1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "arm_ldst.h"
25 #include "semihosting/semihost.h"
26 #include "cpregs.h"
27
28 static TCGv_i64 cpu_X[32];
29 static TCGv_i64 cpu_pc;
30
31 /* Load/store exclusive handling */
32 static TCGv_i64 cpu_exclusive_high;
33
34 static const char *regnames[] = {
35 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
36 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
37 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
38 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
39 };
40
41 enum a64_shift_type {
42 A64_SHIFT_TYPE_LSL = 0,
43 A64_SHIFT_TYPE_LSR = 1,
44 A64_SHIFT_TYPE_ASR = 2,
45 A64_SHIFT_TYPE_ROR = 3
46 };
47
48 /*
49 * Helpers for extracting complex instruction fields
50 */
51
52 /*
53 * For load/store with an unsigned 12 bit immediate scaled by the element
54 * size. The input has the immediate field in bits [14:3] and the element
55 * size in [2:0].
56 */
uimm_scaled(DisasContext * s,int x)57 static int uimm_scaled(DisasContext *s, int x)
58 {
59 unsigned imm = x >> 3;
60 unsigned scale = extract32(x, 0, 3);
61 return imm << scale;
62 }
63
64 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
scale_by_log2_tag_granule(DisasContext * s,int x)65 static int scale_by_log2_tag_granule(DisasContext *s, int x)
66 {
67 return x << LOG2_TAG_GRANULE;
68 }
69
70 /*
71 * Include the generated decoders.
72 */
73
74 #include "decode-sme-fa64.c.inc"
75 #include "decode-a64.c.inc"
76
77 /* initialize TCG globals. */
a64_translate_init(void)78 void a64_translate_init(void)
79 {
80 int i;
81
82 cpu_pc = tcg_global_mem_new_i64(tcg_env,
83 offsetof(CPUARMState, pc),
84 "pc");
85 for (i = 0; i < 32; i++) {
86 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
87 offsetof(CPUARMState, xregs[i]),
88 regnames[i]);
89 }
90
91 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
92 offsetof(CPUARMState, exclusive_high), "exclusive_high");
93 }
94
95 /*
96 * Return the core mmu_idx to use for A64 load/store insns which
97 * have a "unprivileged load/store" variant. Those insns access
98 * EL0 if executed from an EL which has control over EL0 (usually
99 * EL1) but behave like normal loads and stores if executed from
100 * elsewhere (eg EL3).
101 *
102 * @unpriv : true for the unprivileged encoding; false for the
103 * normal encoding (in which case we will return the same
104 * thing as get_mem_index().
105 */
get_a64_user_mem_index(DisasContext * s,bool unpriv)106 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
107 {
108 /*
109 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
110 * which is the usual mmu_idx for this cpu state.
111 */
112 ARMMMUIdx useridx = s->mmu_idx;
113
114 if (unpriv && s->unpriv) {
115 /*
116 * We have pre-computed the condition for AccType_UNPRIV.
117 * Therefore we should never get here with a mmu_idx for
118 * which we do not know the corresponding user mmu_idx.
119 */
120 switch (useridx) {
121 case ARMMMUIdx_E10_1:
122 case ARMMMUIdx_E10_1_PAN:
123 useridx = ARMMMUIdx_E10_0;
124 break;
125 case ARMMMUIdx_E20_2:
126 case ARMMMUIdx_E20_2_PAN:
127 useridx = ARMMMUIdx_E20_0;
128 break;
129 default:
130 g_assert_not_reached();
131 }
132 }
133 return arm_to_core_mmu_idx(useridx);
134 }
135
set_btype_raw(int val)136 static void set_btype_raw(int val)
137 {
138 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
139 offsetof(CPUARMState, btype));
140 }
141
set_btype(DisasContext * s,int val)142 static void set_btype(DisasContext *s, int val)
143 {
144 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
145 tcg_debug_assert(val >= 1 && val <= 3);
146 set_btype_raw(val);
147 s->btype = -1;
148 }
149
reset_btype(DisasContext * s)150 static void reset_btype(DisasContext *s)
151 {
152 if (s->btype != 0) {
153 set_btype_raw(0);
154 s->btype = 0;
155 }
156 }
157
gen_pc_plus_diff(DisasContext * s,TCGv_i64 dest,target_long diff)158 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
159 {
160 assert(s->pc_save != -1);
161 if (tb_cflags(s->base.tb) & CF_PCREL) {
162 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
163 } else {
164 tcg_gen_movi_i64(dest, s->pc_curr + diff);
165 }
166 }
167
gen_a64_update_pc(DisasContext * s,target_long diff)168 void gen_a64_update_pc(DisasContext *s, target_long diff)
169 {
170 gen_pc_plus_diff(s, cpu_pc, diff);
171 s->pc_save = s->pc_curr + diff;
172 }
173
174 /*
175 * Handle Top Byte Ignore (TBI) bits.
176 *
177 * If address tagging is enabled via the TCR TBI bits:
178 * + for EL2 and EL3 there is only one TBI bit, and if it is set
179 * then the address is zero-extended, clearing bits [63:56]
180 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
181 * and TBI1 controls addresses with bit 55 == 1.
182 * If the appropriate TBI bit is set for the address then
183 * the address is sign-extended from bit 55 into bits [63:56]
184 *
185 * Here We have concatenated TBI{1,0} into tbi.
186 */
gen_top_byte_ignore(DisasContext * s,TCGv_i64 dst,TCGv_i64 src,int tbi)187 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
188 TCGv_i64 src, int tbi)
189 {
190 if (tbi == 0) {
191 /* Load unmodified address */
192 tcg_gen_mov_i64(dst, src);
193 } else if (!regime_has_2_ranges(s->mmu_idx)) {
194 /* Force tag byte to all zero */
195 tcg_gen_extract_i64(dst, src, 0, 56);
196 } else {
197 /* Sign-extend from bit 55. */
198 tcg_gen_sextract_i64(dst, src, 0, 56);
199
200 switch (tbi) {
201 case 1:
202 /* tbi0 but !tbi1: only use the extension if positive */
203 tcg_gen_and_i64(dst, dst, src);
204 break;
205 case 2:
206 /* !tbi0 but tbi1: only use the extension if negative */
207 tcg_gen_or_i64(dst, dst, src);
208 break;
209 case 3:
210 /* tbi0 and tbi1: always use the extension */
211 break;
212 default:
213 g_assert_not_reached();
214 }
215 }
216 }
217
gen_a64_set_pc(DisasContext * s,TCGv_i64 src)218 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
219 {
220 /*
221 * If address tagging is enabled for instructions via the TCR TBI bits,
222 * then loading an address into the PC will clear out any tag.
223 */
224 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
225 s->pc_save = -1;
226 }
227
228 /*
229 * Handle MTE and/or TBI.
230 *
231 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
232 * for the tag to be present in the FAR_ELx register. But for user-only
233 * mode we do not have a TLB with which to implement this, so we must
234 * remove the top byte now.
235 *
236 * Always return a fresh temporary that we can increment independently
237 * of the write-back address.
238 */
239
clean_data_tbi(DisasContext * s,TCGv_i64 addr)240 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
241 {
242 TCGv_i64 clean = tcg_temp_new_i64();
243 #ifdef CONFIG_USER_ONLY
244 gen_top_byte_ignore(s, clean, addr, s->tbid);
245 #else
246 tcg_gen_mov_i64(clean, addr);
247 #endif
248 return clean;
249 }
250
251 /* Insert a zero tag into src, with the result at dst. */
gen_address_with_allocation_tag0(TCGv_i64 dst,TCGv_i64 src)252 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
253 {
254 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
255 }
256
gen_probe_access(DisasContext * s,TCGv_i64 ptr,MMUAccessType acc,int log2_size)257 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
258 MMUAccessType acc, int log2_size)
259 {
260 gen_helper_probe_access(tcg_env, ptr,
261 tcg_constant_i32(acc),
262 tcg_constant_i32(get_mem_index(s)),
263 tcg_constant_i32(1 << log2_size));
264 }
265
266 /*
267 * For MTE, check a single logical or atomic access. This probes a single
268 * address, the exact one specified. The size and alignment of the access
269 * is not relevant to MTE, per se, but watchpoints do require the size,
270 * and we want to recognize those before making any other changes to state.
271 */
gen_mte_check1_mmuidx(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,MemOp memop,bool is_unpriv,int core_idx)272 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
273 bool is_write, bool tag_checked,
274 MemOp memop, bool is_unpriv,
275 int core_idx)
276 {
277 if (tag_checked && s->mte_active[is_unpriv]) {
278 TCGv_i64 ret;
279 int desc = 0;
280
281 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
282 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
283 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
284 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
285 desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(memop));
286 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
287
288 ret = tcg_temp_new_i64();
289 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
290
291 return ret;
292 }
293 return clean_data_tbi(s, addr);
294 }
295
gen_mte_check1(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,MemOp memop)296 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
297 bool tag_checked, MemOp memop)
298 {
299 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
300 false, get_mem_index(s));
301 }
302
303 /*
304 * For MTE, check multiple logical sequential accesses.
305 */
gen_mte_checkN(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,int total_size,MemOp single_mop)306 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
307 bool tag_checked, int total_size, MemOp single_mop)
308 {
309 if (tag_checked && s->mte_active[0]) {
310 TCGv_i64 ret;
311 int desc = 0;
312
313 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
314 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
315 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
316 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
317 desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(single_mop));
318 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
319
320 ret = tcg_temp_new_i64();
321 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
322
323 return ret;
324 }
325 return clean_data_tbi(s, addr);
326 }
327
328 /*
329 * Generate the special alignment check that applies to AccType_ATOMIC
330 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
331 * naturally aligned, but it must not cross a 16-byte boundary.
332 * See AArch64.CheckAlignment().
333 */
check_lse2_align(DisasContext * s,int rn,int imm,bool is_write,MemOp mop)334 static void check_lse2_align(DisasContext *s, int rn, int imm,
335 bool is_write, MemOp mop)
336 {
337 TCGv_i32 tmp;
338 TCGv_i64 addr;
339 TCGLabel *over_label;
340 MMUAccessType type;
341 int mmu_idx;
342
343 tmp = tcg_temp_new_i32();
344 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
345 tcg_gen_addi_i32(tmp, tmp, imm & 15);
346 tcg_gen_andi_i32(tmp, tmp, 15);
347 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
348
349 over_label = gen_new_label();
350 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
351
352 addr = tcg_temp_new_i64();
353 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
354
355 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
356 mmu_idx = get_mem_index(s);
357 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
358 tcg_constant_i32(mmu_idx));
359
360 gen_set_label(over_label);
361
362 }
363
364 /* Handle the alignment check for AccType_ATOMIC instructions. */
check_atomic_align(DisasContext * s,int rn,MemOp mop)365 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
366 {
367 MemOp size = mop & MO_SIZE;
368
369 if (size == MO_8) {
370 return mop;
371 }
372
373 /*
374 * If size == MO_128, this is a LDXP, and the operation is single-copy
375 * atomic for each doubleword, not the entire quadword; it still must
376 * be quadword aligned.
377 */
378 if (size == MO_128) {
379 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
380 MO_ATOM_IFALIGN_PAIR);
381 }
382 if (dc_isar_feature(aa64_lse2, s)) {
383 check_lse2_align(s, rn, 0, true, mop);
384 } else {
385 mop |= MO_ALIGN;
386 }
387 return finalize_memop(s, mop);
388 }
389
390 /* Handle the alignment check for AccType_ORDERED instructions. */
check_ordered_align(DisasContext * s,int rn,int imm,bool is_write,MemOp mop)391 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
392 bool is_write, MemOp mop)
393 {
394 MemOp size = mop & MO_SIZE;
395
396 if (size == MO_8) {
397 return mop;
398 }
399 if (size == MO_128) {
400 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
401 MO_ATOM_IFALIGN_PAIR);
402 }
403 if (!dc_isar_feature(aa64_lse2, s)) {
404 mop |= MO_ALIGN;
405 } else if (!s->naa) {
406 check_lse2_align(s, rn, imm, is_write, mop);
407 }
408 return finalize_memop(s, mop);
409 }
410
411 typedef struct DisasCompare64 {
412 TCGCond cond;
413 TCGv_i64 value;
414 } DisasCompare64;
415
a64_test_cc(DisasCompare64 * c64,int cc)416 static void a64_test_cc(DisasCompare64 *c64, int cc)
417 {
418 DisasCompare c32;
419
420 arm_test_cc(&c32, cc);
421
422 /*
423 * Sign-extend the 32-bit value so that the GE/LT comparisons work
424 * properly. The NE/EQ comparisons are also fine with this choice.
425 */
426 c64->cond = c32.cond;
427 c64->value = tcg_temp_new_i64();
428 tcg_gen_ext_i32_i64(c64->value, c32.value);
429 }
430
gen_rebuild_hflags(DisasContext * s)431 static void gen_rebuild_hflags(DisasContext *s)
432 {
433 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
434 }
435
gen_exception_internal_insn(DisasContext * s,int excp)436 static void gen_exception_internal_insn(DisasContext *s, int excp)
437 {
438 gen_a64_update_pc(s, 0);
439 gen_exception_internal(excp);
440 s->base.is_jmp = DISAS_NORETURN;
441 }
442
gen_exception_bkpt_insn(DisasContext * s,uint32_t syndrome)443 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
444 {
445 gen_a64_update_pc(s, 0);
446 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
447 s->base.is_jmp = DISAS_NORETURN;
448 }
449
gen_step_complete_exception(DisasContext * s)450 static void gen_step_complete_exception(DisasContext *s)
451 {
452 /* We just completed step of an insn. Move from Active-not-pending
453 * to Active-pending, and then also take the swstep exception.
454 * This corresponds to making the (IMPDEF) choice to prioritize
455 * swstep exceptions over asynchronous exceptions taken to an exception
456 * level where debug is disabled. This choice has the advantage that
457 * we do not need to maintain internal state corresponding to the
458 * ISV/EX syndrome bits between completion of the step and generation
459 * of the exception, and our syndrome information is always correct.
460 */
461 gen_ss_advance(s);
462 gen_swstep_exception(s, 1, s->is_ldex);
463 s->base.is_jmp = DISAS_NORETURN;
464 }
465
use_goto_tb(DisasContext * s,uint64_t dest)466 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
467 {
468 if (s->ss_active) {
469 return false;
470 }
471 return translator_use_goto_tb(&s->base, dest);
472 }
473
gen_goto_tb(DisasContext * s,int n,int64_t diff)474 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
475 {
476 if (use_goto_tb(s, s->pc_curr + diff)) {
477 /*
478 * For pcrel, the pc must always be up-to-date on entry to
479 * the linked TB, so that it can use simple additions for all
480 * further adjustments. For !pcrel, the linked TB is compiled
481 * to know its full virtual address, so we can delay the
482 * update to pc to the unlinked path. A long chain of links
483 * can thus avoid many updates to the PC.
484 */
485 if (tb_cflags(s->base.tb) & CF_PCREL) {
486 gen_a64_update_pc(s, diff);
487 tcg_gen_goto_tb(n);
488 } else {
489 tcg_gen_goto_tb(n);
490 gen_a64_update_pc(s, diff);
491 }
492 tcg_gen_exit_tb(s->base.tb, n);
493 s->base.is_jmp = DISAS_NORETURN;
494 } else {
495 gen_a64_update_pc(s, diff);
496 if (s->ss_active) {
497 gen_step_complete_exception(s);
498 } else {
499 tcg_gen_lookup_and_goto_ptr();
500 s->base.is_jmp = DISAS_NORETURN;
501 }
502 }
503 }
504
505 /*
506 * Register access functions
507 *
508 * These functions are used for directly accessing a register in where
509 * changes to the final register value are likely to be made. If you
510 * need to use a register for temporary calculation (e.g. index type
511 * operations) use the read_* form.
512 *
513 * B1.2.1 Register mappings
514 *
515 * In instruction register encoding 31 can refer to ZR (zero register) or
516 * the SP (stack pointer) depending on context. In QEMU's case we map SP
517 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
518 * This is the point of the _sp forms.
519 */
cpu_reg(DisasContext * s,int reg)520 TCGv_i64 cpu_reg(DisasContext *s, int reg)
521 {
522 if (reg == 31) {
523 TCGv_i64 t = tcg_temp_new_i64();
524 tcg_gen_movi_i64(t, 0);
525 return t;
526 } else {
527 return cpu_X[reg];
528 }
529 }
530
531 /* register access for when 31 == SP */
cpu_reg_sp(DisasContext * s,int reg)532 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
533 {
534 return cpu_X[reg];
535 }
536
537 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
538 * representing the register contents. This TCGv is an auto-freed
539 * temporary so it need not be explicitly freed, and may be modified.
540 */
read_cpu_reg(DisasContext * s,int reg,int sf)541 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
542 {
543 TCGv_i64 v = tcg_temp_new_i64();
544 if (reg != 31) {
545 if (sf) {
546 tcg_gen_mov_i64(v, cpu_X[reg]);
547 } else {
548 tcg_gen_ext32u_i64(v, cpu_X[reg]);
549 }
550 } else {
551 tcg_gen_movi_i64(v, 0);
552 }
553 return v;
554 }
555
read_cpu_reg_sp(DisasContext * s,int reg,int sf)556 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
557 {
558 TCGv_i64 v = tcg_temp_new_i64();
559 if (sf) {
560 tcg_gen_mov_i64(v, cpu_X[reg]);
561 } else {
562 tcg_gen_ext32u_i64(v, cpu_X[reg]);
563 }
564 return v;
565 }
566
567 /* Return the offset into CPUARMState of a slice (from
568 * the least significant end) of FP register Qn (ie
569 * Dn, Sn, Hn or Bn).
570 * (Note that this is not the same mapping as for A32; see cpu.h)
571 */
fp_reg_offset(DisasContext * s,int regno,MemOp size)572 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
573 {
574 return vec_reg_offset(s, regno, 0, size);
575 }
576
577 /* Offset of the high half of the 128 bit vector Qn */
fp_reg_hi_offset(DisasContext * s,int regno)578 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
579 {
580 return vec_reg_offset(s, regno, 1, MO_64);
581 }
582
583 /* Convenience accessors for reading and writing single and double
584 * FP registers. Writing clears the upper parts of the associated
585 * 128 bit vector register, as required by the architecture.
586 * Note that unlike the GP register accessors, the values returned
587 * by the read functions must be manually freed.
588 */
read_fp_dreg(DisasContext * s,int reg)589 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
590 {
591 TCGv_i64 v = tcg_temp_new_i64();
592
593 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
594 return v;
595 }
596
read_fp_sreg(DisasContext * s,int reg)597 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
598 {
599 TCGv_i32 v = tcg_temp_new_i32();
600
601 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
602 return v;
603 }
604
read_fp_hreg(DisasContext * s,int reg)605 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
606 {
607 TCGv_i32 v = tcg_temp_new_i32();
608
609 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
610 return v;
611 }
612
clear_vec(DisasContext * s,int rd)613 static void clear_vec(DisasContext *s, int rd)
614 {
615 unsigned ofs = fp_reg_offset(s, rd, MO_64);
616 unsigned vsz = vec_full_reg_size(s);
617
618 tcg_gen_gvec_dup_imm(MO_64, ofs, vsz, vsz, 0);
619 }
620
621 /*
622 * Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
623 * If SVE is not enabled, then there are only 128 bits in the vector.
624 */
clear_vec_high(DisasContext * s,bool is_q,int rd)625 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
626 {
627 unsigned ofs = fp_reg_offset(s, rd, MO_64);
628 unsigned vsz = vec_full_reg_size(s);
629
630 /* Nop move, with side effect of clearing the tail. */
631 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
632 }
633
write_fp_dreg(DisasContext * s,int reg,TCGv_i64 v)634 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
635 {
636 unsigned ofs = fp_reg_offset(s, reg, MO_64);
637
638 tcg_gen_st_i64(v, tcg_env, ofs);
639 clear_vec_high(s, false, reg);
640 }
641
write_fp_sreg(DisasContext * s,int reg,TCGv_i32 v)642 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
643 {
644 TCGv_i64 tmp = tcg_temp_new_i64();
645
646 tcg_gen_extu_i32_i64(tmp, v);
647 write_fp_dreg(s, reg, tmp);
648 }
649
650 /*
651 * Write a double result to 128 bit vector register reg, honouring FPCR.NEP:
652 * - if FPCR.NEP == 0, clear the high elements of reg
653 * - if FPCR.NEP == 1, set the high elements of reg from mergereg
654 * (i.e. merge the result with those high elements)
655 * In either case, SVE register bits above 128 are zeroed (per R_WKYLB).
656 */
write_fp_dreg_merging(DisasContext * s,int reg,int mergereg,TCGv_i64 v)657 static void write_fp_dreg_merging(DisasContext *s, int reg, int mergereg,
658 TCGv_i64 v)
659 {
660 if (!s->fpcr_nep) {
661 write_fp_dreg(s, reg, v);
662 return;
663 }
664
665 /*
666 * Move from mergereg to reg; this sets the high elements and
667 * clears the bits above 128 as a side effect.
668 */
669 tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
670 vec_full_reg_offset(s, mergereg),
671 16, vec_full_reg_size(s));
672 tcg_gen_st_i64(v, tcg_env, vec_full_reg_offset(s, reg));
673 }
674
675 /*
676 * Write a single-prec result, but only clear the higher elements
677 * of the destination register if FPCR.NEP is 0; otherwise preserve them.
678 */
write_fp_sreg_merging(DisasContext * s,int reg,int mergereg,TCGv_i32 v)679 static void write_fp_sreg_merging(DisasContext *s, int reg, int mergereg,
680 TCGv_i32 v)
681 {
682 if (!s->fpcr_nep) {
683 write_fp_sreg(s, reg, v);
684 return;
685 }
686
687 tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
688 vec_full_reg_offset(s, mergereg),
689 16, vec_full_reg_size(s));
690 tcg_gen_st_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
691 }
692
693 /*
694 * Write a half-prec result, but only clear the higher elements
695 * of the destination register if FPCR.NEP is 0; otherwise preserve them.
696 * The caller must ensure that the top 16 bits of v are zero.
697 */
write_fp_hreg_merging(DisasContext * s,int reg,int mergereg,TCGv_i32 v)698 static void write_fp_hreg_merging(DisasContext *s, int reg, int mergereg,
699 TCGv_i32 v)
700 {
701 if (!s->fpcr_nep) {
702 write_fp_sreg(s, reg, v);
703 return;
704 }
705
706 tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
707 vec_full_reg_offset(s, mergereg),
708 16, vec_full_reg_size(s));
709 tcg_gen_st16_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
710 }
711
712 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
gen_gvec_fn2(DisasContext * s,bool is_q,int rd,int rn,GVecGen2Fn * gvec_fn,int vece)713 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
714 GVecGen2Fn *gvec_fn, int vece)
715 {
716 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
717 is_q ? 16 : 8, vec_full_reg_size(s));
718 }
719
720 /* Expand a 2-operand + immediate AdvSIMD vector operation using
721 * an expander function.
722 */
gen_gvec_fn2i(DisasContext * s,bool is_q,int rd,int rn,int64_t imm,GVecGen2iFn * gvec_fn,int vece)723 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
724 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
725 {
726 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
727 imm, is_q ? 16 : 8, vec_full_reg_size(s));
728 }
729
730 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
gen_gvec_fn3(DisasContext * s,bool is_q,int rd,int rn,int rm,GVecGen3Fn * gvec_fn,int vece)731 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
732 GVecGen3Fn *gvec_fn, int vece)
733 {
734 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
735 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
736 }
737
738 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
gen_gvec_fn4(DisasContext * s,bool is_q,int rd,int rn,int rm,int rx,GVecGen4Fn * gvec_fn,int vece)739 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
740 int rx, GVecGen4Fn *gvec_fn, int vece)
741 {
742 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
743 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
744 is_q ? 16 : 8, vec_full_reg_size(s));
745 }
746
747 /* Expand a 2-operand operation using an out-of-line helper. */
gen_gvec_op2_ool(DisasContext * s,bool is_q,int rd,int rn,int data,gen_helper_gvec_2 * fn)748 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
749 int rn, int data, gen_helper_gvec_2 *fn)
750 {
751 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
752 vec_full_reg_offset(s, rn),
753 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
754 }
755
756 /* Expand a 3-operand operation using an out-of-line helper. */
gen_gvec_op3_ool(DisasContext * s,bool is_q,int rd,int rn,int rm,int data,gen_helper_gvec_3 * fn)757 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
758 int rn, int rm, int data, gen_helper_gvec_3 *fn)
759 {
760 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
761 vec_full_reg_offset(s, rn),
762 vec_full_reg_offset(s, rm),
763 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
764 }
765
766 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
767 * an out-of-line helper.
768 */
gen_gvec_op3_fpst(DisasContext * s,bool is_q,int rd,int rn,int rm,ARMFPStatusFlavour fpsttype,int data,gen_helper_gvec_3_ptr * fn)769 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
770 int rm, ARMFPStatusFlavour fpsttype, int data,
771 gen_helper_gvec_3_ptr *fn)
772 {
773 TCGv_ptr fpst = fpstatus_ptr(fpsttype);
774 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
775 vec_full_reg_offset(s, rn),
776 vec_full_reg_offset(s, rm), fpst,
777 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
778 }
779
780 /* Expand a 4-operand operation using an out-of-line helper. */
gen_gvec_op4_ool(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,int data,gen_helper_gvec_4 * fn)781 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
782 int rm, int ra, int data, gen_helper_gvec_4 *fn)
783 {
784 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
785 vec_full_reg_offset(s, rn),
786 vec_full_reg_offset(s, rm),
787 vec_full_reg_offset(s, ra),
788 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
789 }
790
791 /*
792 * Expand a 4-operand operation using an out-of-line helper that takes
793 * a pointer to the CPU env.
794 */
gen_gvec_op4_env(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,int data,gen_helper_gvec_4_ptr * fn)795 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn,
796 int rm, int ra, int data,
797 gen_helper_gvec_4_ptr *fn)
798 {
799 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
800 vec_full_reg_offset(s, rn),
801 vec_full_reg_offset(s, rm),
802 vec_full_reg_offset(s, ra),
803 tcg_env,
804 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
805 }
806
807 /*
808 * Expand a 4-operand + fpstatus pointer + simd data value operation using
809 * an out-of-line helper.
810 */
gen_gvec_op4_fpst(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,ARMFPStatusFlavour fpsttype,int data,gen_helper_gvec_4_ptr * fn)811 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
812 int rm, int ra, ARMFPStatusFlavour fpsttype,
813 int data,
814 gen_helper_gvec_4_ptr *fn)
815 {
816 TCGv_ptr fpst = fpstatus_ptr(fpsttype);
817 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
818 vec_full_reg_offset(s, rn),
819 vec_full_reg_offset(s, rm),
820 vec_full_reg_offset(s, ra), fpst,
821 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
822 }
823
824 /*
825 * When FPCR.AH == 1, NEG and ABS do not flip the sign bit of a NaN.
826 * These functions implement
827 * d = floatN_is_any_nan(s) ? s : floatN_chs(s)
828 * which for float32 is
829 * d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s ^ (1 << 31))
830 * and similarly for the other float sizes.
831 */
gen_vfp_ah_negh(TCGv_i32 d,TCGv_i32 s)832 static void gen_vfp_ah_negh(TCGv_i32 d, TCGv_i32 s)
833 {
834 TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
835
836 gen_vfp_negh(chs_s, s);
837 gen_vfp_absh(abs_s, s);
838 tcg_gen_movcond_i32(TCG_COND_GTU, d,
839 abs_s, tcg_constant_i32(0x7c00),
840 s, chs_s);
841 }
842
gen_vfp_ah_negs(TCGv_i32 d,TCGv_i32 s)843 static void gen_vfp_ah_negs(TCGv_i32 d, TCGv_i32 s)
844 {
845 TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
846
847 gen_vfp_negs(chs_s, s);
848 gen_vfp_abss(abs_s, s);
849 tcg_gen_movcond_i32(TCG_COND_GTU, d,
850 abs_s, tcg_constant_i32(0x7f800000UL),
851 s, chs_s);
852 }
853
gen_vfp_ah_negd(TCGv_i64 d,TCGv_i64 s)854 static void gen_vfp_ah_negd(TCGv_i64 d, TCGv_i64 s)
855 {
856 TCGv_i64 abs_s = tcg_temp_new_i64(), chs_s = tcg_temp_new_i64();
857
858 gen_vfp_negd(chs_s, s);
859 gen_vfp_absd(abs_s, s);
860 tcg_gen_movcond_i64(TCG_COND_GTU, d,
861 abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
862 s, chs_s);
863 }
864
865 /*
866 * These functions implement
867 * d = floatN_is_any_nan(s) ? s : floatN_abs(s)
868 * which for float32 is
869 * d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s & ~(1 << 31))
870 * and similarly for the other float sizes.
871 */
gen_vfp_ah_absh(TCGv_i32 d,TCGv_i32 s)872 static void gen_vfp_ah_absh(TCGv_i32 d, TCGv_i32 s)
873 {
874 TCGv_i32 abs_s = tcg_temp_new_i32();
875
876 gen_vfp_absh(abs_s, s);
877 tcg_gen_movcond_i32(TCG_COND_GTU, d,
878 abs_s, tcg_constant_i32(0x7c00),
879 s, abs_s);
880 }
881
gen_vfp_ah_abss(TCGv_i32 d,TCGv_i32 s)882 static void gen_vfp_ah_abss(TCGv_i32 d, TCGv_i32 s)
883 {
884 TCGv_i32 abs_s = tcg_temp_new_i32();
885
886 gen_vfp_abss(abs_s, s);
887 tcg_gen_movcond_i32(TCG_COND_GTU, d,
888 abs_s, tcg_constant_i32(0x7f800000UL),
889 s, abs_s);
890 }
891
gen_vfp_ah_absd(TCGv_i64 d,TCGv_i64 s)892 static void gen_vfp_ah_absd(TCGv_i64 d, TCGv_i64 s)
893 {
894 TCGv_i64 abs_s = tcg_temp_new_i64();
895
896 gen_vfp_absd(abs_s, s);
897 tcg_gen_movcond_i64(TCG_COND_GTU, d,
898 abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
899 s, abs_s);
900 }
901
gen_vfp_maybe_ah_negh(DisasContext * dc,TCGv_i32 d,TCGv_i32 s)902 static void gen_vfp_maybe_ah_negh(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
903 {
904 if (dc->fpcr_ah) {
905 gen_vfp_ah_negh(d, s);
906 } else {
907 gen_vfp_negh(d, s);
908 }
909 }
910
gen_vfp_maybe_ah_negs(DisasContext * dc,TCGv_i32 d,TCGv_i32 s)911 static void gen_vfp_maybe_ah_negs(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
912 {
913 if (dc->fpcr_ah) {
914 gen_vfp_ah_negs(d, s);
915 } else {
916 gen_vfp_negs(d, s);
917 }
918 }
919
gen_vfp_maybe_ah_negd(DisasContext * dc,TCGv_i64 d,TCGv_i64 s)920 static void gen_vfp_maybe_ah_negd(DisasContext *dc, TCGv_i64 d, TCGv_i64 s)
921 {
922 if (dc->fpcr_ah) {
923 gen_vfp_ah_negd(d, s);
924 } else {
925 gen_vfp_negd(d, s);
926 }
927 }
928
929 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
930 * than the 32 bit equivalent.
931 */
gen_set_NZ64(TCGv_i64 result)932 static inline void gen_set_NZ64(TCGv_i64 result)
933 {
934 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
935 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
936 }
937
938 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
gen_logic_CC(int sf,TCGv_i64 result)939 static inline void gen_logic_CC(int sf, TCGv_i64 result)
940 {
941 if (sf) {
942 gen_set_NZ64(result);
943 } else {
944 tcg_gen_extrl_i64_i32(cpu_ZF, result);
945 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
946 }
947 tcg_gen_movi_i32(cpu_CF, 0);
948 tcg_gen_movi_i32(cpu_VF, 0);
949 }
950
951 /* dest = T0 + T1; compute C, N, V and Z flags */
gen_add64_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)952 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
953 {
954 TCGv_i64 result, flag, tmp;
955 result = tcg_temp_new_i64();
956 flag = tcg_temp_new_i64();
957 tmp = tcg_temp_new_i64();
958
959 tcg_gen_movi_i64(tmp, 0);
960 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
961
962 tcg_gen_extrl_i64_i32(cpu_CF, flag);
963
964 gen_set_NZ64(result);
965
966 tcg_gen_xor_i64(flag, result, t0);
967 tcg_gen_xor_i64(tmp, t0, t1);
968 tcg_gen_andc_i64(flag, flag, tmp);
969 tcg_gen_extrh_i64_i32(cpu_VF, flag);
970
971 tcg_gen_mov_i64(dest, result);
972 }
973
gen_add32_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)974 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
975 {
976 TCGv_i32 t0_32 = tcg_temp_new_i32();
977 TCGv_i32 t1_32 = tcg_temp_new_i32();
978 TCGv_i32 tmp = tcg_temp_new_i32();
979
980 tcg_gen_movi_i32(tmp, 0);
981 tcg_gen_extrl_i64_i32(t0_32, t0);
982 tcg_gen_extrl_i64_i32(t1_32, t1);
983 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
984 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
985 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
986 tcg_gen_xor_i32(tmp, t0_32, t1_32);
987 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
988 tcg_gen_extu_i32_i64(dest, cpu_NF);
989 }
990
gen_add_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)991 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
992 {
993 if (sf) {
994 gen_add64_CC(dest, t0, t1);
995 } else {
996 gen_add32_CC(dest, t0, t1);
997 }
998 }
999
1000 /* dest = T0 - T1; compute C, N, V and Z flags */
gen_sub64_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)1001 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1002 {
1003 /* 64 bit arithmetic */
1004 TCGv_i64 result, flag, tmp;
1005
1006 result = tcg_temp_new_i64();
1007 flag = tcg_temp_new_i64();
1008 tcg_gen_sub_i64(result, t0, t1);
1009
1010 gen_set_NZ64(result);
1011
1012 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
1013 tcg_gen_extrl_i64_i32(cpu_CF, flag);
1014
1015 tcg_gen_xor_i64(flag, result, t0);
1016 tmp = tcg_temp_new_i64();
1017 tcg_gen_xor_i64(tmp, t0, t1);
1018 tcg_gen_and_i64(flag, flag, tmp);
1019 tcg_gen_extrh_i64_i32(cpu_VF, flag);
1020 tcg_gen_mov_i64(dest, result);
1021 }
1022
gen_sub32_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)1023 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1024 {
1025 /* 32 bit arithmetic */
1026 TCGv_i32 t0_32 = tcg_temp_new_i32();
1027 TCGv_i32 t1_32 = tcg_temp_new_i32();
1028 TCGv_i32 tmp;
1029
1030 tcg_gen_extrl_i64_i32(t0_32, t0);
1031 tcg_gen_extrl_i64_i32(t1_32, t1);
1032 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
1033 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1034 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
1035 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1036 tmp = tcg_temp_new_i32();
1037 tcg_gen_xor_i32(tmp, t0_32, t1_32);
1038 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
1039 tcg_gen_extu_i32_i64(dest, cpu_NF);
1040 }
1041
gen_sub_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)1042 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1043 {
1044 if (sf) {
1045 gen_sub64_CC(dest, t0, t1);
1046 } else {
1047 gen_sub32_CC(dest, t0, t1);
1048 }
1049 }
1050
1051 /* dest = T0 + T1 + CF; do not compute flags. */
gen_adc(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)1052 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1053 {
1054 TCGv_i64 flag = tcg_temp_new_i64();
1055 tcg_gen_extu_i32_i64(flag, cpu_CF);
1056 tcg_gen_add_i64(dest, t0, t1);
1057 tcg_gen_add_i64(dest, dest, flag);
1058
1059 if (!sf) {
1060 tcg_gen_ext32u_i64(dest, dest);
1061 }
1062 }
1063
1064 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
gen_adc_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)1065 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1066 {
1067 if (sf) {
1068 TCGv_i64 result = tcg_temp_new_i64();
1069 TCGv_i64 cf_64 = tcg_temp_new_i64();
1070 TCGv_i64 vf_64 = tcg_temp_new_i64();
1071 TCGv_i64 tmp = tcg_temp_new_i64();
1072
1073 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
1074 tcg_gen_addcio_i64(result, cf_64, t0, t1, cf_64);
1075 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
1076 gen_set_NZ64(result);
1077
1078 tcg_gen_xor_i64(vf_64, result, t0);
1079 tcg_gen_xor_i64(tmp, t0, t1);
1080 tcg_gen_andc_i64(vf_64, vf_64, tmp);
1081 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
1082
1083 tcg_gen_mov_i64(dest, result);
1084 } else {
1085 TCGv_i32 t0_32 = tcg_temp_new_i32();
1086 TCGv_i32 t1_32 = tcg_temp_new_i32();
1087 TCGv_i32 tmp = tcg_temp_new_i32();
1088
1089 tcg_gen_extrl_i64_i32(t0_32, t0);
1090 tcg_gen_extrl_i64_i32(t1_32, t1);
1091 tcg_gen_addcio_i32(cpu_NF, cpu_CF, t0_32, t1_32, cpu_CF);
1092
1093 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1094 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1095 tcg_gen_xor_i32(tmp, t0_32, t1_32);
1096 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
1097 tcg_gen_extu_i32_i64(dest, cpu_NF);
1098 }
1099 }
1100
1101 /*
1102 * Load/Store generators
1103 */
1104
1105 /*
1106 * Store from GPR register to memory.
1107 */
do_gpr_st_memidx(DisasContext * s,TCGv_i64 source,TCGv_i64 tcg_addr,MemOp memop,int memidx,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)1108 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
1109 TCGv_i64 tcg_addr, MemOp memop, int memidx,
1110 bool iss_valid,
1111 unsigned int iss_srt,
1112 bool iss_sf, bool iss_ar)
1113 {
1114 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
1115
1116 if (iss_valid) {
1117 uint32_t syn;
1118
1119 syn = syn_data_abort_with_iss(0,
1120 (memop & MO_SIZE),
1121 false,
1122 iss_srt,
1123 iss_sf,
1124 iss_ar,
1125 0, 0, 0, 0, 0, false);
1126 disas_set_insn_syndrome(s, syn);
1127 }
1128 }
1129
do_gpr_st(DisasContext * s,TCGv_i64 source,TCGv_i64 tcg_addr,MemOp memop,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)1130 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
1131 TCGv_i64 tcg_addr, MemOp memop,
1132 bool iss_valid,
1133 unsigned int iss_srt,
1134 bool iss_sf, bool iss_ar)
1135 {
1136 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
1137 iss_valid, iss_srt, iss_sf, iss_ar);
1138 }
1139
1140 /*
1141 * Load from memory to GPR register
1142 */
do_gpr_ld_memidx(DisasContext * s,TCGv_i64 dest,TCGv_i64 tcg_addr,MemOp memop,bool extend,int memidx,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)1143 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1144 MemOp memop, bool extend, int memidx,
1145 bool iss_valid, unsigned int iss_srt,
1146 bool iss_sf, bool iss_ar)
1147 {
1148 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1149
1150 if (extend && (memop & MO_SIGN)) {
1151 g_assert((memop & MO_SIZE) <= MO_32);
1152 tcg_gen_ext32u_i64(dest, dest);
1153 }
1154
1155 if (iss_valid) {
1156 uint32_t syn;
1157
1158 syn = syn_data_abort_with_iss(0,
1159 (memop & MO_SIZE),
1160 (memop & MO_SIGN) != 0,
1161 iss_srt,
1162 iss_sf,
1163 iss_ar,
1164 0, 0, 0, 0, 0, false);
1165 disas_set_insn_syndrome(s, syn);
1166 }
1167 }
1168
do_gpr_ld(DisasContext * s,TCGv_i64 dest,TCGv_i64 tcg_addr,MemOp memop,bool extend,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)1169 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1170 MemOp memop, bool extend,
1171 bool iss_valid, unsigned int iss_srt,
1172 bool iss_sf, bool iss_ar)
1173 {
1174 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1175 iss_valid, iss_srt, iss_sf, iss_ar);
1176 }
1177
1178 /*
1179 * Store from FP register to memory
1180 */
do_fp_st(DisasContext * s,int srcidx,TCGv_i64 tcg_addr,MemOp mop)1181 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1182 {
1183 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1184 TCGv_i64 tmplo = tcg_temp_new_i64();
1185
1186 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1187
1188 if ((mop & MO_SIZE) < MO_128) {
1189 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1190 } else {
1191 TCGv_i64 tmphi = tcg_temp_new_i64();
1192 TCGv_i128 t16 = tcg_temp_new_i128();
1193
1194 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1195 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1196
1197 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1198 }
1199 }
1200
1201 /*
1202 * Load from memory to FP register
1203 */
do_fp_ld(DisasContext * s,int destidx,TCGv_i64 tcg_addr,MemOp mop)1204 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1205 {
1206 /* This always zero-extends and writes to a full 128 bit wide vector */
1207 TCGv_i64 tmplo = tcg_temp_new_i64();
1208 TCGv_i64 tmphi = NULL;
1209
1210 if ((mop & MO_SIZE) < MO_128) {
1211 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1212 } else {
1213 TCGv_i128 t16 = tcg_temp_new_i128();
1214
1215 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1216
1217 tmphi = tcg_temp_new_i64();
1218 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1219 }
1220
1221 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1222
1223 if (tmphi) {
1224 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1225 }
1226 clear_vec_high(s, tmphi != NULL, destidx);
1227 }
1228
1229 /*
1230 * Vector load/store helpers.
1231 *
1232 * The principal difference between this and a FP load is that we don't
1233 * zero extend as we are filling a partial chunk of the vector register.
1234 * These functions don't support 128 bit loads/stores, which would be
1235 * normal load/store operations.
1236 *
1237 * The _i32 versions are useful when operating on 32 bit quantities
1238 * (eg for floating point single or using Neon helper functions).
1239 */
1240
1241 /* Get value of an element within a vector register */
read_vec_element(DisasContext * s,TCGv_i64 tcg_dest,int srcidx,int element,MemOp memop)1242 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1243 int element, MemOp memop)
1244 {
1245 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1246 switch ((unsigned)memop) {
1247 case MO_8:
1248 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1249 break;
1250 case MO_16:
1251 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1252 break;
1253 case MO_32:
1254 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1255 break;
1256 case MO_8|MO_SIGN:
1257 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1258 break;
1259 case MO_16|MO_SIGN:
1260 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1261 break;
1262 case MO_32|MO_SIGN:
1263 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1264 break;
1265 case MO_64:
1266 case MO_64|MO_SIGN:
1267 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1268 break;
1269 default:
1270 g_assert_not_reached();
1271 }
1272 }
1273
read_vec_element_i32(DisasContext * s,TCGv_i32 tcg_dest,int srcidx,int element,MemOp memop)1274 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1275 int element, MemOp memop)
1276 {
1277 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1278 switch (memop) {
1279 case MO_8:
1280 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1281 break;
1282 case MO_16:
1283 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1284 break;
1285 case MO_8|MO_SIGN:
1286 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1287 break;
1288 case MO_16|MO_SIGN:
1289 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1290 break;
1291 case MO_32:
1292 case MO_32|MO_SIGN:
1293 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1294 break;
1295 default:
1296 g_assert_not_reached();
1297 }
1298 }
1299
1300 /* Set value of an element within a vector register */
write_vec_element(DisasContext * s,TCGv_i64 tcg_src,int destidx,int element,MemOp memop)1301 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1302 int element, MemOp memop)
1303 {
1304 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1305 switch (memop) {
1306 case MO_8:
1307 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1308 break;
1309 case MO_16:
1310 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1311 break;
1312 case MO_32:
1313 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1314 break;
1315 case MO_64:
1316 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1317 break;
1318 default:
1319 g_assert_not_reached();
1320 }
1321 }
1322
write_vec_element_i32(DisasContext * s,TCGv_i32 tcg_src,int destidx,int element,MemOp memop)1323 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1324 int destidx, int element, MemOp memop)
1325 {
1326 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1327 switch (memop) {
1328 case MO_8:
1329 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1330 break;
1331 case MO_16:
1332 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1333 break;
1334 case MO_32:
1335 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1336 break;
1337 default:
1338 g_assert_not_reached();
1339 }
1340 }
1341
1342 /* Store from vector register to memory */
do_vec_st(DisasContext * s,int srcidx,int element,TCGv_i64 tcg_addr,MemOp mop)1343 static void do_vec_st(DisasContext *s, int srcidx, int element,
1344 TCGv_i64 tcg_addr, MemOp mop)
1345 {
1346 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1347
1348 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1349 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1350 }
1351
1352 /* Load from memory to vector register */
do_vec_ld(DisasContext * s,int destidx,int element,TCGv_i64 tcg_addr,MemOp mop)1353 static void do_vec_ld(DisasContext *s, int destidx, int element,
1354 TCGv_i64 tcg_addr, MemOp mop)
1355 {
1356 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1357
1358 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1359 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1360 }
1361
1362 /* Check that FP/Neon access is enabled. If it is, return
1363 * true. If not, emit code to generate an appropriate exception,
1364 * and return false; the caller should not emit any code for
1365 * the instruction. Note that this check must happen after all
1366 * unallocated-encoding checks (otherwise the syndrome information
1367 * for the resulting exception will be incorrect).
