1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18
19 #include "tb.h"
20
21 /* Switch NVM support */
22
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27 };
28
29 /*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36
__nvm_get_auth_status(const struct tb_switch * sw)37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47 }
48
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58 }
59
nvm_set_auth_status(const struct tb_switch * sw,u32 status)60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81 unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83 }
84
nvm_clear_auth_status(const struct tb_switch * sw)85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96 }
97
nvm_validate_and_write(struct tb_switch * sw)98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124 }
125
nvm_authenticate_host_dma_port(struct tb_switch * sw)126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164 }
165
nvm_authenticate_device_dma_port(struct tb_switch * sw)166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209 }
210
nvm_authenticate_start_dma_port(struct tb_switch * sw)211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224 }
225
nvm_authenticate_complete_dma_port(struct tb_switch * sw)226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233 }
234
nvm_readable(struct tb_switch * sw)235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249 }
250
nvm_upgradeable(struct tb_switch * sw)251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256 }
257
nvm_authenticate(struct tb_switch * sw,bool auth_only)258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283 }
284
285 /**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
tb_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 size_t size)
298 {
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303
nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
308 int ret;
309
310 pm_runtime_get_sync(&sw->dev);
311
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
314 goto out;
315 }
316
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
319
320 out:
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
323
324 return ret;
325 }
326
nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
331 int ret;
332
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
335
336 /*
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
341 */
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 return ret;
346 }
347
tb_switch_nvm_add(struct tb_switch * sw)348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 struct tb_nvm *nvm;
351 int ret;
352
353 if (!nvm_readable(sw))
354 return 0;
355
356 nvm = tb_nvm_alloc(&sw->dev);
357 if (IS_ERR(nvm)) {
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 goto err_nvm;
360 }
361
362 ret = tb_nvm_read_version(nvm);
363 if (ret)
364 goto err_nvm;
365
366 /*
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
370 */
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
373 if (ret)
374 goto err_nvm;
375 }
376
377 if (!sw->no_nvm_upgrade) {
378 ret = tb_nvm_add_non_active(nvm, nvm_write);
379 if (ret)
380 goto err_nvm;
381 }
382
383 sw->nvm = nvm;
384 return 0;
385
386 err_nvm:
387 tb_sw_dbg(sw, "NVM upgrade disabled\n");
388 sw->no_nvm_upgrade = true;
389 if (!IS_ERR(nvm))
390 tb_nvm_free(nvm);
391
392 return ret;
393 }
394
tb_switch_nvm_remove(struct tb_switch * sw)395 static void tb_switch_nvm_remove(struct tb_switch *sw)
396 {
397 struct tb_nvm *nvm;
398
399 nvm = sw->nvm;
400 sw->nvm = NULL;
401
402 if (!nvm)
403 return;
404
405 /* Remove authentication status in case the switch is unplugged */
406 if (!nvm->authenticating)
407 nvm_clear_auth_status(sw);
408
409 tb_nvm_free(nvm);
410 }
411
412 /* port utility functions */
413
tb_port_type(const struct tb_regs_port_header * port)414 static const char *tb_port_type(const struct tb_regs_port_header *port)
415 {
416 switch (port->type >> 16) {
417 case 0:
418 switch ((u8) port->type) {
419 case 0:
420 return "Inactive";
421 case 1:
422 return "Port";
423 case 2:
424 return "NHI";
425 default:
426 return "unknown";
427 }
428 case 0x2:
429 return "Ethernet";
430 case 0x8:
431 return "SATA";
432 case 0xe:
433 return "DP/HDMI";
434 case 0x10:
435 return "PCIe";
436 case 0x20:
437 return "USB";
438 default:
439 return "unknown";
440 }
441 }
442
tb_dump_port(struct tb * tb,const struct tb_port * port)443 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
444 {
445 const struct tb_regs_port_header *regs = &port->config;
446
447 tb_dbg(tb,
448 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
449 regs->port_number, regs->vendor_id, regs->device_id,
450 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
451 regs->type);
452 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
453 regs->max_in_hop_id, regs->max_out_hop_id);
454 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
455 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
456 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
457 port->ctl_credits);
458 }
459
460 /**
461 * tb_port_state() - get connectedness state of a port
462 * @port: the port to check
463 *
464 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
465 *
466 * Return: Returns an enum tb_port_state on success or an error code on failure.
467 */
tb_port_state(struct tb_port * port)468 int tb_port_state(struct tb_port *port)
469 {
470 struct tb_cap_phy phy;
471 int res;
472 if (port->cap_phy == 0) {
473 tb_port_WARN(port, "does not have a PHY\n");
474 return -EINVAL;
475 }
476 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
477 if (res)
478 return res;
479 return phy.state;
480 }
481
482 /**
483 * tb_wait_for_port() - wait for a port to become ready
484 * @port: Port to wait
485 * @wait_if_unplugged: Wait also when port is unplugged
486 *
487 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
488 * wait_if_unplugged is set then we also wait if the port is in state
489 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
490 * switch resume). Otherwise we only wait if a device is registered but the link
491 * has not yet been established.
492 *
493 * Return: Returns an error code on failure. Returns 0 if the port is not
494 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
495 * if the port is connected and in state TB_PORT_UP.
