3906 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3907 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3908 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3909 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3911 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3912 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3913 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3914 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3915 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3916 0;
3917 }
3918
3919 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3920 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3921 {
3922 if (skb->protocol == htons(ETH_P_IP))
3923 return ip_hdr(skb)->ttl;
3924 else if (skb->protocol == htons(ETH_P_IPV6))
3925 return ipv6_hdr(skb)->hop_limit;
3926 else
3927 return 0;
3928 }
3929
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3930 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3931 const struct sk_buff *orig_skb,
3932 const struct sk_buff *ack_skb)
3933 {
3934 const struct tcp_sock *tp = tcp_sk(sk);
3935 struct sk_buff *stats;
3936 struct tcp_info info;
3937 unsigned long rate;
3938 u64 rate64;
3939
3940 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3941 if (!stats)
3942 return NULL;
3943
3944 tcp_get_info_chrono_stats(tp, &info);
3945 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3946 info.tcpi_busy_time, TCP_NLA_PAD);
3947 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3948 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3949 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3950 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3951 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3952 tp->data_segs_out, TCP_NLA_PAD);
3953 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3954 tp->total_retrans, TCP_NLA_PAD);
3955
3956 rate = READ_ONCE(sk->sk_pacing_rate);
3957 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3958 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3959
3960 rate64 = tcp_compute_delivery_rate(tp);
3961 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3962
3963 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3964 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3965 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3966
3967 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3968 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3969 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3970 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3971 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3972
3973 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3974 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3975
3976 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3977 TCP_NLA_PAD);
3978 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3979 TCP_NLA_PAD);
3980 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3981 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3982 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3983 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3984 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3985 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3986 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3987 TCP_NLA_PAD);
3988 if (ack_skb)
3989 nla_put_u8(stats, TCP_NLA_TTL,
3990 tcp_skb_ttl_or_hop_limit(ack_skb));
3991
3992 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3993 return stats;
3994 }
3995
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)3996 int do_tcp_getsockopt(struct sock *sk, int level,
3997 int optname, sockptr_t optval, sockptr_t optlen)
3998 {
3999 struct inet_connection_sock *icsk = inet_csk(sk);
4000 struct tcp_sock *tp = tcp_sk(sk);
4001 struct net *net = sock_net(sk);
4002 int val, len;
4003
4004 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4005 return -EFAULT;
4006
4007 if (len < 0)
4008 return -EINVAL;
4009
4010 len = min_t(unsigned int, len, sizeof(int));
4011
4012 switch (optname) {
4013 case TCP_MAXSEG:
4014 val = tp->mss_cache;
4015 if (tp->rx_opt.user_mss &&
4016 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4017 val = tp->rx_opt.user_mss;
4018 if (tp->repair)
4019 val = tp->rx_opt.mss_clamp;
4020 break;
4021 case TCP_NODELAY:
4022 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4023 break;
4024 case TCP_CORK:
4025 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4026 break;
4027 case TCP_KEEPIDLE:
4028 val = keepalive_time_when(tp) / HZ;
4029 break;
4030 case TCP_KEEPINTVL:
4031 val = keepalive_intvl_when(tp) / HZ;
4032 break;
4033 case TCP_KEEPCNT:
4034 val = keepalive_probes(tp);
4035 break;
4036 case TCP_SYNCNT:
4037 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4038 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4039 break;
4040 case TCP_LINGER2:
4041 val = READ_ONCE(tp->linger2);
4042 if (val >= 0)
4043 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4044 break;