1368 */
fp_access_check_only(DisasContext * s)1369 static bool fp_access_check_only(DisasContext *s)
1370 {
1371 if (s->fp_excp_el) {
1372 assert(!s->fp_access_checked);
1373 s->fp_access_checked = -1;
1374
1375 gen_exception_insn_el(s, 0, EXCP_UDEF,
1376 syn_fp_access_trap(1, 0xe, false, 0),
1377 s->fp_excp_el);
1378 return false;
1379 }
1380 s->fp_access_checked = 1;
1381 return true;
1382 }
1383
nonstreaming_check(DisasContext * s)1384 static bool nonstreaming_check(DisasContext *s)
1385 {
1386 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1387 gen_exception_insn(s, 0, EXCP_UDEF,
1388 syn_smetrap(SME_ET_Streaming, false));
1389 return false;
1390 }
1391 return true;
1392 }
1393
fp_access_check(DisasContext * s)1394 static bool fp_access_check(DisasContext *s)
1395 {
1396 return fp_access_check_only(s) && nonstreaming_check(s);
1397 }
1398
1399 /*
1400 * Return <0 for non-supported element sizes, with MO_16 controlled by
1401 * FEAT_FP16; return 0 for fp disabled; otherwise return >0 for success.
1402 */
fp_access_check_scalar_hsd(DisasContext * s,MemOp esz)1403 static int fp_access_check_scalar_hsd(DisasContext *s, MemOp esz)
1404 {
1405 switch (esz) {
1406 case MO_64:
1407 case MO_32:
1408 break;
1409 case MO_16:
1410 if (!dc_isar_feature(aa64_fp16, s)) {
1411 return -1;
1412 }
1413 break;
1414 default:
1415 return -1;
1416 }
1417 return fp_access_check(s);
1418 }
1419
1420 /* Likewise, but vector MO_64 must have two elements. */
fp_access_check_vector_hsd(DisasContext * s,bool is_q,MemOp esz)1421 static int fp_access_check_vector_hsd(DisasContext *s, bool is_q, MemOp esz)
1422 {
1423 switch (esz) {
1424 case MO_64:
1425 if (!is_q) {
1426 return -1;
1427 }
1428 break;
1429 case MO_32:
1430 break;
1431 case MO_16:
1432 if (!dc_isar_feature(aa64_fp16, s)) {
1433 return -1;
1434 }
1435 break;
1436 default:
1437 return -1;
1438 }
1439 return fp_access_check(s);
1440 }
1441
1442 /*
1443 * Check that SVE access is enabled. If it is, return true.
1444 * If not, emit code to generate an appropriate exception and return false.
1445 * This function corresponds to CheckSVEEnabled().
1446 */
sve_access_check(DisasContext * s)1447 bool sve_access_check(DisasContext *s)
1448 {
1449 if (dc_isar_feature(aa64_sme, s)) {
1450 bool ret;
1451
1452 if (s->pstate_sm) {
1453 ret = sme_enabled_check(s);
1454 } else if (dc_isar_feature(aa64_sve, s)) {
1455 goto continue_sve;
1456 } else {
1457 ret = sme_sm_enabled_check(s);
1458 }
1459 if (ret) {
1460 ret = nonstreaming_check(s);
1461 }
1462 s->sve_access_checked = (ret ? 1 : -1);
1463 return ret;
1464 }
1465
1466 continue_sve:
1467 if (s->sve_excp_el) {
1468 /* Assert that we only raise one exception per instruction. */
1469 assert(!s->sve_access_checked);
1470 gen_exception_insn_el(s, 0, EXCP_UDEF,
1471 syn_sve_access_trap(), s->sve_excp_el);
1472 s->sve_access_checked = -1;
1473 return false;
1474 }
1475 s->sve_access_checked = 1;
1476 return fp_access_check(s);
1477 }
1478
1479 /*
1480 * Check that SME access is enabled, raise an exception if not.
1481 * Note that this function corresponds to CheckSMEAccess and is
1482 * only used directly for cpregs.
1483 */
sme_access_check(DisasContext * s)1484 static bool sme_access_check(DisasContext *s)
1485 {
1486 if (s->sme_excp_el) {
1487 gen_exception_insn_el(s, 0, EXCP_UDEF,
1488 syn_smetrap(SME_ET_AccessTrap, false),
1489 s->sme_excp_el);
1490 return false;
1491 }
1492 return true;
1493 }
1494
1495 /* This function corresponds to CheckSMEEnabled. */
sme_enabled_check(DisasContext * s)1496 bool sme_enabled_check(DisasContext *s)
1497 {
1498 /*
1499 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1500 * to be zero when fp_excp_el has priority. This is because we need
1501 * sme_excp_el by itself for cpregs access checks.
1502 */
1503 if (s->sme_excp_el
1504 && (!s->fp_excp_el || s->sme_excp_el <= s->fp_excp_el)) {
1505 bool ret = sme_access_check(s);
1506 s->fp_access_checked = (ret ? 1 : -1);
1507 return ret;
1508 }
1509 return fp_access_check_only(s);
1510 }
1511
1512 /* Common subroutine for CheckSMEAnd*Enabled. */
sme_enabled_check_with_svcr(DisasContext * s,unsigned req)1513 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1514 {
1515 if (!sme_enabled_check(s)) {
1516 return false;
1517 }
1518 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1519 gen_exception_insn(s, 0, EXCP_UDEF,
1520 syn_smetrap(SME_ET_NotStreaming, false));
1521 return false;
1522 }
1523 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1524 gen_exception_insn(s, 0, EXCP_UDEF,
1525 syn_smetrap(SME_ET_InactiveZA, false));
1526 return false;
1527 }
1528 return true;
1529 }
1530
1531 /*
1532 * Expanders for AdvSIMD translation functions.
1533 */
1534
do_gvec_op2_ool(DisasContext * s,arg_qrr_e * a,int data,gen_helper_gvec_2 * fn)1535 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1536 gen_helper_gvec_2 *fn)
1537 {
1538 if (!a->q && a->esz == MO_64) {
1539 return false;
1540 }
1541 if (fp_access_check(s)) {
1542 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1543 }
1544 return true;
1545 }
1546
do_gvec_op3_ool(DisasContext * s,arg_qrrr_e * a,int data,gen_helper_gvec_3 * fn)1547 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1548 gen_helper_gvec_3 *fn)
1549 {
1550 if (!a->q && a->esz == MO_64) {
1551 return false;
1552 }
1553 if (fp_access_check(s)) {
1554 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1555 }
1556 return true;
1557 }
1558
do_gvec_fn3(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1559 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1560 {
1561 if (!a->q && a->esz == MO_64) {
1562 return false;
1563 }
1564 if (fp_access_check(s)) {
1565 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1566 }
1567 return true;
1568 }
1569
do_gvec_fn3_no64(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1570 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1571 {
1572 if (a->esz == MO_64) {
1573 return false;
1574 }
1575 if (fp_access_check(s)) {
1576 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1577 }
1578 return true;
1579 }
1580
do_gvec_fn3_no8_no64(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1581 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1582 {
1583 if (a->esz == MO_8) {
1584 return false;
1585 }
1586 return do_gvec_fn3_no64(s, a, fn);
1587 }
1588
do_gvec_fn4(DisasContext * s,arg_qrrrr_e * a,GVecGen4Fn * fn)1589 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1590 {
1591 if (!a->q && a->esz == MO_64) {
1592 return false;
1593 }
1594 if (fp_access_check(s)) {
1595 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1596 }
1597 return true;
1598 }
1599
1600 /*
1601 * This utility function is for doing register extension with an
1602 * optional shift. You will likely want to pass a temporary for the
1603 * destination register. See DecodeRegExtend() in the ARM ARM.
1604 */
ext_and_shift_reg(TCGv_i64 tcg_out,TCGv_i64 tcg_in,int option,unsigned int shift)1605 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1606 int option, unsigned int shift)
1607 {
1608 int extsize = extract32(option, 0, 2);
1609 bool is_signed = extract32(option, 2, 1);
1610
1611 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1612 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1613 }
1614
gen_check_sp_alignment(DisasContext * s)1615 static inline void gen_check_sp_alignment(DisasContext *s)
1616 {
1617 /* The AArch64 architecture mandates that (if enabled via PSTATE
1618 * or SCTLR bits) there is a check that SP is 16-aligned on every
1619 * SP-relative load or store (with an exception generated if it is not).
1620 * In line with general QEMU practice regarding misaligned accesses,
1621 * we omit these checks for the sake of guest program performance.
1622 * This function is provided as a hook so we can more easily add these
1623 * checks in future (possibly as a "favour catching guest program bugs
1624 * over speed" user selectable option).
1625 */
1626 }
1627
1628 /*
1629 * The instruction disassembly implemented here matches
1630 * the instruction encoding classifications in chapter C4
1631 * of the ARM Architecture Reference Manual (DDI0487B_a);
1632 * classification names and decode diagrams here should generally
1633 * match up with those in the manual.
1634 */
1635
trans_B(DisasContext * s,arg_i * a)1636 static bool trans_B(DisasContext *s, arg_i *a)
1637 {
1638 reset_btype(s);
1639 gen_goto_tb(s, 0, a->imm);
1640 return true;
1641 }
1642
trans_BL(DisasContext * s,arg_i * a)1643 static bool trans_BL(DisasContext *s, arg_i *a)
1644 {
1645 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1646 reset_btype(s);
1647 gen_goto_tb(s, 0, a->imm);
1648 return true;
1649 }
1650
1651
trans_CBZ(DisasContext * s,arg_cbz * a)1652 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1653 {
1654 DisasLabel match;
1655 TCGv_i64 tcg_cmp;
1656
1657 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1658 reset_btype(s);
1659
1660 match = gen_disas_label(s);
1661 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1662 tcg_cmp, 0, match.label);
1663 gen_goto_tb(s, 0, 4);
1664 set_disas_label(s, match);
1665 gen_goto_tb(s, 1, a->imm);
1666 return true;
1667 }
1668
trans_TBZ(DisasContext * s,arg_tbz * a)1669 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1670 {
1671 DisasLabel match;
1672 TCGv_i64 tcg_cmp;
1673
1674 tcg_cmp = tcg_temp_new_i64();
1675 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1676
1677 reset_btype(s);
1678
1679 match = gen_disas_label(s);
1680 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1681 tcg_cmp, 0, match.label);
1682 gen_goto_tb(s, 0, 4);
1683 set_disas_label(s, match);
1684 gen_goto_tb(s, 1, a->imm);
1685 return true;
1686 }
1687
trans_B_cond(DisasContext * s,arg_B_cond * a)1688 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1689 {
1690 /* BC.cond is only present with FEAT_HBC */
1691 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1692 return false;
1693 }
1694 reset_btype(s);
1695 if (a->cond < 0x0e) {
1696 /* genuinely conditional branches */
1697 DisasLabel match = gen_disas_label(s);
1698 arm_gen_test_cc(a->cond, match.label);
1699 gen_goto_tb(s, 0, 4);
1700 set_disas_label(s, match);
1701 gen_goto_tb(s, 1, a->imm);
1702 } else {
1703 /* 0xe and 0xf are both "always" conditions */
1704 gen_goto_tb(s, 0, a->imm);
1705 }
1706 return true;
1707 }
1708
set_btype_for_br(DisasContext * s,int rn)1709 static void set_btype_for_br(DisasContext *s, int rn)
1710 {
1711 if (dc_isar_feature(aa64_bti, s)) {
1712 /* BR to {x16,x17} or !guard -> 1, else 3. */
1713 if (rn == 16 || rn == 17) {
1714 set_btype(s, 1);
1715 } else {
1716 TCGv_i64 pc = tcg_temp_new_i64();
1717 gen_pc_plus_diff(s, pc, 0);
1718 gen_helper_guarded_page_br(tcg_env, pc);
1719 s->btype = -1;
1720 }
1721 }
1722 }
1723
set_btype_for_blr(DisasContext * s)1724 static void set_btype_for_blr(DisasContext *s)
1725 {
1726 if (dc_isar_feature(aa64_bti, s)) {
1727 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1728 set_btype(s, 2);
1729 }
1730 }
1731
trans_BR(DisasContext * s,arg_r * a)1732 static bool trans_BR(DisasContext *s, arg_r *a)
1733 {
1734 set_btype_for_br(s, a->rn);
1735 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1736 s->base.is_jmp = DISAS_JUMP;
1737 return true;
1738 }
1739
trans_BLR(DisasContext * s,arg_r * a)1740 static bool trans_BLR(DisasContext *s, arg_r *a)
1741 {
1742 TCGv_i64 dst = cpu_reg(s, a->rn);
1743 TCGv_i64 lr = cpu_reg(s, 30);
1744 if (dst == lr) {
1745 TCGv_i64 tmp = tcg_temp_new_i64();
1746 tcg_gen_mov_i64(tmp, dst);
1747 dst = tmp;
1748 }
1749 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1750 gen_a64_set_pc(s, dst);
1751 set_btype_for_blr(s);
1752 s->base.is_jmp = DISAS_JUMP;
1753 return true;
1754 }
1755
trans_RET(DisasContext * s,arg_r * a)1756 static bool trans_RET(DisasContext *s, arg_r *a)
1757 {
1758 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1759 s->base.is_jmp = DISAS_JUMP;
1760 return true;
1761 }
1762
auth_branch_target(DisasContext * s,TCGv_i64 dst,TCGv_i64 modifier,bool use_key_a)1763 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1764 TCGv_i64 modifier, bool use_key_a)
1765 {
1766 TCGv_i64 truedst;
1767 /*
1768 * Return the branch target for a BRAA/RETA/etc, which is either
1769 * just the destination dst, or that value with the pauth check
1770 * done and the code removed from the high bits.
1771 */
1772 if (!s->pauth_active) {
1773 return dst;
1774 }
1775
1776 truedst = tcg_temp_new_i64();
1777 if (use_key_a) {
1778 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1779 } else {
1780 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1781 }
1782 return truedst;
1783 }
1784
trans_BRAZ(DisasContext * s,arg_braz * a)1785 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1786 {
1787 TCGv_i64 dst;
1788
1789 if (!dc_isar_feature(aa64_pauth, s)) {
1790 return false;
1791 }
1792
1793 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1794 set_btype_for_br(s, a->rn);
1795 gen_a64_set_pc(s, dst);
1796 s->base.is_jmp = DISAS_JUMP;
1797 return true;
1798 }
1799
trans_BLRAZ(DisasContext * s,arg_braz * a)1800 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1801 {
1802 TCGv_i64 dst, lr;
1803
1804 if (!dc_isar_feature(aa64_pauth, s)) {
1805 return false;
1806 }
1807
1808 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1809 lr = cpu_reg(s, 30);
1810 if (dst == lr) {
1811 TCGv_i64 tmp = tcg_temp_new_i64();
1812 tcg_gen_mov_i64(tmp, dst);
1813 dst = tmp;
1814 }
1815 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1816 gen_a64_set_pc(s, dst);
1817 set_btype_for_blr(s);
1818 s->base.is_jmp = DISAS_JUMP;
1819 return true;
1820 }
1821
trans_RETA(DisasContext * s,arg_reta * a)1822 static bool trans_RETA(DisasContext *s, arg_reta *a)
1823 {
1824 TCGv_i64 dst;
1825
1826 if (!dc_isar_feature(aa64_pauth, s)) {
1827 return false;
1828 }
1829
1830 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1831 gen_a64_set_pc(s, dst);
1832 s->base.is_jmp = DISAS_JUMP;
1833 return true;
1834 }
1835
trans_BRA(DisasContext * s,arg_bra * a)1836 static bool trans_BRA(DisasContext *s, arg_bra *a)
1837 {
1838 TCGv_i64 dst;
1839
1840 if (!dc_isar_feature(aa64_pauth, s)) {
1841 return false;
1842 }
1843 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1844 gen_a64_set_pc(s, dst);
1845 set_btype_for_br(s, a->rn);
1846 s->base.is_jmp = DISAS_JUMP;
1847 return true;
1848 }
1849
trans_BLRA(DisasContext * s,arg_bra * a)1850 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1851 {
1852 TCGv_i64 dst, lr;
1853
1854 if (!dc_isar_feature(aa64_pauth, s)) {
1855 return false;
1856 }
1857 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1858 lr = cpu_reg(s, 30);
1859 if (dst == lr) {
1860 TCGv_i64 tmp = tcg_temp_new_i64();
1861 tcg_gen_mov_i64(tmp, dst);
1862 dst = tmp;
1863 }
1864 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1865 gen_a64_set_pc(s, dst);
1866 set_btype_for_blr(s);
1867 s->base.is_jmp = DISAS_JUMP;
1868 return true;
1869 }
1870
trans_ERET(DisasContext * s,arg_ERET * a)1871 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1872 {
1873 TCGv_i64 dst;
1874
1875 if (s->current_el == 0) {
1876 return false;
1877 }
1878 if (s->trap_eret) {
1879 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1880 return true;
1881 }
1882 dst = tcg_temp_new_i64();
1883 tcg_gen_ld_i64(dst, tcg_env,
1884 offsetof(CPUARMState, elr_el[s->current_el]));
1885
1886 translator_io_start(&s->base);
1887
1888 gen_helper_exception_return(tcg_env, dst);
1889 /* Must exit loop to check un-masked IRQs */
1890 s->base.is_jmp = DISAS_EXIT;
1891 return true;
1892 }
1893
trans_ERETA(DisasContext * s,arg_reta * a)1894 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1895 {
1896 TCGv_i64 dst;
1897
1898 if (!dc_isar_feature(aa64_pauth, s)) {
1899 return false;
1900 }
1901 if (s->current_el == 0) {
1902 return false;
1903 }
1904 /* The FGT trap takes precedence over an auth trap. */
1905 if (s->trap_eret) {
1906 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1907 return true;
1908 }
1909 dst = tcg_temp_new_i64();
1910 tcg_gen_ld_i64(dst, tcg_env,
1911 offsetof(CPUARMState, elr_el[s->current_el]));
1912
1913 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1914
1915 translator_io_start(&s->base);
1916
1917 gen_helper_exception_return(tcg_env, dst);
1918 /* Must exit loop to check un-masked IRQs */
1919 s->base.is_jmp = DISAS_EXIT;
1920 return true;
1921 }
1922
trans_NOP(DisasContext * s,arg_NOP * a)1923 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1924 {
1925 return true;
1926 }
1927
trans_YIELD(DisasContext * s,arg_YIELD * a)1928 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1929 {
1930 /*
1931 * When running in MTTCG we don't generate jumps to the yield and
1932 * WFE helpers as it won't affect the scheduling of other vCPUs.
1933 * If we wanted to more completely model WFE/SEV so we don't busy
1934 * spin unnecessarily we would need to do something more involved.
1935 */
1936 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1937 s->base.is_jmp = DISAS_YIELD;
1938 }
1939 return true;
1940 }
1941
trans_WFI(DisasContext * s,arg_WFI * a)1942 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1943 {
1944 s->base.is_jmp = DISAS_WFI;
1945 return true;
1946 }
1947
trans_WFE(DisasContext * s,arg_WFI * a)1948 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1949 {
1950 /*
1951 * When running in MTTCG we don't generate jumps to the yield and
1952 * WFE helpers as it won't affect the scheduling of other vCPUs.
1953 * If we wanted to more completely model WFE/SEV so we don't busy
1954 * spin unnecessarily we would need to do something more involved.
1955 */
1956 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1957 s->base.is_jmp = DISAS_WFE;
1958 }
1959 return true;
1960 }
1961
trans_WFIT(DisasContext * s,arg_WFIT * a)1962 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1963 {
1964 if (!dc_isar_feature(aa64_wfxt, s)) {
1965 return false;
1966 }
1967
1968 /*
1969 * Because we need to pass the register value to the helper,
1970 * it's easier to emit the code now, unlike trans_WFI which
1971 * defers it to aarch64_tr_tb_stop(). That means we need to
1972 * check ss_active so that single-stepping a WFIT doesn't halt.
1973 */
1974 if (s->ss_active) {
1975 /* Act like a NOP under architectural singlestep */
1976 return true;
1977 }
1978
1979 gen_a64_update_pc(s, 4);
1980 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1981 /* Go back to the main loop to check for interrupts */
1982 s->base.is_jmp = DISAS_EXIT;
1983 return true;
1984 }
1985
trans_WFET(DisasContext * s,arg_WFET * a)1986 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1987 {
1988 if (!dc_isar_feature(aa64_wfxt, s)) {
1989 return false;
1990 }
1991
1992 /*
1993 * We rely here on our WFE implementation being a NOP, so we
1994 * don't need to do anything different to handle the WFET timeout
1995 * from what trans_WFE does.
1996 */
1997 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1998 s->base.is_jmp = DISAS_WFE;
1999 }
2000 return true;
2001 }
2002
trans_XPACLRI(DisasContext * s,arg_XPACLRI * a)2003 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
2004 {
2005 if (s->pauth_active) {
2006 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
2007 }
2008 return true;
2009 }
2010
trans_PACIA1716(DisasContext * s,arg_PACIA1716 * a)2011 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
2012 {
2013 if (s->pauth_active) {
2014 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2015 }
2016 return true;
2017 }
2018
trans_PACIB1716(DisasContext * s,arg_PACIB1716 * a)2019 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
2020 {
2021 if (s->pauth_active) {
2022 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2023 }
2024 return true;
2025 }
2026
trans_AUTIA1716(DisasContext * s,arg_AUTIA1716 * a)2027 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
2028 {
2029 if (s->pauth_active) {
2030 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2031 }
2032 return true;
2033 }
2034
trans_AUTIB1716(DisasContext * s,arg_AUTIB1716 * a)2035 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
2036 {
2037 if (s->pauth_active) {
2038 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2039 }
2040 return true;
2041 }
2042
trans_ESB(DisasContext * s,arg_ESB * a)2043 static bool trans_ESB(DisasContext *s, arg_ESB *a)
2044 {
2045 /* Without RAS, we must implement this as NOP. */
2046 if (dc_isar_feature(aa64_ras, s)) {
2047 /*
2048 * QEMU does not have a source of physical SErrors,
2049 * so we are only concerned with virtual SErrors.
2050 * The pseudocode in the ARM for this case is
2051 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
2052 * AArch64.vESBOperation();
2053 * Most of the condition can be evaluated at translation time.
2054 * Test for EL2 present, and defer test for SEL2 to runtime.
2055 */
2056 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
2057 gen_helper_vesb(tcg_env);
2058 }
2059 }
2060 return true;
2061 }
2062
trans_PACIAZ(DisasContext * s,arg_PACIAZ * a)2063 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
2064 {
2065 if (s->pauth_active) {
2066 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2067 }
2068 return true;
2069 }
2070
trans_PACIASP(DisasContext * s,arg_PACIASP * a)2071 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
2072 {
2073 if (s->pauth_active) {
2074 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2075 }
2076 return true;
2077 }
2078
trans_PACIBZ(DisasContext * s,arg_PACIBZ * a)2079 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
2080 {
2081 if (s->pauth_active) {
2082 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2083 }
2084 return true;
2085 }
2086
trans_PACIBSP(DisasContext * s,arg_PACIBSP * a)2087 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
2088 {
2089 if (s->pauth_active) {
2090 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2091 }
2092 return true;
2093 }
2094
trans_AUTIAZ(DisasContext * s,arg_AUTIAZ * a)2095 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
2096 {
2097 if (s->pauth_active) {
2098 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2099 }
2100 return true;
2101 }
2102
trans_AUTIASP(DisasContext * s,arg_AUTIASP * a)2103 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
2104 {
2105 if (s->pauth_active) {
2106 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2107 }
2108 return true;
2109 }
2110
trans_AUTIBZ(DisasContext * s,arg_AUTIBZ * a)2111 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
2112 {
2113 if (s->pauth_active) {
2114 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2115 }
2116 return true;
2117 }
2118
trans_AUTIBSP(DisasContext * s,arg_AUTIBSP * a)2119 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
2120 {
2121 if (s->pauth_active) {
2122 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2123 }
2124 return true;
2125 }
2126
trans_CLREX(DisasContext * s,arg_CLREX * a)2127 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
2128 {
2129 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2130 return true;
2131 }
2132
trans_DSB_DMB(DisasContext * s,arg_DSB_DMB * a)2133 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
2134 {
2135 /* We handle DSB and DMB the same way */
2136 TCGBar bar;
2137
2138 switch (a->types) {
2139 case 1: /* MBReqTypes_Reads */
2140 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
2141 break;
2142 case 2: /* MBReqTypes_Writes */
2143 bar = TCG_BAR_SC | TCG_MO_ST_ST;
2144 break;
2145 default: /* MBReqTypes_All */
2146 bar = TCG_BAR_SC | TCG_MO_ALL;
2147 break;
2148 }
2149 tcg_gen_mb(bar);
2150 return true;
2151 }
2152
trans_DSB_nXS(DisasContext * s,arg_DSB_nXS * a)2153 static bool trans_DSB_nXS(DisasContext *s, arg_DSB_nXS *a)
2154 {
2155 if (!dc_isar_feature(aa64_xs, s)) {
2156 return false;
2157 }
2158 tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
2159 return true;
2160 }
2161
trans_ISB(DisasContext * s,arg_ISB * a)2162 static bool trans_ISB(DisasContext *s, arg_ISB *a)
2163 {
2164 /*
2165 * We need to break the TB after this insn to execute
2166 * self-modifying code correctly and also to take
2167 * any pending interrupts immediately.
2168 */
2169 reset_btype(s);
2170 gen_goto_tb(s, 0, 4);
2171 return true;
2172 }
2173
trans_SB(DisasContext * s,arg_SB * a)2174 static bool trans_SB(DisasContext *s, arg_SB *a)
2175 {
2176 if (!dc_isar_feature(aa64_sb, s)) {
2177 return false;
2178 }
2179 /*
2180 * TODO: There is no speculation barrier opcode for TCG;
2181 * MB and end the TB instead.
2182 */
2183 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
2184 gen_goto_tb(s, 0, 4);
2185 return true;
2186 }
2187
trans_CFINV(DisasContext * s,arg_CFINV * a)2188 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
2189 {
2190 if (!dc_isar_feature(aa64_condm_4, s)) {
2191 return false;
2192 }
2193 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
2194 return true;
2195 }
2196
trans_XAFLAG(DisasContext * s,arg_XAFLAG * a)2197 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
2198 {
2199 TCGv_i32 z;
2200
2201 if (!dc_isar_feature(aa64_condm_5, s)) {
2202 return false;
2203 }
2204
2205 z = tcg_temp_new_i32();
2206
2207 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
2208
2209 /*
2210 * (!C & !Z) << 31
2211 * (!(C | Z)) << 31
2212 * ~((C | Z) << 31)
2213 * ~-(C | Z)
2214 * (C | Z) - 1
2215 */
2216 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
2217 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
2218
2219 /* !(Z & C) */
2220 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
2221 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2222
2223 /* (!C & Z) << 31 -> -(Z & ~C) */
2224 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2225 tcg_gen_neg_i32(cpu_VF, cpu_VF);
2226
2227 /* C | Z */
2228 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2229
2230 return true;
2231 }
2232
trans_AXFLAG(DisasContext * s,arg_AXFLAG * a)2233 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2234 {
2235 if (!dc_isar_feature(aa64_condm_5, s)) {
2236 return false;
2237 }
2238
2239 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
2240 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
2241
2242 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2243 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2244
2245 tcg_gen_movi_i32(cpu_NF, 0);
2246 tcg_gen_movi_i32(cpu_VF, 0);
2247
2248 return true;
2249 }
2250
trans_MSR_i_UAO(DisasContext * s,arg_i * a)2251 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2252 {
2253 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2254 return false;
2255 }
2256 if (a->imm & 1) {
2257 set_pstate_bits(PSTATE_UAO);
2258 } else {
2259 clear_pstate_bits(PSTATE_UAO);
2260 }
2261 gen_rebuild_hflags(s);
2262 s->base.is_jmp = DISAS_TOO_MANY;
2263 return true;
2264 }
2265
trans_MSR_i_PAN(DisasContext * s,arg_i * a)2266 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2267 {
2268 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2269 return false;
2270 }
2271 if (a->imm & 1) {
2272 set_pstate_bits(PSTATE_PAN);
2273 } else {
2274 clear_pstate_bits(PSTATE_PAN);
2275 }
2276 gen_rebuild_hflags(s);
2277 s->base.is_jmp = DISAS_TOO_MANY;
2278 return true;
2279 }
2280
trans_MSR_i_SPSEL(DisasContext * s,arg_i * a)2281 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2282 {
2283 if (s->current_el == 0) {
2284 return false;
2285 }
2286 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2287 s->base.is_jmp = DISAS_TOO_MANY;
2288 return true;
2289 }
2290
trans_MSR_i_SBSS(DisasContext * s,arg_i * a)2291 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2292 {
2293 if (!dc_isar_feature(aa64_ssbs, s)) {
2294 return false;
2295 }
2296 if (a->imm & 1) {
2297 set_pstate_bits(PSTATE_SSBS);
2298 } else {
2299 clear_pstate_bits(PSTATE_SSBS);
2300 }
2301 /* Don't need to rebuild hflags since SSBS is a nop */
2302 s->base.is_jmp = DISAS_TOO_MANY;
2303 return true;
2304 }
2305
trans_MSR_i_DIT(DisasContext * s,arg_i * a)2306 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2307 {
2308 if (!dc_isar_feature(aa64_dit, s)) {
2309 return false;
2310 }
2311 if (a->imm & 1) {
2312 set_pstate_bits(PSTATE_DIT);
2313 } else {
2314 clear_pstate_bits(PSTATE_DIT);
2315 }
2316 /* There's no need to rebuild hflags because DIT is a nop */
2317 s->base.is_jmp = DISAS_TOO_MANY;
2318 return true;
2319 }
2320
trans_MSR_i_TCO(DisasContext * s,arg_i * a)2321 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2322 {
2323 if (dc_isar_feature(aa64_mte, s)) {
2324 /* Full MTE is enabled -- set the TCO bit as directed. */
2325 if (a->imm & 1) {
2326 set_pstate_bits(PSTATE_TCO);
2327 } else {
2328 clear_pstate_bits(PSTATE_TCO);
2329 }
2330 gen_rebuild_hflags(s);
2331 /* Many factors, including TCO, go into MTE_ACTIVE. */
2332 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2333 return true;
2334 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2335 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2336 return true;
2337 } else {
2338 /* Insn not present */
2339 return false;
2340 }
2341 }
2342
trans_MSR_i_DAIFSET(DisasContext * s,arg_i * a)2343 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2344 {
2345 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2346 s->base.is_jmp = DISAS_TOO_MANY;
2347 return true;
2348 }
2349
trans_MSR_i_DAIFCLEAR(DisasContext * s,arg_i * a)2350 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2351 {
2352 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2353 /* Exit the cpu loop to re-evaluate pending IRQs. */
2354 s->base.is_jmp = DISAS_UPDATE_EXIT;
2355 return true;
2356 }
2357
trans_MSR_i_ALLINT(DisasContext * s,arg_i * a)2358 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2359 {
2360 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2361 return false;
2362 }
2363
2364 if (a->imm == 0) {
2365 clear_pstate_bits(PSTATE_ALLINT);
2366 } else if (s->current_el > 1) {
2367 set_pstate_bits(PSTATE_ALLINT);
2368 } else {
2369 gen_helper_msr_set_allint_el1(tcg_env);
2370 }
2371
2372 /* Exit the cpu loop to re-evaluate pending IRQs. */
2373 s->base.is_jmp = DISAS_UPDATE_EXIT;
2374 return true;
2375 }
2376
trans_MSR_i_SVCR(DisasContext * s,arg_MSR_i_SVCR * a)2377 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2378 {
2379 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2380 return false;
2381 }
2382 if (sme_access_check(s)) {
2383 int old = s->pstate_sm | (s->pstate_za << 1);
2384 int new = a->imm * 3;
2385
2386 if ((old ^ new) & a->mask) {
2387 /* At least one bit changes. */
2388 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2389 tcg_constant_i32(a->mask));
2390 s->base.is_jmp = DISAS_TOO_MANY;
2391 }
2392 }
2393 return true;
2394 }
2395
gen_get_nzcv(TCGv_i64 tcg_rt)2396 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2397 {
2398 TCGv_i32 tmp = tcg_temp_new_i32();
2399 TCGv_i32 nzcv = tcg_temp_new_i32();
2400
2401 /* build bit 31, N */
2402 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2403 /* build bit 30, Z */
2404 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2405 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2406 /* build bit 29, C */
2407 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2408 /* build bit 28, V */
2409 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2410 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2411 /* generate result */
2412 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2413 }
2414
gen_set_nzcv(TCGv_i64 tcg_rt)2415 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2416 {
2417 TCGv_i32 nzcv = tcg_temp_new_i32();
2418
2419 /* take NZCV from R[t] */
2420 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2421
2422 /* bit 31, N */
2423 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2424 /* bit 30, Z */
2425 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2426 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2427 /* bit 29, C */
2428 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2429 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2430 /* bit 28, V */
2431 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2432 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2433 }
2434
gen_sysreg_undef(DisasContext * s,bool isread,uint8_t op0,uint8_t op1,uint8_t op2,uint8_t crn,uint8_t crm,uint8_t rt)2435 static void gen_sysreg_undef(DisasContext *s, bool isread,
2436 uint8_t op0, uint8_t op1, uint8_t op2,
2437 uint8_t crn, uint8_t crm, uint8_t rt)
2438 {
2439 /*
2440 * Generate code to emit an UNDEF with correct syndrome
2441 * information for a failed system register access.
2442 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2443 * but if FEAT_IDST is implemented then read accesses to registers
2444 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2445 * syndrome.
2446 */
2447 uint32_t syndrome;
2448
2449 if (isread && dc_isar_feature(aa64_ids, s) &&
2450 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2451 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2452 } else {
2453 syndrome = syn_uncategorized();
2454 }
2455 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2456 }
2457
2458 /* MRS - move from system register
2459 * MSR (register) - move to system register
2460 * SYS
2461 * SYSL
2462 * These are all essentially the same insn in 'read' and 'write'
2463 * versions, with varying op0 fields.
2464 */
handle_sys(DisasContext * s,bool isread,unsigned int op0,unsigned int op1,unsigned int op2,unsigned int crn,unsigned int crm,unsigned int rt)2465 static void handle_sys(DisasContext *s, bool isread,
2466 unsigned int op0, unsigned int op1, unsigned int op2,
2467 unsigned int crn, unsigned int crm, unsigned int rt)
2468 {
2469 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2470 crn, crm, op0, op1, op2);
2471 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2472 bool need_exit_tb = false;
2473 bool nv_trap_to_el2 = false;
2474 bool nv_redirect_reg = false;
2475 bool skip_fp_access_checks = false;
2476 bool nv2_mem_redirect = false;
2477 TCGv_ptr tcg_ri = NULL;
2478 TCGv_i64 tcg_rt;
2479 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2480
2481 if (crn == 11 || crn == 15) {
2482 /*
2483 * Check for TIDCP trap, which must take precedence over
2484 * the UNDEF for "no such register" etc.
2485 */
2486 switch (s->current_el) {
2487 case 0:
2488 if (dc_isar_feature(aa64_tidcp1, s)) {
2489 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2490 }
2491 break;
2492 case 1:
2493 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2494 break;
2495 }
2496 }
2497
2498 if (!ri) {
2499 /* Unknown register; this might be a guest error or a QEMU
2500 * unimplemented feature.
2501 */
2502 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2503 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2504 isread ? "read" : "write", op0, op1, crn, crm, op2);
2505 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2506 return;
2507 }
2508
2509 if (s->nv2 && ri->nv2_redirect_offset) {
2510 /*
2511 * Some registers always redirect to memory; some only do so if
2512 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2513 * pairs which share an offset; see the table in R_CSRPQ).
2514 */
2515 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2516 nv2_mem_redirect = s->nv1;
2517 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2518 nv2_mem_redirect = !s->nv1;
2519 } else {
2520 nv2_mem_redirect = true;
2521 }
2522 }
2523
2524 /* Check access permissions */
2525 if (!cp_access_ok(s->current_el, ri, isread)) {
2526 /*
2527 * FEAT_NV/NV2 handling does not do the usual FP access checks
2528 * for registers only accessible at EL2 (though it *does* do them
2529 * for registers accessible at EL1).
2530 */
2531 skip_fp_access_checks = true;
2532 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2533 /*
2534 * This is one of the few EL2 registers which should redirect
2535 * to the equivalent EL1 register. We do that after running
2536 * the EL2 register's accessfn.
2537 */
2538 nv_redirect_reg = true;
2539 assert(!nv2_mem_redirect);
2540 } else if (nv2_mem_redirect) {
2541 /*
2542 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2543 * UNDEF to EL1.
2544 */
2545 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2546 /*
2547 * This register / instruction exists and is an EL2 register, so
2548 * we must trap to EL2 if accessed in nested virtualization EL1
2549 * instead of UNDEFing. We'll do that after the usual access checks.
2550 * (This makes a difference only for a couple of registers like
2551 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2552 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2553 * an accessfn which does nothing when called from EL1, because
2554 * the trap-to-EL3 controls which would apply to that register
2555 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2556 */
2557 nv_trap_to_el2 = true;
2558 } else {
2559 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2560 return;
2561 }
2562 }
2563
2564 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2565 /* Emit code to perform further access permissions checks at
2566 * runtime; this may result in an exception.
2567 */
2568 gen_a64_update_pc(s, 0);
2569 tcg_ri = tcg_temp_new_ptr();
2570 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2571 tcg_constant_i32(key),
2572 tcg_constant_i32(syndrome),
2573 tcg_constant_i32(isread));
2574 } else if (ri->type & ARM_CP_RAISES_EXC) {
2575 /*
2576 * The readfn or writefn might raise an exception;
2577 * synchronize the CPU state in case it does.
2578 */
2579 gen_a64_update_pc(s, 0);
2580 }
2581
2582 if (!skip_fp_access_checks) {
2583 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2584 return;
2585 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2586 return;
2587 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2588 return;
2589 }
2590 }
2591
2592 if (nv_trap_to_el2) {
2593 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2594 return;
2595 }
2596
2597 if (nv_redirect_reg) {
2598 /*
2599 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2600 * Conveniently in all cases the encoding of the EL1 register is
2601 * identical to the EL2 register except that opc1 is 0.
2602 * Get the reginfo for the EL1 register to use for the actual access.
2603 * We don't use the EL1 register's access function, and
2604 * fine-grained-traps on EL1 also do not apply here.
2605 */
2606 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2607 crn, crm, op0, 0, op2);
2608 ri = get_arm_cp_reginfo(s->cp_regs, key);
2609 assert(ri);
2610 assert(cp_access_ok(s->current_el, ri, isread));
2611 /*
2612 * We might not have done an update_pc earlier, so check we don't
2613 * need it. We could support this in future if necessary.
2614 */
2615 assert(!(ri->type & ARM_CP_RAISES_EXC));
2616 }
2617
2618 if (nv2_mem_redirect) {
2619 /*
2620 * This system register is being redirected into an EL2 memory access.
2621 * This means it is not an IO operation, doesn't change hflags,
2622 * and need not end the TB, because it has no side effects.
2623 *
2624 * The access is 64-bit single copy atomic, guaranteed aligned because
2625 * of the definition of VCNR_EL2. Its endianness depends on
2626 * SCTLR_EL2.EE, not on the data endianness of EL1.
2627 * It is done under either the EL2 translation regime or the EL2&0
2628 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2629 * PSTATE.PAN is 0.
2630 */
2631 TCGv_i64 ptr = tcg_temp_new_i64();
2632 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2633 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2634 int memidx = arm_to_core_mmu_idx(armmemidx);
2635 uint32_t syn;
2636
2637 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2638
2639 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2640 tcg_gen_addi_i64(ptr, ptr,
2641 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2642 tcg_rt = cpu_reg(s, rt);
2643
2644 syn = syn_data_abort_vncr(0, !isread, 0);
2645 disas_set_insn_syndrome(s, syn);
2646 if (isread) {
2647 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2648 } else {
2649 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2650 }
2651 return;
2652 }
2653
2654 /* Handle special cases first */
2655 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2656 case 0:
2657 break;
2658 case ARM_CP_NOP:
2659 return;
2660 case ARM_CP_NZCV:
2661 tcg_rt = cpu_reg(s, rt);
2662 if (isread) {
2663 gen_get_nzcv(tcg_rt);
2664 } else {
2665 gen_set_nzcv(tcg_rt);
2666 }
2667 return;
2668 case ARM_CP_CURRENTEL:
2669 {
2670 /*
2671 * Reads as current EL value from pstate, which is
2672 * guaranteed to be constant by the tb flags.
2673 * For nested virt we should report EL2.
2674 */
2675 int el = s->nv ? 2 : s->current_el;
2676 tcg_rt = cpu_reg(s, rt);
2677 tcg_gen_movi_i64(tcg_rt, el << 2);
2678 return;
2679 }
2680 case ARM_CP_DC_ZVA:
2681 /* Writes clear the aligned block of memory which rt points into. */
2682 if (s->mte_active[0]) {
2683 int desc = 0;
2684
2685 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2686 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2687 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2688
2689 tcg_rt = tcg_temp_new_i64();
2690 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2691 tcg_constant_i32(desc), cpu_reg(s, rt));
2692 } else {
2693 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2694 }
2695 gen_helper_dc_zva(tcg_env, tcg_rt);
2696 return;
2697 case ARM_CP_DC_GVA:
2698 {
2699 TCGv_i64 clean_addr, tag;
2700
2701 /*
2702 * DC_GVA, like DC_ZVA, requires that we supply the original
2703 * pointer for an invalid page. Probe that address first.
2704 */
2705 tcg_rt = cpu_reg(s, rt);
2706 clean_addr = clean_data_tbi(s, tcg_rt);
2707 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2708
2709 if (s->ata[0]) {
2710 /* Extract the tag from the register to match STZGM. */
2711 tag = tcg_temp_new_i64();
2712 tcg_gen_shri_i64(tag, tcg_rt, 56);
2713 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2714 }
2715 }
2716 return;
2717 case ARM_CP_DC_GZVA:
2718 {
2719 TCGv_i64 clean_addr, tag;
2720
2721 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2722 tcg_rt = cpu_reg(s, rt);
2723 clean_addr = clean_data_tbi(s, tcg_rt);
2724 gen_helper_dc_zva(tcg_env, clean_addr);
2725
2726 if (s->ata[0]) {
2727 /* Extract the tag from the register to match STZGM. */
2728 tag = tcg_temp_new_i64();
2729 tcg_gen_shri_i64(tag, tcg_rt, 56);
2730 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2731 }
2732 }
2733 return;
2734 default:
2735 g_assert_not_reached();
2736 }
2737
2738 if (ri->type & ARM_CP_IO) {
2739 /* I/O operations must end the TB here (whether read or write) */
2740 need_exit_tb = translator_io_start(&s->base);
2741 }
2742
2743 tcg_rt = cpu_reg(s, rt);
2744
2745 if (isread) {
2746 if (ri->type & ARM_CP_CONST) {
2747 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2748 } else if (ri->readfn) {
2749 if (!tcg_ri) {
2750 tcg_ri = gen_lookup_cp_reg(key);
2751 }
2752 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2753 } else {
2754 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2755 }
2756 } else {
2757 if (ri->type & ARM_CP_CONST) {
2758 /* If not forbidden by access permissions, treat as WI */
2759 return;
2760 } else if (ri->writefn) {
2761 if (!tcg_ri) {
2762 tcg_ri = gen_lookup_cp_reg(key);
2763 }
2764 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2765 } else {
2766 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2767 }
2768 }
2769
2770 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2771 /*
2772 * A write to any coprocessor register that ends a TB
2773 * must rebuild the hflags for the next TB.
2774 */
2775 gen_rebuild_hflags(s);
2776 /*
2777 * We default to ending the TB on a coprocessor register write,
2778 * but allow this to be suppressed by the register definition
2779 * (usually only necessary to work around guest bugs).
2780 */
2781 need_exit_tb = true;
2782 }
2783 if (need_exit_tb) {
2784 s->base.is_jmp = DISAS_UPDATE_EXIT;
2785 }
2786 }
2787
trans_SYS(DisasContext * s,arg_SYS * a)2788 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2789 {
2790 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2791 return true;
2792 }
2793
trans_SVC(DisasContext * s,arg_i * a)2794 static bool trans_SVC(DisasContext *s, arg_i *a)
2795 {
2796 /*
2797 * For SVC, HVC and SMC we advance the single-step state
2798 * machine before taking the exception. This is architecturally
2799 * mandated, to ensure that single-stepping a system call
2800 * instruction works properly.
2801 */
2802 uint32_t syndrome = syn_aa64_svc(a->imm);
2803 if (s->fgt_svc) {
2804 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2805 return true;
2806 }
2807 gen_ss_advance(s);
2808 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2809 return true;
2810 }
2811
trans_HVC(DisasContext * s,arg_i * a)2812 static bool trans_HVC(DisasContext *s, arg_i *a)
2813 {
2814 int target_el = s->current_el == 3 ? 3 : 2;
2815
2816 if (s->current_el == 0) {
2817 unallocated_encoding(s);
2818 return true;
2819 }
2820 /*
2821 * The pre HVC helper handles cases when HVC gets trapped
2822 * as an undefined insn by runtime configuration.
2823 */
2824 gen_a64_update_pc(s, 0);
2825 gen_helper_pre_hvc(tcg_env);
2826 /* Architecture requires ss advance before we do the actual work */
2827 gen_ss_advance(s);
2828 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2829 return true;
2830 }
2831
trans_SMC(DisasContext * s,arg_i * a)2832 static bool trans_SMC(DisasContext *s, arg_i *a)
2833 {
2834 if (s->current_el == 0) {
2835 unallocated_encoding(s);
2836 return true;
2837 }
2838 gen_a64_update_pc(s, 0);
2839 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2840 /* Architecture requires ss advance before we do the actual work */
2841 gen_ss_advance(s);
2842 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2843 return true;
2844 }
2845
trans_BRK(DisasContext * s,arg_i * a)2846 static bool trans_BRK(DisasContext *s, arg_i *a)
2847 {
2848 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2849 return true;
2850 }
2851
trans_HLT(DisasContext * s,arg_i * a)2852 static bool trans_HLT(DisasContext *s, arg_i *a)
2853 {
2854 /*
2855 * HLT. This has two purposes.
2856 * Architecturally, it is an external halting debug instruction.
2857 * Since QEMU doesn't implement external debug, we treat this as
2858 * it is required for halting debug disabled: it will UNDEF.
2859 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2860 */
2861 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2862 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2863 } else {
2864 unallocated_encoding(s);
2865 }
2866 return true;
2867 }
2868
2869 /*
2870 * Load/Store exclusive instructions are implemented by remembering
2871 * the value/address loaded, and seeing if these are the same
2872 * when the store is performed. This is not actually the architecturally
2873 * mandated semantics, but it works for typical guest code sequences
2874 * and avoids having to monitor regular stores.
2875 *
2876 * The store exclusive uses the atomic cmpxchg primitives to avoid
2877 * races in multi-threaded linux-user and when MTTCG softmmu is
2878 * enabled.
2879 */
gen_load_exclusive(DisasContext * s,int rt,int rt2,int rn,int size,bool is_pair)2880 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2881 int size, bool is_pair)
2882 {
2883 int idx = get_mem_index(s);
2884 TCGv_i64 dirty_addr, clean_addr;
2885 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2886
2887 s->is_ldex = true;
2888 dirty_addr = cpu_reg_sp(s, rn);
2889 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2890
2891 g_assert(size <= 3);
2892 if (is_pair) {
2893 g_assert(size >= 2);
2894 if (size == 2) {
2895 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2896 if (s->be_data == MO_LE) {
2897 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2898 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2899 } else {
2900 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2901 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2902 }
2903 } else {
2904 TCGv_i128 t16 = tcg_temp_new_i128();
2905
2906 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2907
2908 if (s->be_data == MO_LE) {
2909 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2910 cpu_exclusive_high, t16);
2911 } else {
2912 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2913 cpu_exclusive_val, t16);
2914 }
2915 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2916 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2917 }
2918 } else {
2919 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2920 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2921 }
2922 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2923 }
2924
gen_store_exclusive(DisasContext * s,int rd,int rt,int rt2,int rn,int size,int is_pair)2925 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2926 int rn, int size, int is_pair)
2927 {
2928 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2929 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2930 * [addr] = {Rt};
2931 * if (is_pair) {
2932 * [addr + datasize] = {Rt2};
2933 * }
2934 * {Rd} = 0;
2935 * } else {
2936 * {Rd} = 1;
2937 * }
2938 * env->exclusive_addr = -1;
2939 */
2940 TCGLabel *fail_label = gen_new_label();
2941 TCGLabel *done_label = gen_new_label();
2942 TCGv_i64 tmp, clean_addr;
2943 MemOp memop;
2944
2945 /*
2946 * FIXME: We are out of spec here. We have recorded only the address
2947 * from load_exclusive, not the entire range, and we assume that the
2948 * size of the access on both sides match. The architecture allows the
2949 * store to be smaller than the load, so long as the stored bytes are
2950 * within the range recorded by the load.
2951 */
2952
2953 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2954 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2955 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2956
2957 /*
2958 * The write, and any associated faults, only happen if the virtual
2959 * and physical addresses pass the exclusive monitor check. These
2960 * faults are exceedingly unlikely, because normally the guest uses
2961 * the exact same address register for the load_exclusive, and we
2962 * would have recognized these faults there.
2963 *
2964 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2965 * unaligned 4-byte write within the range of an aligned 8-byte load.
2966 * With LSE2, the store would need to cross a 16-byte boundary when the
2967 * load did not, which would mean the store is outside the range
2968 * recorded for the monitor, which would have failed a corrected monitor
2969 * check above. For now, we assume no size change and retain the
2970 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2971 *
2972 * It is possible to trigger an MTE fault, by performing the load with
2973 * a virtual address with a valid tag and performing the store with the
2974 * same virtual address and a different invalid tag.
2975 */
2976 memop = size + is_pair;
2977 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2978 memop |= MO_ALIGN;
2979 }
2980 memop = finalize_memop(s, memop);
2981 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2982
2983 tmp = tcg_temp_new_i64();
2984 if (is_pair) {
2985 if (size == 2) {
2986 if (s->be_data == MO_LE) {
2987 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2988 } else {
2989 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2990 }
2991 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2992 cpu_exclusive_val, tmp,
2993 get_mem_index(s), memop);
2994 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2995 } else {
2996 TCGv_i128 t16 = tcg_temp_new_i128();
2997 TCGv_i128 c16 = tcg_temp_new_i128();
2998 TCGv_i64 a, b;
2999
3000 if (s->be_data == MO_LE) {
3001 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
3002 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
3003 cpu_exclusive_high);
3004 } else {
3005 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
3006 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
3007 cpu_exclusive_val);
3008 }
3009
3010 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
3011 get_mem_index(s), memop);
3012
3013 a = tcg_temp_new_i64();
3014 b = tcg_temp_new_i64();
3015 if (s->be_data == MO_LE) {
3016 tcg_gen_extr_i128_i64(a, b, t16);
3017 } else {
3018 tcg_gen_extr_i128_i64(b, a, t16);
3019 }
3020
3021 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
3022 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
3023 tcg_gen_or_i64(tmp, a, b);
3024
3025 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
3026 }
3027 } else {
3028 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
3029 cpu_reg(s, rt), get_mem_index(s), memop);
3030 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
3031 }
3032 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
3033 tcg_gen_br(done_label);
3034
3035 gen_set_label(fail_label);
3036 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
3037 gen_set_label(done_label);
3038 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
3039 }
3040
gen_compare_and_swap(DisasContext * s,int rs,int rt,int rn,int size)3041 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
3042 int rn, int size)
3043 {
3044 TCGv_i64 tcg_rs = cpu_reg(s, rs);
3045 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3046 int memidx = get_mem_index(s);
3047 TCGv_i64 clean_addr;
3048 MemOp memop;
3049
3050 if (rn == 31) {
3051 gen_check_sp_alignment(s);
3052 }
3053 memop = check_atomic_align(s, rn, size);
3054 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3055 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
3056 memidx, memop);
3057 }
3058
gen_compare_and_swap_pair(DisasContext * s,int rs,int rt,int rn,int size)3059 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
3060 int rn, int size)
3061 {
3062 TCGv_i64 s1 = cpu_reg(s, rs);
3063 TCGv_i64 s2 = cpu_reg(s, rs + 1);
3064 TCGv_i64 t1 = cpu_reg(s, rt);
3065 TCGv_i64 t2 = cpu_reg(s, rt + 1);
3066 TCGv_i64 clean_addr;
3067 int memidx = get_mem_index(s);
3068 MemOp memop;
3069
3070 if (rn == 31) {
3071 gen_check_sp_alignment(s);
3072 }
3073
3074 /* This is a single atomic access, despite the "pair". */
3075 memop = check_atomic_align(s, rn, size + 1);
3076 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3077
3078 if (size == 2) {
3079 TCGv_i64 cmp = tcg_temp_new_i64();
3080 TCGv_i64 val = tcg_temp_new_i64();
3081
3082 if (s->be_data == MO_LE) {
3083 tcg_gen_concat32_i64(val, t1, t2);
3084 tcg_gen_concat32_i64(cmp, s1, s2);
3085 } else {
3086 tcg_gen_concat32_i64(val, t2, t1);
3087 tcg_gen_concat32_i64(cmp, s2, s1);
3088 }
3089
3090 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
3091
3092 if (s->be_data == MO_LE) {
3093 tcg_gen_extr32_i64(s1, s2, cmp);
3094 } else {
3095 tcg_gen_extr32_i64(s2, s1, cmp);
3096 }
3097 } else {
3098 TCGv_i128 cmp = tcg_temp_new_i128();
3099 TCGv_i128 val = tcg_temp_new_i128();
3100
3101 if (s->be_data == MO_LE) {
3102 tcg_gen_concat_i64_i128(val, t1, t2);
3103 tcg_gen_concat_i64_i128(cmp, s1, s2);
3104 } else {
3105 tcg_gen_concat_i64_i128(val, t2, t1);
3106 tcg_gen_concat_i64_i128(cmp, s2, s1);
3107 }
3108
3109 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
3110
3111 if (s->be_data == MO_LE) {
3112 tcg_gen_extr_i128_i64(s1, s2, cmp);
3113 } else {
3114 tcg_gen_extr_i128_i64(s2, s1, cmp);
3115 }
3116 }
3117 }
3118
3119 /*
3120 * Compute the ISS.SF bit for syndrome information if an exception
3121 * is taken on a load or store. This indicates whether the instruction
3122 * is accessing a 32-bit or 64-bit register. This logic is derived
3123 * from the ARMv8 specs for LDR (Shared decode for all encodings).
3124 */
ldst_iss_sf(int size,bool sign,bool ext)3125 static bool ldst_iss_sf(int size, bool sign, bool ext)
3126 {
3127
3128 if (sign) {
3129 /*
3130 * Signed loads are 64 bit results if we are not going to
3131 * do a zero-extend from 32 to 64 after the load.
3132 * (For a store, sign and ext are always false.)
3133 */
3134 return !ext;
3135 } else {
3136 /* Unsigned loads/stores work at the specified size */
3137 return size == MO_64;
3138 }
3139 }
3140
trans_STXR(DisasContext * s,arg_stxr * a)3141 static bool trans_STXR(DisasContext *s, arg_stxr *a)
3142 {
3143 if (a->rn == 31) {
3144 gen_check_sp_alignment(s);
3145 }
3146 if (a->lasr) {
3147 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3148 }
3149 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
3150 return true;
3151 }
3152
trans_LDXR(DisasContext * s,arg_stxr * a)3153 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
3154 {
3155 if (a->rn == 31) {
3156 gen_check_sp_alignment(s);
3157 }
3158 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
3159 if (a->lasr) {
3160 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3161 }
3162 return true;
3163 }
3164
trans_STLR(DisasContext * s,arg_stlr * a)3165 static bool trans_STLR(DisasContext *s, arg_stlr *a)
3166 {
3167 TCGv_i64 clean_addr;
3168 MemOp memop;
3169 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3170
3171 /*
3172 * StoreLORelease is the same as Store-Release for QEMU, but
3173 * needs the feature-test.
3174 */
3175 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3176 return false;
3177 }
3178 /* Generate ISS for non-exclusive accesses including LASR. */
3179 if (a->rn == 31) {
3180 gen_check_sp_alignment(s);
3181 }
3182 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3183 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
3184 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3185 true, a->rn != 31, memop);
3186 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
3187 iss_sf, a->lasr);
3188 return true;
3189 }
3190
trans_LDAR(DisasContext * s,arg_stlr * a)3191 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
3192 {
3193 TCGv_i64 clean_addr;
3194 MemOp memop;
3195 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3196
3197 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
3198 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3199 return false;
3200 }
3201 /* Generate ISS for non-exclusive accesses including LASR. */
3202 if (a->rn == 31) {
3203 gen_check_sp_alignment(s);
3204 }
3205 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
3206 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3207 false, a->rn != 31, memop);
3208 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
3209 a->rt, iss_sf, a->lasr);
3210 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3211 return true;
3212 }
3213
trans_STXP(DisasContext * s,arg_stxr * a)3214 static bool trans_STXP(DisasContext *s, arg_stxr *a)
3215 {
3216 if (a->rn == 31) {
3217 gen_check_sp_alignment(s);
3218 }
3219 if (a->lasr) {
3220 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3221 }
3222 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3223 return true;
3224 }
3225
trans_LDXP(DisasContext * s,arg_stxr * a)3226 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3227 {
3228 if (a->rn == 31) {
3229 gen_check_sp_alignment(s);
3230 }
3231 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3232 if (a->lasr) {
3233 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3234 }
3235 return true;
3236 }
3237
trans_CASP(DisasContext * s,arg_CASP * a)3238 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3239 {
3240 if (!dc_isar_feature(aa64_atomics, s)) {
3241 return false;
3242 }
3243 if (((a->rt | a->rs) & 1) != 0) {
3244 return false;
3245 }
3246
3247 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3248 return true;
3249 }
3250
trans_CAS(DisasContext * s,arg_CAS * a)3251 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3252 {
3253 if (!dc_isar_feature(aa64_atomics, s)) {
3254 return false;
3255 }
3256 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3257 return true;
3258 }
3259
trans_LD_lit(DisasContext * s,arg_ldlit * a)3260 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3261 {
3262 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3263 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3264 TCGv_i64 clean_addr = tcg_temp_new_i64();
3265 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3266
3267 gen_pc_plus_diff(s, clean_addr, a->imm);
3268 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3269 false, true, a->rt, iss_sf, false);
3270 return true;
3271 }
3272
trans_LD_lit_v(DisasContext * s,arg_ldlit * a)3273 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3274 {
3275 /* Load register (literal), vector version */
3276 TCGv_i64 clean_addr;
3277 MemOp memop;
3278
3279 if (!fp_access_check(s)) {
3280 return true;
3281 }
3282 memop = finalize_memop_asimd(s, a->sz);
3283 clean_addr = tcg_temp_new_i64();
3284 gen_pc_plus_diff(s, clean_addr, a->imm);
3285 do_fp_ld(s, a->rt, clean_addr, memop);
3286 return true;
3287 }
3288
op_addr_ldstpair_pre(DisasContext * s,arg_ldstpair * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,uint64_t offset,bool is_store,MemOp mop)3289 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3290 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3291 uint64_t offset, bool is_store, MemOp mop)
3292 {
3293 if (a->rn == 31) {
3294 gen_check_sp_alignment(s);
3295 }
3296
3297 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3298 if (!a->p) {
3299 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3300 }
3301
3302 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3303 (a->w || a->rn != 31), 2 << a->sz, mop);
3304 }
3305
op_addr_ldstpair_post(DisasContext * s,arg_ldstpair * a,TCGv_i64 dirty_addr,uint64_t offset)3306 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3307 TCGv_i64 dirty_addr, uint64_t offset)
3308 {
3309 if (a->w) {
3310 if (a->p) {
3311 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3312 }
3313 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3314 }
3315 }
3316
trans_STP(DisasContext * s,arg_ldstpair * a)3317 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3318 {
3319 uint64_t offset = a->imm << a->sz;
3320 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3321 MemOp mop = finalize_memop(s, a->sz);
3322
3323 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3324 tcg_rt = cpu_reg(s, a->rt);
3325 tcg_rt2 = cpu_reg(s, a->rt2);
3326 /*
3327 * We built mop above for the single logical access -- rebuild it
3328 * now for the paired operation.
3329 *
3330 * With LSE2, non-sign-extending pairs are treated atomically if
3331 * aligned, and if unaligned one of the pair will be completely
3332 * within a 16-byte block and that element will be atomic.
3333 * Otherwise each element is separately atomic.
3334 * In all cases, issue one operation with the correct atomicity.
3335 */
3336 mop = a->sz + 1;
3337 if (s->align_mem) {
3338 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3339 }
3340 mop = finalize_memop_pair(s, mop);
3341 if (a->sz == 2) {
3342 TCGv_i64 tmp = tcg_temp_new_i64();
3343
3344 if (s->be_data == MO_LE) {
3345 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3346 } else {
3347 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3348 }
3349 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3350 } else {
3351 TCGv_i128 tmp = tcg_temp_new_i128();
3352
3353 if (s->be_data == MO_LE) {
3354 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3355 } else {
3356 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3357 }
3358 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3359 }
3360 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3361 return true;
3362 }
3363
trans_LDP(DisasContext * s,arg_ldstpair * a)3364 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3365 {
3366 uint64_t offset = a->imm << a->sz;
3367 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3368 MemOp mop = finalize_memop(s, a->sz);
3369
3370 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3371 tcg_rt = cpu_reg(s, a->rt);
3372 tcg_rt2 = cpu_reg(s, a->rt2);
3373
3374 /*
3375 * We built mop above for the single logical access -- rebuild it
3376 * now for the paired operation.
3377 *
3378 * With LSE2, non-sign-extending pairs are treated atomically if
3379 * aligned, and if unaligned one of the pair will be completely
3380 * within a 16-byte block and that element will be atomic.
3381 * Otherwise each element is separately atomic.
3382 * In all cases, issue one operation with the correct atomicity.
3383 *
3384 * This treats sign-extending loads like zero-extending loads,
3385 * since that reuses the most code below.
3386 */
3387 mop = a->sz + 1;
3388 if (s->align_mem) {
3389 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3390 }
3391 mop = finalize_memop_pair(s, mop);
3392 if (a->sz == 2) {
3393 int o2 = s->be_data == MO_LE ? 32 : 0;
3394 int o1 = o2 ^ 32;
3395
3396 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3397 if (a->sign) {
3398 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3399 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3400 } else {
3401 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3402 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3403 }
3404 } else {
3405 TCGv_i128 tmp = tcg_temp_new_i128();
3406
3407 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3408 if (s->be_data == MO_LE) {
3409 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3410 } else {
3411 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3412 }
3413 }
3414 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3415 return true;
3416 }
3417
trans_STP_v(DisasContext * s,arg_ldstpair * a)3418 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3419 {
3420 uint64_t offset = a->imm << a->sz;
3421 TCGv_i64 clean_addr, dirty_addr;
3422 MemOp mop;
3423
3424 if (!fp_access_check(s)) {
3425 return true;
3426 }
3427
3428 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3429 mop = finalize_memop_asimd(s, a->sz);
3430 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3431 do_fp_st(s, a->rt, clean_addr, mop);
3432 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3433 do_fp_st(s, a->rt2, clean_addr, mop);
3434 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3435 return true;
3436 }
3437
trans_LDP_v(DisasContext * s,arg_ldstpair * a)3438 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3439 {
3440 uint64_t offset = a->imm << a->sz;
3441 TCGv_i64 clean_addr, dirty_addr;
3442 MemOp mop;
3443
3444 if (!fp_access_check(s)) {
3445 return true;
3446 }
3447
3448 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3449 mop = finalize_memop_asimd(s, a->sz);
3450 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3451 do_fp_ld(s, a->rt, clean_addr, mop);
3452 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3453 do_fp_ld(s, a->rt2, clean_addr, mop);
3454 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3455 return true;
3456 }
3457
trans_STGP(DisasContext * s,arg_ldstpair * a)3458 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3459 {
3460 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3461 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3462 MemOp mop;
3463 TCGv_i128 tmp;
3464
3465 /* STGP only comes in one size. */
3466 tcg_debug_assert(a->sz == MO_64);
3467
3468 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3469 return false;
3470 }
3471
3472 if (a->rn == 31) {
3473 gen_check_sp_alignment(s);
3474 }
3475
3476 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3477 if (!a->p) {
3478 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3479 }
3480
3481 clean_addr = clean_data_tbi(s, dirty_addr);
3482 tcg_rt = cpu_reg(s, a->rt);
3483 tcg_rt2 = cpu_reg(s, a->rt2);
3484
3485 /*
3486 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3487 * and one tag operation. We implement it as one single aligned 16-byte
3488 * memory operation for convenience. Note that the alignment ensures
3489 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3490 */
3491 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3492
3493 tmp = tcg_temp_new_i128();
3494 if (s->be_data == MO_LE) {
3495 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3496 } else {
3497 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3498 }
3499 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3500
3501 /* Perform the tag store, if tag access enabled. */
3502 if (s->ata[0]) {
3503 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3504 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3505 } else {
3506 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3507 }
3508 }
3509
3510 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3511 return true;
3512 }
3513
op_addr_ldst_imm_pre(DisasContext * s,arg_ldst_imm * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,uint64_t offset,bool is_store,MemOp mop)3514 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3515 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3516 uint64_t offset, bool is_store, MemOp mop)
3517 {
3518 int memidx;
3519
3520 if (a->rn == 31) {
3521 gen_check_sp_alignment(s);
3522 }
3523
3524 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3525 if (!a->p) {
3526 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3527 }
3528 memidx = get_a64_user_mem_index(s, a->unpriv);
3529 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3530 a->w || a->rn != 31,
3531 mop, a->unpriv, memidx);
3532 }
3533
op_addr_ldst_imm_post(DisasContext * s,arg_ldst_imm * a,TCGv_i64 dirty_addr,uint64_t offset)3534 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3535 TCGv_i64 dirty_addr, uint64_t offset)
3536 {
3537 if (a->w) {
3538 if (a->p) {
3539 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3540 }
3541 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3542 }
3543 }
3544
trans_STR_i(DisasContext * s,arg_ldst_imm * a)3545 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3546 {
3547 bool iss_sf, iss_valid = !a->w;
3548 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3549 int memidx = get_a64_user_mem_index(s, a->unpriv);
3550 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3551
3552 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3553
3554 tcg_rt = cpu_reg(s, a->rt);
3555 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3556
3557 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3558 iss_valid, a->rt, iss_sf, false);
3559 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3560 return true;
3561 }
3562
trans_LDR_i(DisasContext * s,arg_ldst_imm * a)3563 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3564 {
3565 bool iss_sf, iss_valid = !a->w;
3566 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3567 int memidx = get_a64_user_mem_index(s, a->unpriv);
3568 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3569
3570 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3571
3572 tcg_rt = cpu_reg(s, a->rt);
3573 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3574
3575 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3576 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3577 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3578 return true;
3579 }
3580
trans_STR_v_i(DisasContext * s,arg_ldst_imm * a)3581 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3582 {
3583 TCGv_i64 clean_addr, dirty_addr;
3584 MemOp mop;
3585
3586 if (!fp_access_check(s)) {
3587 return true;
3588 }
3589 mop = finalize_memop_asimd(s, a->sz);
3590 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3591 do_fp_st(s, a->rt, clean_addr, mop);
3592 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3593 return true;
3594 }
3595
trans_LDR_v_i(DisasContext * s,arg_ldst_imm * a)3596 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3597 {
3598 TCGv_i64 clean_addr, dirty_addr;
3599 MemOp mop;
3600
3601 if (!fp_access_check(s)) {
3602 return true;
3603 }
3604 mop = finalize_memop_asimd(s, a->sz);
3605 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3606 do_fp_ld(s, a->rt, clean_addr, mop);
3607 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3608 return true;
3609 }
3610
op_addr_ldst_pre(DisasContext * s,arg_ldst * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,bool is_store,MemOp memop)3611 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3612 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3613 bool is_store, MemOp memop)
3614 {
3615 TCGv_i64 tcg_rm;
3616
3617 if (a->rn == 31) {
3618 gen_check_sp_alignment(s);
3619 }
3620 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3621
3622 tcg_rm = read_cpu_reg(s, a->rm, 1);
3623 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3624
3625 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3626 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3627 }
3628
trans_LDR(DisasContext * s,arg_ldst * a)3629 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3630 {
3631 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3632 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3633 MemOp memop;
3634
3635 if (extract32(a->opt, 1, 1) == 0) {
3636 return false;
3637 }
3638
3639 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3640 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3641 tcg_rt = cpu_reg(s, a->rt);
3642 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3643 a->ext, true, a->rt, iss_sf, false);
3644 return true;
3645 }
3646
trans_STR(DisasContext * s,arg_ldst * a)3647 static bool trans_STR(DisasContext *s, arg_ldst *a)
3648 {
3649 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3650 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3651 MemOp memop;
3652
3653 if (extract32(a->opt, 1, 1) == 0) {
3654 return false;
3655 }
3656
3657 memop = finalize_memop(s, a->sz);
3658 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3659 tcg_rt = cpu_reg(s, a->rt);
3660 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3661 return true;
3662 }
3663
trans_LDR_v(DisasContext * s,arg_ldst * a)3664 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3665 {
3666 TCGv_i64 clean_addr, dirty_addr;
3667 MemOp memop;
3668
3669 if (extract32(a->opt, 1, 1) == 0) {
3670 return false;
3671 }
3672
3673 if (!fp_access_check(s)) {
3674 return true;
3675 }
3676
3677 memop = finalize_memop_asimd(s, a->sz);
3678 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3679 do_fp_ld(s, a->rt, clean_addr, memop);
3680 return true;
3681 }
3682
trans_STR_v(DisasContext * s,arg_ldst * a)3683 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3684 {
3685 TCGv_i64 clean_addr, dirty_addr;
3686 MemOp memop;
3687
3688 if (extract32(a->opt, 1, 1) == 0) {
3689 return false;
3690 }
3691
3692 if (!fp_access_check(s)) {
3693 return true;
3694 }
3695
3696 memop = finalize_memop_asimd(s, a->sz);
3697 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3698 do_fp_st(s, a->rt, clean_addr, memop);
3699 return true;
3700 }
3701
3702
do_atomic_ld(DisasContext * s,arg_atomic * a,AtomicThreeOpFn * fn,int sign,bool invert)3703 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3704 int sign, bool invert)
3705 {
3706 MemOp mop = a->sz | sign;
3707 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3708
3709 if (a->rn == 31) {
3710 gen_check_sp_alignment(s);
3711 }
3712 mop = check_atomic_align(s, a->rn, mop);
3713 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3714 a->rn != 31, mop);
3715 tcg_rs = read_cpu_reg(s, a->rs, true);
3716 tcg_rt = cpu_reg(s, a->rt);
3717 if (invert) {
3718 tcg_gen_not_i64(tcg_rs, tcg_rs);
3719 }
3720 /*
3721 * The tcg atomic primitives are all full barriers. Therefore we
3722 * can ignore the Acquire and Release bits of this instruction.
3723 */
3724 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3725
3726 if (mop & MO_SIGN) {
3727 switch (a->sz) {
3728 case MO_8:
3729 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3730 break;
3731 case MO_16:
3732 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3733 break;
3734 case MO_32:
3735 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3736 break;
3737 case MO_64:
3738 break;
3739 default:
3740 g_assert_not_reached();
3741 }
3742 }
3743 return true;
3744 }
3745
3746 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3747 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3748 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3749 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
TRANS_FEAT(LDSMAX,aa64_atomics,do_atomic_ld,a,tcg_gen_atomic_fetch_smax_i64,MO_SIGN,false)3750 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3751 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3752 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3753 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3754 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3755
3756 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3757 {
3758 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3759 TCGv_i64 clean_addr;
3760 MemOp mop;
3761
3762 if (!dc_isar_feature(aa64_atomics, s) ||
3763 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3764 return false;
3765 }
3766 if (a->rn == 31) {
3767 gen_check_sp_alignment(s);
3768 }
3769 mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3770 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3771 a->rn != 31, mop);
3772 /*
3773 * LDAPR* are a special case because they are a simple load, not a
3774 * fetch-and-do-something op.
3775 * The architectural consistency requirements here are weaker than
3776 * full load-acquire (we only need "load-acquire processor consistent"),
3777 * but we choose to implement them as full LDAQ.
3778 */
3779 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3780 true, a->rt, iss_sf, true);
3781 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3782 return true;
3783 }
3784
trans_LDRA(DisasContext * s,arg_LDRA * a)3785 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3786 {
3787 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3788 MemOp memop;
3789
3790 /* Load with pointer authentication */
3791 if (!dc_isar_feature(aa64_pauth, s)) {
3792 return false;
3793 }
3794
3795 if (a->rn == 31) {
3796 gen_check_sp_alignment(s);
3797 }
3798 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3799
3800 if (s->pauth_active) {
3801 if (!a->m) {
3802 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3803 tcg_constant_i64(0));
3804 } else {
3805 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3806 tcg_constant_i64(0));
3807 }
3808 }
3809
3810 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3811
3812 memop = finalize_memop(s, MO_64);
3813
3814 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3815 clean_addr = gen_mte_check1(s, dirty_addr, false,
3816 a->w || a->rn != 31, memop);
3817
3818 tcg_rt = cpu_reg(s, a->rt);
3819 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3820 /* extend */ false, /* iss_valid */ !a->w,
3821 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3822
3823 if (a->w) {
3824 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3825 }
3826 return true;
3827 }
3828
trans_LDAPR_i(DisasContext * s,arg_ldapr_stlr_i * a)3829 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3830 {
3831 TCGv_i64 clean_addr, dirty_addr;
3832 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3833 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3834
3835 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3836 return false;
3837 }
3838
3839 if (a->rn == 31) {
3840 gen_check_sp_alignment(s);
3841 }
3842
3843 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3844 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3845 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3846 clean_addr = clean_data_tbi(s, dirty_addr);
3847
3848 /*
3849 * Load-AcquirePC semantics; we implement as the slightly more
3850 * restrictive Load-Acquire.
3851 */
3852 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3853 a->rt, iss_sf, true);
3854 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3855 return true;
3856 }
3857
trans_STLR_i(DisasContext * s,arg_ldapr_stlr_i * a)3858 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3859 {
3860 TCGv_i64 clean_addr, dirty_addr;
3861 MemOp mop = a->sz;
3862 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3863
3864 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3865 return false;
3866 }
3867
3868 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3869
3870 if (a->rn == 31) {
3871 gen_check_sp_alignment(s);
3872 }
3873
3874 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3875 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3876 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3877 clean_addr = clean_data_tbi(s, dirty_addr);
3878
3879 /* Store-Release semantics */
3880 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3881 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3882 return true;
3883 }
3884
trans_LD_mult(DisasContext * s,arg_ldst_mult * a)3885 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3886 {
3887 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3888 MemOp endian, align, mop;
3889
3890 int total; /* total bytes */
3891 int elements; /* elements per vector */
3892 int r;
3893 int size = a->sz;
3894
3895 if (!a->p && a->rm != 0) {
3896 /* For non-postindexed accesses the Rm field must be 0 */
3897 return false;
3898 }
3899 if (size == 3 && !a->q && a->selem != 1) {
3900 return false;
3901 }
3902 if (!fp_access_check(s)) {
3903 return true;
3904 }
3905
3906 if (a->rn == 31) {
3907 gen_check_sp_alignment(s);
3908 }
3909
3910 /* For our purposes, bytes are always little-endian. */
3911 endian = s->be_data;
3912 if (size == 0) {
3913 endian = MO_LE;
3914 }
3915
3916 total = a->rpt * a->selem * (a->q ? 16 : 8);
3917 tcg_rn = cpu_reg_sp(s, a->rn);
3918
3919 /*
3920 * Issue the MTE check vs the logical repeat count, before we
3921 * promote consecutive little-endian elements below.
3922 */
3923 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3924 finalize_memop_asimd(s, size));
3925
3926 /*
3927 * Consecutive little-endian elements from a single register
3928 * can be promoted to a larger little-endian operation.
3929 */
3930 align = MO_ALIGN;
3931 if (a->selem == 1 && endian == MO_LE) {
3932 align = pow2_align(size);
3933 size = 3;
3934 }
3935 if (!s->align_mem) {
3936 align = 0;
3937 }
3938 mop = endian | size | align;
3939
3940 elements = (a->q ? 16 : 8) >> size;
3941 tcg_ebytes = tcg_constant_i64(1 << size);
3942 for (r = 0; r < a->rpt; r++) {
3943 int e;
3944 for (e = 0; e < elements; e++) {
3945 int xs;
3946 for (xs = 0; xs < a->selem; xs++) {
3947 int tt = (a->rt + r + xs) % 32;
3948 do_vec_ld(s, tt, e, clean_addr, mop);
3949 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3950 }
3951 }
3952 }
3953
3954 /*
3955 * For non-quad operations, setting a slice of the low 64 bits of
3956 * the register clears the high 64 bits (in the ARM ARM pseudocode
3957 * this is implicit in the fact that 'rval' is a 64 bit wide
3958 * variable). For quad operations, we might still need to zero
3959 * the high bits of SVE.
3960 */
3961 for (r = 0; r < a->rpt * a->selem; r++) {
3962 int tt = (a->rt + r) % 32;
3963 clear_vec_high(s, a->q, tt);
3964 }
3965
3966 if (a->p) {
3967 if (a->rm == 31) {
3968 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3969 } else {
3970 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3971 }
3972 }
3973 return true;
3974 }
3975
trans_ST_mult(DisasContext * s,arg_ldst_mult * a)3976 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3977 {
3978 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3979 MemOp endian, align, mop;
3980
3981 int total; /* total bytes */
3982 int elements; /* elements per vector */
3983 int r;
3984 int size = a->sz;
3985
3986 if (!a->p && a->rm != 0) {
3987 /* For non-postindexed accesses the Rm field must be 0 */
3988 return false;
3989 }
3990 if (size == 3 && !a->q && a->selem != 1) {
3991 return false;
3992 }
3993 if (!fp_access_check(s)) {
3994 return true;
3995 }
3996
3997 if (a->rn == 31) {
3998 gen_check_sp_alignment(s);
3999 }
4000
4001 /* For our purposes, bytes are always little-endian. */
4002 endian = s->be_data;
4003 if (size == 0) {
4004 endian = MO_LE;
4005 }
4006
4007 total = a->rpt * a->selem * (a->q ? 16 : 8);
4008 tcg_rn = cpu_reg_sp(s, a->rn);
4009
4010 /*
4011 * Issue the MTE check vs the logical repeat count, before we
4012 * promote consecutive little-endian elements below.
4013 */
4014 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
4015 finalize_memop_asimd(s, size));
4016
4017 /*
4018 * Consecutive little-endian elements from a single register
4019 * can be promoted to a larger little-endian operation.
4020 */
4021 align = MO_ALIGN;
4022 if (a->selem == 1 && endian == MO_LE) {
4023 align = pow2_align(size);
4024 size = 3;
4025 }
4026 if (!s->align_mem) {
4027 align = 0;
4028 }
4029 mop = endian | size | align;
4030
4031 elements = (a->q ? 16 : 8) >> size;
4032 tcg_ebytes = tcg_constant_i64(1 << size);
4033 for (r = 0; r < a->rpt; r++) {
4034 int e;
4035 for (e = 0; e < elements; e++) {
4036 int xs;
4037 for (xs = 0; xs < a->selem; xs++) {
4038 int tt = (a->rt + r + xs) % 32;
4039 do_vec_st(s, tt, e, clean_addr, mop);
4040 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4041 }
4042 }
4043 }
4044
4045 if (a->p) {
4046 if (a->rm == 31) {
4047 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4048 } else {
4049 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4050 }
4051 }
4052 return true;
4053 }
4054
trans_ST_single(DisasContext * s,arg_ldst_single * a)4055 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
4056 {
4057 int xs, total, rt;
4058 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4059 MemOp mop;
4060
4061 if (!a->p && a->rm != 0) {
4062 return false;
4063 }
4064 if (!fp_access_check(s)) {
4065 return true;
4066 }
4067
4068 if (a->rn == 31) {
4069 gen_check_sp_alignment(s);
4070 }
4071
4072 total = a->selem << a->scale;
4073 tcg_rn = cpu_reg_sp(s, a->rn);
4074
4075 mop = finalize_memop_asimd(s, a->scale);
4076 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
4077 total, mop);
4078
4079 tcg_ebytes = tcg_constant_i64(1 << a->scale);
4080 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4081 do_vec_st(s, rt, a->index, clean_addr, mop);
4082 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4083 }
4084
4085 if (a->p) {
4086 if (a->rm == 31) {
4087 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4088 } else {
4089 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4090 }
4091 }
4092 return true;
4093 }
4094
trans_LD_single(DisasContext * s,arg_ldst_single * a)4095 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
4096 {
4097 int xs, total, rt;
4098 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4099 MemOp mop;
4100
4101 if (!a->p && a->rm != 0) {
4102 return false;
4103 }
4104 if (!fp_access_check(s)) {
4105 return true;
4106 }
4107
4108 if (a->rn == 31) {
4109 gen_check_sp_alignment(s);
4110 }
4111
4112 total = a->selem << a->scale;
4113 tcg_rn = cpu_reg_sp(s, a->rn);
4114
4115 mop = finalize_memop_asimd(s, a->scale);
4116 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4117 total, mop);
4118
4119 tcg_ebytes = tcg_constant_i64(1 << a->scale);
4120 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4121 do_vec_ld(s, rt, a->index, clean_addr, mop);
4122 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4123 }
4124
4125 if (a->p) {
4126 if (a->rm == 31) {
4127 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4128 } else {
4129 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4130 }
4131 }
4132 return true;
4133 }
4134
trans_LD_single_repl(DisasContext * s,arg_LD_single_repl * a)4135 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
4136 {
4137 int xs, total, rt;
4138 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4139 MemOp mop;
4140
4141 if (!a->p && a->rm != 0) {
4142 return false;
4143 }
4144 if (!fp_access_check(s)) {
4145 return true;
4146 }
4147
4148 if (a->rn == 31) {
4149 gen_check_sp_alignment(s);
4150 }
4151
4152 total = a->selem << a->scale;
4153 tcg_rn = cpu_reg_sp(s, a->rn);
4154
4155 mop = finalize_memop_asimd(s, a->scale);
4156 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4157 total, mop);
4158
4159 tcg_ebytes = tcg_constant_i64(1 << a->scale);
4160 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4161 /* Load and replicate to all elements */
4162 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4163
4164 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
4165 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
4166 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
4167 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4168 }
4169
4170 if (a->p) {
4171 if (a->rm == 31) {
4172 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4173 } else {
4174 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4175 }
4176 }
4177 return true;
4178 }
4179
trans_STZGM(DisasContext * s,arg_ldst_tag * a)4180 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
4181 {
4182 TCGv_i64 addr, clean_addr, tcg_rt;
4183 int size = 4 << s->dcz_blocksize;
4184
4185 if (!dc_isar_feature(aa64_mte, s)) {
4186 return false;
4187 }
4188 if (s->current_el == 0) {
4189 return false;
4190 }
4191
4192 if (a->rn == 31) {
4193 gen_check_sp_alignment(s);
4194 }
4195
4196 addr = read_cpu_reg_sp(s, a->rn, true);
4197 tcg_gen_addi_i64(addr, addr, a->imm);
4198 tcg_rt = cpu_reg(s, a->rt);
4199
4200 if (s->ata[0]) {
4201 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
4202 }
4203 /*
4204 * The non-tags portion of STZGM is mostly like DC_ZVA,
4205 * except the alignment happens before the access.
4206 */
4207 clean_addr = clean_data_tbi(s, addr);
4208 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4209 gen_helper_dc_zva(tcg_env, clean_addr);
4210 return true;
4211 }
4212
trans_STGM(DisasContext * s,arg_ldst_tag * a)4213 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
4214 {
4215 TCGv_i64 addr, clean_addr, tcg_rt;
4216
4217 if (!dc_isar_feature(aa64_mte, s)) {
4218 return false;
4219 }
4220 if (s->current_el == 0) {
4221 return false;
4222 }
4223
4224 if (a->rn == 31) {
4225 gen_check_sp_alignment(s);
4226 }
4227
4228 addr = read_cpu_reg_sp(s, a->rn, true);
4229 tcg_gen_addi_i64(addr, addr, a->imm);
4230 tcg_rt = cpu_reg(s, a->rt);
4231
4232 if (s->ata[0]) {
4233 gen_helper_stgm(tcg_env, addr, tcg_rt);
4234 } else {
4235 MMUAccessType acc = MMU_DATA_STORE;
4236 int size = 4 << s->gm_blocksize;
4237
4238 clean_addr = clean_data_tbi(s, addr);
4239 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4240 gen_probe_access(s, clean_addr, acc, size);
4241 }
4242 return true;
4243 }
4244
trans_LDGM(DisasContext * s,arg_ldst_tag * a)4245 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4246 {
4247 TCGv_i64 addr, clean_addr, tcg_rt;
4248
4249 if (!dc_isar_feature(aa64_mte, s)) {
4250 return false;
4251 }
4252 if (s->current_el == 0) {
4253 return false;
4254 }
4255
4256 if (a->rn == 31) {
4257 gen_check_sp_alignment(s);
4258 }
4259
4260 addr = read_cpu_reg_sp(s, a->rn, true);
4261 tcg_gen_addi_i64(addr, addr, a->imm);
4262 tcg_rt = cpu_reg(s, a->rt);
4263
4264 if (s->ata[0]) {
4265 gen_helper_ldgm(tcg_rt, tcg_env, addr);
4266 } else {
4267 MMUAccessType acc = MMU_DATA_LOAD;
4268 int size = 4 << s->gm_blocksize;
4269
4270 clean_addr = clean_data_tbi(s, addr);
4271 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4272 gen_probe_access(s, clean_addr, acc, size);
4273 /* The result tags are zeros. */
4274 tcg_gen_movi_i64(tcg_rt, 0);
4275 }
4276 return true;
4277 }
4278
trans_LDG(DisasContext * s,arg_ldst_tag * a)4279 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4280 {
4281 TCGv_i64 addr, clean_addr, tcg_rt;
4282
4283 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4284 return false;
4285 }
4286
4287 if (a->rn == 31) {
4288 gen_check_sp_alignment(s);
4289 }
4290
4291 addr = read_cpu_reg_sp(s, a->rn, true);
4292 if (!a->p) {
4293 /* pre-index or signed offset */
4294 tcg_gen_addi_i64(addr, addr, a->imm);
4295 }
4296
4297 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4298 tcg_rt = cpu_reg(s, a->rt);
4299 if (s->ata[0]) {
4300 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4301 } else {
4302 /*
4303 * Tag access disabled: we must check for aborts on the load
4304 * load from [rn+offset], and then insert a 0 tag into rt.