4045 case TCP_DEFER_ACCEPT:
4046 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4047 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4048 TCP_RTO_MAX / HZ);
4049 break;
4050 case TCP_WINDOW_CLAMP:
4051 val = READ_ONCE(tp->window_clamp);
4052 break;
4053 case TCP_INFO: {
4054 struct tcp_info info;
4055
4056 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4057 return -EFAULT;
4058
4059 tcp_get_info(sk, &info);
4060
4061 len = min_t(unsigned int, len, sizeof(info));
4062 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4063 return -EFAULT;
4064 if (copy_to_sockptr(optval, &info, len))
4065 return -EFAULT;
4066 return 0;
4067 }
4068 case TCP_CC_INFO: {
4069 const struct tcp_congestion_ops *ca_ops;
4070 union tcp_cc_info info;
4071 size_t sz = 0;
4072 int attr;
4073
4074 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4075 return -EFAULT;
4076
4077 ca_ops = icsk->icsk_ca_ops;
4078 if (ca_ops && ca_ops->get_info)
4079 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4080
4081 len = min_t(unsigned int, len, sz);
4082 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4083 return -EFAULT;
4084 if (copy_to_sockptr(optval, &info, len))
4085 return -EFAULT;
4086 return 0;
4087 }
4088 case TCP_QUICKACK:
4089 val = !inet_csk_in_pingpong_mode(sk);
4090 break;
4091
4092 case TCP_CONGESTION:
4093 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4094 return -EFAULT;
4095 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4096 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4097 return -EFAULT;
4098 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4099 return -EFAULT;
4100 return 0;
4101
4102 case TCP_ULP:
4103 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4104 return -EFAULT;
4105 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4106 if (!icsk->icsk_ulp_ops) {
4107 len = 0;
4108 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4109 return -EFAULT;
4110 return 0;
4111 }
4112 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4113 return -EFAULT;
4114 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4115 return -EFAULT;
4116 return 0;
4117
4118 case TCP_FASTOPEN_KEY: {
4119 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4120 unsigned int key_len;
4121
4122 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4123 return -EFAULT;
4124
4125 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4126 TCP_FASTOPEN_KEY_LENGTH;
4127 len = min_t(unsigned int, len, key_len);
4128 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4129 return -EFAULT;
4130 if (copy_to_sockptr(optval, key, len))
4131 return -EFAULT;
4132 return 0;
4133 }
4134 case TCP_THIN_LINEAR_TIMEOUTS:
4135 val = tp->thin_lto;
4136 break;
4137
4138 case TCP_THIN_DUPACK:
4139 val = 0;
4140 break;
4141
4142 case TCP_REPAIR:
4143 val = tp->repair;
4144 break;
4145
4146 case TCP_REPAIR_QUEUE:
4147 if (tp->repair)
4148 val = tp->repair_queue;
4149 else
4150 return -EINVAL;
4151 break;
4152
4153 case TCP_REPAIR_WINDOW: {
4154 struct tcp_repair_window opt;
4155
4156 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157 return -EFAULT;
4158
4159 if (len != sizeof(opt))
4160 return -EINVAL;
4161
4162 if (!tp->repair)
4163 return -EPERM;
4164
4165 opt.snd_wl1 = tp->snd_wl1;
4166 opt.snd_wnd = tp->snd_wnd;
4167 opt.max_window = tp->max_window;
4168 opt.rcv_wnd = tp->rcv_wnd;
4169 opt.rcv_wup = tp->rcv_wup;
4170
4171 if (copy_to_sockptr(optval, &opt, len))
4172 return -EFAULT;
4173 return 0;
4174 }
4175 case TCP_QUEUE_SEQ:
4176 if (tp->repair_queue == TCP_SEND_QUEUE)
4177 val = tp->write_seq;
4178 else if (tp->repair_queue == TCP_RECV_QUEUE)
4179 val = tp->rcv_nxt;
4180 else
4181 return -EINVAL;
4182 break;
4183
4184 case TCP_USER_TIMEOUT:
4185 val = READ_ONCE(icsk->icsk_user_timeout);
4186 break;
4187
4188 case TCP_FASTOPEN:
4189 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4190 break;
4191
4192 case TCP_FASTOPEN_CONNECT:
4193 val = tp->fastopen_connect;
4194 break;
4195
4196 case TCP_FASTOPEN_NO_COOKIE:
4197 val = tp->fastopen_no_cookie;
4198 break;
4199
4200 case TCP_TX_DELAY:
4201 val = READ_ONCE(tp->tcp_tx_delay);
4202 break;
4203
4204 case TCP_TIMESTAMP:
4205 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4206 break;
4207 case TCP_NOTSENT_LOWAT:
4208 val = READ_ONCE(tp->notsent_lowat);
4209 break;
4210 case TCP_INQ:
4211 val = tp->recvmsg_inq;
4212 break;
4213 case TCP_SAVE_SYN:
4214 val = tp->save_syn;
4215 break;
4216 case TCP_SAVED_SYN: {
4217 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4218 return -EFAULT;
4219
4220 sockopt_lock_sock(sk);
4221 if (tp->saved_syn) {
4222 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4223 len = tcp_saved_syn_len(tp->saved_syn);
4224 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4225 sockopt_release_sock(sk);
4226 return -EFAULT;
4227 }
4228 sockopt_release_sock(sk);
4229 return -EINVAL;
4230 }
4231 len = tcp_saved_syn_len(tp->saved_syn);
4232 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4233 sockopt_release_sock(sk);