4305 */
4306 clean_addr = clean_data_tbi(s, addr);
4307 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4308 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4309 }
4310
4311 if (a->w) {
4312 /* pre-index or post-index */
4313 if (a->p) {
4314 /* post-index */
4315 tcg_gen_addi_i64(addr, addr, a->imm);
4316 }
4317 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4318 }
4319 return true;
4320 }
4321
do_STG(DisasContext * s,arg_ldst_tag * a,bool is_zero,bool is_pair)4322 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4323 {
4324 TCGv_i64 addr, tcg_rt;
4325
4326 if (a->rn == 31) {
4327 gen_check_sp_alignment(s);
4328 }
4329
4330 addr = read_cpu_reg_sp(s, a->rn, true);
4331 if (!a->p) {
4332 /* pre-index or signed offset */
4333 tcg_gen_addi_i64(addr, addr, a->imm);
4334 }
4335 tcg_rt = cpu_reg_sp(s, a->rt);
4336 if (!s->ata[0]) {
4337 /*
4338 * For STG and ST2G, we need to check alignment and probe memory.
4339 * TODO: For STZG and STZ2G, we could rely on the stores below,
4340 * at least for system mode; user-only won't enforce alignment.
4341 */
4342 if (is_pair) {
4343 gen_helper_st2g_stub(tcg_env, addr);
4344 } else {
4345 gen_helper_stg_stub(tcg_env, addr);
4346 }
4347 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4348 if (is_pair) {
4349 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4350 } else {
4351 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4352 }
4353 } else {
4354 if (is_pair) {
4355 gen_helper_st2g(tcg_env, addr, tcg_rt);
4356 } else {
4357 gen_helper_stg(tcg_env, addr, tcg_rt);
4358 }
4359 }
4360
4361 if (is_zero) {
4362 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4363 TCGv_i64 zero64 = tcg_constant_i64(0);
4364 TCGv_i128 zero128 = tcg_temp_new_i128();
4365 int mem_index = get_mem_index(s);
4366 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4367
4368 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4369
4370 /* This is 1 or 2 atomic 16-byte operations. */
4371 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4372 if (is_pair) {
4373 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4374 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4375 }
4376 }
4377
4378 if (a->w) {
4379 /* pre-index or post-index */
4380 if (a->p) {
4381 /* post-index */
4382 tcg_gen_addi_i64(addr, addr, a->imm);
4383 }
4384 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4385 }
4386 return true;
4387 }
4388
4389 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4390 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4391 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4392 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4393
4394 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4395
do_SET(DisasContext * s,arg_set * a,bool is_epilogue,bool is_setg,SetFn fn)4396 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4397 bool is_setg, SetFn fn)
4398 {
4399 int memidx;
4400 uint32_t syndrome, desc = 0;
4401
4402 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4403 return false;
4404 }
4405
4406 /*
4407 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4408 * us to pull this check before the CheckMOPSEnabled() test
4409 * (which we do in the helper function)
4410 */
4411 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4412 a->rd == 31 || a->rn == 31) {
4413 return false;
4414 }
4415
4416 memidx = get_a64_user_mem_index(s, a->unpriv);
4417
4418 /*
4419 * We pass option_a == true, matching our implementation;
4420 * we pass wrong_option == false: helper function may set that bit.
4421 */
4422 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4423 is_epilogue, false, true, a->rd, a->rs, a->rn);
4424
4425 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4426 /* We may need to do MTE tag checking, so assemble the descriptor */
4427 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4428 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4429 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4430 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4431 }
4432 /* The helper function always needs the memidx even with MTE disabled */
4433 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4434
4435 /*
4436 * The helper needs the register numbers, but since they're in
4437 * the syndrome anyway, we let it extract them from there rather
4438 * than passing in an extra three integer arguments.
4439 */
4440 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4441 return true;
4442 }
4443
4444 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4445 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4446 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4447 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4448 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4449 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4450
4451 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4452
do_CPY(DisasContext * s,arg_cpy * a,bool is_epilogue,CpyFn fn)4453 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4454 {
4455 int rmemidx, wmemidx;
4456 uint32_t syndrome, rdesc = 0, wdesc = 0;
4457 bool wunpriv = extract32(a->options, 0, 1);
4458 bool runpriv = extract32(a->options, 1, 1);
4459
4460 /*
4461 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4462 * us to pull this check before the CheckMOPSEnabled() test
4463 * (which we do in the helper function)
4464 */
4465 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4466 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4467 return false;
4468 }
4469
4470 rmemidx = get_a64_user_mem_index(s, runpriv);
4471 wmemidx = get_a64_user_mem_index(s, wunpriv);
4472
4473 /*
4474 * We pass option_a == true, matching our implementation;
4475 * we pass wrong_option == false: helper function may set that bit.
4476 */
4477 syndrome = syn_mop(false, false, a->options, is_epilogue,
4478 false, true, a->rd, a->rs, a->rn);
4479
4480 /* If we need to do MTE tag checking, assemble the descriptors */
4481 if (s->mte_active[runpriv]) {
4482 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4483 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4484 }
4485 if (s->mte_active[wunpriv]) {
4486 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4487 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4488 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4489 }
4490 /* The helper function needs these parts of the descriptor regardless */
4491 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4492 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4493
4494 /*
4495 * The helper needs the register numbers, but since they're in
4496 * the syndrome anyway, we let it extract them from there rather
4497 * than passing in an extra three integer arguments.
4498 */
4499 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4500 tcg_constant_i32(rdesc));
4501 return true;
4502 }
4503
4504 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4505 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4506 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4507 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4508 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4509 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4510
4511 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4512
gen_rri(DisasContext * s,arg_rri_sf * a,bool rd_sp,bool rn_sp,ArithTwoOp * fn)4513 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4514 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4515 {
4516 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4517 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4518 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4519
4520 fn(tcg_rd, tcg_rn, tcg_imm);
4521 if (!a->sf) {
4522 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4523 }
4524 return true;
4525 }
4526
4527 /*
4528 * PC-rel. addressing
4529 */
4530
trans_ADR(DisasContext * s,arg_ri * a)4531 static bool trans_ADR(DisasContext *s, arg_ri *a)
4532 {
4533 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4534 return true;
4535 }
4536
trans_ADRP(DisasContext * s,arg_ri * a)4537 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4538 {
4539 int64_t offset = (int64_t)a->imm << 12;
4540
4541 /* The page offset is ok for CF_PCREL. */
4542 offset -= s->pc_curr & 0xfff;
4543 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4544 return true;
4545 }
4546
4547 /*
4548 * Add/subtract (immediate)
4549 */
4550 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4551 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4552 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4553 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4554
4555 /*
4556 * Add/subtract (immediate, with tags)
4557 */
4558
gen_add_sub_imm_with_tags(DisasContext * s,arg_rri_tag * a,bool sub_op)4559 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4560 bool sub_op)
4561 {
4562 TCGv_i64 tcg_rn, tcg_rd;
4563 int imm;
4564
4565 imm = a->uimm6 << LOG2_TAG_GRANULE;
4566 if (sub_op) {
4567 imm = -imm;
4568 }
4569
4570 tcg_rn = cpu_reg_sp(s, a->rn);
4571 tcg_rd = cpu_reg_sp(s, a->rd);
4572
4573 if (s->ata[0]) {
4574 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4575 tcg_constant_i32(imm),
4576 tcg_constant_i32(a->uimm4));
4577 } else {
4578 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4579 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4580 }
4581 return true;
4582 }
4583
TRANS_FEAT(ADDG_i,aa64_mte_insn_reg,gen_add_sub_imm_with_tags,a,false)4584 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4585 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4586
4587 /* The input should be a value in the bottom e bits (with higher
4588 * bits zero); returns that value replicated into every element
4589 * of size e in a 64 bit integer.
4590 */
4591 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4592 {
4593 assert(e != 0);
4594 while (e < 64) {
4595 mask |= mask << e;
4596 e *= 2;
4597 }
4598 return mask;
4599 }
4600
4601 /*
4602 * Logical (immediate)
4603 */
4604
4605 /*
4606 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4607 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4608 * value (ie should cause a guest UNDEF exception), and true if they are
4609 * valid, in which case the decoded bit pattern is written to result.
4610 */
logic_imm_decode_wmask(uint64_t * result,unsigned int immn,unsigned int imms,unsigned int immr)4611 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4612 unsigned int imms, unsigned int immr)
4613 {
4614 uint64_t mask;
4615 unsigned e, levels, s, r;
4616 int len;
4617
4618 assert(immn < 2 && imms < 64 && immr < 64);
4619
4620 /* The bit patterns we create here are 64 bit patterns which
4621 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4622 * 64 bits each. Each element contains the same value: a run
4623 * of between 1 and e-1 non-zero bits, rotated within the
4624 * element by between 0 and e-1 bits.
4625 *
4626 * The element size and run length are encoded into immn (1 bit)
4627 * and imms (6 bits) as follows:
4628 * 64 bit elements: immn = 1, imms = <length of run - 1>
4629 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4630 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4631 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4632 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4633 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4634 * Notice that immn = 0, imms = 11111x is the only combination
4635 * not covered by one of the above options; this is reserved.
4636 * Further, <length of run - 1> all-ones is a reserved pattern.
4637 *
4638 * In all cases the rotation is by immr % e (and immr is 6 bits).
4639 */
4640
4641 /* First determine the element size */
4642 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4643 if (len < 1) {
4644 /* This is the immn == 0, imms == 0x11111x case */
4645 return false;
4646 }
4647 e = 1 << len;
4648
4649 levels = e - 1;
4650 s = imms & levels;
4651 r = immr & levels;
4652
4653 if (s == levels) {
4654 /* <length of run - 1> mustn't be all-ones. */
4655 return false;
4656 }
4657
4658 /* Create the value of one element: s+1 set bits rotated
4659 * by r within the element (which is e bits wide)...
4660 */
4661 mask = MAKE_64BIT_MASK(0, s + 1);
4662 if (r) {
4663 mask = (mask >> r) | (mask << (e - r));
4664 mask &= MAKE_64BIT_MASK(0, e);
4665 }
4666 /* ...then replicate the element over the whole 64 bit value */
4667 mask = bitfield_replicate(mask, e);
4668 *result = mask;
4669 return true;
4670 }
4671
gen_rri_log(DisasContext * s,arg_rri_log * a,bool set_cc,void (* fn)(TCGv_i64,TCGv_i64,int64_t))4672 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4673 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4674 {
4675 TCGv_i64 tcg_rd, tcg_rn;
4676 uint64_t imm;
4677
4678 /* Some immediate field values are reserved. */
4679 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4680 extract32(a->dbm, 0, 6),
4681 extract32(a->dbm, 6, 6))) {
4682 return false;
4683 }
4684 if (!a->sf) {
4685 imm &= 0xffffffffull;
4686 }
4687
4688 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4689 tcg_rn = cpu_reg(s, a->rn);
4690
4691 fn(tcg_rd, tcg_rn, imm);
4692 if (set_cc) {
4693 gen_logic_CC(a->sf, tcg_rd);
4694 }
4695 if (!a->sf) {
4696 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4697 }
4698 return true;
4699 }
4700
TRANS(AND_i,gen_rri_log,a,false,tcg_gen_andi_i64)4701 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4702 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4703 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4704 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4705
4706 /*
4707 * Move wide (immediate)
4708 */
4709
4710 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4711 {
4712 int pos = a->hw << 4;
4713 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4714 return true;
4715 }
4716
trans_MOVN(DisasContext * s,arg_movw * a)4717 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4718 {
4719 int pos = a->hw << 4;
4720 uint64_t imm = a->imm;
4721
4722 imm = ~(imm << pos);
4723 if (!a->sf) {
4724 imm = (uint32_t)imm;
4725 }
4726 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4727 return true;
4728 }
4729
trans_MOVK(DisasContext * s,arg_movw * a)4730 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4731 {
4732 int pos = a->hw << 4;
4733 TCGv_i64 tcg_rd, tcg_im;
4734
4735 tcg_rd = cpu_reg(s, a->rd);
4736 tcg_im = tcg_constant_i64(a->imm);
4737 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4738 if (!a->sf) {
4739 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4740 }
4741 return true;
4742 }
4743
4744 /*
4745 * Bitfield
4746 */
4747
trans_SBFM(DisasContext * s,arg_SBFM * a)4748 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4749 {
4750 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4751 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4752 unsigned int bitsize = a->sf ? 64 : 32;
4753 unsigned int ri = a->immr;
4754 unsigned int si = a->imms;
4755 unsigned int pos, len;
4756
4757 if (si >= ri) {
4758 /* Wd<s-r:0> = Wn<s:r> */
4759 len = (si - ri) + 1;
4760 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4761 if (!a->sf) {
4762 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4763 }
4764 } else {
4765 /* Wd<32+s-r,32-r> = Wn<s:0> */
4766 len = si + 1;
4767 pos = (bitsize - ri) & (bitsize - 1);
4768
4769 if (len < ri) {
4770 /*
4771 * Sign extend the destination field from len to fill the
4772 * balance of the word. Let the deposit below insert all
4773 * of those sign bits.
4774 */
4775 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4776 len = ri;
4777 }
4778
4779 /*
4780 * We start with zero, and we haven't modified any bits outside
4781 * bitsize, therefore no final zero-extension is unneeded for !sf.
4782 */
4783 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4784 }
4785 return true;
4786 }
4787
trans_UBFM(DisasContext * s,arg_UBFM * a)4788 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4789 {
4790 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4791 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4792 unsigned int bitsize = a->sf ? 64 : 32;
4793 unsigned int ri = a->immr;
4794 unsigned int si = a->imms;
4795 unsigned int pos, len;
4796
4797 tcg_rd = cpu_reg(s, a->rd);
4798 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4799
4800 if (si >= ri) {
4801 /* Wd<s-r:0> = Wn<s:r> */
4802 len = (si - ri) + 1;
4803 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4804 } else {
4805 /* Wd<32+s-r,32-r> = Wn<s:0> */
4806 len = si + 1;
4807 pos = (bitsize - ri) & (bitsize - 1);
4808 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4809 }
4810 return true;
4811 }
4812
trans_BFM(DisasContext * s,arg_BFM * a)4813 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4814 {
4815 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4816 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4817 unsigned int bitsize = a->sf ? 64 : 32;
4818 unsigned int ri = a->immr;
4819 unsigned int si = a->imms;
4820 unsigned int pos, len;
4821
4822 tcg_rd = cpu_reg(s, a->rd);
4823 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4824
4825 if (si >= ri) {
4826 /* Wd<s-r:0> = Wn<s:r> */
4827 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4828 len = (si - ri) + 1;
4829 pos = 0;
4830 } else {
4831 /* Wd<32+s-r,32-r> = Wn<s:0> */
4832 len = si + 1;
4833 pos = (bitsize - ri) & (bitsize - 1);
4834 }
4835
4836 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4837 if (!a->sf) {
4838 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4839 }
4840 return true;
4841 }
4842
trans_EXTR(DisasContext * s,arg_extract * a)4843 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4844 {
4845 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4846
4847 tcg_rd = cpu_reg(s, a->rd);
4848
4849 if (unlikely(a->imm == 0)) {
4850 /*
4851 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4852 * so an extract from bit 0 is a special case.
4853 */
4854 if (a->sf) {
4855 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4856 } else {
4857 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4858 }
4859 } else {
4860 tcg_rm = cpu_reg(s, a->rm);
4861 tcg_rn = cpu_reg(s, a->rn);
4862
4863 if (a->sf) {
4864 /* Specialization to ROR happens in EXTRACT2. */
4865 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4866 } else {
4867 TCGv_i32 t0 = tcg_temp_new_i32();
4868
4869 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4870 if (a->rm == a->rn) {
4871 tcg_gen_rotri_i32(t0, t0, a->imm);
4872 } else {
4873 TCGv_i32 t1 = tcg_temp_new_i32();
4874 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4875 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4876 }
4877 tcg_gen_extu_i32_i64(tcg_rd, t0);
4878 }
4879 }
4880 return true;
4881 }
4882
trans_TBL_TBX(DisasContext * s,arg_TBL_TBX * a)4883 static bool trans_TBL_TBX(DisasContext *s, arg_TBL_TBX *a)
4884 {
4885 if (fp_access_check(s)) {
4886 int len = (a->len + 1) * 16;
4887
4888 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
4889 vec_full_reg_offset(s, a->rm), tcg_env,
4890 a->q ? 16 : 8, vec_full_reg_size(s),
4891 (len << 6) | (a->tbx << 5) | a->rn,
4892 gen_helper_simd_tblx);
4893 }
4894 return true;
4895 }
4896
4897 typedef int simd_permute_idx_fn(int i, int part, int elements);
4898
do_simd_permute(DisasContext * s,arg_qrrr_e * a,simd_permute_idx_fn * fn,int part)4899 static bool do_simd_permute(DisasContext *s, arg_qrrr_e *a,
4900 simd_permute_idx_fn *fn, int part)
4901 {
4902 MemOp esz = a->esz;
4903 int datasize = a->q ? 16 : 8;
4904 int elements = datasize >> esz;
4905 TCGv_i64 tcg_res[2], tcg_ele;
4906
4907 if (esz == MO_64 && !a->q) {
4908 return false;
4909 }
4910 if (!fp_access_check(s)) {
4911 return true;
4912 }
4913
4914 tcg_res[0] = tcg_temp_new_i64();
4915 tcg_res[1] = a->q ? tcg_temp_new_i64() : NULL;
4916 tcg_ele = tcg_temp_new_i64();
4917
4918 for (int i = 0; i < elements; i++) {
4919 int o, w, idx;
4920
4921 idx = fn(i, part, elements);
4922 read_vec_element(s, tcg_ele, (idx & elements ? a->rm : a->rn),
4923 idx & (elements - 1), esz);
4924
4925 w = (i << (esz + 3)) / 64;
4926 o = (i << (esz + 3)) % 64;
4927 if (o == 0) {
4928 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
4929 } else {
4930 tcg_gen_deposit_i64(tcg_res[w], tcg_res[w], tcg_ele, o, 8 << esz);
4931 }
4932 }
4933
4934 for (int i = a->q; i >= 0; --i) {
4935 write_vec_element(s, tcg_res[i], a->rd, i, MO_64);
4936 }
4937 clear_vec_high(s, a->q, a->rd);
4938 return true;
4939 }
4940
permute_load_uzp(int i,int part,int elements)4941 static int permute_load_uzp(int i, int part, int elements)
4942 {
4943 return 2 * i + part;
4944 }
4945
4946 TRANS(UZP1, do_simd_permute, a, permute_load_uzp, 0)
4947 TRANS(UZP2, do_simd_permute, a, permute_load_uzp, 1)
4948
permute_load_trn(int i,int part,int elements)4949 static int permute_load_trn(int i, int part, int elements)
4950 {
4951 return (i & 1) * elements + (i & ~1) + part;
4952 }
4953
4954 TRANS(TRN1, do_simd_permute, a, permute_load_trn, 0)
4955 TRANS(TRN2, do_simd_permute, a, permute_load_trn, 1)
4956
permute_load_zip(int i,int part,int elements)4957 static int permute_load_zip(int i, int part, int elements)
4958 {
4959 return (i & 1) * elements + ((part * elements + i) >> 1);
4960 }
4961
4962 TRANS(ZIP1, do_simd_permute, a, permute_load_zip, 0)
4963 TRANS(ZIP2, do_simd_permute, a, permute_load_zip, 1)
4964
4965 /*
4966 * Cryptographic AES, SHA, SHA512
4967 */
4968
4969 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4970 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4971 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4972 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4973
4974 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4975 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4976 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4977 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4978
4979 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4980 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4981 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4982
4983 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4984 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4985 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4986
4987 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4988 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4989 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
TRANS_FEAT(RAX1,aa64_sha3,do_gvec_fn3,a,gen_gvec_rax1)4990 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4991 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4992 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4993 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4994
4995 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4996 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4997
4998 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4999 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
5000
5001 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
5002 {
5003 if (!dc_isar_feature(aa64_sm3, s)) {
5004 return false;
5005 }
5006 if (fp_access_check(s)) {
5007 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
5008 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
5009 TCGv_i32 tcg_op3 = tcg_temp_new_i32();
5010 TCGv_i32 tcg_res = tcg_temp_new_i32();
5011
5012 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
5013 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
5014 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
5015
5016 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
5017 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
5018 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
5019 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
5020
5021 /* Clear the whole register first, then store bits [127:96]. */
5022 clear_vec(s, a->rd);
5023 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
5024 }
5025 return true;
5026 }
5027
do_crypto3i(DisasContext * s,arg_crypto3i * a,gen_helper_gvec_3 * fn)5028 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
5029 {
5030 if (fp_access_check(s)) {
5031 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
5032 }
5033 return true;
5034 }
TRANS_FEAT(SM3TT1A,aa64_sm3,do_crypto3i,a,gen_helper_crypto_sm3tt1a)5035 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
5036 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
5037 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
5038 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
5039
5040 static bool trans_XAR(DisasContext *s, arg_XAR *a)
5041 {
5042 if (!dc_isar_feature(aa64_sha3, s)) {
5043 return false;
5044 }
5045 if (fp_access_check(s)) {
5046 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
5047 vec_full_reg_offset(s, a->rn),
5048 vec_full_reg_offset(s, a->rm), a->imm, 16,
5049 vec_full_reg_size(s));
5050 }
5051 return true;
5052 }
5053
5054 /*
5055 * Advanced SIMD copy
5056 */
5057
decode_esz_idx(int imm,MemOp * pesz,unsigned * pidx)5058 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
5059 {
5060 unsigned esz = ctz32(imm);
5061 if (esz <= MO_64) {
5062 *pesz = esz;
5063 *pidx = imm >> (esz + 1);
5064 return true;
5065 }
5066 return false;
5067 }
5068
trans_DUP_element_s(DisasContext * s,arg_DUP_element_s * a)5069 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
5070 {
5071 MemOp esz;
5072 unsigned idx;
5073
5074 if (!decode_esz_idx(a->imm, &esz, &idx)) {
5075 return false;
5076 }
5077 if (fp_access_check(s)) {
5078 /*
5079 * This instruction just extracts the specified element and
5080 * zero-extends it into the bottom of the destination register.
5081 */
5082 TCGv_i64 tmp = tcg_temp_new_i64();
5083 read_vec_element(s, tmp, a->rn, idx, esz);
5084 write_fp_dreg(s, a->rd, tmp);
5085 }
5086 return true;
5087 }
5088
trans_DUP_element_v(DisasContext * s,arg_DUP_element_v * a)5089 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
5090 {
5091 MemOp esz;
5092 unsigned idx;
5093
5094 if (!decode_esz_idx(a->imm, &esz, &idx)) {
5095 return false;
5096 }
5097 if (esz == MO_64 && !a->q) {
5098 return false;
5099 }
5100 if (fp_access_check(s)) {
5101 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
5102 vec_reg_offset(s, a->rn, idx, esz),
5103 a->q ? 16 : 8, vec_full_reg_size(s));
5104 }
5105 return true;
5106 }
5107
trans_DUP_general(DisasContext * s,arg_DUP_general * a)5108 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
5109 {
5110 MemOp esz;
5111 unsigned idx;
5112
5113 if (!decode_esz_idx(a->imm, &esz, &idx)) {
5114 return false;
5115 }
5116 if (esz == MO_64 && !a->q) {
5117 return false;
5118 }
5119 if (fp_access_check(s)) {
5120 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
5121 a->q ? 16 : 8, vec_full_reg_size(s),
5122 cpu_reg(s, a->rn));
5123 }
5124 return true;
5125 }
5126
do_smov_umov(DisasContext * s,arg_SMOV * a,MemOp is_signed)5127 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
5128 {
5129 MemOp esz;
5130 unsigned idx;
5131
5132 if (!decode_esz_idx(a->imm, &esz, &idx)) {
5133 return false;
5134 }
5135 if (is_signed) {
5136 if (esz == MO_64 || (esz == MO_32 && !a->q)) {
5137 return false;
5138 }
5139 } else {
5140 if (esz == MO_64 ? !a->q : a->q) {
5141 return false;
5142 }
5143 }
5144 if (fp_access_check(s)) {
5145 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
5146 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
5147 if (is_signed && !a->q) {
5148 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5149 }
5150 }
5151 return true;
5152 }
5153
TRANS(SMOV,do_smov_umov,a,MO_SIGN)5154 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
5155 TRANS(UMOV, do_smov_umov, a, 0)
5156
5157 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
5158 {
5159 MemOp esz;
5160 unsigned idx;
5161
5162 if (!decode_esz_idx(a->imm, &esz, &idx)) {
5163 return false;
5164 }
5165 if (fp_access_check(s)) {
5166 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
5167 clear_vec_high(s, true, a->rd);
5168 }
5169 return true;
5170 }
5171
trans_INS_element(DisasContext * s,arg_INS_element * a)5172 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
5173 {
5174 MemOp esz;
5175 unsigned didx, sidx;
5176
5177 if (!decode_esz_idx(a->di, &esz, &didx)) {
5178 return false;
5179 }
5180 sidx = a->si >> esz;
5181 if (fp_access_check(s)) {
5182 TCGv_i64 tmp = tcg_temp_new_i64();
5183
5184 read_vec_element(s, tmp, a->rn, sidx, esz);
5185 write_vec_element(s, tmp, a->rd, didx, esz);
5186
5187 /* INS is considered a 128-bit write for SVE. */
5188 clear_vec_high(s, true, a->rd);
5189 }
5190 return true;
5191 }
5192
5193 /*
5194 * Advanced SIMD three same
5195 */
5196
5197 typedef struct FPScalar {
5198 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5199 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5200 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
5201 } FPScalar;
5202
do_fp3_scalar_with_fpsttype(DisasContext * s,arg_rrr_e * a,const FPScalar * f,int mergereg,ARMFPStatusFlavour fpsttype)5203 static bool do_fp3_scalar_with_fpsttype(DisasContext *s, arg_rrr_e *a,
5204 const FPScalar *f, int mergereg,
5205 ARMFPStatusFlavour fpsttype)
5206 {
5207 switch (a->esz) {
5208 case MO_64:
5209 if (fp_access_check(s)) {
5210 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5211 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5212 f->gen_d(t0, t0, t1, fpstatus_ptr(fpsttype));
5213 write_fp_dreg_merging(s, a->rd, mergereg, t0);
5214 }
5215 break;
5216 case MO_32:
5217 if (fp_access_check(s)) {
5218 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5219 TCGv_i32 t1 = read_fp_sreg(s, a->rm);
5220 f->gen_s(t0, t0, t1, fpstatus_ptr(fpsttype));
5221 write_fp_sreg_merging(s, a->rd, mergereg, t0);
5222 }
5223 break;
5224 case MO_16:
5225 if (!dc_isar_feature(aa64_fp16, s)) {
5226 return false;
5227 }
5228 if (fp_access_check(s)) {
5229 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5230 TCGv_i32 t1 = read_fp_hreg(s, a->rm);
5231 f->gen_h(t0, t0, t1, fpstatus_ptr(fpsttype));
5232 write_fp_hreg_merging(s, a->rd, mergereg, t0);
5233 }
5234 break;
5235 default:
5236 return false;
5237 }
5238 return true;
5239 }
5240
do_fp3_scalar(DisasContext * s,arg_rrr_e * a,const FPScalar * f,int mergereg)5241 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f,
5242 int mergereg)
5243 {
5244 return do_fp3_scalar_with_fpsttype(s, a, f, mergereg,
5245 a->esz == MO_16 ?
5246 FPST_A64_F16 : FPST_A64);
5247 }
5248
do_fp3_scalar_ah_2fn(DisasContext * s,arg_rrr_e * a,const FPScalar * fnormal,const FPScalar * fah,int mergereg)5249 static bool do_fp3_scalar_ah_2fn(DisasContext *s, arg_rrr_e *a,
5250 const FPScalar *fnormal, const FPScalar *fah,
5251 int mergereg)
5252 {
5253 return do_fp3_scalar_with_fpsttype(s, a, s->fpcr_ah ? fah : fnormal,
5254 mergereg, select_ah_fpst(s, a->esz));
5255 }
5256
5257 /* Some insns need to call different helpers when FPCR.AH == 1 */
do_fp3_scalar_2fn(DisasContext * s,arg_rrr_e * a,const FPScalar * fnormal,const FPScalar * fah,int mergereg)5258 static bool do_fp3_scalar_2fn(DisasContext *s, arg_rrr_e *a,
5259 const FPScalar *fnormal,
5260 const FPScalar *fah,
5261 int mergereg)
5262 {
5263 return do_fp3_scalar(s, a, s->fpcr_ah ? fah : fnormal, mergereg);
5264 }
5265
5266 static const FPScalar f_scalar_fadd = {
5267 gen_helper_vfp_addh,
5268 gen_helper_vfp_adds,
5269 gen_helper_vfp_addd,
5270 };
5271 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd, a->rn)
5272
5273 static const FPScalar f_scalar_fsub = {
5274 gen_helper_vfp_subh,
5275 gen_helper_vfp_subs,
5276 gen_helper_vfp_subd,
5277 };
5278 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub, a->rn)
5279
5280 static const FPScalar f_scalar_fdiv = {
5281 gen_helper_vfp_divh,
5282 gen_helper_vfp_divs,
5283 gen_helper_vfp_divd,
5284 };
5285 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv, a->rn)
5286
5287 static const FPScalar f_scalar_fmul = {
5288 gen_helper_vfp_mulh,
5289 gen_helper_vfp_muls,
5290 gen_helper_vfp_muld,
5291 };
5292 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul, a->rn)
5293
5294 static const FPScalar f_scalar_fmax = {
5295 gen_helper_vfp_maxh,
5296 gen_helper_vfp_maxs,
5297 gen_helper_vfp_maxd,
5298 };
5299 static const FPScalar f_scalar_fmax_ah = {
5300 gen_helper_vfp_ah_maxh,
5301 gen_helper_vfp_ah_maxs,
5302 gen_helper_vfp_ah_maxd,
5303 };
5304 TRANS(FMAX_s, do_fp3_scalar_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah, a->rn)
5305
5306 static const FPScalar f_scalar_fmin = {
5307 gen_helper_vfp_minh,
5308 gen_helper_vfp_mins,
5309 gen_helper_vfp_mind,
5310 };
5311 static const FPScalar f_scalar_fmin_ah = {
5312 gen_helper_vfp_ah_minh,
5313 gen_helper_vfp_ah_mins,
5314 gen_helper_vfp_ah_mind,
5315 };
5316 TRANS(FMIN_s, do_fp3_scalar_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah, a->rn)
5317
5318 static const FPScalar f_scalar_fmaxnm = {
5319 gen_helper_vfp_maxnumh,
5320 gen_helper_vfp_maxnums,
5321 gen_helper_vfp_maxnumd,
5322 };
5323 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm, a->rn)
5324
5325 static const FPScalar f_scalar_fminnm = {
5326 gen_helper_vfp_minnumh,
5327 gen_helper_vfp_minnums,
5328 gen_helper_vfp_minnumd,
5329 };
5330 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm, a->rn)
5331
5332 static const FPScalar f_scalar_fmulx = {
5333 gen_helper_advsimd_mulxh,
5334 gen_helper_vfp_mulxs,
5335 gen_helper_vfp_mulxd,
5336 };
5337 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx, a->rn)
5338
gen_fnmul_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5339 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5340 {
5341 gen_helper_vfp_mulh(d, n, m, s);
5342 gen_vfp_negh(d, d);
5343 }
5344
gen_fnmul_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5345 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5346 {
5347 gen_helper_vfp_muls(d, n, m, s);
5348 gen_vfp_negs(d, d);
5349 }
5350
gen_fnmul_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5351 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5352 {
5353 gen_helper_vfp_muld(d, n, m, s);
5354 gen_vfp_negd(d, d);
5355 }
5356
gen_fnmul_ah_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5357 static void gen_fnmul_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5358 {
5359 gen_helper_vfp_mulh(d, n, m, s);
5360 gen_vfp_ah_negh(d, d);
5361 }
5362
gen_fnmul_ah_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5363 static void gen_fnmul_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5364 {
5365 gen_helper_vfp_muls(d, n, m, s);
5366 gen_vfp_ah_negs(d, d);
5367 }
5368
gen_fnmul_ah_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5369 static void gen_fnmul_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5370 {
5371 gen_helper_vfp_muld(d, n, m, s);
5372 gen_vfp_ah_negd(d, d);
5373 }
5374
5375 static const FPScalar f_scalar_fnmul = {
5376 gen_fnmul_h,
5377 gen_fnmul_s,
5378 gen_fnmul_d,
5379 };
5380 static const FPScalar f_scalar_ah_fnmul = {
5381 gen_fnmul_ah_h,
5382 gen_fnmul_ah_s,
5383 gen_fnmul_ah_d,
5384 };
5385 TRANS(FNMUL_s, do_fp3_scalar_2fn, a, &f_scalar_fnmul, &f_scalar_ah_fnmul, a->rn)
5386
5387 static const FPScalar f_scalar_fcmeq = {
5388 gen_helper_advsimd_ceq_f16,
5389 gen_helper_neon_ceq_f32,
5390 gen_helper_neon_ceq_f64,
5391 };
5392 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq, a->rm)
5393
5394 static const FPScalar f_scalar_fcmge = {
5395 gen_helper_advsimd_cge_f16,
5396 gen_helper_neon_cge_f32,
5397 gen_helper_neon_cge_f64,
5398 };
5399 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge, a->rm)
5400
5401 static const FPScalar f_scalar_fcmgt = {
5402 gen_helper_advsimd_cgt_f16,
5403 gen_helper_neon_cgt_f32,
5404 gen_helper_neon_cgt_f64,
5405 };
5406 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt, a->rm)
5407
5408 static const FPScalar f_scalar_facge = {
5409 gen_helper_advsimd_acge_f16,
5410 gen_helper_neon_acge_f32,
5411 gen_helper_neon_acge_f64,
5412 };
5413 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge, a->rm)
5414
5415 static const FPScalar f_scalar_facgt = {
5416 gen_helper_advsimd_acgt_f16,
5417 gen_helper_neon_acgt_f32,
5418 gen_helper_neon_acgt_f64,
5419 };
5420 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt, a->rm)
5421
gen_fabd_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5422 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5423 {
5424 gen_helper_vfp_subh(d, n, m, s);
5425 gen_vfp_absh(d, d);
5426 }
5427
gen_fabd_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5428 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5429 {
5430 gen_helper_vfp_subs(d, n, m, s);
5431 gen_vfp_abss(d, d);
5432 }
5433
gen_fabd_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5434 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5435 {
5436 gen_helper_vfp_subd(d, n, m, s);
5437 gen_vfp_absd(d, d);
5438 }
5439
gen_fabd_ah_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5440 static void gen_fabd_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5441 {
5442 gen_helper_vfp_subh(d, n, m, s);
5443 gen_vfp_ah_absh(d, d);
5444 }
5445
gen_fabd_ah_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5446 static void gen_fabd_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5447 {
5448 gen_helper_vfp_subs(d, n, m, s);
5449 gen_vfp_ah_abss(d, d);
5450 }
5451
gen_fabd_ah_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5452 static void gen_fabd_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5453 {
5454 gen_helper_vfp_subd(d, n, m, s);
5455 gen_vfp_ah_absd(d, d);
5456 }
5457
5458 static const FPScalar f_scalar_fabd = {
5459 gen_fabd_h,
5460 gen_fabd_s,
5461 gen_fabd_d,
5462 };
5463 static const FPScalar f_scalar_ah_fabd = {
5464 gen_fabd_ah_h,
5465 gen_fabd_ah_s,
5466 gen_fabd_ah_d,
5467 };
5468 TRANS(FABD_s, do_fp3_scalar_2fn, a, &f_scalar_fabd, &f_scalar_ah_fabd, a->rn)
5469
5470 static const FPScalar f_scalar_frecps = {
5471 gen_helper_recpsf_f16,
5472 gen_helper_recpsf_f32,
5473 gen_helper_recpsf_f64,
5474 };
5475 static const FPScalar f_scalar_ah_frecps = {
5476 gen_helper_recpsf_ah_f16,
5477 gen_helper_recpsf_ah_f32,
5478 gen_helper_recpsf_ah_f64,
5479 };
5480 TRANS(FRECPS_s, do_fp3_scalar_ah_2fn, a,
5481 &f_scalar_frecps, &f_scalar_ah_frecps, a->rn)
5482
5483 static const FPScalar f_scalar_frsqrts = {
5484 gen_helper_rsqrtsf_f16,
5485 gen_helper_rsqrtsf_f32,
5486 gen_helper_rsqrtsf_f64,
5487 };
5488 static const FPScalar f_scalar_ah_frsqrts = {
5489 gen_helper_rsqrtsf_ah_f16,
5490 gen_helper_rsqrtsf_ah_f32,
5491 gen_helper_rsqrtsf_ah_f64,
5492 };
5493 TRANS(FRSQRTS_s, do_fp3_scalar_ah_2fn, a,
5494 &f_scalar_frsqrts, &f_scalar_ah_frsqrts, a->rn)
5495
do_fcmp0_s(DisasContext * s,arg_rr_e * a,const FPScalar * f,bool swap)5496 static bool do_fcmp0_s(DisasContext *s, arg_rr_e *a,
5497 const FPScalar *f, bool swap)
5498 {
5499 switch (a->esz) {
5500 case MO_64:
5501 if (fp_access_check(s)) {
5502 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5503 TCGv_i64 t1 = tcg_constant_i64(0);
5504 if (swap) {
5505 f->gen_d(t0, t1, t0, fpstatus_ptr(FPST_A64));
5506 } else {
5507 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
5508 }
5509 write_fp_dreg(s, a->rd, t0);
5510 }
5511 break;
5512 case MO_32:
5513 if (fp_access_check(s)) {
5514 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5515 TCGv_i32 t1 = tcg_constant_i32(0);
5516 if (swap) {
5517 f->gen_s(t0, t1, t0, fpstatus_ptr(FPST_A64));
5518 } else {
5519 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
5520 }
5521 write_fp_sreg(s, a->rd, t0);
5522 }
5523 break;
5524 case MO_16:
5525 if (!dc_isar_feature(aa64_fp16, s)) {
5526 return false;
5527 }
5528 if (fp_access_check(s)) {
5529 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5530 TCGv_i32 t1 = tcg_constant_i32(0);
5531 if (swap) {
5532 f->gen_h(t0, t1, t0, fpstatus_ptr(FPST_A64_F16));
5533 } else {
5534 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
5535 }
5536 write_fp_sreg(s, a->rd, t0);
5537 }
5538 break;
5539 default:
5540 return false;
5541 }
5542 return true;
5543 }
5544
5545 TRANS(FCMEQ0_s, do_fcmp0_s, a, &f_scalar_fcmeq, false)
5546 TRANS(FCMGT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, false)
5547 TRANS(FCMGE0_s, do_fcmp0_s, a, &f_scalar_fcmge, false)
5548 TRANS(FCMLT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, true)
5549 TRANS(FCMLE0_s, do_fcmp0_s, a, &f_scalar_fcmge, true)
5550
do_satacc_s(DisasContext * s,arg_rrr_e * a,MemOp sgn_n,MemOp sgn_m,void (* gen_bhs)(TCGv_i64,TCGv_i64,TCGv_i64,TCGv_i64,MemOp),void (* gen_d)(TCGv_i64,TCGv_i64,TCGv_i64,TCGv_i64))5551 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5552 MemOp sgn_n, MemOp sgn_m,
5553 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5554 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5555 {
5556 TCGv_i64 t0, t1, t2, qc;
5557 MemOp esz = a->esz;
5558
5559 if (!fp_access_check(s)) {
5560 return true;
5561 }
5562
5563 t0 = tcg_temp_new_i64();
5564 t1 = tcg_temp_new_i64();
5565 t2 = tcg_temp_new_i64();
5566 qc = tcg_temp_new_i64();
5567 read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5568 read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5569 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5570
5571 if (esz == MO_64) {
5572 gen_d(t0, qc, t1, t2);
5573 } else {
5574 gen_bhs(t0, qc, t1, t2, esz);
5575 tcg_gen_ext_i64(t0, t0, esz);
5576 }
5577
5578 write_fp_dreg(s, a->rd, t0);
5579 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5580 return true;
5581 }
5582
TRANS(SQADD_s,do_satacc_s,a,MO_SIGN,MO_SIGN,gen_sqadd_bhs,gen_sqadd_d)5583 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5584 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5585 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5586 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5587 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5588 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5589
5590 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5591 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5592 {
5593 if (fp_access_check(s)) {
5594 TCGv_i64 t0 = tcg_temp_new_i64();
5595 TCGv_i64 t1 = tcg_temp_new_i64();
5596
5597 read_vec_element(s, t0, a->rn, 0, MO_64);
5598 read_vec_element(s, t1, a->rm, 0, MO_64);
5599 fn(t0, t0, t1);
5600 write_fp_dreg(s, a->rd, t0);
5601 }
5602 return true;
5603 }
5604
5605 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5606 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5607 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5608 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5609 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5610 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5611
5612 typedef struct ENVScalar2 {
5613 NeonGenTwoOpEnvFn *gen_bhs[3];
5614 NeonGenTwo64OpEnvFn *gen_d;
5615 } ENVScalar2;
5616
do_env_scalar2(DisasContext * s,arg_rrr_e * a,const ENVScalar2 * f)5617 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5618 {
5619 if (!fp_access_check(s)) {
5620 return true;
5621 }
5622 if (a->esz == MO_64) {
5623 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5624 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5625 f->gen_d(t0, tcg_env, t0, t1);
5626 write_fp_dreg(s, a->rd, t0);
5627 } else {
5628 TCGv_i32 t0 = tcg_temp_new_i32();
5629 TCGv_i32 t1 = tcg_temp_new_i32();
5630
5631 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5632 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5633 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5634 write_fp_sreg(s, a->rd, t0);
5635 }
5636 return true;
5637 }
5638
5639 static const ENVScalar2 f_scalar_sqshl = {
5640 { gen_helper_neon_qshl_s8,
5641 gen_helper_neon_qshl_s16,
5642 gen_helper_neon_qshl_s32 },
5643 gen_helper_neon_qshl_s64,
5644 };
5645 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5646
5647 static const ENVScalar2 f_scalar_uqshl = {
5648 { gen_helper_neon_qshl_u8,
5649 gen_helper_neon_qshl_u16,
5650 gen_helper_neon_qshl_u32 },
5651 gen_helper_neon_qshl_u64,
5652 };
5653 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5654
5655 static const ENVScalar2 f_scalar_sqrshl = {
5656 { gen_helper_neon_qrshl_s8,
5657 gen_helper_neon_qrshl_s16,
5658 gen_helper_neon_qrshl_s32 },
5659 gen_helper_neon_qrshl_s64,
5660 };
5661 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5662
5663 static const ENVScalar2 f_scalar_uqrshl = {
5664 { gen_helper_neon_qrshl_u8,
5665 gen_helper_neon_qrshl_u16,
5666 gen_helper_neon_qrshl_u32 },
5667 gen_helper_neon_qrshl_u64,
5668 };
5669 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5670
do_env_scalar2_hs(DisasContext * s,arg_rrr_e * a,const ENVScalar2 * f)5671 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5672 const ENVScalar2 *f)
5673 {
5674 if (a->esz == MO_16 || a->esz == MO_32) {
5675 return do_env_scalar2(s, a, f);
5676 }
5677 return false;
5678 }
5679
5680 static const ENVScalar2 f_scalar_sqdmulh = {
5681 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5682 };
5683 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5684
5685 static const ENVScalar2 f_scalar_sqrdmulh = {
5686 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5687 };
5688 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5689
5690 typedef struct ENVScalar3 {
5691 NeonGenThreeOpEnvFn *gen_hs[2];
5692 } ENVScalar3;
5693
do_env_scalar3_hs(DisasContext * s,arg_rrr_e * a,const ENVScalar3 * f)5694 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5695 const ENVScalar3 *f)
5696 {
5697 TCGv_i32 t0, t1, t2;
5698
5699 if (a->esz != MO_16 && a->esz != MO_32) {
5700 return false;
5701 }
5702 if (!fp_access_check(s)) {
5703 return true;
5704 }
5705
5706 t0 = tcg_temp_new_i32();
5707 t1 = tcg_temp_new_i32();
5708 t2 = tcg_temp_new_i32();
5709 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5710 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5711 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5712 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5713 write_fp_sreg(s, a->rd, t0);
5714 return true;
5715 }
5716
5717 static const ENVScalar3 f_scalar_sqrdmlah = {
5718 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5719 };
5720 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5721
5722 static const ENVScalar3 f_scalar_sqrdmlsh = {
5723 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5724 };
5725 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5726
do_cmop_d(DisasContext * s,arg_rrr_e * a,TCGCond cond)5727 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5728 {
5729 if (fp_access_check(s)) {
5730 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5731 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5732 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5733 write_fp_dreg(s, a->rd, t0);
5734 }
5735 return true;
5736 }
5737
TRANS(CMGT_s,do_cmop_d,a,TCG_COND_GT)5738 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5739 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5740 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5741 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5742 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5743 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5744
5745 static bool do_fp3_vector_with_fpsttype(DisasContext *s, arg_qrrr_e *a,
5746 int data,
5747 gen_helper_gvec_3_ptr * const fns[3],
5748 ARMFPStatusFlavour fpsttype)
5749 {
5750 MemOp esz = a->esz;
5751 int check = fp_access_check_vector_hsd(s, a->q, esz);
5752
5753 if (check <= 0) {
5754 return check == 0;
5755 }
5756
5757 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, fpsttype,
5758 data, fns[esz - 1]);
5759 return true;
5760 }
5761
do_fp3_vector(DisasContext * s,arg_qrrr_e * a,int data,gen_helper_gvec_3_ptr * const fns[3])5762 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5763 gen_helper_gvec_3_ptr * const fns[3])
5764 {
5765 return do_fp3_vector_with_fpsttype(s, a, data, fns,
5766 a->esz == MO_16 ?
5767 FPST_A64_F16 : FPST_A64);
5768 }
5769
do_fp3_vector_2fn(DisasContext * s,arg_qrrr_e * a,int data,gen_helper_gvec_3_ptr * const fnormal[3],gen_helper_gvec_3_ptr * const fah[3])5770 static bool do_fp3_vector_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5771 gen_helper_gvec_3_ptr * const fnormal[3],
5772 gen_helper_gvec_3_ptr * const fah[3])
5773 {
5774 return do_fp3_vector(s, a, data, s->fpcr_ah ? fah : fnormal);
5775 }
5776
do_fp3_vector_ah_2fn(DisasContext * s,arg_qrrr_e * a,int data,gen_helper_gvec_3_ptr * const fnormal[3],gen_helper_gvec_3_ptr * const fah[3])5777 static bool do_fp3_vector_ah_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5778 gen_helper_gvec_3_ptr * const fnormal[3],
5779 gen_helper_gvec_3_ptr * const fah[3])
5780 {
5781 return do_fp3_vector_with_fpsttype(s, a, data, s->fpcr_ah ? fah : fnormal,
5782 select_ah_fpst(s, a->esz));
5783 }
5784
5785 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5786 gen_helper_gvec_fadd_h,
5787 gen_helper_gvec_fadd_s,
5788 gen_helper_gvec_fadd_d,
5789 };
5790 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5791
5792 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5793 gen_helper_gvec_fsub_h,
5794 gen_helper_gvec_fsub_s,
5795 gen_helper_gvec_fsub_d,
5796 };
5797 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5798
5799 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5800 gen_helper_gvec_fdiv_h,
5801 gen_helper_gvec_fdiv_s,
5802 gen_helper_gvec_fdiv_d,
5803 };
5804 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5805
5806 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5807 gen_helper_gvec_fmul_h,
5808 gen_helper_gvec_fmul_s,
5809 gen_helper_gvec_fmul_d,
5810 };
5811 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5812
5813 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5814 gen_helper_gvec_fmax_h,
5815 gen_helper_gvec_fmax_s,
5816 gen_helper_gvec_fmax_d,
5817 };
5818 static gen_helper_gvec_3_ptr * const f_vector_fmax_ah[3] = {
5819 gen_helper_gvec_ah_fmax_h,
5820 gen_helper_gvec_ah_fmax_s,
5821 gen_helper_gvec_ah_fmax_d,
5822 };
5823 TRANS(FMAX_v, do_fp3_vector_2fn, a, 0, f_vector_fmax, f_vector_fmax_ah)
5824
5825 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5826 gen_helper_gvec_fmin_h,
5827 gen_helper_gvec_fmin_s,
5828 gen_helper_gvec_fmin_d,
5829 };
5830 static gen_helper_gvec_3_ptr * const f_vector_fmin_ah[3] = {
5831 gen_helper_gvec_ah_fmin_h,
5832 gen_helper_gvec_ah_fmin_s,
5833 gen_helper_gvec_ah_fmin_d,
5834 };
5835 TRANS(FMIN_v, do_fp3_vector_2fn, a, 0, f_vector_fmin, f_vector_fmin_ah)
5836
5837 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5838 gen_helper_gvec_fmaxnum_h,
5839 gen_helper_gvec_fmaxnum_s,
5840 gen_helper_gvec_fmaxnum_d,
5841 };
5842 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5843
5844 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5845 gen_helper_gvec_fminnum_h,
5846 gen_helper_gvec_fminnum_s,
5847 gen_helper_gvec_fminnum_d,
5848 };
5849 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5850
5851 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5852 gen_helper_gvec_fmulx_h,
5853 gen_helper_gvec_fmulx_s,
5854 gen_helper_gvec_fmulx_d,
5855 };
5856 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5857
5858 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5859 gen_helper_gvec_vfma_h,
5860 gen_helper_gvec_vfma_s,
5861 gen_helper_gvec_vfma_d,
5862 };
5863 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5864
5865 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5866 gen_helper_gvec_vfms_h,
5867 gen_helper_gvec_vfms_s,
5868 gen_helper_gvec_vfms_d,
5869 };
5870 static gen_helper_gvec_3_ptr * const f_vector_fmls_ah[3] = {
5871 gen_helper_gvec_ah_vfms_h,
5872 gen_helper_gvec_ah_vfms_s,
5873 gen_helper_gvec_ah_vfms_d,
5874 };
5875 TRANS(FMLS_v, do_fp3_vector_2fn, a, 0, f_vector_fmls, f_vector_fmls_ah)
5876
5877 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5878 gen_helper_gvec_fceq_h,
5879 gen_helper_gvec_fceq_s,
5880 gen_helper_gvec_fceq_d,
5881 };
5882 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5883
5884 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5885 gen_helper_gvec_fcge_h,
5886 gen_helper_gvec_fcge_s,
5887 gen_helper_gvec_fcge_d,
5888 };
5889 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5890
5891 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5892 gen_helper_gvec_fcgt_h,
5893 gen_helper_gvec_fcgt_s,
5894 gen_helper_gvec_fcgt_d,
5895 };
5896 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5897
5898 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5899 gen_helper_gvec_facge_h,
5900 gen_helper_gvec_facge_s,
5901 gen_helper_gvec_facge_d,
5902 };
5903 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5904
5905 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5906 gen_helper_gvec_facgt_h,
5907 gen_helper_gvec_facgt_s,
5908 gen_helper_gvec_facgt_d,
5909 };
5910 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5911
5912 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5913 gen_helper_gvec_fabd_h,
5914 gen_helper_gvec_fabd_s,
5915 gen_helper_gvec_fabd_d,
5916 };
5917 static gen_helper_gvec_3_ptr * const f_vector_ah_fabd[3] = {
5918 gen_helper_gvec_ah_fabd_h,
5919 gen_helper_gvec_ah_fabd_s,
5920 gen_helper_gvec_ah_fabd_d,
5921 };
5922 TRANS(FABD_v, do_fp3_vector_2fn, a, 0, f_vector_fabd, f_vector_ah_fabd)
5923
5924 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5925 gen_helper_gvec_recps_h,
5926 gen_helper_gvec_recps_s,
5927 gen_helper_gvec_recps_d,
5928 };
5929 static gen_helper_gvec_3_ptr * const f_vector_ah_frecps[3] = {
5930 gen_helper_gvec_ah_recps_h,
5931 gen_helper_gvec_ah_recps_s,
5932 gen_helper_gvec_ah_recps_d,
5933 };
5934 TRANS(FRECPS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frecps, f_vector_ah_frecps)
5935
5936 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5937 gen_helper_gvec_rsqrts_h,
5938 gen_helper_gvec_rsqrts_s,
5939 gen_helper_gvec_rsqrts_d,
5940 };
5941 static gen_helper_gvec_3_ptr * const f_vector_ah_frsqrts[3] = {
5942 gen_helper_gvec_ah_rsqrts_h,
5943 gen_helper_gvec_ah_rsqrts_s,
5944 gen_helper_gvec_ah_rsqrts_d,
5945 };
5946 TRANS(FRSQRTS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frsqrts, f_vector_ah_frsqrts)
5947
5948 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5949 gen_helper_gvec_faddp_h,
5950 gen_helper_gvec_faddp_s,
5951 gen_helper_gvec_faddp_d,
5952 };
5953 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5954
5955 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5956 gen_helper_gvec_fmaxp_h,
5957 gen_helper_gvec_fmaxp_s,
5958 gen_helper_gvec_fmaxp_d,
5959 };
5960 static gen_helper_gvec_3_ptr * const f_vector_ah_fmaxp[3] = {
5961 gen_helper_gvec_ah_fmaxp_h,
5962 gen_helper_gvec_ah_fmaxp_s,
5963 gen_helper_gvec_ah_fmaxp_d,
5964 };
5965 TRANS(FMAXP_v, do_fp3_vector_2fn, a, 0, f_vector_fmaxp, f_vector_ah_fmaxp)
5966
5967 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5968 gen_helper_gvec_fminp_h,
5969 gen_helper_gvec_fminp_s,
5970 gen_helper_gvec_fminp_d,
5971 };
5972 static gen_helper_gvec_3_ptr * const f_vector_ah_fminp[3] = {
5973 gen_helper_gvec_ah_fminp_h,
5974 gen_helper_gvec_ah_fminp_s,
5975 gen_helper_gvec_ah_fminp_d,
5976 };
5977 TRANS(FMINP_v, do_fp3_vector_2fn, a, 0, f_vector_fminp, f_vector_ah_fminp)
5978
5979 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5980 gen_helper_gvec_fmaxnump_h,
5981 gen_helper_gvec_fmaxnump_s,
5982 gen_helper_gvec_fmaxnump_d,
5983 };
5984 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5985
5986 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5987 gen_helper_gvec_fminnump_h,
5988 gen_helper_gvec_fminnump_s,
5989 gen_helper_gvec_fminnump_d,
5990 };
5991 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5992
do_fmlal(DisasContext * s,arg_qrrr_e * a,bool is_s,bool is_2)5993 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5994 {
5995 if (fp_access_check(s)) {
5996 int data = (is_2 << 1) | is_s;
5997 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5998 vec_full_reg_offset(s, a->rn),
5999 vec_full_reg_offset(s, a->rm), tcg_env,
6000 a->q ? 16 : 8, vec_full_reg_size(s),
6001 data, gen_helper_gvec_fmlal_a64);
6002 }
6003 return true;
6004 }
6005
TRANS_FEAT(FMLAL_v,aa64_fhm,do_fmlal,a,false,false)6006 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
6007 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
6008 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
6009 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
6010
6011 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
6012 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
6013 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
6014 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
6015 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
6016
6017 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
6018 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
6019 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
6020 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
6021 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
6022
6023 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
6024 {
6025 if (fp_access_check(s)) {
6026 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
6027 }
6028 return true;
6029 }
6030
6031 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
6032 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
6033 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
6034
TRANS(SQADD_v,do_gvec_fn3,a,gen_gvec_sqadd_qc)6035 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
6036 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
6037 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
6038 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
6039 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
6040 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
6041
6042 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
6043 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
6044 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
6045 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
6046 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
6047 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
6048 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
6049 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
6050
6051 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
6052 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
6053 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
6054 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
6055 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
6056 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
6057 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
6058 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
6059 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
6060 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
6061 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
6062 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
6063 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
6064 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
6065 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
6066 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
6067 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
6068 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
6069 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
6070 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
6071
6072 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
6073 {
6074 if (a->esz == MO_64 && !a->q) {
6075 return false;
6076 }
6077 if (fp_access_check(s)) {
6078 tcg_gen_gvec_cmp(cond, a->esz,
6079 vec_full_reg_offset(s, a->rd),
6080 vec_full_reg_offset(s, a->rn),
6081 vec_full_reg_offset(s, a->rm),
6082 a->q ? 16 : 8, vec_full_reg_size(s));
6083 }
6084 return true;
6085 }
6086
TRANS(CMGT_v,do_cmop_v,a,TCG_COND_GT)6087 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
6088 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
6089 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
6090 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
6091 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
6092 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
6093
6094 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
6095 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
6096 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
6097 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
6098
6099 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
6100 gen_helper_gvec_4 *fn)
6101 {
6102 if (fp_access_check(s)) {
6103 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6104 }
6105 return true;
6106 }
6107
do_dot_vector_env(DisasContext * s,arg_qrrr_e * a,gen_helper_gvec_4_ptr * fn)6108 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a,
6109 gen_helper_gvec_4_ptr *fn)
6110 {
6111 if (fp_access_check(s)) {
6112 gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6113 }
6114 return true;
6115 }
6116
TRANS_FEAT(SDOT_v,aa64_dp,do_dot_vector,a,gen_helper_gvec_sdot_4b)6117 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_4b)
6118 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_4b)
6119 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_4b)
6120 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot)
6121 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla)
6122 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
6123 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
6124 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
6125
6126 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
6127 {
6128 if (!dc_isar_feature(aa64_bf16, s)) {
6129 return false;
6130 }
6131 if (fp_access_check(s)) {
6132 /* Q bit selects BFMLALB vs BFMLALT. */
6133 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6134 s->fpcr_ah ? FPST_AH : FPST_A64, a->q,
6135 gen_helper_gvec_bfmlal);
6136 }
6137 return true;
6138 }
6139
6140 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
6141 gen_helper_gvec_fcaddh,
6142 gen_helper_gvec_fcadds,
6143 gen_helper_gvec_fcaddd,
6144 };
6145 /*
6146 * Encode FPCR.AH into the data so the helper knows whether the
6147 * negations it does should avoid flipping the sign bit on a NaN
6148 */
6149 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0 | (s->fpcr_ah << 1),
6150 f_vector_fcadd)
6151 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1 | (s->fpcr_ah << 1),
6152 f_vector_fcadd)
6153
trans_FCMLA_v(DisasContext * s,arg_FCMLA_v * a)6154 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
6155 {
6156 static gen_helper_gvec_4_ptr * const fn[] = {
6157 [MO_16] = gen_helper_gvec_fcmlah,
6158 [MO_32] = gen_helper_gvec_fcmlas,
6159 [MO_64] = gen_helper_gvec_fcmlad,
6160 };
6161 int check;
6162
6163 if (!dc_isar_feature(aa64_fcma, s)) {
6164 return false;
6165 }
6166
6167 check = fp_access_check_vector_hsd(s, a->q, a->esz);
6168 if (check <= 0) {
6169 return check == 0;
6170 }
6171
6172 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6173 a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6174 a->rot | (s->fpcr_ah << 2), fn[a->esz]);
6175 return true;
6176 }
6177
6178 /*
6179 * Widening vector x vector/indexed.
6180 *
6181 * These read from the top or bottom half of a 128-bit vector.
6182 * After widening, optionally accumulate with a 128-bit vector.
6183 * Implement these inline, as the number of elements are limited
6184 * and the related SVE and SME operations on larger vectors use
6185 * even/odd elements instead of top/bottom half.
6186 *
6187 * If idx >= 0, operand 2 is indexed, otherwise vector.
6188 * If acc, operand 0 is loaded with rd.
6189 */
6190
6191 /* For low half, iterating up. */
do_3op_widening(DisasContext * s,MemOp memop,int top,int rd,int rn,int rm,int idx,NeonGenTwo64OpFn * fn,bool acc)6192 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
6193 int rd, int rn, int rm, int idx,
6194 NeonGenTwo64OpFn *fn, bool acc)
6195 {
6196 TCGv_i64 tcg_op0 = tcg_temp_new_i64();
6197 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6198 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6199 MemOp esz = memop & MO_SIZE;
6200 int half = 8 >> esz;
6201 int top_swap, top_half;
6202
6203 /* There are no 64x64->128 bit operations. */
6204 if (esz >= MO_64) {
6205 return false;
6206 }
6207 if (!fp_access_check(s)) {
6208 return true;
6209 }
6210
6211 if (idx >= 0) {
6212 read_vec_element(s, tcg_op2, rm, idx, memop);
6213 }
6214
6215 /*
6216 * For top half inputs, iterate forward; backward for bottom half.
6217 * This means the store to the destination will not occur until
6218 * overlapping input inputs are consumed.
6219 * Use top_swap to conditionally invert the forward iteration index.
6220 */
6221 top_swap = top ? 0 : half - 1;
6222 top_half = top ? half : 0;
6223
6224 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6225 int elt = elt_fwd ^ top_swap;
6226
6227 read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
6228 if (idx < 0) {
6229 read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
6230 }
6231 if (acc) {
6232 read_vec_element(s, tcg_op0, rd, elt, memop + 1);
6233 }
6234 fn(tcg_op0, tcg_op1, tcg_op2);
6235 write_vec_element(s, tcg_op0, rd, elt, esz + 1);
6236 }
6237 clear_vec_high(s, 1, rd);
6238 return true;
6239 }
6240
gen_muladd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6241 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6242 {
6243 TCGv_i64 t = tcg_temp_new_i64();
6244 tcg_gen_mul_i64(t, n, m);
6245 tcg_gen_add_i64(d, d, t);
6246 }
6247
gen_mulsub_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6248 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6249 {
6250 TCGv_i64 t = tcg_temp_new_i64();
6251 tcg_gen_mul_i64(t, n, m);
6252 tcg_gen_sub_i64(d, d, t);
6253 }
6254
6255 TRANS(SMULL_v, do_3op_widening,
6256 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6257 tcg_gen_mul_i64, false)
6258 TRANS(UMULL_v, do_3op_widening,
6259 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6260 tcg_gen_mul_i64, false)
6261 TRANS(SMLAL_v, do_3op_widening,
6262 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6263 gen_muladd_i64, true)
6264 TRANS(UMLAL_v, do_3op_widening,
6265 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6266 gen_muladd_i64, true)
6267 TRANS(SMLSL_v, do_3op_widening,
6268 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6269 gen_mulsub_i64, true)
6270 TRANS(UMLSL_v, do_3op_widening,
6271 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6272 gen_mulsub_i64, true)
6273
6274 TRANS(SMULL_vi, do_3op_widening,
6275 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6276 tcg_gen_mul_i64, false)
6277 TRANS(UMULL_vi, do_3op_widening,
6278 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6279 tcg_gen_mul_i64, false)
6280 TRANS(SMLAL_vi, do_3op_widening,
6281 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6282 gen_muladd_i64, true)
6283 TRANS(UMLAL_vi, do_3op_widening,
6284 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6285 gen_muladd_i64, true)
6286 TRANS(SMLSL_vi, do_3op_widening,
6287 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6288 gen_mulsub_i64, true)
6289 TRANS(UMLSL_vi, do_3op_widening,
6290 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6291 gen_mulsub_i64, true)
6292
gen_sabd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6293 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6294 {
6295 TCGv_i64 t1 = tcg_temp_new_i64();
6296 TCGv_i64 t2 = tcg_temp_new_i64();
6297
6298 tcg_gen_sub_i64(t1, n, m);
6299 tcg_gen_sub_i64(t2, m, n);
6300 tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
6301 }
6302
gen_uabd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6303 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6304 {
6305 TCGv_i64 t1 = tcg_temp_new_i64();
6306 TCGv_i64 t2 = tcg_temp_new_i64();
6307
6308 tcg_gen_sub_i64(t1, n, m);
6309 tcg_gen_sub_i64(t2, m, n);
6310 tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
6311 }
6312
gen_saba_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6313 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6314 {
6315 TCGv_i64 t = tcg_temp_new_i64();
6316 gen_sabd_i64(t, n, m);
6317 tcg_gen_add_i64(d, d, t);
6318 }
6319
gen_uaba_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6320 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6321 {
6322 TCGv_i64 t = tcg_temp_new_i64();
6323 gen_uabd_i64(t, n, m);
6324 tcg_gen_add_i64(d, d, t);
6325 }
6326
6327 TRANS(SADDL_v, do_3op_widening,
6328 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6329 tcg_gen_add_i64, false)
6330 TRANS(UADDL_v, do_3op_widening,
6331 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6332 tcg_gen_add_i64, false)
6333 TRANS(SSUBL_v, do_3op_widening,
6334 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6335 tcg_gen_sub_i64, false)
6336 TRANS(USUBL_v, do_3op_widening,
6337 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6338 tcg_gen_sub_i64, false)
6339 TRANS(SABDL_v, do_3op_widening,
6340 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6341 gen_sabd_i64, false)
6342 TRANS(UABDL_v, do_3op_widening,
6343 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6344 gen_uabd_i64, false)
6345 TRANS(SABAL_v, do_3op_widening,
6346 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6347 gen_saba_i64, true)
6348 TRANS(UABAL_v, do_3op_widening,
6349 a->esz, a->q, a->rd, a->rn, a->rm, -1,
6350 gen_uaba_i64, true)
6351
gen_sqdmull_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6352 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6353 {
6354 tcg_gen_mul_i64(d, n, m);
6355 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
6356 }
6357
gen_sqdmull_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6358 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6359 {
6360 tcg_gen_mul_i64(d, n, m);
6361 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
6362 }
6363
gen_sqdmlal_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6364 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6365 {
6366 TCGv_i64 t = tcg_temp_new_i64();
6367
6368 tcg_gen_mul_i64(t, n, m);
6369 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6370 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6371 }
6372
gen_sqdmlal_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6373 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6374 {
6375 TCGv_i64 t = tcg_temp_new_i64();
6376
6377 tcg_gen_mul_i64(t, n, m);
6378 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6379 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6380 }
6381
gen_sqdmlsl_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6382 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6383 {
6384 TCGv_i64 t = tcg_temp_new_i64();
6385
6386 tcg_gen_mul_i64(t, n, m);
6387 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6388 tcg_gen_neg_i64(t, t);
6389 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6390 }
6391
gen_sqdmlsl_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)6392 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6393 {
6394 TCGv_i64 t = tcg_temp_new_i64();
6395
6396 tcg_gen_mul_i64(t, n, m);
6397 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6398 tcg_gen_neg_i64(t, t);
6399 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6400 }
6401
6402 TRANS(SQDMULL_v, do_3op_widening,
6403 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6404 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6405 TRANS(SQDMLAL_v, do_3op_widening,
6406 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6407 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6408 TRANS(SQDMLSL_v, do_3op_widening,
6409 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6410 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6411
6412 TRANS(SQDMULL_vi, do_3op_widening,
6413 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6414 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6415 TRANS(SQDMLAL_vi, do_3op_widening,
6416 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6417 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6418 TRANS(SQDMLSL_vi, do_3op_widening,
6419 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6420 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6421
do_addsub_wide(DisasContext * s,arg_qrrr_e * a,MemOp sign,bool sub)6422 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
6423 MemOp sign, bool sub)
6424 {
6425 TCGv_i64 tcg_op0, tcg_op1;
6426 MemOp esz = a->esz;
6427 int half = 8 >> esz;
6428 bool top = a->q;
6429 int top_swap = top ? 0 : half - 1;
6430 int top_half = top ? half : 0;
6431
6432 /* There are no 64x64->128 bit operations. */
6433 if (esz >= MO_64) {
6434 return false;
6435 }
6436 if (!fp_access_check(s)) {
6437 return true;
6438 }
6439 tcg_op0 = tcg_temp_new_i64();
6440 tcg_op1 = tcg_temp_new_i64();
6441
6442 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6443 int elt = elt_fwd ^ top_swap;
6444
6445 read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
6446 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6447 if (sub) {
6448 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6449 } else {
6450 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6451 }
6452 write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
6453 }
6454 clear_vec_high(s, 1, a->rd);
6455 return true;
6456 }
6457
TRANS(SADDW,do_addsub_wide,a,MO_SIGN,false)6458 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
6459 TRANS(UADDW, do_addsub_wide, a, 0, false)
6460 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
6461 TRANS(USUBW, do_addsub_wide, a, 0, true)
6462
6463 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
6464 bool sub, bool round)
6465 {
6466 TCGv_i64 tcg_op0, tcg_op1;
6467 MemOp esz = a->esz;
6468 int half = 8 >> esz;
6469 bool top = a->q;
6470 int ebits = 8 << esz;
6471 uint64_t rbit = 1ull << (ebits - 1);
6472 int top_swap, top_half;
6473
6474 /* There are no 128x128->64 bit operations. */
6475 if (esz >= MO_64) {
6476 return false;
6477 }
6478 if (!fp_access_check(s)) {
6479 return true;
6480 }
6481 tcg_op0 = tcg_temp_new_i64();
6482 tcg_op1 = tcg_temp_new_i64();
6483
6484 /*
6485 * For top half inputs, iterate backward; forward for bottom half.
6486 * This means the store to the destination will not occur until
6487 * overlapping input inputs are consumed.
6488 */
6489 top_swap = top ? half - 1 : 0;
6490 top_half = top ? half : 0;
6491
6492 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6493 int elt = elt_fwd ^ top_swap;
6494
6495 read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
6496 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6497 if (sub) {
6498 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6499 } else {
6500 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6501 }
6502 if (round) {
6503 tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
6504 }
6505 tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
6506 write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
6507 }
6508 clear_vec_high(s, top, a->rd);
6509 return true;
6510 }
6511
TRANS(ADDHN,do_addsub_highnarrow,a,false,false)6512 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6513 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6514 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6515 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6516
6517 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6518 {
6519 if (fp_access_check(s)) {
6520 /* The Q field specifies lo/hi half input for these insns. */
6521 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6522 }
6523 return true;
6524 }
6525
TRANS(PMULL_p8,do_pmull,a,gen_helper_neon_pmull_h)6526 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6527 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6528
6529 /*
6530 * Advanced SIMD scalar/vector x indexed element
6531 */
6532
6533 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6534 {
6535 switch (a->esz) {
6536 case MO_64:
6537 if (fp_access_check(s)) {
6538 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6539 TCGv_i64 t1 = tcg_temp_new_i64();
6540
6541 read_vec_element(s, t1, a->rm, a->idx, MO_64);
6542 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6543 write_fp_dreg_merging(s, a->rd, a->rn, t0);
6544 }
6545 break;
6546 case MO_32:
6547 if (fp_access_check(s)) {
6548 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6549 TCGv_i32 t1 = tcg_temp_new_i32();
6550
6551 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6552 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6553 write_fp_sreg_merging(s, a->rd, a->rn, t0);
6554 }
6555 break;
6556 case MO_16:
6557 if (!dc_isar_feature(aa64_fp16, s)) {
6558 return false;
6559 }
6560 if (fp_access_check(s)) {
6561 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6562 TCGv_i32 t1 = tcg_temp_new_i32();
6563
6564 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6565 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6566 write_fp_hreg_merging(s, a->rd, a->rn, t0);
6567 }
6568 break;
6569 default:
6570 g_assert_not_reached();
6571 }
6572 return true;
6573 }
6574
6575 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6576 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6577
do_fmla_scalar_idx(DisasContext * s,arg_rrx_e * a,bool neg)6578 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6579 {
6580 switch (a->esz) {
6581 case MO_64:
6582 if (fp_access_check(s)) {
6583 TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6584 TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6585 TCGv_i64 t2 = tcg_temp_new_i64();
6586
6587 read_vec_element(s, t2, a->rm, a->idx, MO_64);
6588 if (neg) {
6589 gen_vfp_maybe_ah_negd(s, t1, t1);
6590 }
6591 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6592 write_fp_dreg_merging(s, a->rd, a->rd, t0);
6593 }
6594 break;
6595 case MO_32:
6596 if (fp_access_check(s)) {
6597 TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6598 TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6599 TCGv_i32 t2 = tcg_temp_new_i32();
6600
6601 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6602 if (neg) {
6603 gen_vfp_maybe_ah_negs(s, t1, t1);
6604 }
6605 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6606 write_fp_sreg_merging(s, a->rd, a->rd, t0);
6607 }
6608 break;
6609 case MO_16:
6610 if (!dc_isar_feature(aa64_fp16, s)) {
6611 return false;
6612 }
6613 if (fp_access_check(s)) {
6614 TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6615 TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6616 TCGv_i32 t2 = tcg_temp_new_i32();
6617
6618 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6619 if (neg) {
6620 gen_vfp_maybe_ah_negh(s, t1, t1);
6621 }
6622 gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6623 fpstatus_ptr(FPST_A64_F16));
6624 write_fp_hreg_merging(s, a->rd, a->rd, t0);
6625 }
6626 break;
6627 default:
6628 g_assert_not_reached();
6629 }
6630 return true;
6631 }
6632
TRANS(FMLA_si,do_fmla_scalar_idx,a,false)6633 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6634 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6635
6636 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6637 const ENVScalar2 *f)
6638 {
6639 if (a->esz < MO_16 || a->esz > MO_32) {
6640 return false;
6641 }
6642 if (fp_access_check(s)) {
6643 TCGv_i32 t0 = tcg_temp_new_i32();
6644 TCGv_i32 t1 = tcg_temp_new_i32();
6645
6646 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6647 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6648 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6649 write_fp_sreg(s, a->rd, t0);
6650 }
6651 return true;
6652 }
6653
6654 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6655 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6656
do_env_scalar3_idx_hs(DisasContext * s,arg_rrx_e * a,const ENVScalar3 * f)6657 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6658 const ENVScalar3 *f)
6659 {
6660 if (a->esz < MO_16 || a->esz > MO_32) {
6661 return false;
6662 }
6663 if (fp_access_check(s)) {
6664 TCGv_i32 t0 = tcg_temp_new_i32();
6665 TCGv_i32 t1 = tcg_temp_new_i32();
6666 TCGv_i32 t2 = tcg_temp_new_i32();
6667
6668 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6669 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6670 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6671 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6672 write_fp_sreg(s, a->rd, t0);
6673 }
6674 return true;
6675 }
6676
6677 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6678 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6679
do_scalar_muladd_widening_idx(DisasContext * s,arg_rrx_e * a,NeonGenTwo64OpFn * fn,bool acc)6680 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6681 NeonGenTwo64OpFn *fn, bool acc)
6682 {
6683 if (fp_access_check(s)) {
6684 TCGv_i64 t0 = tcg_temp_new_i64();
6685 TCGv_i64 t1 = tcg_temp_new_i64();
6686 TCGv_i64 t2 = tcg_temp_new_i64();
6687
6688 if (acc) {
6689 read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6690 }
6691 read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6692 read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6693 fn(t0, t1, t2);
6694
6695 /* Clear the whole register first, then store scalar. */
6696 clear_vec(s, a->rd);
6697 write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6698 }
6699 return true;
6700 }
6701
6702 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6703 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6704 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6705 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6706 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6707 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6708
do_fp3_vector_idx(DisasContext * s,arg_qrrx_e * a,gen_helper_gvec_3_ptr * const fns[3])6709 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6710 gen_helper_gvec_3_ptr * const fns[3])
6711 {
6712 MemOp esz = a->esz;
6713 int check = fp_access_check_vector_hsd(s, a->q, esz);
6714
6715 if (check <= 0) {
6716 return check == 0;
6717 }
6718
6719 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6720 esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6721 a->idx, fns[esz - 1]);
6722 return true;
6723 }
6724
6725 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6726 gen_helper_gvec_fmul_idx_h,
6727 gen_helper_gvec_fmul_idx_s,
6728 gen_helper_gvec_fmul_idx_d,
6729 };
6730 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6731
6732 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6733 gen_helper_gvec_fmulx_idx_h,
6734 gen_helper_gvec_fmulx_idx_s,
6735 gen_helper_gvec_fmulx_idx_d,
6736 };
TRANS(FMULX_vi,do_fp3_vector_idx,a,f_vector_idx_fmulx)6737 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6738
6739 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6740 {
6741 static gen_helper_gvec_4_ptr * const fns[3][3] = {
6742 { gen_helper_gvec_fmla_idx_h,
6743 gen_helper_gvec_fmla_idx_s,
6744 gen_helper_gvec_fmla_idx_d },
6745 { gen_helper_gvec_fmls_idx_h,
6746 gen_helper_gvec_fmls_idx_s,
6747 gen_helper_gvec_fmls_idx_d },
6748 { gen_helper_gvec_ah_fmls_idx_h,
6749 gen_helper_gvec_ah_fmls_idx_s,
6750 gen_helper_gvec_ah_fmls_idx_d },
6751 };
6752 MemOp esz = a->esz;
6753 int check = fp_access_check_vector_hsd(s, a->q, esz);
6754
6755 if (check <= 0) {
6756 return check == 0;
6757 }
6758
6759 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6760 esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6761 a->idx, fns[neg ? 1 + s->fpcr_ah : 0][esz - 1]);
6762 return true;
6763 }
6764
TRANS(FMLA_vi,do_fmla_vector_idx,a,false)6765 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6766 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6767
6768 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6769 {
6770 if (fp_access_check(s)) {
6771 int data = (a->idx << 2) | (is_2 << 1) | is_s;
6772 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6773 vec_full_reg_offset(s, a->rn),
6774 vec_full_reg_offset(s, a->rm), tcg_env,
6775 a->q ? 16 : 8, vec_full_reg_size(s),
6776 data, gen_helper_gvec_fmlal_idx_a64);
6777 }
6778 return true;
6779 }
6780
TRANS_FEAT(FMLAL_vi,aa64_fhm,do_fmlal_idx,a,false,false)6781 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6782 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6783 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6784 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6785
6786 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6787 gen_helper_gvec_3 * const fns[2])
6788 {
6789 assert(a->esz == MO_16 || a->esz == MO_32);
6790 if (fp_access_check(s)) {
6791 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6792 }
6793 return true;
6794 }
6795
6796 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6797 gen_helper_gvec_mul_idx_h,
6798 gen_helper_gvec_mul_idx_s,
6799 };
TRANS(MUL_vi,do_int3_vector_idx,a,f_vector_idx_mul)6800 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6801
6802 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6803 {
6804 static gen_helper_gvec_4 * const fns[2][2] = {
6805 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6806 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6807 };
6808
6809 assert(a->esz == MO_16 || a->esz == MO_32);
6810 if (fp_access_check(s)) {
6811 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6812 a->idx, fns[a->esz - 1][sub]);
6813 }
6814 return true;
6815 }
6816
TRANS(MLA_vi,do_mla_vector_idx,a,false)6817 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6818 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6819
6820 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6821 gen_helper_gvec_4 * const fns[2])
6822 {
6823 assert(a->esz == MO_16 || a->esz == MO_32);
6824 if (fp_access_check(s)) {
6825 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6826 vec_full_reg_offset(s, a->rn),
6827 vec_full_reg_offset(s, a->rm),
6828 offsetof(CPUARMState, vfp.qc),
6829 a->q ? 16 : 8, vec_full_reg_size(s),
6830 a->idx, fns[a->esz - 1]);
6831 }
6832 return true;
6833 }
6834
6835 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6836 gen_helper_neon_sqdmulh_idx_h,
6837 gen_helper_neon_sqdmulh_idx_s,
6838 };
6839 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6840
6841 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6842 gen_helper_neon_sqrdmulh_idx_h,
6843 gen_helper_neon_sqrdmulh_idx_s,
6844 };
6845 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6846
6847 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6848 gen_helper_neon_sqrdmlah_idx_h,
6849 gen_helper_neon_sqrdmlah_idx_s,
6850 };
6851 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6852 f_vector_idx_sqrdmlah)
6853
6854 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6855 gen_helper_neon_sqrdmlsh_idx_h,
6856 gen_helper_neon_sqrdmlsh_idx_s,
6857 };
TRANS_FEAT(SQRDMLSH_vi,aa64_rdm,do_int3_qc_vector_idx,a,f_vector_idx_sqrdmlsh)6858 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6859 f_vector_idx_sqrdmlsh)
6860
6861 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6862 gen_helper_gvec_4 *fn)
6863 {
6864 if (fp_access_check(s)) {
6865 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6866 }
6867 return true;
6868 }
6869
do_dot_vector_idx_env(DisasContext * s,arg_qrrx_e * a,gen_helper_gvec_4_ptr * fn)6870 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a,
6871 gen_helper_gvec_4_ptr *fn)
6872 {
6873 if (fp_access_check(s)) {
6874 gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6875 }
6876 return true;
6877 }
6878
TRANS_FEAT(SDOT_vi,aa64_dp,do_dot_vector_idx,a,gen_helper_gvec_sdot_idx_4b)6879 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_4b)
6880 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_4b)
6881 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6882 gen_helper_gvec_sudot_idx_4b)
6883 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6884 gen_helper_gvec_usdot_idx_4b)
6885 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a,
6886 gen_helper_gvec_bfdot_idx)
6887
6888 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6889 {
6890 if (!dc_isar_feature(aa64_bf16, s)) {
6891 return false;
6892 }
6893 if (fp_access_check(s)) {
6894 /* Q bit selects BFMLALB vs BFMLALT. */
6895 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6896 s->fpcr_ah ? FPST_AH : FPST_A64,
6897 (a->idx << 1) | a->q,
6898 gen_helper_gvec_bfmlal_idx);
6899 }
6900 return true;
6901 }
6902
trans_FCMLA_vi(DisasContext * s,arg_FCMLA_vi * a)6903 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6904 {
6905 gen_helper_gvec_4_ptr *fn;
6906
6907 if (!dc_isar_feature(aa64_fcma, s)) {
6908 return false;
6909 }
6910 switch (a->esz) {
6911 case MO_16:
6912 if (!dc_isar_feature(aa64_fp16, s)) {
6913 return false;
6914 }
6915 fn = gen_helper_gvec_fcmlah_idx;
6916 break;
6917 case MO_32:
6918 fn = gen_helper_gvec_fcmlas_idx;
6919 break;
6920 default:
6921 g_assert_not_reached();
6922 }
6923 if (fp_access_check(s)) {
6924 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6925 a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6926 (s->fpcr_ah << 4) | (a->idx << 2) | a->rot, fn);
6927 }
6928 return true;
6929 }
6930
6931 /*
6932 * Advanced SIMD scalar pairwise
6933 */
6934
do_fp3_scalar_pair(DisasContext * s,arg_rr_e * a,const FPScalar * f)6935 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6936 {
6937 switch (a->esz) {
6938 case MO_64:
6939 if (fp_access_check(s)) {
6940 TCGv_i64 t0 = tcg_temp_new_i64();
6941 TCGv_i64 t1 = tcg_temp_new_i64();
6942
6943 read_vec_element(s, t0, a->rn, 0, MO_64);
6944 read_vec_element(s, t1, a->rn, 1, MO_64);
6945 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6946 write_fp_dreg(s, a->rd, t0);
6947 }
6948 break;
6949 case MO_32:
6950 if (fp_access_check(s)) {
6951 TCGv_i32 t0 = tcg_temp_new_i32();
6952 TCGv_i32 t1 = tcg_temp_new_i32();
6953
6954 read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6955 read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6956 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6957 write_fp_sreg(s, a->rd, t0);
6958 }
6959 break;
6960 case MO_16:
6961 if (!dc_isar_feature(aa64_fp16, s)) {
6962 return false;
6963 }
6964 if (fp_access_check(s)) {
6965 TCGv_i32 t0 = tcg_temp_new_i32();
6966 TCGv_i32 t1 = tcg_temp_new_i32();
6967
6968 read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6969 read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6970 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6971 write_fp_sreg(s, a->rd, t0);
6972 }
6973 break;
6974 default:
6975 g_assert_not_reached();
6976 }
6977 return true;
6978 }
6979
do_fp3_scalar_pair_2fn(DisasContext * s,arg_rr_e * a,const FPScalar * fnormal,const FPScalar * fah)6980 static bool do_fp3_scalar_pair_2fn(DisasContext *s, arg_rr_e *a,
6981 const FPScalar *fnormal,
6982 const FPScalar *fah)
6983 {
6984 return do_fp3_scalar_pair(s, a, s->fpcr_ah ? fah : fnormal);
6985 }
6986
6987 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6988 TRANS(FMAXP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah)
6989 TRANS(FMINP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah)
6990 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6991 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6992
trans_ADDP_s(DisasContext * s,arg_rr_e * a)6993 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6994 {
6995 if (fp_access_check(s)) {
6996 TCGv_i64 t0 = tcg_temp_new_i64();
6997 TCGv_i64 t1 = tcg_temp_new_i64();
6998
6999 read_vec_element(s, t0, a->rn, 0, MO_64);
7000 read_vec_element(s, t1, a->rn, 1, MO_64);
7001 tcg_gen_add_i64(t0, t0, t1);
7002 write_fp_dreg(s, a->rd, t0);
7003 }
7004 return true;
7005 }
7006
7007 /*
7008 * Floating-point conditional select
7009 */
7010
trans_FCSEL(DisasContext * s,arg_FCSEL * a)7011 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
7012 {
7013 TCGv_i64 t_true, t_false;
7014 DisasCompare64 c;
7015 int check = fp_access_check_scalar_hsd(s, a->esz);
7016
7017 if (check <= 0) {
7018 return check == 0;
7019 }
7020
7021 /* Zero extend sreg & hreg inputs to 64 bits now. */
7022 t_true = tcg_temp_new_i64();
7023 t_false = tcg_temp_new_i64();
7024 read_vec_element(s, t_true, a->rn, 0, a->esz);
7025 read_vec_element(s, t_false, a->rm, 0, a->esz);
7026
7027 a64_test_cc(&c, a->cond);
7028 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
7029 t_true, t_false);
7030
7031 /*
7032 * Note that sregs & hregs write back zeros to the high bits,
7033 * and we've already done the zero-extension.
7034 */
7035 write_fp_dreg(s, a->rd, t_true);
7036 return true;
7037 }
7038
7039 /*
7040 * Advanced SIMD Extract
7041 */
7042
trans_EXT_d(DisasContext * s,arg_EXT_d * a)7043 static bool trans_EXT_d(DisasContext *s, arg_EXT_d *a)
7044 {
7045 if (fp_access_check(s)) {
7046 TCGv_i64 lo = read_fp_dreg(s, a->rn);
7047 if (a->imm != 0) {
7048 TCGv_i64 hi = read_fp_dreg(s, a->rm);
7049 tcg_gen_extract2_i64(lo, lo, hi, a->imm * 8);
7050 }
7051 write_fp_dreg(s, a->rd, lo);
7052 }
7053 return true;
7054 }
7055
trans_EXT_q(DisasContext * s,arg_EXT_q * a)7056 static bool trans_EXT_q(DisasContext *s, arg_EXT_q *a)
7057 {
7058 TCGv_i64 lo, hi;
7059 int pos = (a->imm & 7) * 8;
7060 int elt = a->imm >> 3;
7061
7062 if (!fp_access_check(s)) {
7063 return true;
7064 }
7065
7066 lo = tcg_temp_new_i64();
7067 hi = tcg_temp_new_i64();
7068
7069 read_vec_element(s, lo, a->rn, elt, MO_64);
7070 elt++;
7071 read_vec_element(s, hi, elt & 2 ? a->rm : a->rn, elt & 1, MO_64);
7072 elt++;
7073
7074 if (pos != 0) {
7075 TCGv_i64 hh = tcg_temp_new_i64();
7076 tcg_gen_extract2_i64(lo, lo, hi, pos);
7077 read_vec_element(s, hh, a->rm, elt & 1, MO_64);
7078 tcg_gen_extract2_i64(hi, hi, hh, pos);
7079 }
7080
7081 write_vec_element(s, lo, a->rd, 0, MO_64);
7082 write_vec_element(s, hi, a->rd, 1, MO_64);
7083 clear_vec_high(s, true, a->rd);
7084 return true;
7085 }
7086
7087 /*
7088 * Floating-point data-processing (3 source)
7089 */
7090
do_fmadd(DisasContext * s,arg_rrrr_e * a,bool neg_a,bool neg_n)7091 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
7092 {
7093 TCGv_ptr fpst;
7094
7095 /*
7096 * These are fused multiply-add. Note that doing the negations here
7097 * as separate steps is correct: an input NaN should come out with
7098 * its sign bit flipped if it is a negated-input.