4234 return -EFAULT;
4235 }
4236 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4237 sockopt_release_sock(sk);
4238 return -EFAULT;
4239 }
4240 tcp_saved_syn_free(tp);
4241 sockopt_release_sock(sk);
4242 } else {
4243 sockopt_release_sock(sk);
4244 len = 0;
4245 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4246 return -EFAULT;
4247 }
4248 return 0;
4249 }
4250 #ifdef CONFIG_MMU
4251 case TCP_ZEROCOPY_RECEIVE: {
4252 struct scm_timestamping_internal tss;
4253 struct tcp_zerocopy_receive zc = {};
4254 int err;
4255
4256 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4257 return -EFAULT;
4258 if (len < 0 ||
4259 len < offsetofend(struct tcp_zerocopy_receive, length))
4260 return -EINVAL;
4261 if (unlikely(len > sizeof(zc))) {
4262 err = check_zeroed_sockptr(optval, sizeof(zc),
4263 len - sizeof(zc));
4264 if (err < 1)
4265 return err == 0 ? -EINVAL : err;
4266 len = sizeof(zc);
4267 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4268 return -EFAULT;
4269 }
4270 if (copy_from_sockptr(&zc, optval, len))
4271 return -EFAULT;
4272 if (zc.reserved)
4273 return -EINVAL;
4274 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4275 return -EINVAL;
4276 sockopt_lock_sock(sk);
4277 err = tcp_zerocopy_receive(sk, &zc, &tss);
4278 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4279 &zc, &len, err);
4280 sockopt_release_sock(sk);
4281 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4282 goto zerocopy_rcv_cmsg;
4283 switch (len) {
4284 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4285 goto zerocopy_rcv_cmsg;
4286 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4287 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4288 case offsetofend(struct tcp_zerocopy_receive, flags):
4289 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4290 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4291 case offsetofend(struct tcp_zerocopy_receive, err):
4292 goto zerocopy_rcv_sk_err;
4293 case offsetofend(struct tcp_zerocopy_receive, inq):
4294 goto zerocopy_rcv_inq;
4295 case offsetofend(struct tcp_zerocopy_receive, length):
4296 default:
4297 goto zerocopy_rcv_out;
4298 }
4299 zerocopy_rcv_cmsg:
4300 if (zc.msg_flags & TCP_CMSG_TS)
4301 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4302 else
4303 zc.msg_flags = 0;
4304 zerocopy_rcv_sk_err:
4305 if (!err)
4306 zc.err = sock_error(sk);
4307 zerocopy_rcv_inq:
4308 zc.inq = tcp_inq_hint(sk);
4309 zerocopy_rcv_out:
4310 if (!err && copy_to_sockptr(optval, &zc, len))
4311 err = -EFAULT;
4312 return err;
4313 }
4314 #endif
4315 default:
4316 return -ENOPROTOOPT;
4317 }
4318
4319 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4320 return -EFAULT;
4321 if (copy_to_sockptr(optval, &val, len))
4322 return -EFAULT;
4323 return 0;
4324 }
4325
tcp_bpf_bypass_getsockopt(int level,int optname)4326 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4327 {
4328 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4329 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4330 */
4331 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4332 return true;
4333
4334 return false;
4335 }
4336 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4337
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4338 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4339 int __user *optlen)
4340 {
4341 struct inet_connection_sock *icsk = inet_csk(sk);
4342
4343 if (level != SOL_TCP)
4344 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4345 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4346 optval, optlen);
4347 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4348 USER_SOCKPTR(optlen));
4349 }
4350 EXPORT_SYMBOL(tcp_getsockopt);
4351
4352 #ifdef CONFIG_TCP_MD5SIG
4353 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4354 static DEFINE_MUTEX(tcp_md5sig_mutex);
4355 static bool tcp_md5sig_pool_populated = false;
4356
__tcp_alloc_md5sig_pool(void)4357 static void __tcp_alloc_md5sig_pool(void)
4358 {
4359 struct crypto_ahash *hash;
4360 int cpu;
4361
4362 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4363 if (IS_ERR(hash))
4364 return;
4365
4366 for_each_possible_cpu(cpu) {
4367 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4368 struct ahash_request *req;
4369
4370 if (!scratch) {
4371 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4372 sizeof(struct tcphdr),
4373 GFP_KERNEL,
4374 cpu_to_node(cpu));
4375 if (!scratch)
4376 return;
4377 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4378 }
4379 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4380 continue;
4381
4382 req = ahash_request_alloc(hash, GFP_KERNEL);
4383 if (!req)
4384 return;
4385
4386 ahash_request_set_callback(req, 0, NULL, NULL);
4387
4388 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4389 }
4390 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4391 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4392 */
4393 smp_wmb();
4394 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4395 * and tcp_get_md5sig_pool().