7099 */
7100 switch (a->esz) {
7101 case MO_64:
7102 if (fp_access_check(s)) {
7103 TCGv_i64 tn = read_fp_dreg(s, a->rn);
7104 TCGv_i64 tm = read_fp_dreg(s, a->rm);
7105 TCGv_i64 ta = read_fp_dreg(s, a->ra);
7106
7107 if (neg_a) {
7108 gen_vfp_maybe_ah_negd(s, ta, ta);
7109 }
7110 if (neg_n) {
7111 gen_vfp_maybe_ah_negd(s, tn, tn);
7112 }
7113 fpst = fpstatus_ptr(FPST_A64);
7114 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
7115 write_fp_dreg_merging(s, a->rd, a->ra, ta);
7116 }
7117 break;
7118
7119 case MO_32:
7120 if (fp_access_check(s)) {
7121 TCGv_i32 tn = read_fp_sreg(s, a->rn);
7122 TCGv_i32 tm = read_fp_sreg(s, a->rm);
7123 TCGv_i32 ta = read_fp_sreg(s, a->ra);
7124
7125 if (neg_a) {
7126 gen_vfp_maybe_ah_negs(s, ta, ta);
7127 }
7128 if (neg_n) {
7129 gen_vfp_maybe_ah_negs(s, tn, tn);
7130 }
7131 fpst = fpstatus_ptr(FPST_A64);
7132 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
7133 write_fp_sreg_merging(s, a->rd, a->ra, ta);
7134 }
7135 break;
7136
7137 case MO_16:
7138 if (!dc_isar_feature(aa64_fp16, s)) {
7139 return false;
7140 }
7141 if (fp_access_check(s)) {
7142 TCGv_i32 tn = read_fp_hreg(s, a->rn);
7143 TCGv_i32 tm = read_fp_hreg(s, a->rm);
7144 TCGv_i32 ta = read_fp_hreg(s, a->ra);
7145
7146 if (neg_a) {
7147 gen_vfp_maybe_ah_negh(s, ta, ta);
7148 }
7149 if (neg_n) {
7150 gen_vfp_maybe_ah_negh(s, tn, tn);
7151 }
7152 fpst = fpstatus_ptr(FPST_A64_F16);
7153 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
7154 write_fp_hreg_merging(s, a->rd, a->ra, ta);
7155 }
7156 break;
7157
7158 default:
7159 return false;
7160 }
7161 return true;
7162 }
7163
TRANS(FMADD,do_fmadd,a,false,false)7164 TRANS(FMADD, do_fmadd, a, false, false)
7165 TRANS(FNMADD, do_fmadd, a, true, true)
7166 TRANS(FMSUB, do_fmadd, a, false, true)
7167 TRANS(FNMSUB, do_fmadd, a, true, false)
7168
7169 /*
7170 * Advanced SIMD Across Lanes
7171 */
7172
7173 static bool do_int_reduction(DisasContext *s, arg_qrr_e *a, bool widen,
7174 MemOp src_sign, NeonGenTwo64OpFn *fn)
7175 {
7176 TCGv_i64 tcg_res, tcg_elt;
7177 MemOp src_mop = a->esz | src_sign;
7178 int elements = (a->q ? 16 : 8) >> a->esz;
7179
7180 /* Reject MO_64, and MO_32 without Q: a minimum of 4 elements. */
7181 if (elements < 4) {
7182 return false;
7183 }
7184 if (!fp_access_check(s)) {
7185 return true;
7186 }
7187
7188 tcg_res = tcg_temp_new_i64();
7189 tcg_elt = tcg_temp_new_i64();
7190
7191 read_vec_element(s, tcg_res, a->rn, 0, src_mop);
7192 for (int i = 1; i < elements; i++) {
7193 read_vec_element(s, tcg_elt, a->rn, i, src_mop);
7194 fn(tcg_res, tcg_res, tcg_elt);
7195 }
7196
7197 tcg_gen_ext_i64(tcg_res, tcg_res, a->esz + widen);
7198 write_fp_dreg(s, a->rd, tcg_res);
7199 return true;
7200 }
7201
7202 TRANS(ADDV, do_int_reduction, a, false, 0, tcg_gen_add_i64)
TRANS(SADDLV,do_int_reduction,a,true,MO_SIGN,tcg_gen_add_i64)7203 TRANS(SADDLV, do_int_reduction, a, true, MO_SIGN, tcg_gen_add_i64)
7204 TRANS(UADDLV, do_int_reduction, a, true, 0, tcg_gen_add_i64)
7205 TRANS(SMAXV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smax_i64)
7206 TRANS(UMAXV, do_int_reduction, a, false, 0, tcg_gen_umax_i64)
7207 TRANS(SMINV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smin_i64)
7208 TRANS(UMINV, do_int_reduction, a, false, 0, tcg_gen_umin_i64)
7209
7210 /*
7211 * do_fp_reduction helper
7212 *
7213 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7214 * important for correct NaN propagation that we do these
7215 * operations in exactly the order specified by the pseudocode.
7216 *
7217 * This is a recursive function.
7218 */
7219 static TCGv_i32 do_reduction_op(DisasContext *s, int rn, MemOp esz,
7220 int ebase, int ecount, TCGv_ptr fpst,
7221 NeonGenTwoSingleOpFn *fn)
7222 {
7223 if (ecount == 1) {
7224 TCGv_i32 tcg_elem = tcg_temp_new_i32();
7225 read_vec_element_i32(s, tcg_elem, rn, ebase, esz);
7226 return tcg_elem;
7227 } else {
7228 int half = ecount >> 1;
7229 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7230
7231 tcg_hi = do_reduction_op(s, rn, esz, ebase + half, half, fpst, fn);
7232 tcg_lo = do_reduction_op(s, rn, esz, ebase, half, fpst, fn);
7233 tcg_res = tcg_temp_new_i32();
7234
7235 fn(tcg_res, tcg_lo, tcg_hi, fpst);
7236 return tcg_res;
7237 }
7238 }
7239
do_fp_reduction(DisasContext * s,arg_qrr_e * a,NeonGenTwoSingleOpFn * fnormal,NeonGenTwoSingleOpFn * fah)7240 static bool do_fp_reduction(DisasContext *s, arg_qrr_e *a,
7241 NeonGenTwoSingleOpFn *fnormal,
7242 NeonGenTwoSingleOpFn *fah)
7243 {
7244 if (fp_access_check(s)) {
7245 MemOp esz = a->esz;
7246 int elts = (a->q ? 16 : 8) >> esz;
7247 TCGv_ptr fpst = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
7248 TCGv_i32 res = do_reduction_op(s, a->rn, esz, 0, elts, fpst,
7249 s->fpcr_ah ? fah : fnormal);
7250 write_fp_sreg(s, a->rd, res);
7251 }
7252 return true;
7253 }
7254
TRANS_FEAT(FMAXNMV_h,aa64_fp16,do_fp_reduction,a,gen_helper_vfp_maxnumh,gen_helper_vfp_maxnumh)7255 TRANS_FEAT(FMAXNMV_h, aa64_fp16, do_fp_reduction, a,
7256 gen_helper_vfp_maxnumh, gen_helper_vfp_maxnumh)
7257 TRANS_FEAT(FMINNMV_h, aa64_fp16, do_fp_reduction, a,
7258 gen_helper_vfp_minnumh, gen_helper_vfp_minnumh)
7259 TRANS_FEAT(FMAXV_h, aa64_fp16, do_fp_reduction, a,
7260 gen_helper_vfp_maxh, gen_helper_vfp_ah_maxh)
7261 TRANS_FEAT(FMINV_h, aa64_fp16, do_fp_reduction, a,
7262 gen_helper_vfp_minh, gen_helper_vfp_ah_minh)
7263
7264 TRANS(FMAXNMV_s, do_fp_reduction, a,
7265 gen_helper_vfp_maxnums, gen_helper_vfp_maxnums)
7266 TRANS(FMINNMV_s, do_fp_reduction, a,
7267 gen_helper_vfp_minnums, gen_helper_vfp_minnums)
7268 TRANS(FMAXV_s, do_fp_reduction, a, gen_helper_vfp_maxs, gen_helper_vfp_ah_maxs)
7269 TRANS(FMINV_s, do_fp_reduction, a, gen_helper_vfp_mins, gen_helper_vfp_ah_mins)
7270
7271 /*
7272 * Floating-point Immediate
7273 */
7274
7275 static bool trans_FMOVI_s(DisasContext *s, arg_FMOVI_s *a)
7276 {
7277 int check = fp_access_check_scalar_hsd(s, a->esz);
7278 uint64_t imm;
7279
7280 if (check <= 0) {
7281 return check == 0;
7282 }
7283
7284 imm = vfp_expand_imm(a->esz, a->imm);
7285 write_fp_dreg(s, a->rd, tcg_constant_i64(imm));
7286 return true;
7287 }
7288
7289 /*
7290 * Floating point compare, conditional compare
7291 */
7292
handle_fp_compare(DisasContext * s,int size,unsigned int rn,unsigned int rm,bool cmp_with_zero,bool signal_all_nans)7293 static void handle_fp_compare(DisasContext *s, int size,
7294 unsigned int rn, unsigned int rm,
7295 bool cmp_with_zero, bool signal_all_nans)
7296 {
7297 TCGv_i64 tcg_flags = tcg_temp_new_i64();
7298 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_A64_F16 : FPST_A64);
7299
7300 if (size == MO_64) {
7301 TCGv_i64 tcg_vn, tcg_vm;
7302
7303 tcg_vn = read_fp_dreg(s, rn);
7304 if (cmp_with_zero) {
7305 tcg_vm = tcg_constant_i64(0);
7306 } else {
7307 tcg_vm = read_fp_dreg(s, rm);
7308 }
7309 if (signal_all_nans) {
7310 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7311 } else {
7312 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7313 }
7314 } else {
7315 TCGv_i32 tcg_vn = tcg_temp_new_i32();
7316 TCGv_i32 tcg_vm = tcg_temp_new_i32();
7317
7318 read_vec_element_i32(s, tcg_vn, rn, 0, size);
7319 if (cmp_with_zero) {
7320 tcg_gen_movi_i32(tcg_vm, 0);
7321 } else {
7322 read_vec_element_i32(s, tcg_vm, rm, 0, size);
7323 }
7324
7325 switch (size) {
7326 case MO_32:
7327 if (signal_all_nans) {
7328 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7329 } else {
7330 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7331 }
7332 break;
7333 case MO_16:
7334 if (signal_all_nans) {
7335 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7336 } else {
7337 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7338 }
7339 break;
7340 default:
7341 g_assert_not_reached();
7342 }
7343 }
7344
7345 gen_set_nzcv(tcg_flags);
7346 }
7347
7348 /* FCMP, FCMPE */
trans_FCMP(DisasContext * s,arg_FCMP * a)7349 static bool trans_FCMP(DisasContext *s, arg_FCMP *a)
7350 {
7351 int check = fp_access_check_scalar_hsd(s, a->esz);
7352
7353 if (check <= 0) {
7354 return check == 0;
7355 }
7356
7357 handle_fp_compare(s, a->esz, a->rn, a->rm, a->z, a->e);
7358 return true;
7359 }
7360
7361 /* FCCMP, FCCMPE */
trans_FCCMP(DisasContext * s,arg_FCCMP * a)7362 static bool trans_FCCMP(DisasContext *s, arg_FCCMP *a)
7363 {
7364 TCGLabel *label_continue = NULL;
7365 int check = fp_access_check_scalar_hsd(s, a->esz);
7366
7367 if (check <= 0) {
7368 return check == 0;
7369 }
7370
7371 if (a->cond < 0x0e) { /* not always */
7372 TCGLabel *label_match = gen_new_label();
7373 label_continue = gen_new_label();
7374 arm_gen_test_cc(a->cond, label_match);
7375 /* nomatch: */
7376 gen_set_nzcv(tcg_constant_i64(a->nzcv << 28));
7377 tcg_gen_br(label_continue);
7378 gen_set_label(label_match);
7379 }
7380
7381 handle_fp_compare(s, a->esz, a->rn, a->rm, false, a->e);
7382
7383 if (label_continue) {
7384 gen_set_label(label_continue);
7385 }
7386 return true;
7387 }
7388
7389 /*
7390 * Advanced SIMD Modified Immediate
7391 */
7392
trans_FMOVI_v_h(DisasContext * s,arg_FMOVI_v_h * a)7393 static bool trans_FMOVI_v_h(DisasContext *s, arg_FMOVI_v_h *a)
7394 {
7395 if (!dc_isar_feature(aa64_fp16, s)) {
7396 return false;
7397 }
7398 if (fp_access_check(s)) {
7399 tcg_gen_gvec_dup_imm(MO_16, vec_full_reg_offset(s, a->rd),
7400 a->q ? 16 : 8, vec_full_reg_size(s),
7401 vfp_expand_imm(MO_16, a->abcdefgh));
7402 }
7403 return true;
7404 }
7405
gen_movi(unsigned vece,uint32_t dofs,uint32_t aofs,int64_t c,uint32_t oprsz,uint32_t maxsz)7406 static void gen_movi(unsigned vece, uint32_t dofs, uint32_t aofs,
7407 int64_t c, uint32_t oprsz, uint32_t maxsz)
7408 {
7409 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c);
7410 }
7411
trans_Vimm(DisasContext * s,arg_Vimm * a)7412 static bool trans_Vimm(DisasContext *s, arg_Vimm *a)
7413 {
7414 GVecGen2iFn *fn;
7415
7416 /* Handle decode of cmode/op here between ORR/BIC/MOVI */
7417 if ((a->cmode & 1) && a->cmode < 12) {
7418 /* For op=1, the imm will be inverted, so BIC becomes AND. */
7419 fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori;
7420 } else {
7421 /* There is one unallocated cmode/op combination in this space */
7422 if (a->cmode == 15 && a->op == 1 && a->q == 0) {
7423 return false;
7424 }
7425 fn = gen_movi;
7426 }
7427
7428 if (fp_access_check(s)) {
7429 uint64_t imm = asimd_imm_const(a->abcdefgh, a->cmode, a->op);
7430 gen_gvec_fn2i(s, a->q, a->rd, a->rd, imm, fn, MO_64);
7431 }
7432 return true;
7433 }
7434
7435 /*
7436 * Advanced SIMD Shift by Immediate
7437 */
7438
do_vec_shift_imm(DisasContext * s,arg_qrri_e * a,GVecGen2iFn * fn)7439 static bool do_vec_shift_imm(DisasContext *s, arg_qrri_e *a, GVecGen2iFn *fn)
7440 {
7441 if (fp_access_check(s)) {
7442 gen_gvec_fn2i(s, a->q, a->rd, a->rn, a->imm, fn, a->esz);
7443 }
7444 return true;
7445 }
7446
7447 TRANS(SSHR_v, do_vec_shift_imm, a, gen_gvec_sshr)
7448 TRANS(USHR_v, do_vec_shift_imm, a, gen_gvec_ushr)
7449 TRANS(SSRA_v, do_vec_shift_imm, a, gen_gvec_ssra)
7450 TRANS(USRA_v, do_vec_shift_imm, a, gen_gvec_usra)
7451 TRANS(SRSHR_v, do_vec_shift_imm, a, gen_gvec_srshr)
7452 TRANS(URSHR_v, do_vec_shift_imm, a, gen_gvec_urshr)
7453 TRANS(SRSRA_v, do_vec_shift_imm, a, gen_gvec_srsra)
7454 TRANS(URSRA_v, do_vec_shift_imm, a, gen_gvec_ursra)
7455 TRANS(SRI_v, do_vec_shift_imm, a, gen_gvec_sri)
7456 TRANS(SHL_v, do_vec_shift_imm, a, tcg_gen_gvec_shli)
7457 TRANS(SLI_v, do_vec_shift_imm, a, gen_gvec_sli);
TRANS(SQSHL_vi,do_vec_shift_imm,a,gen_neon_sqshli)7458 TRANS(SQSHL_vi, do_vec_shift_imm, a, gen_neon_sqshli)
7459 TRANS(UQSHL_vi, do_vec_shift_imm, a, gen_neon_uqshli)
7460 TRANS(SQSHLU_vi, do_vec_shift_imm, a, gen_neon_sqshlui)
7461
7462 static bool do_vec_shift_imm_wide(DisasContext *s, arg_qrri_e *a, bool is_u)
7463 {
7464 TCGv_i64 tcg_rn, tcg_rd;
7465 int esz = a->esz;
7466 int esize;
7467
7468 if (!fp_access_check(s)) {
7469 return true;
7470 }
7471
7472 /*
7473 * For the LL variants the store is larger than the load,
7474 * so if rd == rn we would overwrite parts of our input.
7475 * So load everything right now and use shifts in the main loop.
7476 */
7477 tcg_rd = tcg_temp_new_i64();
7478 tcg_rn = tcg_temp_new_i64();
7479 read_vec_element(s, tcg_rn, a->rn, a->q, MO_64);
7480
7481 esize = 8 << esz;
7482 for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7483 if (is_u) {
7484 tcg_gen_extract_i64(tcg_rd, tcg_rn, i * esize, esize);
7485 } else {
7486 tcg_gen_sextract_i64(tcg_rd, tcg_rn, i * esize, esize);
7487 }
7488 tcg_gen_shli_i64(tcg_rd, tcg_rd, a->imm);
7489 write_vec_element(s, tcg_rd, a->rd, i, esz + 1);
7490 }
7491 clear_vec_high(s, true, a->rd);
7492 return true;
7493 }
7494
TRANS(SSHLL_v,do_vec_shift_imm_wide,a,false)7495 TRANS(SSHLL_v, do_vec_shift_imm_wide, a, false)
7496 TRANS(USHLL_v, do_vec_shift_imm_wide, a, true)
7497
7498 static void gen_sshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7499 {
7500 assert(shift >= 0 && shift <= 64);
7501 tcg_gen_sari_i64(dst, src, MIN(shift, 63));
7502 }
7503
gen_ushr_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7504 static void gen_ushr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7505 {
7506 assert(shift >= 0 && shift <= 64);
7507 if (shift == 64) {
7508 tcg_gen_movi_i64(dst, 0);
7509 } else {
7510 tcg_gen_shri_i64(dst, src, shift);
7511 }
7512 }
7513
gen_ssra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7514 static void gen_ssra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7515 {
7516 gen_sshr_d(src, src, shift);
7517 tcg_gen_add_i64(dst, dst, src);
7518 }
7519
gen_usra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7520 static void gen_usra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7521 {
7522 gen_ushr_d(src, src, shift);
7523 tcg_gen_add_i64(dst, dst, src);
7524 }
7525
gen_srshr_bhs(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7526 static void gen_srshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7527 {
7528 assert(shift >= 0 && shift <= 32);
7529 if (shift) {
7530 TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7531 tcg_gen_add_i64(dst, src, rnd);
7532 tcg_gen_sari_i64(dst, dst, shift);
7533 } else {
7534 tcg_gen_mov_i64(dst, src);
7535 }
7536 }
7537
gen_urshr_bhs(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7538 static void gen_urshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7539 {
7540 assert(shift >= 0 && shift <= 32);
7541 if (shift) {
7542 TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7543 tcg_gen_add_i64(dst, src, rnd);
7544 tcg_gen_shri_i64(dst, dst, shift);
7545 } else {
7546 tcg_gen_mov_i64(dst, src);
7547 }
7548 }
7549
gen_srshr_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7550 static void gen_srshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7551 {
7552 assert(shift >= 0 && shift <= 64);
7553 if (shift == 0) {
7554 tcg_gen_mov_i64(dst, src);
7555 } else if (shift == 64) {
7556 /* Extension of sign bit (0,-1) plus sign bit (0,1) is zero. */
7557 tcg_gen_movi_i64(dst, 0);
7558 } else {
7559 TCGv_i64 rnd = tcg_temp_new_i64();
7560 tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7561 tcg_gen_sari_i64(dst, src, shift);
7562 tcg_gen_add_i64(dst, dst, rnd);
7563 }
7564 }
7565
gen_urshr_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7566 static void gen_urshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7567 {
7568 assert(shift >= 0 && shift <= 64);
7569 if (shift == 0) {
7570 tcg_gen_mov_i64(dst, src);
7571 } else if (shift == 64) {
7572 /* Rounding will propagate bit 63 into bit 64. */
7573 tcg_gen_shri_i64(dst, src, 63);
7574 } else {
7575 TCGv_i64 rnd = tcg_temp_new_i64();
7576 tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7577 tcg_gen_shri_i64(dst, src, shift);
7578 tcg_gen_add_i64(dst, dst, rnd);
7579 }
7580 }
7581
gen_srsra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7582 static void gen_srsra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7583 {
7584 gen_srshr_d(src, src, shift);
7585 tcg_gen_add_i64(dst, dst, src);
7586 }
7587
gen_ursra_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7588 static void gen_ursra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7589 {
7590 gen_urshr_d(src, src, shift);
7591 tcg_gen_add_i64(dst, dst, src);
7592 }
7593
gen_sri_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7594 static void gen_sri_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7595 {
7596 /* If shift is 64, dst is unchanged. */
7597 if (shift != 64) {
7598 tcg_gen_shri_i64(src, src, shift);
7599 tcg_gen_deposit_i64(dst, dst, src, 0, 64 - shift);
7600 }
7601 }
7602
gen_sli_d(TCGv_i64 dst,TCGv_i64 src,int64_t shift)7603 static void gen_sli_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7604 {
7605 tcg_gen_deposit_i64(dst, dst, src, shift, 64 - shift);
7606 }
7607
do_vec_shift_imm_narrow(DisasContext * s,arg_qrri_e * a,WideShiftImmFn * const fns[3],MemOp sign)7608 static bool do_vec_shift_imm_narrow(DisasContext *s, arg_qrri_e *a,
7609 WideShiftImmFn * const fns[3], MemOp sign)
7610 {
7611 TCGv_i64 tcg_rn, tcg_rd;
7612 int esz = a->esz;
7613 int esize;
7614 WideShiftImmFn *fn;
7615
7616 tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7617
7618 if (!fp_access_check(s)) {
7619 return true;
7620 }
7621
7622 tcg_rn = tcg_temp_new_i64();
7623 tcg_rd = tcg_temp_new_i64();
7624 tcg_gen_movi_i64(tcg_rd, 0);
7625
7626 fn = fns[esz];
7627 esize = 8 << esz;
7628 for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7629 read_vec_element(s, tcg_rn, a->rn, i, (esz + 1) | sign);
7630 fn(tcg_rn, tcg_rn, a->imm);
7631 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, esize * i, esize);
7632 }
7633
7634 write_vec_element(s, tcg_rd, a->rd, a->q, MO_64);
7635 clear_vec_high(s, a->q, a->rd);
7636 return true;
7637 }
7638
gen_sqshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7639 static void gen_sqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7640 {
7641 tcg_gen_sari_i64(d, s, i);
7642 tcg_gen_ext16u_i64(d, d);
7643 gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7644 }
7645
gen_sqshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7646 static void gen_sqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7647 {
7648 tcg_gen_sari_i64(d, s, i);
7649 tcg_gen_ext32u_i64(d, d);
7650 gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7651 }
7652
gen_sqshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7653 static void gen_sqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7654 {
7655 gen_sshr_d(d, s, i);
7656 gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7657 }
7658
gen_uqshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7659 static void gen_uqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7660 {
7661 tcg_gen_shri_i64(d, s, i);
7662 gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7663 }
7664
gen_uqshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7665 static void gen_uqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7666 {
7667 tcg_gen_shri_i64(d, s, i);
7668 gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7669 }
7670
gen_uqshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7671 static void gen_uqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7672 {
7673 gen_ushr_d(d, s, i);
7674 gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7675 }
7676
gen_sqshrun_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7677 static void gen_sqshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7678 {
7679 tcg_gen_sari_i64(d, s, i);
7680 tcg_gen_ext16u_i64(d, d);
7681 gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7682 }
7683
gen_sqshrun_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7684 static void gen_sqshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7685 {
7686 tcg_gen_sari_i64(d, s, i);
7687 tcg_gen_ext32u_i64(d, d);
7688 gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7689 }
7690
gen_sqshrun_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7691 static void gen_sqshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7692 {
7693 gen_sshr_d(d, s, i);
7694 gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7695 }
7696
gen_sqrshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7697 static void gen_sqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7698 {
7699 gen_srshr_bhs(d, s, i);
7700 tcg_gen_ext16u_i64(d, d);
7701 gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7702 }
7703
gen_sqrshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7704 static void gen_sqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7705 {
7706 gen_srshr_bhs(d, s, i);
7707 tcg_gen_ext32u_i64(d, d);
7708 gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7709 }
7710
gen_sqrshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7711 static void gen_sqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7712 {
7713 gen_srshr_d(d, s, i);
7714 gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7715 }
7716
gen_uqrshrn_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7717 static void gen_uqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7718 {
7719 gen_urshr_bhs(d, s, i);
7720 gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7721 }
7722
gen_uqrshrn_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7723 static void gen_uqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7724 {
7725 gen_urshr_bhs(d, s, i);
7726 gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7727 }
7728
gen_uqrshrn_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7729 static void gen_uqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7730 {
7731 gen_urshr_d(d, s, i);
7732 gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7733 }
7734
gen_sqrshrun_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7735 static void gen_sqrshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7736 {
7737 gen_srshr_bhs(d, s, i);
7738 tcg_gen_ext16u_i64(d, d);
7739 gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7740 }
7741
gen_sqrshrun_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7742 static void gen_sqrshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7743 {
7744 gen_srshr_bhs(d, s, i);
7745 tcg_gen_ext32u_i64(d, d);
7746 gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7747 }
7748
gen_sqrshrun_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7749 static void gen_sqrshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7750 {
7751 gen_srshr_d(d, s, i);
7752 gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7753 }
7754
7755 static WideShiftImmFn * const shrn_fns[] = {
7756 tcg_gen_shri_i64,
7757 tcg_gen_shri_i64,
7758 gen_ushr_d,
7759 };
7760 TRANS(SHRN_v, do_vec_shift_imm_narrow, a, shrn_fns, 0)
7761
7762 static WideShiftImmFn * const rshrn_fns[] = {
7763 gen_urshr_bhs,
7764 gen_urshr_bhs,
7765 gen_urshr_d,
7766 };
7767 TRANS(RSHRN_v, do_vec_shift_imm_narrow, a, rshrn_fns, 0)
7768
7769 static WideShiftImmFn * const sqshrn_fns[] = {
7770 gen_sqshrn_b,
7771 gen_sqshrn_h,
7772 gen_sqshrn_s,
7773 };
7774 TRANS(SQSHRN_v, do_vec_shift_imm_narrow, a, sqshrn_fns, MO_SIGN)
7775
7776 static WideShiftImmFn * const uqshrn_fns[] = {
7777 gen_uqshrn_b,
7778 gen_uqshrn_h,
7779 gen_uqshrn_s,
7780 };
7781 TRANS(UQSHRN_v, do_vec_shift_imm_narrow, a, uqshrn_fns, 0)
7782
7783 static WideShiftImmFn * const sqshrun_fns[] = {
7784 gen_sqshrun_b,
7785 gen_sqshrun_h,
7786 gen_sqshrun_s,
7787 };
7788 TRANS(SQSHRUN_v, do_vec_shift_imm_narrow, a, sqshrun_fns, MO_SIGN)
7789
7790 static WideShiftImmFn * const sqrshrn_fns[] = {
7791 gen_sqrshrn_b,
7792 gen_sqrshrn_h,
7793 gen_sqrshrn_s,
7794 };
7795 TRANS(SQRSHRN_v, do_vec_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN)
7796
7797 static WideShiftImmFn * const uqrshrn_fns[] = {
7798 gen_uqrshrn_b,
7799 gen_uqrshrn_h,
7800 gen_uqrshrn_s,
7801 };
7802 TRANS(UQRSHRN_v, do_vec_shift_imm_narrow, a, uqrshrn_fns, 0)
7803
7804 static WideShiftImmFn * const sqrshrun_fns[] = {
7805 gen_sqrshrun_b,
7806 gen_sqrshrun_h,
7807 gen_sqrshrun_s,
7808 };
TRANS(SQRSHRUN_v,do_vec_shift_imm_narrow,a,sqrshrun_fns,MO_SIGN)7809 TRANS(SQRSHRUN_v, do_vec_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN)
7810
7811 /*
7812 * Advanced SIMD Scalar Shift by Immediate
7813 */
7814
7815 static bool do_scalar_shift_imm(DisasContext *s, arg_rri_e *a,
7816 WideShiftImmFn *fn, bool accumulate,
7817 MemOp sign)
7818 {
7819 if (fp_access_check(s)) {
7820 TCGv_i64 rd = tcg_temp_new_i64();
7821 TCGv_i64 rn = tcg_temp_new_i64();
7822
7823 read_vec_element(s, rn, a->rn, 0, a->esz | sign);
7824 if (accumulate) {
7825 read_vec_element(s, rd, a->rd, 0, a->esz | sign);
7826 }
7827 fn(rd, rn, a->imm);
7828 write_fp_dreg(s, a->rd, rd);
7829 }
7830 return true;
7831 }
7832
7833 TRANS(SSHR_s, do_scalar_shift_imm, a, gen_sshr_d, false, 0)
7834 TRANS(USHR_s, do_scalar_shift_imm, a, gen_ushr_d, false, 0)
7835 TRANS(SSRA_s, do_scalar_shift_imm, a, gen_ssra_d, true, 0)
7836 TRANS(USRA_s, do_scalar_shift_imm, a, gen_usra_d, true, 0)
7837 TRANS(SRSHR_s, do_scalar_shift_imm, a, gen_srshr_d, false, 0)
7838 TRANS(URSHR_s, do_scalar_shift_imm, a, gen_urshr_d, false, 0)
7839 TRANS(SRSRA_s, do_scalar_shift_imm, a, gen_srsra_d, true, 0)
7840 TRANS(URSRA_s, do_scalar_shift_imm, a, gen_ursra_d, true, 0)
7841 TRANS(SRI_s, do_scalar_shift_imm, a, gen_sri_d, true, 0)
7842
7843 TRANS(SHL_s, do_scalar_shift_imm, a, tcg_gen_shli_i64, false, 0)
7844 TRANS(SLI_s, do_scalar_shift_imm, a, gen_sli_d, true, 0)
7845
trunc_i64_env_imm(TCGv_i64 d,TCGv_i64 s,int64_t i,NeonGenTwoOpEnvFn * fn)7846 static void trunc_i64_env_imm(TCGv_i64 d, TCGv_i64 s, int64_t i,
7847 NeonGenTwoOpEnvFn *fn)
7848 {
7849 TCGv_i32 t = tcg_temp_new_i32();
7850 tcg_gen_extrl_i64_i32(t, s);
7851 fn(t, tcg_env, t, tcg_constant_i32(i));
7852 tcg_gen_extu_i32_i64(d, t);
7853 }
7854
gen_sqshli_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7855 static void gen_sqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7856 {
7857 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s8);
7858 }
7859
gen_sqshli_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7860 static void gen_sqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7861 {
7862 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s16);
7863 }
7864
gen_sqshli_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7865 static void gen_sqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7866 {
7867 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s32);
7868 }
7869
gen_sqshli_d(TCGv_i64 d,TCGv_i64 s,int64_t i)7870 static void gen_sqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7871 {
7872 gen_helper_neon_qshl_s64(d, tcg_env, s, tcg_constant_i64(i));
7873 }
7874
gen_uqshli_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7875 static void gen_uqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7876 {
7877 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u8);
7878 }
7879
gen_uqshli_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7880 static void gen_uqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7881 {
7882 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u16);
7883 }
7884
gen_uqshli_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7885 static void gen_uqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7886 {
7887 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u32);
7888 }
7889
gen_uqshli_d(TCGv_i64 d,TCGv_i64 s,int64_t i)7890 static void gen_uqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7891 {
7892 gen_helper_neon_qshl_u64(d, tcg_env, s, tcg_constant_i64(i));
7893 }
7894
gen_sqshlui_b(TCGv_i64 d,TCGv_i64 s,int64_t i)7895 static void gen_sqshlui_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7896 {
7897 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s8);
7898 }
7899
gen_sqshlui_h(TCGv_i64 d,TCGv_i64 s,int64_t i)7900 static void gen_sqshlui_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7901 {
7902 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s16);
7903 }
7904
gen_sqshlui_s(TCGv_i64 d,TCGv_i64 s,int64_t i)7905 static void gen_sqshlui_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7906 {
7907 trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s32);
7908 }
7909
gen_sqshlui_d(TCGv_i64 d,TCGv_i64 s,int64_t i)7910 static void gen_sqshlui_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7911 {
7912 gen_helper_neon_qshlu_s64(d, tcg_env, s, tcg_constant_i64(i));
7913 }
7914
7915 static WideShiftImmFn * const f_scalar_sqshli[] = {
7916 gen_sqshli_b, gen_sqshli_h, gen_sqshli_s, gen_sqshli_d
7917 };
7918
7919 static WideShiftImmFn * const f_scalar_uqshli[] = {
7920 gen_uqshli_b, gen_uqshli_h, gen_uqshli_s, gen_uqshli_d
7921 };
7922
7923 static WideShiftImmFn * const f_scalar_sqshlui[] = {
7924 gen_sqshlui_b, gen_sqshlui_h, gen_sqshlui_s, gen_sqshlui_d
7925 };
7926
7927 /* Note that the helpers sign-extend their inputs, so don't do it here. */
7928 TRANS(SQSHL_si, do_scalar_shift_imm, a, f_scalar_sqshli[a->esz], false, 0)
7929 TRANS(UQSHL_si, do_scalar_shift_imm, a, f_scalar_uqshli[a->esz], false, 0)
7930 TRANS(SQSHLU_si, do_scalar_shift_imm, a, f_scalar_sqshlui[a->esz], false, 0)
7931
do_scalar_shift_imm_narrow(DisasContext * s,arg_rri_e * a,WideShiftImmFn * const fns[3],MemOp sign,bool zext)7932 static bool do_scalar_shift_imm_narrow(DisasContext *s, arg_rri_e *a,
7933 WideShiftImmFn * const fns[3],
7934 MemOp sign, bool zext)
7935 {
7936 MemOp esz = a->esz;
7937
7938 tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7939
7940 if (fp_access_check(s)) {
7941 TCGv_i64 rd = tcg_temp_new_i64();
7942 TCGv_i64 rn = tcg_temp_new_i64();
7943
7944 read_vec_element(s, rn, a->rn, 0, (esz + 1) | sign);
7945 fns[esz](rd, rn, a->imm);
7946 if (zext) {
7947 tcg_gen_ext_i64(rd, rd, esz);
7948 }
7949 write_fp_dreg(s, a->rd, rd);
7950 }
7951 return true;
7952 }
7953
TRANS(SQSHRN_si,do_scalar_shift_imm_narrow,a,sqshrn_fns,MO_SIGN,true)7954 TRANS(SQSHRN_si, do_scalar_shift_imm_narrow, a, sqshrn_fns, MO_SIGN, true)
7955 TRANS(SQRSHRN_si, do_scalar_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN, true)
7956 TRANS(UQSHRN_si, do_scalar_shift_imm_narrow, a, uqshrn_fns, 0, false)
7957 TRANS(UQRSHRN_si, do_scalar_shift_imm_narrow, a, uqrshrn_fns, 0, false)
7958 TRANS(SQSHRUN_si, do_scalar_shift_imm_narrow, a, sqshrun_fns, MO_SIGN, false)
7959 TRANS(SQRSHRUN_si, do_scalar_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN, false)
7960
7961 static bool do_div(DisasContext *s, arg_rrr_sf *a, bool is_signed)
7962 {
7963 TCGv_i64 tcg_n, tcg_m, tcg_rd;
7964 tcg_rd = cpu_reg(s, a->rd);
7965
7966 if (!a->sf && is_signed) {
7967 tcg_n = tcg_temp_new_i64();
7968 tcg_m = tcg_temp_new_i64();
7969 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, a->rn));
7970 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, a->rm));
7971 } else {
7972 tcg_n = read_cpu_reg(s, a->rn, a->sf);
7973 tcg_m = read_cpu_reg(s, a->rm, a->sf);
7974 }
7975
7976 if (is_signed) {
7977 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7978 } else {
7979 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7980 }
7981
7982 if (!a->sf) { /* zero extend final result */
7983 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7984 }
7985 return true;
7986 }
7987
TRANS(SDIV,do_div,a,true)7988 TRANS(SDIV, do_div, a, true)
7989 TRANS(UDIV, do_div, a, false)
7990
7991 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
7992 * Note that it is the caller's responsibility to ensure that the
7993 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
7994 * mandated semantics for out of range shifts.
7995 */
7996 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
7997 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
7998 {
7999 switch (shift_type) {
8000 case A64_SHIFT_TYPE_LSL:
8001 tcg_gen_shl_i64(dst, src, shift_amount);
8002 break;
8003 case A64_SHIFT_TYPE_LSR:
8004 tcg_gen_shr_i64(dst, src, shift_amount);
8005 break;
8006 case A64_SHIFT_TYPE_ASR:
8007 if (!sf) {
8008 tcg_gen_ext32s_i64(dst, src);
8009 }
8010 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
8011 break;
8012 case A64_SHIFT_TYPE_ROR:
8013 if (sf) {
8014 tcg_gen_rotr_i64(dst, src, shift_amount);
8015 } else {
8016 TCGv_i32 t0, t1;
8017 t0 = tcg_temp_new_i32();
8018 t1 = tcg_temp_new_i32();
8019 tcg_gen_extrl_i64_i32(t0, src);
8020 tcg_gen_extrl_i64_i32(t1, shift_amount);
8021 tcg_gen_rotr_i32(t0, t0, t1);
8022 tcg_gen_extu_i32_i64(dst, t0);
8023 }
8024 break;
8025 default:
8026 assert(FALSE); /* all shift types should be handled */
8027 break;
8028 }
8029
8030 if (!sf) { /* zero extend final result */
8031 tcg_gen_ext32u_i64(dst, dst);
8032 }
8033 }
8034
8035 /* Shift a TCGv src by immediate, put result in dst.
8036 * The shift amount must be in range (this should always be true as the
8037 * relevant instructions will UNDEF on bad shift immediates).
8038 */
shift_reg_imm(TCGv_i64 dst,TCGv_i64 src,int sf,enum a64_shift_type shift_type,unsigned int shift_i)8039 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
8040 enum a64_shift_type shift_type, unsigned int shift_i)
8041 {
8042 assert(shift_i < (sf ? 64 : 32));
8043
8044 if (shift_i == 0) {
8045 tcg_gen_mov_i64(dst, src);
8046 } else {
8047 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
8048 }
8049 }
8050
do_shift_reg(DisasContext * s,arg_rrr_sf * a,enum a64_shift_type shift_type)8051 static bool do_shift_reg(DisasContext *s, arg_rrr_sf *a,
8052 enum a64_shift_type shift_type)
8053 {
8054 TCGv_i64 tcg_shift = tcg_temp_new_i64();
8055 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8056 TCGv_i64 tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8057
8058 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, a->rm), a->sf ? 63 : 31);
8059 shift_reg(tcg_rd, tcg_rn, a->sf, shift_type, tcg_shift);
8060 return true;
8061 }
8062
TRANS(LSLV,do_shift_reg,a,A64_SHIFT_TYPE_LSL)8063 TRANS(LSLV, do_shift_reg, a, A64_SHIFT_TYPE_LSL)
8064 TRANS(LSRV, do_shift_reg, a, A64_SHIFT_TYPE_LSR)
8065 TRANS(ASRV, do_shift_reg, a, A64_SHIFT_TYPE_ASR)
8066 TRANS(RORV, do_shift_reg, a, A64_SHIFT_TYPE_ROR)
8067
8068 static bool do_crc32(DisasContext *s, arg_rrr_e *a, bool crc32c)
8069 {
8070 TCGv_i64 tcg_acc, tcg_val, tcg_rd;
8071 TCGv_i32 tcg_bytes;
8072
8073 switch (a->esz) {
8074 case MO_8:
8075 case MO_16:
8076 case MO_32:
8077 tcg_val = tcg_temp_new_i64();
8078 tcg_gen_extract_i64(tcg_val, cpu_reg(s, a->rm), 0, 8 << a->esz);
8079 break;
8080 case MO_64:
8081 tcg_val = cpu_reg(s, a->rm);
8082 break;
8083 default:
8084 g_assert_not_reached();
8085 }
8086 tcg_acc = cpu_reg(s, a->rn);
8087 tcg_bytes = tcg_constant_i32(1 << a->esz);
8088 tcg_rd = cpu_reg(s, a->rd);
8089
8090 if (crc32c) {
8091 gen_helper_crc32c_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8092 } else {
8093 gen_helper_crc32_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8094 }
8095 return true;
8096 }
8097
TRANS_FEAT(CRC32,aa64_crc32,do_crc32,a,false)8098 TRANS_FEAT(CRC32, aa64_crc32, do_crc32, a, false)
8099 TRANS_FEAT(CRC32C, aa64_crc32, do_crc32, a, true)
8100
8101 static bool do_subp(DisasContext *s, arg_rrr *a, bool setflag)
8102 {
8103 TCGv_i64 tcg_n = read_cpu_reg_sp(s, a->rn, true);
8104 TCGv_i64 tcg_m = read_cpu_reg_sp(s, a->rm, true);
8105 TCGv_i64 tcg_d = cpu_reg(s, a->rd);
8106
8107 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
8108 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
8109
8110 if (setflag) {
8111 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
8112 } else {
8113 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
8114 }
8115 return true;
8116 }
8117
TRANS_FEAT(SUBP,aa64_mte_insn_reg,do_subp,a,false)8118 TRANS_FEAT(SUBP, aa64_mte_insn_reg, do_subp, a, false)
8119 TRANS_FEAT(SUBPS, aa64_mte_insn_reg, do_subp, a, true)
8120
8121 static bool trans_IRG(DisasContext *s, arg_rrr *a)
8122 {
8123 if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8124 TCGv_i64 tcg_rd = cpu_reg_sp(s, a->rd);
8125 TCGv_i64 tcg_rn = cpu_reg_sp(s, a->rn);
8126
8127 if (s->ata[0]) {
8128 gen_helper_irg(tcg_rd, tcg_env, tcg_rn, cpu_reg(s, a->rm));
8129 } else {
8130 gen_address_with_allocation_tag0(tcg_rd, tcg_rn);
8131 }
8132 return true;
8133 }
8134 return false;
8135 }
8136
trans_GMI(DisasContext * s,arg_rrr * a)8137 static bool trans_GMI(DisasContext *s, arg_rrr *a)
8138 {
8139 if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8140 TCGv_i64 t = tcg_temp_new_i64();
8141
8142 tcg_gen_extract_i64(t, cpu_reg_sp(s, a->rn), 56, 4);
8143 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
8144 tcg_gen_or_i64(cpu_reg(s, a->rd), cpu_reg(s, a->rm), t);
8145 return true;
8146 }
8147 return false;
8148 }
8149
trans_PACGA(DisasContext * s,arg_rrr * a)8150 static bool trans_PACGA(DisasContext *s, arg_rrr *a)
8151 {
8152 if (dc_isar_feature(aa64_pauth, s)) {
8153 gen_helper_pacga(cpu_reg(s, a->rd), tcg_env,
8154 cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm));
8155 return true;
8156 }
8157 return false;
8158 }
8159
8160 typedef void ArithOneOp(TCGv_i64, TCGv_i64);
8161
gen_rr(DisasContext * s,int rd,int rn,ArithOneOp fn)8162 static bool gen_rr(DisasContext *s, int rd, int rn, ArithOneOp fn)
8163 {
8164 fn(cpu_reg(s, rd), cpu_reg(s, rn));
8165 return true;
8166 }
8167
gen_rbit32(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8168 static void gen_rbit32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8169 {
8170 TCGv_i32 t32 = tcg_temp_new_i32();
8171
8172 tcg_gen_extrl_i64_i32(t32, tcg_rn);
8173 gen_helper_rbit(t32, t32);
8174 tcg_gen_extu_i32_i64(tcg_rd, t32);
8175 }
8176
gen_rev16_xx(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn,TCGv_i64 mask)8177 static void gen_rev16_xx(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 mask)
8178 {
8179 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8180
8181 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
8182 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
8183 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
8184 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
8185 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
8186 }
8187
gen_rev16_32(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8188 static void gen_rev16_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8189 {
8190 gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff));
8191 }
8192
gen_rev16_64(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8193 static void gen_rev16_64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8194 {
8195 gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff00ff00ffull));
8196 }
8197
gen_rev_32(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8198 static void gen_rev_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8199 {
8200 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
8201 }
8202
gen_rev32(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8203 static void gen_rev32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8204 {
8205 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
8206 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
8207 }
8208
8209 TRANS(RBIT, gen_rr, a->rd, a->rn, a->sf ? gen_helper_rbit64 : gen_rbit32)
8210 TRANS(REV16, gen_rr, a->rd, a->rn, a->sf ? gen_rev16_64 : gen_rev16_32)
8211 TRANS(REV32, gen_rr, a->rd, a->rn, a->sf ? gen_rev32 : gen_rev_32)
8212 TRANS(REV64, gen_rr, a->rd, a->rn, tcg_gen_bswap64_i64)
8213
gen_clz32(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8214 static void gen_clz32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8215 {
8216 TCGv_i32 t32 = tcg_temp_new_i32();
8217
8218 tcg_gen_extrl_i64_i32(t32, tcg_rn);
8219 tcg_gen_clzi_i32(t32, t32, 32);
8220 tcg_gen_extu_i32_i64(tcg_rd, t32);
8221 }
8222
gen_clz64(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8223 static void gen_clz64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8224 {
8225 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8226 }
8227
gen_cls32(TCGv_i64 tcg_rd,TCGv_i64 tcg_rn)8228 static void gen_cls32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8229 {
8230 TCGv_i32 t32 = tcg_temp_new_i32();
8231
8232 tcg_gen_extrl_i64_i32(t32, tcg_rn);
8233 tcg_gen_clrsb_i32(t32, t32);
8234 tcg_gen_extu_i32_i64(tcg_rd, t32);
8235 }
8236
8237 TRANS(CLZ, gen_rr, a->rd, a->rn, a->sf ? gen_clz64 : gen_clz32)
8238 TRANS(CLS, gen_rr, a->rd, a->rn, a->sf ? tcg_gen_clrsb_i64 : gen_cls32)
8239
gen_pacaut(DisasContext * s,arg_pacaut * a,NeonGenTwo64OpEnvFn fn)8240 static bool gen_pacaut(DisasContext *s, arg_pacaut *a, NeonGenTwo64OpEnvFn fn)
8241 {
8242 TCGv_i64 tcg_rd, tcg_rn;
8243
8244 if (a->z) {
8245 if (a->rn != 31) {
8246 return false;
8247 }
8248 tcg_rn = tcg_constant_i64(0);
8249 } else {
8250 tcg_rn = cpu_reg_sp(s, a->rn);
8251 }
8252 if (s->pauth_active) {
8253 tcg_rd = cpu_reg(s, a->rd);
8254 fn(tcg_rd, tcg_env, tcg_rd, tcg_rn);
8255 }
8256 return true;
8257 }
8258
TRANS_FEAT(PACIA,aa64_pauth,gen_pacaut,a,gen_helper_pacia)8259 TRANS_FEAT(PACIA, aa64_pauth, gen_pacaut, a, gen_helper_pacia)
8260 TRANS_FEAT(PACIB, aa64_pauth, gen_pacaut, a, gen_helper_pacib)
8261 TRANS_FEAT(PACDA, aa64_pauth, gen_pacaut, a, gen_helper_pacda)
8262 TRANS_FEAT(PACDB, aa64_pauth, gen_pacaut, a, gen_helper_pacdb)
8263
8264 TRANS_FEAT(AUTIA, aa64_pauth, gen_pacaut, a, gen_helper_autia)
8265 TRANS_FEAT(AUTIB, aa64_pauth, gen_pacaut, a, gen_helper_autib)
8266 TRANS_FEAT(AUTDA, aa64_pauth, gen_pacaut, a, gen_helper_autda)
8267 TRANS_FEAT(AUTDB, aa64_pauth, gen_pacaut, a, gen_helper_autdb)
8268
8269 static bool do_xpac(DisasContext *s, int rd, NeonGenOne64OpEnvFn *fn)
8270 {
8271 if (s->pauth_active) {
8272 TCGv_i64 tcg_rd = cpu_reg(s, rd);
8273 fn(tcg_rd, tcg_env, tcg_rd);
8274 }
8275 return true;
8276 }
8277
8278 TRANS_FEAT(XPACI, aa64_pauth, do_xpac, a->rd, gen_helper_xpaci)
8279 TRANS_FEAT(XPACD, aa64_pauth, do_xpac, a->rd, gen_helper_xpacd)
8280
do_logic_reg(DisasContext * s,arg_logic_shift * a,ArithTwoOp * fn,ArithTwoOp * inv_fn,bool setflags)8281 static bool do_logic_reg(DisasContext *s, arg_logic_shift *a,
8282 ArithTwoOp *fn, ArithTwoOp *inv_fn, bool setflags)
8283 {
8284 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
8285
8286 if (!a->sf && (a->sa & (1 << 5))) {
8287 return false;
8288 }
8289
8290 tcg_rd = cpu_reg(s, a->rd);
8291 tcg_rn = cpu_reg(s, a->rn);
8292
8293 tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8294 if (a->sa) {
8295 shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8296 }
8297
8298 (a->n ? inv_fn : fn)(tcg_rd, tcg_rn, tcg_rm);
8299 if (!a->sf) {
8300 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8301 }
8302 if (setflags) {
8303 gen_logic_CC(a->sf, tcg_rd);
8304 }
8305 return true;
8306 }
8307
trans_ORR_r(DisasContext * s,arg_logic_shift * a)8308 static bool trans_ORR_r(DisasContext *s, arg_logic_shift *a)
8309 {
8310 /*
8311 * Unshifted ORR and ORN with WZR/XZR is the standard encoding for
8312 * register-register MOV and MVN, so it is worth special casing.
8313 */
8314 if (a->sa == 0 && a->st == 0 && a->rn == 31) {
8315 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8316 TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8317
8318 if (a->n) {
8319 tcg_gen_not_i64(tcg_rd, tcg_rm);
8320 if (!a->sf) {
8321 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8322 }
8323 } else {
8324 if (a->sf) {
8325 tcg_gen_mov_i64(tcg_rd, tcg_rm);
8326 } else {
8327 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
8328 }
8329 }
8330 return true;
8331 }
8332
8333 return do_logic_reg(s, a, tcg_gen_or_i64, tcg_gen_orc_i64, false);
8334 }
8335
TRANS(AND_r,do_logic_reg,a,tcg_gen_and_i64,tcg_gen_andc_i64,false)8336 TRANS(AND_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, false)
8337 TRANS(ANDS_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, true)
8338 TRANS(EOR_r, do_logic_reg, a, tcg_gen_xor_i64, tcg_gen_eqv_i64, false)
8339
8340 static bool do_addsub_ext(DisasContext *s, arg_addsub_ext *a,
8341 bool sub_op, bool setflags)
8342 {
8343 TCGv_i64 tcg_rm, tcg_rn, tcg_rd, tcg_result;
8344
8345 if (a->sa > 4) {
8346 return false;
8347 }
8348
8349 /* non-flag setting ops may use SP */
8350 if (!setflags) {
8351 tcg_rd = cpu_reg_sp(s, a->rd);
8352 } else {
8353 tcg_rd = cpu_reg(s, a->rd);
8354 }
8355 tcg_rn = read_cpu_reg_sp(s, a->rn, a->sf);
8356
8357 tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8358 ext_and_shift_reg(tcg_rm, tcg_rm, a->st, a->sa);
8359
8360 tcg_result = tcg_temp_new_i64();
8361 if (!setflags) {
8362 if (sub_op) {
8363 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8364 } else {
8365 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8366 }
8367 } else {
8368 if (sub_op) {
8369 gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8370 } else {
8371 gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8372 }
8373 }
8374
8375 if (a->sf) {
8376 tcg_gen_mov_i64(tcg_rd, tcg_result);
8377 } else {
8378 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8379 }
8380 return true;
8381 }
8382
TRANS(ADD_ext,do_addsub_ext,a,false,false)8383 TRANS(ADD_ext, do_addsub_ext, a, false, false)
8384 TRANS(SUB_ext, do_addsub_ext, a, true, false)
8385 TRANS(ADDS_ext, do_addsub_ext, a, false, true)
8386 TRANS(SUBS_ext, do_addsub_ext, a, true, true)
8387
8388 static bool do_addsub_reg(DisasContext *s, arg_addsub_shift *a,
8389 bool sub_op, bool setflags)
8390 {
8391 TCGv_i64 tcg_rd, tcg_rn, tcg_rm, tcg_result;
8392
8393 if (a->st == 3 || (!a->sf && (a->sa & 32))) {
8394 return false;
8395 }
8396
8397 tcg_rd = cpu_reg(s, a->rd);
8398 tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8399 tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8400
8401 shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8402
8403 tcg_result = tcg_temp_new_i64();
8404 if (!setflags) {
8405 if (sub_op) {
8406 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8407 } else {
8408 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8409 }
8410 } else {
8411 if (sub_op) {
8412 gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8413 } else {
8414 gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8415 }
8416 }
8417
8418 if (a->sf) {
8419 tcg_gen_mov_i64(tcg_rd, tcg_result);
8420 } else {
8421 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8422 }
8423 return true;
8424 }
8425
TRANS(ADD_r,do_addsub_reg,a,false,false)8426 TRANS(ADD_r, do_addsub_reg, a, false, false)
8427 TRANS(SUB_r, do_addsub_reg, a, true, false)
8428 TRANS(ADDS_r, do_addsub_reg, a, false, true)
8429 TRANS(SUBS_r, do_addsub_reg, a, true, true)
8430
8431 static bool do_mulh(DisasContext *s, arg_rrr *a,
8432 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
8433 {
8434 TCGv_i64 discard = tcg_temp_new_i64();
8435 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8436 TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
8437 TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8438
8439 fn(discard, tcg_rd, tcg_rn, tcg_rm);
8440 return true;
8441 }
8442
TRANS(SMULH,do_mulh,a,tcg_gen_muls2_i64)8443 TRANS(SMULH, do_mulh, a, tcg_gen_muls2_i64)
8444 TRANS(UMULH, do_mulh, a, tcg_gen_mulu2_i64)
8445
8446 static bool do_muladd(DisasContext *s, arg_rrrr *a,
8447 bool sf, bool is_sub, MemOp mop)
8448 {
8449 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8450 TCGv_i64 tcg_op1, tcg_op2;
8451
8452 if (mop == MO_64) {
8453 tcg_op1 = cpu_reg(s, a->rn);
8454 tcg_op2 = cpu_reg(s, a->rm);
8455 } else {
8456 tcg_op1 = tcg_temp_new_i64();
8457 tcg_op2 = tcg_temp_new_i64();
8458 tcg_gen_ext_i64(tcg_op1, cpu_reg(s, a->rn), mop);
8459 tcg_gen_ext_i64(tcg_op2, cpu_reg(s, a->rm), mop);
8460 }
8461
8462 if (a->ra == 31 && !is_sub) {
8463 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
8464 tcg_gen_mul_i64(tcg_rd, tcg_op1, tcg_op2);
8465 } else {
8466 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8467 TCGv_i64 tcg_ra = cpu_reg(s, a->ra);
8468
8469 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
8470 if (is_sub) {
8471 tcg_gen_sub_i64(tcg_rd, tcg_ra, tcg_tmp);
8472 } else {
8473 tcg_gen_add_i64(tcg_rd, tcg_ra, tcg_tmp);
8474 }
8475 }
8476
8477 if (!sf) {
8478 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8479 }
8480 return true;
8481 }
8482
TRANS(MADD_w,do_muladd,a,false,false,MO_64)8483 TRANS(MADD_w, do_muladd, a, false, false, MO_64)
8484 TRANS(MSUB_w, do_muladd, a, false, true, MO_64)
8485 TRANS(MADD_x, do_muladd, a, true, false, MO_64)
8486 TRANS(MSUB_x, do_muladd, a, true, true, MO_64)
8487
8488 TRANS(SMADDL, do_muladd, a, true, false, MO_SL)
8489 TRANS(SMSUBL, do_muladd, a, true, true, MO_SL)
8490 TRANS(UMADDL, do_muladd, a, true, false, MO_UL)
8491 TRANS(UMSUBL, do_muladd, a, true, true, MO_UL)
8492
8493 static bool do_adc_sbc(DisasContext *s, arg_rrr_sf *a,
8494 bool is_sub, bool setflags)
8495 {
8496 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
8497
8498 tcg_rd = cpu_reg(s, a->rd);
8499 tcg_rn = cpu_reg(s, a->rn);
8500
8501 if (is_sub) {
8502 tcg_y = tcg_temp_new_i64();
8503 tcg_gen_not_i64(tcg_y, cpu_reg(s, a->rm));
8504 } else {
8505 tcg_y = cpu_reg(s, a->rm);
8506 }
8507
8508 if (setflags) {
8509 gen_adc_CC(a->sf, tcg_rd, tcg_rn, tcg_y);
8510 } else {
8511 gen_adc(a->sf, tcg_rd, tcg_rn, tcg_y);
8512 }
8513 return true;
8514 }
8515
TRANS(ADC,do_adc_sbc,a,false,false)8516 TRANS(ADC, do_adc_sbc, a, false, false)
8517 TRANS(SBC, do_adc_sbc, a, true, false)
8518 TRANS(ADCS, do_adc_sbc, a, false, true)
8519 TRANS(SBCS, do_adc_sbc, a, true, true)
8520
8521 static bool trans_RMIF(DisasContext *s, arg_RMIF *a)
8522 {
8523 int mask = a->mask;
8524 TCGv_i64 tcg_rn;
8525 TCGv_i32 nzcv;
8526
8527 if (!dc_isar_feature(aa64_condm_4, s)) {
8528 return false;
8529 }
8530
8531 tcg_rn = read_cpu_reg(s, a->rn, 1);
8532 tcg_gen_rotri_i64(tcg_rn, tcg_rn, a->imm);
8533
8534 nzcv = tcg_temp_new_i32();
8535 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
8536
8537 if (mask & 8) { /* N */
8538 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
8539 }
8540 if (mask & 4) { /* Z */
8541 tcg_gen_not_i32(cpu_ZF, nzcv);
8542 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
8543 }
8544 if (mask & 2) { /* C */
8545 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
8546 }
8547 if (mask & 1) { /* V */
8548 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
8549 }
8550 return true;
8551 }
8552
do_setf(DisasContext * s,int rn,int shift)8553 static bool do_setf(DisasContext *s, int rn, int shift)
8554 {
8555 TCGv_i32 tmp = tcg_temp_new_i32();
8556
8557 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
8558 tcg_gen_shli_i32(cpu_NF, tmp, shift);
8559 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
8560 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
8561 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
8562 return true;
8563 }
8564
8565 TRANS_FEAT(SETF8, aa64_condm_4, do_setf, a->rn, 24)
8566 TRANS_FEAT(SETF16, aa64_condm_4, do_setf, a->rn, 16)
8567
8568 /* CCMP, CCMN */
trans_CCMP(DisasContext * s,arg_CCMP * a)8569 static bool trans_CCMP(DisasContext *s, arg_CCMP *a)
8570 {
8571 TCGv_i32 tcg_t0 = tcg_temp_new_i32();
8572 TCGv_i32 tcg_t1 = tcg_temp_new_i32();
8573 TCGv_i32 tcg_t2 = tcg_temp_new_i32();
8574 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8575 TCGv_i64 tcg_rn, tcg_y;
8576 DisasCompare c;
8577 unsigned nzcv;
8578 bool has_andc;
8579
8580 /* Set T0 = !COND. */
8581 arm_test_cc(&c, a->cond);
8582 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
8583
8584 /* Load the arguments for the new comparison. */
8585 if (a->imm) {
8586 tcg_y = tcg_constant_i64(a->y);
8587 } else {
8588 tcg_y = cpu_reg(s, a->y);
8589 }
8590 tcg_rn = cpu_reg(s, a->rn);
8591
8592 /* Set the flags for the new comparison. */
8593 if (a->op) {
8594 gen_sub_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8595 } else {
8596 gen_add_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8597 }
8598
8599 /*
8600 * If COND was false, force the flags to #nzcv. Compute two masks
8601 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
8602 * For tcg hosts that support ANDC, we can make do with just T1.
8603 * In either case, allow the tcg optimizer to delete any unused mask.
8604 */
8605 tcg_gen_neg_i32(tcg_t1, tcg_t0);
8606 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
8607
8608 nzcv = a->nzcv;
8609 has_andc = tcg_op_supported(INDEX_op_andc, TCG_TYPE_I32, 0);
8610 if (nzcv & 8) { /* N */
8611 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
8612 } else {
8613 if (has_andc) {
8614 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
8615 } else {
8616 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
8617 }
8618 }
8619 if (nzcv & 4) { /* Z */
8620 if (has_andc) {
8621 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
8622 } else {
8623 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
8624 }
8625 } else {
8626 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
8627 }
8628 if (nzcv & 2) { /* C */
8629 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
8630 } else {
8631 if (has_andc) {
8632 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
8633 } else {
8634 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
8635 }
8636 }
8637 if (nzcv & 1) { /* V */
8638 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
8639 } else {
8640 if (has_andc) {
8641 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
8642 } else {
8643 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
8644 }
8645 }
8646 return true;
8647 }
8648
trans_CSEL(DisasContext * s,arg_CSEL * a)8649 static bool trans_CSEL(DisasContext *s, arg_CSEL *a)
8650 {
8651 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8652 TCGv_i64 zero = tcg_constant_i64(0);
8653 DisasCompare64 c;
8654
8655 a64_test_cc(&c, a->cond);
8656
8657 if (a->rn == 31 && a->rm == 31 && (a->else_inc ^ a->else_inv)) {
8658 /* CSET & CSETM. */
8659 if (a->else_inv) {
8660 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
8661 tcg_rd, c.value, zero);
8662 } else {
8663 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
8664 tcg_rd, c.value, zero);
8665 }
8666 } else {
8667 TCGv_i64 t_true = cpu_reg(s, a->rn);
8668 TCGv_i64 t_false = read_cpu_reg(s, a->rm, 1);
8669
8670 if (a->else_inv && a->else_inc) {
8671 tcg_gen_neg_i64(t_false, t_false);
8672 } else if (a->else_inv) {
8673 tcg_gen_not_i64(t_false, t_false);
8674 } else if (a->else_inc) {
8675 tcg_gen_addi_i64(t_false, t_false, 1);
8676 }
8677 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
8678 }
8679
8680 if (!a->sf) {
8681 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8682 }
8683 return true;
8684 }
8685
8686 typedef struct FPScalar1Int {
8687 void (*gen_h)(TCGv_i32, TCGv_i32);
8688 void (*gen_s)(TCGv_i32, TCGv_i32);
8689 void (*gen_d)(TCGv_i64, TCGv_i64);
8690 } FPScalar1Int;
8691
do_fp1_scalar_int(DisasContext * s,arg_rr_e * a,const FPScalar1Int * f,bool merging)8692 static bool do_fp1_scalar_int(DisasContext *s, arg_rr_e *a,
8693 const FPScalar1Int *f,
8694 bool merging)
8695 {
8696 switch (a->esz) {
8697 case MO_64:
8698 if (fp_access_check(s)) {
8699 TCGv_i64 t = read_fp_dreg(s, a->rn);
8700 f->gen_d(t, t);
8701 if (merging) {
8702 write_fp_dreg_merging(s, a->rd, a->rd, t);
8703 } else {
8704 write_fp_dreg(s, a->rd, t);
8705 }
8706 }
8707 break;
8708 case MO_32:
8709 if (fp_access_check(s)) {
8710 TCGv_i32 t = read_fp_sreg(s, a->rn);
8711 f->gen_s(t, t);
8712 if (merging) {
8713 write_fp_sreg_merging(s, a->rd, a->rd, t);
8714 } else {
8715 write_fp_sreg(s, a->rd, t);
8716 }
8717 }
8718 break;
8719 case MO_16:
8720 if (!dc_isar_feature(aa64_fp16, s)) {
8721 return false;
8722 }
8723 if (fp_access_check(s)) {
8724 TCGv_i32 t = read_fp_hreg(s, a->rn);
8725 f->gen_h(t, t);
8726 if (merging) {
8727 write_fp_hreg_merging(s, a->rd, a->rd, t);
8728 } else {
8729 write_fp_sreg(s, a->rd, t);
8730 }
8731 }
8732 break;
8733 default:
8734 return false;
8735 }
8736 return true;
8737 }
8738
do_fp1_scalar_int_2fn(DisasContext * s,arg_rr_e * a,const FPScalar1Int * fnormal,const FPScalar1Int * fah)8739 static bool do_fp1_scalar_int_2fn(DisasContext *s, arg_rr_e *a,
8740 const FPScalar1Int *fnormal,
8741 const FPScalar1Int *fah)
8742 {
8743 return do_fp1_scalar_int(s, a, s->fpcr_ah ? fah : fnormal, true);
8744 }
8745
8746 static const FPScalar1Int f_scalar_fmov = {
8747 tcg_gen_mov_i32,
8748 tcg_gen_mov_i32,
8749 tcg_gen_mov_i64,
8750 };
8751 TRANS(FMOV_s, do_fp1_scalar_int, a, &f_scalar_fmov, false)
8752
8753 static const FPScalar1Int f_scalar_fabs = {
8754 gen_vfp_absh,
8755 gen_vfp_abss,
8756 gen_vfp_absd,
8757 };
8758 static const FPScalar1Int f_scalar_ah_fabs = {
8759 gen_vfp_ah_absh,
8760 gen_vfp_ah_abss,
8761 gen_vfp_ah_absd,
8762 };
8763 TRANS(FABS_s, do_fp1_scalar_int_2fn, a, &f_scalar_fabs, &f_scalar_ah_fabs)
8764
8765 static const FPScalar1Int f_scalar_fneg = {
8766 gen_vfp_negh,
8767 gen_vfp_negs,
8768 gen_vfp_negd,
8769 };
8770 static const FPScalar1Int f_scalar_ah_fneg = {
8771 gen_vfp_ah_negh,
8772 gen_vfp_ah_negs,
8773 gen_vfp_ah_negd,
8774 };
8775 TRANS(FNEG_s, do_fp1_scalar_int_2fn, a, &f_scalar_fneg, &f_scalar_ah_fneg)
8776
8777 typedef struct FPScalar1 {
8778 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_ptr);
8779 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_ptr);
8780 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_ptr);
8781 } FPScalar1;
8782
do_fp1_scalar_with_fpsttype(DisasContext * s,arg_rr_e * a,const FPScalar1 * f,int rmode,ARMFPStatusFlavour fpsttype)8783 static bool do_fp1_scalar_with_fpsttype(DisasContext *s, arg_rr_e *a,
8784 const FPScalar1 *f, int rmode,
8785 ARMFPStatusFlavour fpsttype)
8786 {
8787 TCGv_i32 tcg_rmode = NULL;
8788 TCGv_ptr fpst;
8789 TCGv_i64 t64;
8790 TCGv_i32 t32;
8791 int check = fp_access_check_scalar_hsd(s, a->esz);
8792
8793 if (check <= 0) {
8794 return check == 0;
8795 }
8796
8797 fpst = fpstatus_ptr(fpsttype);
8798 if (rmode >= 0) {
8799 tcg_rmode = gen_set_rmode(rmode, fpst);
8800 }
8801
8802 switch (a->esz) {
8803 case MO_64:
8804 t64 = read_fp_dreg(s, a->rn);
8805 f->gen_d(t64, t64, fpst);
8806 write_fp_dreg_merging(s, a->rd, a->rd, t64);
8807 break;
8808 case MO_32:
8809 t32 = read_fp_sreg(s, a->rn);
8810 f->gen_s(t32, t32, fpst);
8811 write_fp_sreg_merging(s, a->rd, a->rd, t32);
8812 break;
8813 case MO_16:
8814 t32 = read_fp_hreg(s, a->rn);
8815 f->gen_h(t32, t32, fpst);
8816 write_fp_hreg_merging(s, a->rd, a->rd, t32);
8817 break;
8818 default:
8819 g_assert_not_reached();
8820 }
8821
8822 if (rmode >= 0) {
8823 gen_restore_rmode(tcg_rmode, fpst);
8824 }
8825 return true;
8826 }
8827
do_fp1_scalar(DisasContext * s,arg_rr_e * a,const FPScalar1 * f,int rmode)8828 static bool do_fp1_scalar(DisasContext *s, arg_rr_e *a,
8829 const FPScalar1 *f, int rmode)
8830 {
8831 return do_fp1_scalar_with_fpsttype(s, a, f, rmode,
8832 a->esz == MO_16 ?
8833 FPST_A64_F16 : FPST_A64);
8834 }
8835
do_fp1_scalar_ah(DisasContext * s,arg_rr_e * a,const FPScalar1 * f,int rmode)8836 static bool do_fp1_scalar_ah(DisasContext *s, arg_rr_e *a,
8837 const FPScalar1 *f, int rmode)
8838 {
8839 return do_fp1_scalar_with_fpsttype(s, a, f, rmode, select_ah_fpst(s, a->esz));
8840 }
8841
8842 static const FPScalar1 f_scalar_fsqrt = {
8843 gen_helper_vfp_sqrth,
8844 gen_helper_vfp_sqrts,
8845 gen_helper_vfp_sqrtd,
8846 };
8847 TRANS(FSQRT_s, do_fp1_scalar, a, &f_scalar_fsqrt, -1)
8848
8849 static const FPScalar1 f_scalar_frint = {
8850 gen_helper_advsimd_rinth,
8851 gen_helper_rints,
8852 gen_helper_rintd,
8853 };
8854 TRANS(FRINTN_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
8855 TRANS(FRINTP_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_POSINF)
8856 TRANS(FRINTM_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_NEGINF)
8857 TRANS(FRINTZ_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_ZERO)
8858 TRANS(FRINTA_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
8859 TRANS(FRINTI_s, do_fp1_scalar, a, &f_scalar_frint, -1)
8860
8861 static const FPScalar1 f_scalar_frintx = {
8862 gen_helper_advsimd_rinth_exact,
8863 gen_helper_rints_exact,
8864 gen_helper_rintd_exact,
8865 };
8866 TRANS(FRINTX_s, do_fp1_scalar, a, &f_scalar_frintx, -1)
8867
trans_BFCVT_s(DisasContext * s,arg_rr_e * a)8868 static bool trans_BFCVT_s(DisasContext *s, arg_rr_e *a)
8869 {
8870 ARMFPStatusFlavour fpsttype = s->fpcr_ah ? FPST_AH : FPST_A64;
8871 TCGv_i32 t32;
8872 int check;
8873
8874 if (!dc_isar_feature(aa64_bf16, s)) {
8875 return false;
8876 }
8877
8878 check = fp_access_check_scalar_hsd(s, a->esz);
8879
8880 if (check <= 0) {
8881 return check == 0;
8882 }
8883
8884 t32 = read_fp_sreg(s, a->rn);
8885 gen_helper_bfcvt(t32, t32, fpstatus_ptr(fpsttype));
8886 write_fp_hreg_merging(s, a->rd, a->rd, t32);
8887 return true;
8888 }
8889
8890 static const FPScalar1 f_scalar_frint32 = {
8891 NULL,
8892 gen_helper_frint32_s,
8893 gen_helper_frint32_d,
8894 };
8895 TRANS_FEAT(FRINT32Z_s, aa64_frint, do_fp1_scalar, a,
8896 &f_scalar_frint32, FPROUNDING_ZERO)
8897 TRANS_FEAT(FRINT32X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint32, -1)
8898
8899 static const FPScalar1 f_scalar_frint64 = {
8900 NULL,
8901 gen_helper_frint64_s,
8902 gen_helper_frint64_d,
8903 };
8904 TRANS_FEAT(FRINT64Z_s, aa64_frint, do_fp1_scalar, a,
8905 &f_scalar_frint64, FPROUNDING_ZERO)
8906 TRANS_FEAT(FRINT64X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint64, -1)
8907
8908 static const FPScalar1 f_scalar_frecpe = {
8909 gen_helper_recpe_f16,
8910 gen_helper_recpe_f32,
8911 gen_helper_recpe_f64,
8912 };
8913 static const FPScalar1 f_scalar_frecpe_rpres = {
8914 gen_helper_recpe_f16,
8915 gen_helper_recpe_rpres_f32,
8916 gen_helper_recpe_f64,
8917 };
8918 TRANS(FRECPE_s, do_fp1_scalar_ah, a,
8919 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8920 &f_scalar_frecpe_rpres : &f_scalar_frecpe, -1)
8921
8922 static const FPScalar1 f_scalar_frecpx = {
8923 gen_helper_frecpx_f16,
8924 gen_helper_frecpx_f32,
8925 gen_helper_frecpx_f64,
8926 };
8927 TRANS(FRECPX_s, do_fp1_scalar_ah, a, &f_scalar_frecpx, -1)
8928
8929 static const FPScalar1 f_scalar_frsqrte = {
8930 gen_helper_rsqrte_f16,
8931 gen_helper_rsqrte_f32,
8932 gen_helper_rsqrte_f64,
8933 };
8934 static const FPScalar1 f_scalar_frsqrte_rpres = {
8935 gen_helper_rsqrte_f16,
8936 gen_helper_rsqrte_rpres_f32,
8937 gen_helper_rsqrte_f64,
8938 };
8939 TRANS(FRSQRTE_s, do_fp1_scalar_ah, a,
8940 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8941 &f_scalar_frsqrte_rpres : &f_scalar_frsqrte, -1)
8942
trans_FCVT_s_ds(DisasContext * s,arg_rr * a)8943 static bool trans_FCVT_s_ds(DisasContext *s, arg_rr *a)
8944 {
8945 if (fp_access_check(s)) {
8946 TCGv_i32 tcg_rn = read_fp_sreg(s, a->rn);
8947 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8948 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8949
8950 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, fpst);
8951 write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
8952 }
8953 return true;
8954 }
8955
trans_FCVT_s_hs(DisasContext * s,arg_rr * a)8956 static bool trans_FCVT_s_hs(DisasContext *s, arg_rr *a)
8957 {
8958 if (fp_access_check(s)) {
8959 TCGv_i32 tmp = read_fp_sreg(s, a->rn);
8960 TCGv_i32 ahp = get_ahp_flag();
8961 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8962
8963 gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp);
8964 /* write_fp_hreg_merging is OK here because top half of result is zero */
8965 write_fp_hreg_merging(s, a->rd, a->rd, tmp);
8966 }
8967 return true;
8968 }
8969
trans_FCVT_s_sd(DisasContext * s,arg_rr * a)8970 static bool trans_FCVT_s_sd(DisasContext *s, arg_rr *a)
8971 {
8972 if (fp_access_check(s)) {
8973 TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8974 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8975 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8976
8977 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, fpst);
8978 write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
8979 }
8980 return true;
8981 }
8982
trans_FCVT_s_hd(DisasContext * s,arg_rr * a)8983 static bool trans_FCVT_s_hd(DisasContext *s, arg_rr *a)
8984 {
8985 if (fp_access_check(s)) {
8986 TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8987 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8988 TCGv_i32 ahp = get_ahp_flag();
8989 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8990
8991 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8992 /* write_fp_hreg_merging is OK here because top half of tcg_rd is zero */
8993 write_fp_hreg_merging(s, a->rd, a->rd, tcg_rd);
8994 }
8995 return true;
8996 }
8997
trans_FCVT_s_sh(DisasContext * s,arg_rr * a)8998 static bool trans_FCVT_s_sh(DisasContext *s, arg_rr *a)
8999 {
9000 if (fp_access_check(s)) {
9001 TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
9002 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9003 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
9004 TCGv_i32 tcg_ahp = get_ahp_flag();
9005
9006 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9007 write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
9008 }
9009 return true;
9010 }
9011
trans_FCVT_s_dh(DisasContext * s,arg_rr * a)9012 static bool trans_FCVT_s_dh(DisasContext *s, arg_rr *a)
9013 {
9014 if (fp_access_check(s)) {
9015 TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
9016 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9017 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
9018 TCGv_i32 tcg_ahp = get_ahp_flag();
9019
9020 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9021 write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
9022 }
9023 return true;
9024 }
9025
do_cvtf_scalar(DisasContext * s,MemOp esz,int rd,int shift,TCGv_i64 tcg_int,bool is_signed)9026 static bool do_cvtf_scalar(DisasContext *s, MemOp esz, int rd, int shift,
9027 TCGv_i64 tcg_int, bool is_signed)
9028 {
9029 TCGv_ptr tcg_fpstatus;
9030 TCGv_i32 tcg_shift, tcg_single;
9031 TCGv_i64 tcg_double;
9032
9033 tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9034 tcg_shift = tcg_constant_i32(shift);
9035
9036 switch (esz) {
9037 case MO_64:
9038 tcg_double = tcg_temp_new_i64();
9039 if (is_signed) {
9040 gen_helper_vfp_sqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9041 } else {
9042 gen_helper_vfp_uqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9043 }
9044 write_fp_dreg_merging(s, rd, rd, tcg_double);
9045 break;
9046
9047 case MO_32:
9048 tcg_single = tcg_temp_new_i32();
9049 if (is_signed) {
9050 gen_helper_vfp_sqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9051 } else {
9052 gen_helper_vfp_uqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9053 }
9054 write_fp_sreg_merging(s, rd, rd, tcg_single);
9055 break;
9056
9057 case MO_16:
9058 tcg_single = tcg_temp_new_i32();
9059 if (is_signed) {
9060 gen_helper_vfp_sqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9061 } else {
9062 gen_helper_vfp_uqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9063 }
9064 write_fp_hreg_merging(s, rd, rd, tcg_single);
9065 break;
9066
9067 default:
9068 g_assert_not_reached();
9069 }
9070 return true;
9071 }
9072
do_cvtf_g(DisasContext * s,arg_fcvt * a,bool is_signed)9073 static bool do_cvtf_g(DisasContext *s, arg_fcvt *a, bool is_signed)
9074 {
9075 TCGv_i64 tcg_int;
9076 int check = fp_access_check_scalar_hsd(s, a->esz);
9077
9078 if (check <= 0) {
9079 return check == 0;
9080 }
9081
9082 if (a->sf) {
9083 tcg_int = cpu_reg(s, a->rn);
9084 } else {
9085 tcg_int = read_cpu_reg(s, a->rn, true);
9086 if (is_signed) {
9087 tcg_gen_ext32s_i64(tcg_int, tcg_int);
9088 } else {
9089 tcg_gen_ext32u_i64(tcg_int, tcg_int);
9090 }
9091 }
9092 return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9093 }
9094
TRANS(SCVTF_g,do_cvtf_g,a,true)9095 TRANS(SCVTF_g, do_cvtf_g, a, true)
9096 TRANS(UCVTF_g, do_cvtf_g, a, false)
9097
9098 /*
9099 * [US]CVTF (vector), scalar version.
9100 * Which sounds weird, but really just means input from fp register
9101 * instead of input from general register. Input and output element
9102 * size are always equal.
9103 */
9104 static bool do_cvtf_f(DisasContext *s, arg_fcvt *a, bool is_signed)
9105 {
9106 TCGv_i64 tcg_int;
9107 int check = fp_access_check_scalar_hsd(s, a->esz);
9108
9109 if (check <= 0) {
9110 return check == 0;
9111 }
9112
9113 tcg_int = tcg_temp_new_i64();
9114 read_vec_element(s, tcg_int, a->rn, 0, a->esz | (is_signed ? MO_SIGN : 0));
9115 return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9116 }
9117
TRANS(SCVTF_f,do_cvtf_f,a,true)9118 TRANS(SCVTF_f, do_cvtf_f, a, true)
9119 TRANS(UCVTF_f, do_cvtf_f, a, false)
9120
9121 static void do_fcvt_scalar(DisasContext *s, MemOp out, MemOp esz,
9122 TCGv_i64 tcg_out, int shift, int rn,
9123 ARMFPRounding rmode)
9124 {
9125 TCGv_ptr tcg_fpstatus;
9126 TCGv_i32 tcg_shift, tcg_rmode, tcg_single;
9127
9128 tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9129 tcg_shift = tcg_constant_i32(shift);
9130 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9131
9132 switch (esz) {
9133 case MO_64:
9134 read_vec_element(s, tcg_out, rn, 0, MO_64);
9135 switch (out) {
9136 case MO_64 | MO_SIGN:
9137 gen_helper_vfp_tosqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9138 break;
9139 case MO_64:
9140 gen_helper_vfp_touqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9141 break;
9142 case MO_32 | MO_SIGN:
9143 gen_helper_vfp_tosld(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9144 break;
9145 case MO_32:
9146 gen_helper_vfp_tould(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9147 break;
9148 default:
9149 g_assert_not_reached();
9150 }
9151 break;
9152
9153 case MO_32:
9154 tcg_single = read_fp_sreg(s, rn);
9155 switch (out) {
9156 case MO_64 | MO_SIGN:
9157 gen_helper_vfp_tosqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9158 break;
9159 case MO_64:
9160 gen_helper_vfp_touqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9161 break;
9162 case MO_32 | MO_SIGN:
9163 gen_helper_vfp_tosls(tcg_single, tcg_single,
9164 tcg_shift, tcg_fpstatus);
9165 tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9166 break;
9167 case MO_32:
9168 gen_helper_vfp_touls(tcg_single, tcg_single,
9169 tcg_shift, tcg_fpstatus);
9170 tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9171 break;
9172 default:
9173 g_assert_not_reached();
9174 }
9175 break;
9176
9177 case MO_16:
9178 tcg_single = read_fp_hreg(s, rn);
9179 switch (out) {
9180 case MO_64 | MO_SIGN:
9181 gen_helper_vfp_tosqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9182 break;
9183 case MO_64:
9184 gen_helper_vfp_touqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9185 break;
9186 case MO_32 | MO_SIGN:
9187 gen_helper_vfp_toslh(tcg_single, tcg_single,
9188 tcg_shift, tcg_fpstatus);
9189 tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9190 break;
9191 case MO_32:
9192 gen_helper_vfp_toulh(tcg_single, tcg_single,
9193 tcg_shift, tcg_fpstatus);
9194 tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9195 break;
9196 case MO_16 | MO_SIGN:
9197 gen_helper_vfp_toshh(tcg_single, tcg_single,
9198 tcg_shift, tcg_fpstatus);
9199 tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9200 break;
9201 case MO_16:
9202 gen_helper_vfp_touhh(tcg_single, tcg_single,
9203 tcg_shift, tcg_fpstatus);
9204 tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9205 break;
9206 default:
9207 g_assert_not_reached();
9208 }
9209 break;
9210
9211 default:
9212 g_assert_not_reached();
9213 }
9214
9215 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9216 }
9217
do_fcvt_g(DisasContext * s,arg_fcvt * a,ARMFPRounding rmode,bool is_signed)9218 static bool do_fcvt_g(DisasContext *s, arg_fcvt *a,
9219 ARMFPRounding rmode, bool is_signed)
9220 {
9221 TCGv_i64 tcg_int;
9222 int check = fp_access_check_scalar_hsd(s, a->esz);
9223
9224 if (check <= 0) {
9225 return check == 0;
9226 }
9227
9228 tcg_int = cpu_reg(s, a->rd);
9229 do_fcvt_scalar(s, (a->sf ? MO_64 : MO_32) | (is_signed ? MO_SIGN : 0),
9230 a->esz, tcg_int, a->shift, a->rn, rmode);
9231
9232 if (!a->sf) {
9233 tcg_gen_ext32u_i64(tcg_int, tcg_int);
9234 }
9235 return true;
9236 }
9237
TRANS(FCVTNS_g,do_fcvt_g,a,FPROUNDING_TIEEVEN,true)9238 TRANS(FCVTNS_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, true)
9239 TRANS(FCVTNU_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, false)
9240 TRANS(FCVTPS_g, do_fcvt_g, a, FPROUNDING_POSINF, true)
9241 TRANS(FCVTPU_g, do_fcvt_g, a, FPROUNDING_POSINF, false)
9242 TRANS(FCVTMS_g, do_fcvt_g, a, FPROUNDING_NEGINF, true)
9243 TRANS(FCVTMU_g, do_fcvt_g, a, FPROUNDING_NEGINF, false)
9244 TRANS(FCVTZS_g, do_fcvt_g, a, FPROUNDING_ZERO, true)
9245 TRANS(FCVTZU_g, do_fcvt_g, a, FPROUNDING_ZERO, false)
9246 TRANS(FCVTAS_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, true)
9247 TRANS(FCVTAU_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, false)
9248
9249 /*
9250 * FCVT* (vector), scalar version.
9251 * Which sounds weird, but really just means output to fp register
9252 * instead of output to general register. Input and output element
9253 * size are always equal.