4396 */
4397 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4398 }
4399
tcp_alloc_md5sig_pool(void)4400 bool tcp_alloc_md5sig_pool(void)
4401 {
4402 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4403 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4404 mutex_lock(&tcp_md5sig_mutex);
4405
4406 if (!tcp_md5sig_pool_populated)
4407 __tcp_alloc_md5sig_pool();
4408
4409 mutex_unlock(&tcp_md5sig_mutex);
4410 }
4411 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4412 return READ_ONCE(tcp_md5sig_pool_populated);
4413 }
4414 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4415
4416
4417 /**
4418 * tcp_get_md5sig_pool - get md5sig_pool for this user
4419 *
4420 * We use percpu structure, so if we succeed, we exit with preemption
4421 * and BH disabled, to make sure another thread or softirq handling
4422 * wont try to get same context.
4423 */
tcp_get_md5sig_pool(void)4424 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4425 {
4426 local_bh_disable();
4427
4428 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4429 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4430 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4431 smp_rmb();
4432 return this_cpu_ptr(&tcp_md5sig_pool);
4433 }
4434 local_bh_enable();
4435 return NULL;
4436 }
4437 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4438
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4439 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4440 const struct sk_buff *skb, unsigned int header_len)
4441 {
4442 struct scatterlist sg;
4443 const struct tcphdr *tp = tcp_hdr(skb);
4444 struct ahash_request *req = hp->md5_req;
4445 unsigned int i;
4446 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4447 skb_headlen(skb) - header_len : 0;
4448 const struct skb_shared_info *shi = skb_shinfo(skb);
4449 struct sk_buff *frag_iter;
4450
4451 sg_init_table(&sg, 1);
4452
4453 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4454 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4455 if (crypto_ahash_update(req))
4456 return 1;
4457
4458 for (i = 0; i < shi->nr_frags; ++i) {
4459 const skb_frag_t *f = &shi->frags[i];
4460 unsigned int offset = skb_frag_off(f);
4461 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4462
4463 sg_set_page(&sg, page, skb_frag_size(f),
4464 offset_in_page(offset));
4465 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4466 if (crypto_ahash_update(req))
4467 return 1;
4468 }
4469
4470 skb_walk_frags(skb, frag_iter)
4471 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4472 return 1;
4473
4474 return 0;
4475 }
4476 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4477
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4478 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4479 {
4480 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4481 struct scatterlist sg;
4482
4483 sg_init_one(&sg, key->key, keylen);
4484 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4485
4486 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4487 return data_race(crypto_ahash_update(hp->md5_req));
4488 }
4489 EXPORT_SYMBOL(tcp_md5_hash_key);
4490
4491 /* Called with rcu_read_lock() */
4492 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4493 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4494 const void *saddr, const void *daddr,
4495 int family, int dif, int sdif)
4496 {
4497 /*
4498 * This gets called for each TCP segment that arrives
4499 * so we want to be efficient.
4500 * We have 3 drop cases:
4501 * o No MD5 hash and one expected.
4502 * o MD5 hash and we're not expecting one.
4503 * o MD5 hash and its wrong.
4504 */
4505 const __u8 *hash_location = NULL;
4506 struct tcp_md5sig_key *hash_expected;
4507 const struct tcphdr *th = tcp_hdr(skb);
4508 const struct tcp_sock *tp = tcp_sk(sk);
4509 int genhash, l3index;
4510 u8 newhash[16];
4511
4512 /* sdif set, means packet ingressed via a device
4513 * in an L3 domain and dif is set to the l3mdev
4514 */
4515 l3index = sdif ? dif : 0;
4516
4517 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4518 hash_location = tcp_parse_md5sig_option(th);
4519
4520 /* We've parsed the options - do we have a hash? */
4521 if (!hash_expected && !hash_location)
4522 return SKB_NOT_DROPPED_YET;
4523
4524 if (hash_expected && !hash_location) {
4525 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4526 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4527 }
4528
4529 if (!hash_expected && hash_location) {
4530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4531 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4532 }
4533
4534 /* Check the signature.
4535 * To support dual stack listeners, we need to handle
4536 * IPv4-mapped case.
4537 */
4538 if (family == AF_INET)
4539 genhash = tcp_v4_md5_hash_skb(newhash,
4540 hash_expected,
4541 NULL, skb);
4542 else
4543 genhash = tp->af_specific->calc_md5_hash(newhash,
4544 hash_expected,
4545 NULL, skb);
4546
4547 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4548 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4549 if (family == AF_INET) {
4550 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4551 saddr, ntohs(th->source),
4552 daddr, ntohs(th->dest),
4553 genhash ? " tcp_v4_calc_md5_hash failed"
4554 : "", l3index);
4555 } else {
4556 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4557 genhash ? "failed" : "mismatch",
4558 saddr, ntohs(th->source),
4559 daddr, ntohs(th->dest), l3index);
4560 }
4561 return SKB_DROP_REASON_TCP_MD5FAILURE;
4562 }
4563 return SKB_NOT_DROPPED_YET;
4564 }
4565 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4566
4567 #endif
4568
tcp_done(struct sock * sk)4569 void tcp_done(struct sock *sk)
4570 {
4571 struct request_sock *req;
4572
4573 /* We might be called with a new socket, after
4574 * inet_csk_prepare_forced_close() has been called
4575 * so we can not use lockdep_sock_is_held(sk)
4576 */
4577 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4578
4579 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4580 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4581
4582 tcp_set_state(sk, TCP_CLOSE);
4583 tcp_clear_xmit_timers(sk);
4584 if (req)
4585 reqsk_fastopen_remove(sk, req, false);
4586
4587 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4588
4589 if (!sock_flag(sk, SOCK_DEAD))
4590 sk->sk_state_change(sk);
4591 else
4592 inet_csk_destroy_sock(sk);
4593 }
4594 EXPORT_SYMBOL_GPL(tcp_done);
4595
tcp_abort(struct sock * sk,int err)4596 int tcp_abort(struct sock *sk, int err)
4597 {
4598 int state = inet_sk_state_load(sk);
4599
4600 if (state == TCP_NEW_SYN_RECV) {
4601 struct request_sock *req = inet_reqsk(sk);
4602
4603 local_bh_disable();
4604 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4605 local_bh_enable();
4606 return 0;
4607 }
4608 if (state == TCP_TIME_WAIT) {
4609 struct inet_timewait_sock *tw = inet_twsk(sk);
4610
4611 refcount_inc(&tw->tw_refcnt);
4612 local_bh_disable();
4613 inet_twsk_deschedule_put(tw);
4614 local_bh_enable();
4615 return 0;
4616 }
4617
4618 /* BPF context ensures sock locking. */
4619 if (!has_current_bpf_ctx())
4620 /* Don't race with userspace socket closes such as tcp_close. */
4621 lock_sock(sk);
4622
4623 if (sk->sk_state == TCP_LISTEN) {
4624 tcp_set_state(sk, TCP_CLOSE);
4625 inet_csk_listen_stop(sk);
4626 }
4627
4628 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4629 local_bh_disable();
4630 bh_lock_sock(sk);
4631
4632 if (!sock_flag(sk, SOCK_DEAD)) {
4633 WRITE_ONCE(sk->sk_err, err);
4634 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4635 smp_wmb();
4636 sk_error_report(sk);
4637 if (tcp_need_reset(sk->sk_state))
4638 tcp_send_active_reset(sk, GFP_ATOMIC);
4639 tcp_done(sk);
4640 }
4641
4642 bh_unlock_sock(sk);
4643 local_bh_enable();
4644 tcp_write_queue_purge(sk);