9254 */
9255 static bool do_fcvt_f(DisasContext *s, arg_fcvt *a,
9256 ARMFPRounding rmode, bool is_signed)
9257 {
9258 TCGv_i64 tcg_int;
9259 int check = fp_access_check_scalar_hsd(s, a->esz);
9260
9261 if (check <= 0) {
9262 return check == 0;
9263 }
9264
9265 tcg_int = tcg_temp_new_i64();
9266 do_fcvt_scalar(s, a->esz | (is_signed ? MO_SIGN : 0),
9267 a->esz, tcg_int, a->shift, a->rn, rmode);
9268
9269 if (!s->fpcr_nep) {
9270 clear_vec(s, a->rd);
9271 }
9272 write_vec_element(s, tcg_int, a->rd, 0, a->esz);
9273 return true;
9274 }
9275
TRANS(FCVTNS_f,do_fcvt_f,a,FPROUNDING_TIEEVEN,true)9276 TRANS(FCVTNS_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, true)
9277 TRANS(FCVTNU_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, false)
9278 TRANS(FCVTPS_f, do_fcvt_f, a, FPROUNDING_POSINF, true)
9279 TRANS(FCVTPU_f, do_fcvt_f, a, FPROUNDING_POSINF, false)
9280 TRANS(FCVTMS_f, do_fcvt_f, a, FPROUNDING_NEGINF, true)
9281 TRANS(FCVTMU_f, do_fcvt_f, a, FPROUNDING_NEGINF, false)
9282 TRANS(FCVTZS_f, do_fcvt_f, a, FPROUNDING_ZERO, true)
9283 TRANS(FCVTZU_f, do_fcvt_f, a, FPROUNDING_ZERO, false)
9284 TRANS(FCVTAS_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, true)
9285 TRANS(FCVTAU_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, false)
9286
9287 static bool trans_FJCVTZS(DisasContext *s, arg_FJCVTZS *a)
9288 {
9289 if (!dc_isar_feature(aa64_jscvt, s)) {
9290 return false;
9291 }
9292 if (fp_access_check(s)) {
9293 TCGv_i64 t = read_fp_dreg(s, a->rn);
9294 TCGv_ptr fpstatus = fpstatus_ptr(FPST_A64);
9295
9296 gen_helper_fjcvtzs(t, t, fpstatus);
9297
9298 tcg_gen_ext32u_i64(cpu_reg(s, a->rd), t);
9299 tcg_gen_extrh_i64_i32(cpu_ZF, t);
9300 tcg_gen_movi_i32(cpu_CF, 0);
9301 tcg_gen_movi_i32(cpu_NF, 0);
9302 tcg_gen_movi_i32(cpu_VF, 0);
9303 }
9304 return true;
9305 }
9306
trans_FMOV_hx(DisasContext * s,arg_rr * a)9307 static bool trans_FMOV_hx(DisasContext *s, arg_rr *a)
9308 {
9309 if (!dc_isar_feature(aa64_fp16, s)) {
9310 return false;
9311 }
9312 if (fp_access_check(s)) {
9313 TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9314 TCGv_i64 tmp = tcg_temp_new_i64();
9315 tcg_gen_ext16u_i64(tmp, tcg_rn);
9316 write_fp_dreg(s, a->rd, tmp);
9317 }
9318 return true;
9319 }
9320
trans_FMOV_sw(DisasContext * s,arg_rr * a)9321 static bool trans_FMOV_sw(DisasContext *s, arg_rr *a)
9322 {
9323 if (fp_access_check(s)) {
9324 TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9325 TCGv_i64 tmp = tcg_temp_new_i64();
9326 tcg_gen_ext32u_i64(tmp, tcg_rn);
9327 write_fp_dreg(s, a->rd, tmp);
9328 }
9329 return true;
9330 }
9331
trans_FMOV_dx(DisasContext * s,arg_rr * a)9332 static bool trans_FMOV_dx(DisasContext *s, arg_rr *a)
9333 {
9334 if (fp_access_check(s)) {
9335 TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9336 write_fp_dreg(s, a->rd, tcg_rn);
9337 }
9338 return true;
9339 }
9340
trans_FMOV_ux(DisasContext * s,arg_rr * a)9341 static bool trans_FMOV_ux(DisasContext *s, arg_rr *a)
9342 {
9343 if (fp_access_check(s)) {
9344 TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9345 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, a->rd));
9346 clear_vec_high(s, true, a->rd);
9347 }
9348 return true;
9349 }
9350
trans_FMOV_xh(DisasContext * s,arg_rr * a)9351 static bool trans_FMOV_xh(DisasContext *s, arg_rr *a)
9352 {
9353 if (!dc_isar_feature(aa64_fp16, s)) {
9354 return false;
9355 }
9356 if (fp_access_check(s)) {
9357 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9358 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_16));
9359 }
9360 return true;
9361 }
9362
trans_FMOV_ws(DisasContext * s,arg_rr * a)9363 static bool trans_FMOV_ws(DisasContext *s, arg_rr *a)
9364 {
9365 if (fp_access_check(s)) {
9366 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9367 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_32));
9368 }
9369 return true;
9370 }
9371
trans_FMOV_xd(DisasContext * s,arg_rr * a)9372 static bool trans_FMOV_xd(DisasContext *s, arg_rr *a)
9373 {
9374 if (fp_access_check(s)) {
9375 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9376 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_64));
9377 }
9378 return true;
9379 }
9380
trans_FMOV_xu(DisasContext * s,arg_rr * a)9381 static bool trans_FMOV_xu(DisasContext *s, arg_rr *a)
9382 {
9383 if (fp_access_check(s)) {
9384 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9385 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, a->rn));
9386 }
9387 return true;
9388 }
9389
9390 typedef struct ENVScalar1 {
9391 NeonGenOneOpEnvFn *gen_bhs[3];
9392 NeonGenOne64OpEnvFn *gen_d;
9393 } ENVScalar1;
9394
do_env_scalar1(DisasContext * s,arg_rr_e * a,const ENVScalar1 * f)9395 static bool do_env_scalar1(DisasContext *s, arg_rr_e *a, const ENVScalar1 *f)
9396 {
9397 if (!fp_access_check(s)) {
9398 return true;
9399 }
9400 if (a->esz == MO_64) {
9401 TCGv_i64 t = read_fp_dreg(s, a->rn);
9402 f->gen_d(t, tcg_env, t);
9403 write_fp_dreg(s, a->rd, t);
9404 } else {
9405 TCGv_i32 t = tcg_temp_new_i32();
9406
9407 read_vec_element_i32(s, t, a->rn, 0, a->esz);
9408 f->gen_bhs[a->esz](t, tcg_env, t);
9409 write_fp_sreg(s, a->rd, t);
9410 }
9411 return true;
9412 }
9413
do_env_vector1(DisasContext * s,arg_qrr_e * a,const ENVScalar1 * f)9414 static bool do_env_vector1(DisasContext *s, arg_qrr_e *a, const ENVScalar1 *f)
9415 {
9416 if (a->esz == MO_64 && !a->q) {
9417 return false;
9418 }
9419 if (!fp_access_check(s)) {
9420 return true;
9421 }
9422 if (a->esz == MO_64) {
9423 TCGv_i64 t = tcg_temp_new_i64();
9424
9425 for (int i = 0; i < 2; ++i) {
9426 read_vec_element(s, t, a->rn, i, MO_64);
9427 f->gen_d(t, tcg_env, t);
9428 write_vec_element(s, t, a->rd, i, MO_64);
9429 }
9430 } else {
9431 TCGv_i32 t = tcg_temp_new_i32();
9432 int n = (a->q ? 16 : 8) >> a->esz;
9433
9434 for (int i = 0; i < n; ++i) {
9435 read_vec_element_i32(s, t, a->rn, i, a->esz);
9436 f->gen_bhs[a->esz](t, tcg_env, t);
9437 write_vec_element_i32(s, t, a->rd, i, a->esz);
9438 }
9439 }
9440 clear_vec_high(s, a->q, a->rd);
9441 return true;
9442 }
9443
9444 static const ENVScalar1 f_scalar_sqabs = {
9445 { gen_helper_neon_qabs_s8,
9446 gen_helper_neon_qabs_s16,
9447 gen_helper_neon_qabs_s32 },
9448 gen_helper_neon_qabs_s64,
9449 };
9450 TRANS(SQABS_s, do_env_scalar1, a, &f_scalar_sqabs)
9451 TRANS(SQABS_v, do_env_vector1, a, &f_scalar_sqabs)
9452
9453 static const ENVScalar1 f_scalar_sqneg = {
9454 { gen_helper_neon_qneg_s8,
9455 gen_helper_neon_qneg_s16,
9456 gen_helper_neon_qneg_s32 },
9457 gen_helper_neon_qneg_s64,
9458 };
9459 TRANS(SQNEG_s, do_env_scalar1, a, &f_scalar_sqneg)
9460 TRANS(SQNEG_v, do_env_vector1, a, &f_scalar_sqneg)
9461
do_scalar1_d(DisasContext * s,arg_rr * a,ArithOneOp * f)9462 static bool do_scalar1_d(DisasContext *s, arg_rr *a, ArithOneOp *f)
9463 {
9464 if (fp_access_check(s)) {
9465 TCGv_i64 t = read_fp_dreg(s, a->rn);
9466 f(t, t);
9467 write_fp_dreg(s, a->rd, t);
9468 }
9469 return true;
9470 }
9471
TRANS(ABS_s,do_scalar1_d,a,tcg_gen_abs_i64)9472 TRANS(ABS_s, do_scalar1_d, a, tcg_gen_abs_i64)
9473 TRANS(NEG_s, do_scalar1_d, a, tcg_gen_neg_i64)
9474
9475 static bool do_cmop0_d(DisasContext *s, arg_rr *a, TCGCond cond)
9476 {
9477 if (fp_access_check(s)) {
9478 TCGv_i64 t = read_fp_dreg(s, a->rn);
9479 tcg_gen_negsetcond_i64(cond, t, t, tcg_constant_i64(0));
9480 write_fp_dreg(s, a->rd, t);
9481 }
9482 return true;
9483 }
9484
TRANS(CMGT0_s,do_cmop0_d,a,TCG_COND_GT)9485 TRANS(CMGT0_s, do_cmop0_d, a, TCG_COND_GT)
9486 TRANS(CMGE0_s, do_cmop0_d, a, TCG_COND_GE)
9487 TRANS(CMLE0_s, do_cmop0_d, a, TCG_COND_LE)
9488 TRANS(CMLT0_s, do_cmop0_d, a, TCG_COND_LT)
9489 TRANS(CMEQ0_s, do_cmop0_d, a, TCG_COND_EQ)
9490
9491 static bool do_2misc_narrow_scalar(DisasContext *s, arg_rr_e *a,
9492 ArithOneOp * const fn[3])
9493 {
9494 if (a->esz == MO_64) {
9495 return false;
9496 }
9497 if (fp_access_check(s)) {
9498 TCGv_i64 t = tcg_temp_new_i64();
9499
9500 read_vec_element(s, t, a->rn, 0, a->esz + 1);
9501 fn[a->esz](t, t);
9502 clear_vec(s, a->rd);
9503 write_vec_element(s, t, a->rd, 0, a->esz);
9504 }
9505 return true;
9506 }
9507
9508 #define WRAP_ENV(NAME) \
9509 static void gen_##NAME(TCGv_i64 d, TCGv_i64 n) \
9510 { gen_helper_##NAME(d, tcg_env, n); }
9511
9512 WRAP_ENV(neon_unarrow_sat8)
9513 WRAP_ENV(neon_unarrow_sat16)
9514 WRAP_ENV(neon_unarrow_sat32)
9515
9516 static ArithOneOp * const f_scalar_sqxtun[] = {
9517 gen_neon_unarrow_sat8,
9518 gen_neon_unarrow_sat16,
9519 gen_neon_unarrow_sat32,
9520 };
9521 TRANS(SQXTUN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtun)
9522
9523 WRAP_ENV(neon_narrow_sat_s8)
9524 WRAP_ENV(neon_narrow_sat_s16)
9525 WRAP_ENV(neon_narrow_sat_s32)
9526
9527 static ArithOneOp * const f_scalar_sqxtn[] = {
9528 gen_neon_narrow_sat_s8,
9529 gen_neon_narrow_sat_s16,
9530 gen_neon_narrow_sat_s32,
9531 };
9532 TRANS(SQXTN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtn)
9533
9534 WRAP_ENV(neon_narrow_sat_u8)
9535 WRAP_ENV(neon_narrow_sat_u16)
9536 WRAP_ENV(neon_narrow_sat_u32)
9537
9538 static ArithOneOp * const f_scalar_uqxtn[] = {
9539 gen_neon_narrow_sat_u8,
9540 gen_neon_narrow_sat_u16,
9541 gen_neon_narrow_sat_u32,
9542 };
TRANS(UQXTN_s,do_2misc_narrow_scalar,a,f_scalar_uqxtn)9543 TRANS(UQXTN_s, do_2misc_narrow_scalar, a, f_scalar_uqxtn)
9544
9545 static bool trans_FCVTXN_s(DisasContext *s, arg_rr_e *a)
9546 {
9547 if (fp_access_check(s)) {
9548 /*
9549 * 64 bit to 32 bit float conversion
9550 * with von Neumann rounding (round to odd)
9551 */
9552 TCGv_i64 src = read_fp_dreg(s, a->rn);
9553 TCGv_i32 dst = tcg_temp_new_i32();
9554 gen_helper_fcvtx_f64_to_f32(dst, src, fpstatus_ptr(FPST_A64));
9555 write_fp_sreg_merging(s, a->rd, a->rd, dst);
9556 }
9557 return true;
9558 }
9559
9560 #undef WRAP_ENV
9561
do_gvec_fn2(DisasContext * s,arg_qrr_e * a,GVecGen2Fn * fn)9562 static bool do_gvec_fn2(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9563 {
9564 if (!a->q && a->esz == MO_64) {
9565 return false;
9566 }
9567 if (fp_access_check(s)) {
9568 gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9569 }
9570 return true;
9571 }
9572
TRANS(ABS_v,do_gvec_fn2,a,tcg_gen_gvec_abs)9573 TRANS(ABS_v, do_gvec_fn2, a, tcg_gen_gvec_abs)
9574 TRANS(NEG_v, do_gvec_fn2, a, tcg_gen_gvec_neg)
9575 TRANS(NOT_v, do_gvec_fn2, a, tcg_gen_gvec_not)
9576 TRANS(CNT_v, do_gvec_fn2, a, gen_gvec_cnt)
9577 TRANS(RBIT_v, do_gvec_fn2, a, gen_gvec_rbit)
9578 TRANS(CMGT0_v, do_gvec_fn2, a, gen_gvec_cgt0)
9579 TRANS(CMGE0_v, do_gvec_fn2, a, gen_gvec_cge0)
9580 TRANS(CMLT0_v, do_gvec_fn2, a, gen_gvec_clt0)
9581 TRANS(CMLE0_v, do_gvec_fn2, a, gen_gvec_cle0)
9582 TRANS(CMEQ0_v, do_gvec_fn2, a, gen_gvec_ceq0)
9583 TRANS(REV16_v, do_gvec_fn2, a, gen_gvec_rev16)
9584 TRANS(REV32_v, do_gvec_fn2, a, gen_gvec_rev32)
9585 TRANS(URECPE_v, do_gvec_fn2, a, gen_gvec_urecpe)
9586 TRANS(URSQRTE_v, do_gvec_fn2, a, gen_gvec_ursqrte)
9587
9588 static bool do_gvec_fn2_bhs(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9589 {
9590 if (a->esz == MO_64) {
9591 return false;
9592 }
9593 if (fp_access_check(s)) {
9594 gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9595 }
9596 return true;
9597 }
9598
TRANS(CLS_v,do_gvec_fn2_bhs,a,gen_gvec_cls)9599 TRANS(CLS_v, do_gvec_fn2_bhs, a, gen_gvec_cls)
9600 TRANS(CLZ_v, do_gvec_fn2_bhs, a, gen_gvec_clz)
9601 TRANS(REV64_v, do_gvec_fn2_bhs, a, gen_gvec_rev64)
9602 TRANS(SADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_saddlp)
9603 TRANS(UADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_uaddlp)
9604 TRANS(SADALP_v, do_gvec_fn2_bhs, a, gen_gvec_sadalp)
9605 TRANS(UADALP_v, do_gvec_fn2_bhs, a, gen_gvec_uadalp)
9606
9607 static bool do_2misc_narrow_vector(DisasContext *s, arg_qrr_e *a,
9608 ArithOneOp * const fn[3])
9609 {
9610 if (a->esz == MO_64) {
9611 return false;
9612 }
9613 if (fp_access_check(s)) {
9614 TCGv_i64 t0 = tcg_temp_new_i64();
9615 TCGv_i64 t1 = tcg_temp_new_i64();
9616
9617 read_vec_element(s, t0, a->rn, 0, MO_64);
9618 read_vec_element(s, t1, a->rn, 1, MO_64);
9619 fn[a->esz](t0, t0);
9620 fn[a->esz](t1, t1);
9621 write_vec_element(s, t0, a->rd, a->q ? 2 : 0, MO_32);
9622 write_vec_element(s, t1, a->rd, a->q ? 3 : 1, MO_32);
9623 clear_vec_high(s, a->q, a->rd);
9624 }
9625 return true;
9626 }
9627
9628 static ArithOneOp * const f_scalar_xtn[] = {
9629 gen_helper_neon_narrow_u8,
9630 gen_helper_neon_narrow_u16,
9631 tcg_gen_ext32u_i64,
9632 };
TRANS(XTN,do_2misc_narrow_vector,a,f_scalar_xtn)9633 TRANS(XTN, do_2misc_narrow_vector, a, f_scalar_xtn)
9634 TRANS(SQXTUN_v, do_2misc_narrow_vector, a, f_scalar_sqxtun)
9635 TRANS(SQXTN_v, do_2misc_narrow_vector, a, f_scalar_sqxtn)
9636 TRANS(UQXTN_v, do_2misc_narrow_vector, a, f_scalar_uqxtn)
9637
9638 static void gen_fcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9639 {
9640 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9641 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9642 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9643 TCGv_i32 ahp = get_ahp_flag();
9644
9645 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, n);
9646 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9647 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9648 tcg_gen_deposit_i32(tcg_lo, tcg_lo, tcg_hi, 16, 16);
9649 tcg_gen_extu_i32_i64(d, tcg_lo);
9650 }
9651
gen_fcvtn_sd(TCGv_i64 d,TCGv_i64 n)9652 static void gen_fcvtn_sd(TCGv_i64 d, TCGv_i64 n)
9653 {
9654 TCGv_i32 tmp = tcg_temp_new_i32();
9655 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9656
9657 gen_helper_vfp_fcvtsd(tmp, n, fpst);
9658 tcg_gen_extu_i32_i64(d, tmp);
9659 }
9660
gen_fcvtxn_sd(TCGv_i64 d,TCGv_i64 n)9661 static void gen_fcvtxn_sd(TCGv_i64 d, TCGv_i64 n)
9662 {
9663 /*
9664 * 64 bit to 32 bit float conversion
9665 * with von Neumann rounding (round to odd)
9666 */
9667 TCGv_i32 tmp = tcg_temp_new_i32();
9668 gen_helper_fcvtx_f64_to_f32(tmp, n, fpstatus_ptr(FPST_A64));
9669 tcg_gen_extu_i32_i64(d, tmp);
9670 }
9671
9672 static ArithOneOp * const f_vector_fcvtn[] = {
9673 NULL,
9674 gen_fcvtn_hs,
9675 gen_fcvtn_sd,
9676 };
9677 static ArithOneOp * const f_scalar_fcvtxn[] = {
9678 NULL,
9679 NULL,
9680 gen_fcvtxn_sd,
9681 };
TRANS(FCVTN_v,do_2misc_narrow_vector,a,f_vector_fcvtn)9682 TRANS(FCVTN_v, do_2misc_narrow_vector, a, f_vector_fcvtn)
9683 TRANS(FCVTXN_v, do_2misc_narrow_vector, a, f_scalar_fcvtxn)
9684
9685 static void gen_bfcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9686 {
9687 TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9688 TCGv_i32 tmp = tcg_temp_new_i32();
9689 gen_helper_bfcvt_pair(tmp, n, fpst);
9690 tcg_gen_extu_i32_i64(d, tmp);
9691 }
9692
gen_bfcvtn_ah_hs(TCGv_i64 d,TCGv_i64 n)9693 static void gen_bfcvtn_ah_hs(TCGv_i64 d, TCGv_i64 n)
9694 {
9695 TCGv_ptr fpst = fpstatus_ptr(FPST_AH);
9696 TCGv_i32 tmp = tcg_temp_new_i32();
9697 gen_helper_bfcvt_pair(tmp, n, fpst);
9698 tcg_gen_extu_i32_i64(d, tmp);
9699 }
9700
9701 static ArithOneOp * const f_vector_bfcvtn[2][3] = {
9702 {
9703 NULL,
9704 gen_bfcvtn_hs,
9705 NULL,
9706 }, {
9707 NULL,
9708 gen_bfcvtn_ah_hs,
9709 NULL,
9710 }
9711 };
TRANS_FEAT(BFCVTN_v,aa64_bf16,do_2misc_narrow_vector,a,f_vector_bfcvtn[s->fpcr_ah])9712 TRANS_FEAT(BFCVTN_v, aa64_bf16, do_2misc_narrow_vector, a,
9713 f_vector_bfcvtn[s->fpcr_ah])
9714
9715 static bool trans_SHLL_v(DisasContext *s, arg_qrr_e *a)
9716 {
9717 static NeonGenWidenFn * const widenfns[3] = {
9718 gen_helper_neon_widen_u8,
9719 gen_helper_neon_widen_u16,
9720 tcg_gen_extu_i32_i64,
9721 };
9722 NeonGenWidenFn *widenfn;
9723 TCGv_i64 tcg_res[2];
9724 TCGv_i32 tcg_op;
9725 int part, pass;
9726
9727 if (a->esz == MO_64) {
9728 return false;
9729 }
9730 if (!fp_access_check(s)) {
9731 return true;
9732 }
9733
9734 tcg_op = tcg_temp_new_i32();
9735 widenfn = widenfns[a->esz];
9736 part = a->q ? 2 : 0;
9737
9738 for (pass = 0; pass < 2; pass++) {
9739 read_vec_element_i32(s, tcg_op, a->rn, part + pass, MO_32);
9740 tcg_res[pass] = tcg_temp_new_i64();
9741 widenfn(tcg_res[pass], tcg_op);
9742 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << a->esz);
9743 }
9744
9745 for (pass = 0; pass < 2; pass++) {
9746 write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
9747 }
9748 return true;
9749 }
9750
do_fabs_fneg_v(DisasContext * s,arg_qrr_e * a,GVecGen2Fn * fn)9751 static bool do_fabs_fneg_v(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9752 {
9753 int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9754
9755 if (check <= 0) {
9756 return check == 0;
9757 }
9758
9759 gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9760 return true;
9761 }
9762
TRANS(FABS_v,do_fabs_fneg_v,a,gen_gvec_fabs)9763 TRANS(FABS_v, do_fabs_fneg_v, a, gen_gvec_fabs)
9764 TRANS(FNEG_v, do_fabs_fneg_v, a, gen_gvec_fneg)
9765
9766 static bool do_fp1_vector(DisasContext *s, arg_qrr_e *a,
9767 const FPScalar1 *f, int rmode)
9768 {
9769 TCGv_i32 tcg_rmode = NULL;
9770 TCGv_ptr fpst;
9771 int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9772
9773 if (check <= 0) {
9774 return check == 0;
9775 }
9776
9777 fpst = fpstatus_ptr(a->esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9778 if (rmode >= 0) {
9779 tcg_rmode = gen_set_rmode(rmode, fpst);
9780 }
9781
9782 if (a->esz == MO_64) {
9783 TCGv_i64 t64 = tcg_temp_new_i64();
9784
9785 for (int pass = 0; pass < 2; ++pass) {
9786 read_vec_element(s, t64, a->rn, pass, MO_64);
9787 f->gen_d(t64, t64, fpst);
9788 write_vec_element(s, t64, a->rd, pass, MO_64);
9789 }
9790 } else {
9791 TCGv_i32 t32 = tcg_temp_new_i32();
9792 void (*gen)(TCGv_i32, TCGv_i32, TCGv_ptr)
9793 = (a->esz == MO_16 ? f->gen_h : f->gen_s);
9794
9795 for (int pass = 0, n = (a->q ? 16 : 8) >> a->esz; pass < n; ++pass) {
9796 read_vec_element_i32(s, t32, a->rn, pass, a->esz);
9797 gen(t32, t32, fpst);
9798 write_vec_element_i32(s, t32, a->rd, pass, a->esz);
9799 }
9800 }
9801 clear_vec_high(s, a->q, a->rd);
9802
9803 if (rmode >= 0) {
9804 gen_restore_rmode(tcg_rmode, fpst);
9805 }
9806 return true;
9807 }
9808
9809 TRANS(FSQRT_v, do_fp1_vector, a, &f_scalar_fsqrt, -1)
9810
9811 TRANS(FRINTN_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
9812 TRANS(FRINTP_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_POSINF)
9813 TRANS(FRINTM_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_NEGINF)
9814 TRANS(FRINTZ_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_ZERO)
9815 TRANS(FRINTA_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
9816 TRANS(FRINTI_v, do_fp1_vector, a, &f_scalar_frint, -1)
9817 TRANS(FRINTX_v, do_fp1_vector, a, &f_scalar_frintx, -1)
9818
9819 TRANS_FEAT(FRINT32Z_v, aa64_frint, do_fp1_vector, a,
9820 &f_scalar_frint32, FPROUNDING_ZERO)
9821 TRANS_FEAT(FRINT32X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint32, -1)
9822 TRANS_FEAT(FRINT64Z_v, aa64_frint, do_fp1_vector, a,
9823 &f_scalar_frint64, FPROUNDING_ZERO)
9824 TRANS_FEAT(FRINT64X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint64, -1)
9825
do_gvec_op2_fpst_with_fpsttype(DisasContext * s,MemOp esz,bool is_q,int rd,int rn,int data,gen_helper_gvec_2_ptr * const fns[3],ARMFPStatusFlavour fpsttype)9826 static bool do_gvec_op2_fpst_with_fpsttype(DisasContext *s, MemOp esz,
9827 bool is_q, int rd, int rn, int data,
9828 gen_helper_gvec_2_ptr * const fns[3],
9829 ARMFPStatusFlavour fpsttype)
9830 {
9831 int check = fp_access_check_vector_hsd(s, is_q, esz);
9832 TCGv_ptr fpst;
9833
9834 if (check <= 0) {
9835 return check == 0;
9836 }
9837
9838 fpst = fpstatus_ptr(fpsttype);
9839 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
9840 vec_full_reg_offset(s, rn), fpst,
9841 is_q ? 16 : 8, vec_full_reg_size(s),
9842 data, fns[esz - 1]);
9843 return true;
9844 }
9845
do_gvec_op2_fpst(DisasContext * s,MemOp esz,bool is_q,int rd,int rn,int data,gen_helper_gvec_2_ptr * const fns[3])9846 static bool do_gvec_op2_fpst(DisasContext *s, MemOp esz, bool is_q,
9847 int rd, int rn, int data,
9848 gen_helper_gvec_2_ptr * const fns[3])
9849 {
9850 return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data, fns,
9851 esz == MO_16 ? FPST_A64_F16 :
9852 FPST_A64);
9853 }
9854
do_gvec_op2_ah_fpst(DisasContext * s,MemOp esz,bool is_q,int rd,int rn,int data,gen_helper_gvec_2_ptr * const fns[3])9855 static bool do_gvec_op2_ah_fpst(DisasContext *s, MemOp esz, bool is_q,
9856 int rd, int rn, int data,
9857 gen_helper_gvec_2_ptr * const fns[3])
9858 {
9859 return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data,
9860 fns, select_ah_fpst(s, esz));
9861 }
9862
9863 static gen_helper_gvec_2_ptr * const f_scvtf_v[] = {
9864 gen_helper_gvec_vcvt_sh,
9865 gen_helper_gvec_vcvt_sf,
9866 gen_helper_gvec_vcvt_sd,
9867 };
9868 TRANS(SCVTF_vi, do_gvec_op2_fpst,
9869 a->esz, a->q, a->rd, a->rn, 0, f_scvtf_v)
9870 TRANS(SCVTF_vf, do_gvec_op2_fpst,
9871 a->esz, a->q, a->rd, a->rn, a->shift, f_scvtf_v)
9872
9873 static gen_helper_gvec_2_ptr * const f_ucvtf_v[] = {
9874 gen_helper_gvec_vcvt_uh,
9875 gen_helper_gvec_vcvt_uf,
9876 gen_helper_gvec_vcvt_ud,
9877 };
9878 TRANS(UCVTF_vi, do_gvec_op2_fpst,
9879 a->esz, a->q, a->rd, a->rn, 0, f_ucvtf_v)
9880 TRANS(UCVTF_vf, do_gvec_op2_fpst,
9881 a->esz, a->q, a->rd, a->rn, a->shift, f_ucvtf_v)
9882
9883 static gen_helper_gvec_2_ptr * const f_fcvtzs_vf[] = {
9884 gen_helper_gvec_vcvt_rz_hs,
9885 gen_helper_gvec_vcvt_rz_fs,
9886 gen_helper_gvec_vcvt_rz_ds,
9887 };
9888 TRANS(FCVTZS_vf, do_gvec_op2_fpst,
9889 a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzs_vf)
9890
9891 static gen_helper_gvec_2_ptr * const f_fcvtzu_vf[] = {
9892 gen_helper_gvec_vcvt_rz_hu,
9893 gen_helper_gvec_vcvt_rz_fu,
9894 gen_helper_gvec_vcvt_rz_du,
9895 };
9896 TRANS(FCVTZU_vf, do_gvec_op2_fpst,
9897 a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzu_vf)
9898
9899 static gen_helper_gvec_2_ptr * const f_fcvt_s_vi[] = {
9900 gen_helper_gvec_vcvt_rm_sh,
9901 gen_helper_gvec_vcvt_rm_ss,
9902 gen_helper_gvec_vcvt_rm_sd,
9903 };
9904
9905 static gen_helper_gvec_2_ptr * const f_fcvt_u_vi[] = {
9906 gen_helper_gvec_vcvt_rm_uh,
9907 gen_helper_gvec_vcvt_rm_us,
9908 gen_helper_gvec_vcvt_rm_ud,
9909 };
9910
9911 TRANS(FCVTNS_vi, do_gvec_op2_fpst,
9912 a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_s_vi)
9913 TRANS(FCVTNU_vi, do_gvec_op2_fpst,
9914 a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_u_vi)
9915 TRANS(FCVTPS_vi, do_gvec_op2_fpst,
9916 a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_s_vi)
9917 TRANS(FCVTPU_vi, do_gvec_op2_fpst,
9918 a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_u_vi)
9919 TRANS(FCVTMS_vi, do_gvec_op2_fpst,
9920 a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_s_vi)
9921 TRANS(FCVTMU_vi, do_gvec_op2_fpst,
9922 a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_u_vi)
9923 TRANS(FCVTZS_vi, do_gvec_op2_fpst,
9924 a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_s_vi)
9925 TRANS(FCVTZU_vi, do_gvec_op2_fpst,
9926 a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_u_vi)
9927 TRANS(FCVTAS_vi, do_gvec_op2_fpst,
9928 a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_s_vi)
9929 TRANS(FCVTAU_vi, do_gvec_op2_fpst,
9930 a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_u_vi)
9931
9932 static gen_helper_gvec_2_ptr * const f_fceq0[] = {
9933 gen_helper_gvec_fceq0_h,
9934 gen_helper_gvec_fceq0_s,
9935 gen_helper_gvec_fceq0_d,
9936 };
9937 TRANS(FCMEQ0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fceq0)
9938
9939 static gen_helper_gvec_2_ptr * const f_fcgt0[] = {
9940 gen_helper_gvec_fcgt0_h,
9941 gen_helper_gvec_fcgt0_s,
9942 gen_helper_gvec_fcgt0_d,
9943 };
9944 TRANS(FCMGT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcgt0)
9945
9946 static gen_helper_gvec_2_ptr * const f_fcge0[] = {
9947 gen_helper_gvec_fcge0_h,
9948 gen_helper_gvec_fcge0_s,
9949 gen_helper_gvec_fcge0_d,
9950 };
9951 TRANS(FCMGE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcge0)
9952
9953 static gen_helper_gvec_2_ptr * const f_fclt0[] = {
9954 gen_helper_gvec_fclt0_h,
9955 gen_helper_gvec_fclt0_s,
9956 gen_helper_gvec_fclt0_d,
9957 };
9958 TRANS(FCMLT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fclt0)
9959
9960 static gen_helper_gvec_2_ptr * const f_fcle0[] = {
9961 gen_helper_gvec_fcle0_h,
9962 gen_helper_gvec_fcle0_s,
9963 gen_helper_gvec_fcle0_d,
9964 };
9965 TRANS(FCMLE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcle0)
9966
9967 static gen_helper_gvec_2_ptr * const f_frecpe[] = {
9968 gen_helper_gvec_frecpe_h,
9969 gen_helper_gvec_frecpe_s,
9970 gen_helper_gvec_frecpe_d,
9971 };
9972 static gen_helper_gvec_2_ptr * const f_frecpe_rpres[] = {
9973 gen_helper_gvec_frecpe_h,
9974 gen_helper_gvec_frecpe_rpres_s,
9975 gen_helper_gvec_frecpe_d,
9976 };
9977 TRANS(FRECPE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9978 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frecpe_rpres : f_frecpe)
9979
9980 static gen_helper_gvec_2_ptr * const f_frsqrte[] = {
9981 gen_helper_gvec_frsqrte_h,
9982 gen_helper_gvec_frsqrte_s,
9983 gen_helper_gvec_frsqrte_d,
9984 };
9985 static gen_helper_gvec_2_ptr * const f_frsqrte_rpres[] = {
9986 gen_helper_gvec_frsqrte_h,
9987 gen_helper_gvec_frsqrte_rpres_s,
9988 gen_helper_gvec_frsqrte_d,
9989 };
9990 TRANS(FRSQRTE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9991 s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frsqrte_rpres : f_frsqrte)
9992
trans_FCVTL_v(DisasContext * s,arg_qrr_e * a)9993 static bool trans_FCVTL_v(DisasContext *s, arg_qrr_e *a)
9994 {
9995 /* Handle 2-reg-misc ops which are widening (so each size element
9996 * in the source becomes a 2*size element in the destination.
9997 * The only instruction like this is FCVTL.
9998 */
9999 int pass;
10000 TCGv_ptr fpst;
10001
10002 if (!fp_access_check(s)) {
10003 return true;
10004 }
10005
10006 if (a->esz == MO_64) {
10007 /* 32 -> 64 bit fp conversion */
10008 TCGv_i64 tcg_res[2];
10009 TCGv_i32 tcg_op = tcg_temp_new_i32();
10010 int srcelt = a->q ? 2 : 0;
10011
10012 fpst = fpstatus_ptr(FPST_A64);
10013
10014 for (pass = 0; pass < 2; pass++) {
10015 tcg_res[pass] = tcg_temp_new_i64();
10016 read_vec_element_i32(s, tcg_op, a->rn, srcelt + pass, MO_32);
10017 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, fpst);
10018 }
10019 for (pass = 0; pass < 2; pass++) {
10020 write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
10021 }
10022 } else {
10023 /* 16 -> 32 bit fp conversion */
10024 int srcelt = a->q ? 4 : 0;
10025 TCGv_i32 tcg_res[4];
10026 TCGv_i32 ahp = get_ahp_flag();
10027
10028 fpst = fpstatus_ptr(FPST_A64_F16);
10029
10030 for (pass = 0; pass < 4; pass++) {
10031 tcg_res[pass] = tcg_temp_new_i32();
10032 read_vec_element_i32(s, tcg_res[pass], a->rn, srcelt + pass, MO_16);
10033 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10034 fpst, ahp);
10035 }
10036 for (pass = 0; pass < 4; pass++) {
10037 write_vec_element_i32(s, tcg_res[pass], a->rd, pass, MO_32);
10038 }
10039 }
10040 clear_vec_high(s, true, a->rd);
10041 return true;
10042 }
10043
trans_OK(DisasContext * s,arg_OK * a)10044 static bool trans_OK(DisasContext *s, arg_OK *a)
10045 {
10046 return true;
10047 }
10048
trans_FAIL(DisasContext * s,arg_OK * a)10049 static bool trans_FAIL(DisasContext *s, arg_OK *a)
10050 {
10051 s->is_nonstreaming = true;
10052 return true;
10053 }
10054
10055 /**
10056 * btype_destination_ok:
10057 * @insn: The instruction at the branch destination
10058 * @bt: SCTLR_ELx.BT
10059 * @btype: PSTATE.BTYPE, and is non-zero
10060 *
10061 * On a guarded page, there are a limited number of insns
10062 * that may be present at the branch target:
10063 * - branch target identifiers,
10064 * - paciasp, pacibsp,
10065 * - BRK insn
10066 * - HLT insn
10067 * Anything else causes a Branch Target Exception.
10068 *
10069 * Return true if the branch is compatible, false to raise BTITRAP.
10070 */
btype_destination_ok(uint32_t insn,bool bt,int btype)10071 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
10072 {
10073 if ((insn & 0xfffff01fu) == 0xd503201fu) {
10074 /* HINT space */
10075 switch (extract32(insn, 5, 7)) {
10076 case 0b011001: /* PACIASP */
10077 case 0b011011: /* PACIBSP */
10078 /*
10079 * If SCTLR_ELx.BT, then PACI*SP are not compatible
10080 * with btype == 3. Otherwise all btype are ok.
10081 */
10082 return !bt || btype != 3;
10083 case 0b100000: /* BTI */
10084 /* Not compatible with any btype. */
10085 return false;
10086 case 0b100010: /* BTI c */
10087 /* Not compatible with btype == 3 */
10088 return btype != 3;
10089 case 0b100100: /* BTI j */
10090 /* Not compatible with btype == 2 */
10091 return btype != 2;
10092 case 0b100110: /* BTI jc */
10093 /* Compatible with any btype. */
10094 return true;
10095 }
10096 } else {
10097 switch (insn & 0xffe0001fu) {
10098 case 0xd4200000u: /* BRK */
10099 case 0xd4400000u: /* HLT */
10100 /* Give priority to the breakpoint exception. */
10101 return true;
10102 }
10103 }
10104 return false;
10105 }
10106
aarch64_tr_init_disas_context(DisasContextBase * dcbase,CPUState * cpu)10107 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
10108 CPUState *cpu)
10109 {
10110 DisasContext *dc = container_of(dcbase, DisasContext, base);
10111 CPUARMState *env = cpu_env(cpu);
10112 ARMCPU *arm_cpu = env_archcpu(env);
10113 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
10114 int bound, core_mmu_idx;
10115
10116 dc->isar = &arm_cpu->isar;
10117 dc->condjmp = 0;
10118 dc->pc_save = dc->base.pc_first;
10119 dc->aarch64 = true;
10120 dc->thumb = false;
10121 dc->sctlr_b = 0;
10122 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
10123 dc->condexec_mask = 0;
10124 dc->condexec_cond = 0;
10125 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
10126 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
10127 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
10128 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
10129 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
10130 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
10131 #if !defined(CONFIG_USER_ONLY)
10132 dc->user = (dc->current_el == 0);
10133 #endif
10134 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
10135 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
10136 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
10137 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
10138 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
10139 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
10140 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
10141 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
10142 dc->zt0_excp_el = EX_TBFLAG_A64(tb_flags, ZT0EXC_EL);
10143 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
10144 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
10145 dc->max_svl = arm_cpu->sme_max_vq * 16;
10146 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
10147 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
10148 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
10149 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
10150 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
10151 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
10152 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
10153 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
10154 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
10155 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
10156 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
10157 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
10158 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
10159 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
10160 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
10161 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
10162 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
10163 dc->fpcr_ah = EX_TBFLAG_A64(tb_flags, AH);
10164 dc->fpcr_nep = EX_TBFLAG_A64(tb_flags, NEP);
10165 dc->vec_len = 0;
10166 dc->vec_stride = 0;
10167 dc->cp_regs = arm_cpu->cp_regs;
10168 dc->features = env->features;
10169 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
10170 dc->gm_blocksize = arm_cpu->gm_blocksize;
10171
10172 #ifdef CONFIG_USER_ONLY
10173 /* In sve_probe_page, we assume TBI is enabled. */
10174 tcg_debug_assert(dc->tbid & 1);
10175 #endif
10176
10177 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
10178
10179 /* Single step state. The code-generation logic here is:
10180 * SS_ACTIVE == 0:
10181 * generate code with no special handling for single-stepping (except
10182 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
10183 * this happens anyway because those changes are all system register or
10184 * PSTATE writes).
10185 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
10186 * emit code for one insn
10187 * emit code to clear PSTATE.SS
10188 * emit code to generate software step exception for completed step
10189 * end TB (as usual for having generated an exception)
10190 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
10191 * emit code to generate a software step exception
10192 * end the TB
10193 */
10194 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
10195 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
10196 dc->is_ldex = false;
10197
10198 /* Bound the number of insns to execute to those left on the page. */
10199 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
10200
10201 /* If architectural single step active, limit to 1. */
10202 if (dc->ss_active) {
10203 bound = 1;
10204 }
10205 dc->base.max_insns = MIN(dc->base.max_insns, bound);
10206 }
10207
aarch64_tr_tb_start(DisasContextBase * db,CPUState * cpu)10208 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
10209 {
10210 }
10211
aarch64_tr_insn_start(DisasContextBase * dcbase,CPUState * cpu)10212 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
10213 {
10214 DisasContext *dc = container_of(dcbase, DisasContext, base);
10215 target_ulong pc_arg = dc->base.pc_next;
10216
10217 if (tb_cflags(dcbase->tb) & CF_PCREL) {
10218 pc_arg &= ~TARGET_PAGE_MASK;
10219 }
10220 tcg_gen_insn_start(pc_arg, 0, 0);
10221 dc->insn_start_updated = false;
10222 }
10223
aarch64_tr_translate_insn(DisasContextBase * dcbase,CPUState * cpu)10224 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
10225 {
10226 DisasContext *s = container_of(dcbase, DisasContext, base);
10227 CPUARMState *env = cpu_env(cpu);
10228 uint64_t pc = s->base.pc_next;
10229 uint32_t insn;
10230
10231 /* Singlestep exceptions have the highest priority. */
10232 if (s->ss_active && !s->pstate_ss) {
10233 /* Singlestep state is Active-pending.
10234 * If we're in this state at the start of a TB then either
10235 * a) we just took an exception to an EL which is being debugged
10236 * and this is the first insn in the exception handler
10237 * b) debug exceptions were masked and we just unmasked them
10238 * without changing EL (eg by clearing PSTATE.D)
10239 * In either case we're going to take a swstep exception in the
10240 * "did not step an insn" case, and so the syndrome ISV and EX
10241 * bits should be zero.
10242 */
10243 assert(s->base.num_insns == 1);
10244 gen_swstep_exception(s, 0, 0);
10245 s->base.is_jmp = DISAS_NORETURN;
10246 s->base.pc_next = pc + 4;
10247 return;
10248 }
10249
10250 if (pc & 3) {
10251 /*
10252 * PC alignment fault. This has priority over the instruction abort
10253 * that we would receive from a translation fault via arm_ldl_code.
10254 * This should only be possible after an indirect branch, at the
10255 * start of the TB.
10256 */
10257 assert(s->base.num_insns == 1);
10258 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_vaddr(pc));
10259 s->base.is_jmp = DISAS_NORETURN;
10260 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
10261 return;
10262 }
10263
10264 s->pc_curr = pc;
10265 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
10266 s->insn = insn;
10267 s->base.pc_next = pc + 4;
10268
10269 s->fp_access_checked = 0;
10270 s->sve_access_checked = 0;
10271
10272 if (s->pstate_il) {
10273 /*
10274 * Illegal execution state. This has priority over BTI
10275 * exceptions, but comes after instruction abort exceptions.
10276 */
10277 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
10278 return;
10279 }
10280
10281 if (dc_isar_feature(aa64_bti, s)) {
10282 if (s->base.num_insns == 1) {
10283 /* First insn can have btype set to non-zero. */
10284 tcg_debug_assert(s->btype >= 0);
10285
10286 /*
10287 * Note that the Branch Target Exception has fairly high
10288 * priority -- below debugging exceptions but above most
10289 * everything else. This allows us to handle this now
10290 * instead of waiting until the insn is otherwise decoded.
10291 *
10292 * We can check all but the guarded page check here;
10293 * defer the latter to a helper.
10294 */
10295 if (s->btype != 0
10296 && !btype_destination_ok(insn, s->bt, s->btype)) {
10297 gen_helper_guarded_page_check(tcg_env);
10298 }
10299 } else {
10300 /* Not the first insn: btype must be 0. */
10301 tcg_debug_assert(s->btype == 0);
10302 }
10303 }
10304
10305 s->is_nonstreaming = false;
10306 if (s->sme_trap_nonstreaming) {
10307 disas_sme_fa64(s, insn);
10308 }
10309
10310 if (!disas_a64(s, insn) &&
10311 !disas_sme(s, insn) &&
10312 !disas_sve(s, insn)) {
10313 unallocated_encoding(s);
10314 }
10315
10316 /*
10317 * After execution of most insns, btype is reset to 0.
10318 * Note that we set btype == -1 when the insn sets btype.
10319 */
10320 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
10321 reset_btype(s);
10322 }
10323 }
10324
aarch64_tr_tb_stop(DisasContextBase * dcbase,CPUState * cpu)10325 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
10326 {
10327 DisasContext *dc = container_of(dcbase, DisasContext, base);
10328
10329 if (unlikely(dc->ss_active)) {
10330 /* Note that this means single stepping WFI doesn't halt the CPU.
10331 * For conditional branch insns this is harmless unreachable code as
10332 * gen_goto_tb() has already handled emitting the debug exception
10333 * (and thus a tb-jump is not possible when singlestepping).
10334 */
10335 switch (dc->base.is_jmp) {
10336 default:
10337 gen_a64_update_pc(dc, 4);
10338 /* fall through */
10339 case DISAS_EXIT:
10340 case DISAS_JUMP:
10341 gen_step_complete_exception(dc);
10342 break;
10343 case DISAS_NORETURN:
10344 break;
10345 }
10346 } else {
10347 switch (dc->base.is_jmp) {
10348 case DISAS_NEXT:
10349 case DISAS_TOO_MANY:
10350 gen_goto_tb(dc, 1, 4);
10351 break;
10352 default:
10353 case DISAS_UPDATE_EXIT:
10354 gen_a64_update_pc(dc, 4);
10355 /* fall through */
10356 case DISAS_EXIT:
10357 tcg_gen_exit_tb(NULL, 0);
10358 break;
10359 case DISAS_UPDATE_NOCHAIN:
10360 gen_a64_update_pc(dc, 4);
10361 /* fall through */
10362 case DISAS_JUMP:
10363 tcg_gen_lookup_and_goto_ptr();
10364 break;
10365 case DISAS_NORETURN:
10366 case DISAS_SWI:
10367 break;
10368 case DISAS_WFE:
10369 gen_a64_update_pc(dc, 4);
10370 gen_helper_wfe(tcg_env);
10371 break;
10372 case DISAS_YIELD:
10373 gen_a64_update_pc(dc, 4);
10374 gen_helper_yield(tcg_env);
10375 break;
10376 case DISAS_WFI:
10377 /*
10378 * This is a special case because we don't want to just halt
10379 * the CPU if trying to debug across a WFI.
10380 */
10381 gen_a64_update_pc(dc, 4);
10382 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
10383 /*
10384 * The helper doesn't necessarily throw an exception, but we
10385 * must go back to the main loop to check for interrupts anyway.
10386 */
10387 tcg_gen_exit_tb(NULL, 0);
10388 break;
10389 }
10390 }
10391 }
10392
10393 const TranslatorOps aarch64_translator_ops = {
10394 .init_disas_context = aarch64_tr_init_disas_context,
10395 .tb_start = aarch64_tr_tb_start,
10396 .insn_start = aarch64_tr_insn_start,
10397 .translate_insn = aarch64_tr_translate_insn,
10398 .tb_stop = aarch64_tr_tb_stop,
10399 };
10400