4645 if (!has_current_bpf_ctx())
4646 release_sock(sk);
4647 return 0;
4648 }
4649 EXPORT_SYMBOL_GPL(tcp_abort);
4650
4651 extern struct tcp_congestion_ops tcp_reno;
4652
4653 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4654 static int __init set_thash_entries(char *str)
4655 {
4656 ssize_t ret;
4657
4658 if (!str)
4659 return 0;
4660
4661 ret = kstrtoul(str, 0, &thash_entries);
4662 if (ret)
4663 return 0;
4664
4665 return 1;
4666 }
4667 __setup("thash_entries=", set_thash_entries);
4668
tcp_init_mem(void)4669 static void __init tcp_init_mem(void)
4670 {
4671 unsigned long limit = nr_free_buffer_pages() / 16;
4672
4673 limit = max(limit, 128UL);
4674 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4675 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4676 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4677 }
4678
tcp_init(void)4679 void __init tcp_init(void)
4680 {
4681 int max_rshare, max_wshare, cnt;
4682 unsigned long limit;
4683 unsigned int i;
4684
4685 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4686 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4687 sizeof_field(struct sk_buff, cb));
4688
4689 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4690
4691 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4692 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4693
4694 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4695 thash_entries, 21, /* one slot per 2 MB*/
4696 0, 64 * 1024);
4697 tcp_hashinfo.bind_bucket_cachep =
4698 kmem_cache_create("tcp_bind_bucket",
4699 sizeof(struct inet_bind_bucket), 0,
4700 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4701 SLAB_ACCOUNT,
4702 NULL);
4703 tcp_hashinfo.bind2_bucket_cachep =
4704 kmem_cache_create("tcp_bind2_bucket",
4705 sizeof(struct inet_bind2_bucket), 0,
4706 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4707 SLAB_ACCOUNT,
4708 NULL);
4709
4710 /* Size and allocate the main established and bind bucket
4711 * hash tables.
4712 *
4713 * The methodology is similar to that of the buffer cache.
4714 */
4715 tcp_hashinfo.ehash =
4716 alloc_large_system_hash("TCP established",
4717 sizeof(struct inet_ehash_bucket),
4718 thash_entries,
4719 17, /* one slot per 128 KB of memory */
4720 0,
4721 NULL,
4722 &tcp_hashinfo.ehash_mask,
4723 0,
4724 thash_entries ? 0 : 512 * 1024);
4725 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4726 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4727
4728 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4729 panic("TCP: failed to alloc ehash_locks");
4730 tcp_hashinfo.bhash =
4731 alloc_large_system_hash("TCP bind",
4732 2 * sizeof(struct inet_bind_hashbucket),
4733 tcp_hashinfo.ehash_mask + 1,
4734 17, /* one slot per 128 KB of memory */
4735 0,
4736 &tcp_hashinfo.bhash_size,
4737 NULL,
4738 0,
4739 64 * 1024);
4740 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4741 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4742 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4743 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4744 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4745 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4746 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4747 }
4748
4749 tcp_hashinfo.pernet = false;
4750
4751 cnt = tcp_hashinfo.ehash_mask + 1;
4752 sysctl_tcp_max_orphans = cnt / 2;
4753
4754 tcp_init_mem();
4755 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4756 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4757 max_wshare = min(4UL*1024*1024, limit);
4758 max_rshare = min(6UL*1024*1024, limit);
4759
4760 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4761 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4762 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4763
4764 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4765 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4766 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4767
4768 pr_info("Hash tables configured (established %u bind %u)\n",
4769 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4770
4771 tcp_v4_init();
4772 tcp_metrics_init();
4773 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4774 tcp_tasklet_init();
4775 mptcp_init();
4776 }
4777