496 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)497 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
498 {
499 int retries = 10;
500 int state;
501 if (!port->cap_phy) {
502 tb_port_WARN(port, "does not have PHY\n");
503 return -EINVAL;
504 }
505 if (tb_is_upstream_port(port)) {
506 tb_port_WARN(port, "is the upstream port\n");
507 return -EINVAL;
508 }
509
510 while (retries--) {
511 state = tb_port_state(port);
512 switch (state) {
513 case TB_PORT_DISABLED:
514 tb_port_dbg(port, "is disabled (state: 0)\n");
515 return 0;
516
517 case TB_PORT_UNPLUGGED:
518 if (wait_if_unplugged) {
519 /* used during resume */
520 tb_port_dbg(port,
521 "is unplugged (state: 7), retrying...\n");
522 msleep(100);
523 break;
524 }
525 tb_port_dbg(port, "is unplugged (state: 7)\n");
526 return 0;
527
528 case TB_PORT_UP:
529 case TB_PORT_TX_CL0S:
530 case TB_PORT_RX_CL0S:
531 case TB_PORT_CL1:
532 case TB_PORT_CL2:
533 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
534 return 1;
535
536 default:
537 if (state < 0)
538 return state;
539
540 /*
541 * After plug-in the state is TB_PORT_CONNECTING. Give it some
542 * time.
543 */
544 tb_port_dbg(port,
545 "is connected, link is not up (state: %d), retrying...\n",
546 state);
547 msleep(100);
548 }
549
550 }
551 tb_port_warn(port,
552 "failed to reach state TB_PORT_UP. Ignoring port...\n");
553 return 0;
554 }
555
556 /**
557 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558 * @port: Port to add/remove NFC credits
559 * @credits: Credits to add/remove
560 *
561 * Change the number of NFC credits allocated to @port by @credits. To remove
562 * NFC credits pass a negative amount of credits.
563 *
564 * Return: Returns 0 on success or an error code on failure.
565 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)566 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
567 {
568 u32 nfc_credits;
569
570 if (credits == 0 || port->sw->is_unplugged)
571 return 0;
572
573 /*
574 * USB4 restricts programming NFC buffers to lane adapters only
575 * so skip other ports.
576 */
577 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
578 return 0;
579
580 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
581 if (credits < 0)
582 credits = max_t(int, -nfc_credits, credits);
583
584 nfc_credits += credits;
585
586 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
587 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
588
589 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
590 port->config.nfc_credits |= nfc_credits;
591
592 return tb_port_write(port, &port->config.nfc_credits,
593 TB_CFG_PORT, ADP_CS_4, 1);
594 }
595
596 /**
597 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
598 * @port: Port whose counters to clear
599 * @counter: Counter index to clear
600 *
601 * Return: Returns 0 on success or an error code on failure.
602 */
tb_port_clear_counter(struct tb_port * port,int counter)603 int tb_port_clear_counter(struct tb_port *port, int counter)
604 {
605 u32 zero[3] = { 0, 0, 0 };
606 tb_port_dbg(port, "clearing counter %d\n", counter);
607 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
608 }
609
610 /**
611 * tb_port_unlock() - Unlock downstream port
612 * @port: Port to unlock
613 *
614 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
615 * downstream router accessible for CM.
616 */
tb_port_unlock(struct tb_port * port)617 int tb_port_unlock(struct tb_port *port)
618 {
619 if (tb_switch_is_icm(port->sw))
620 return 0;
621 if (!tb_port_is_null(port))
622 return -EINVAL;
623 if (tb_switch_is_usb4(port->sw))
624 return usb4_port_unlock(port);
625 return 0;
626 }
627
__tb_port_enable(struct tb_port * port,bool enable)628 static int __tb_port_enable(struct tb_port *port, bool enable)
629 {
630 int ret;
631 u32 phy;
632
633 if (!tb_port_is_null(port))
634 return -EINVAL;
635
636 ret = tb_port_read(port, &phy, TB_CFG_PORT,
637 port->cap_phy + LANE_ADP_CS_1, 1);
638 if (ret)
639 return ret;
640
641 if (enable)
642 phy &= ~LANE_ADP_CS_1_LD;
643 else
644 phy |= LANE_ADP_CS_1_LD;
645
646
647 ret = tb_port_write(port, &phy, TB_CFG_PORT,
648 port->cap_phy + LANE_ADP_CS_1, 1);
649 if (ret)
650 return ret;
651
652 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
653 return 0;
654 }
655
656 /**
657 * tb_port_enable() - Enable lane adapter
658 * @port: Port to enable (can be %NULL)
659 *
660 * This is used for lane 0 and 1 adapters to enable it.
661 */
tb_port_enable(struct tb_port * port)662 int tb_port_enable(struct tb_port *port)
663 {
664 return __tb_port_enable(port, true);
665 }
666
667 /**
668 * tb_port_disable() - Disable lane adapter
669 * @port: Port to disable (can be %NULL)
670 *
671 * This is used for lane 0 and 1 adapters to disable it.
672 */
tb_port_disable(struct tb_port * port)673 int tb_port_disable(struct tb_port *port)
674 {
675 return __tb_port_enable(port, false);
676 }
677
tb_port_reset(struct tb_port * port)678 static int tb_port_reset(struct tb_port *port)
679 {
680 if (tb_switch_is_usb4(port->sw))
681 return port->cap_usb4 ? usb4_port_reset(port) : 0;
682 return tb_lc_reset_port(port);
683 }
684
685 /*
686 * tb_init_port() - initialize a port
687 *
688 * This is a helper method for tb_switch_alloc. Does not check or initialize
689 * any downstream switches.
690 *
691 * Return: Returns 0 on success or an error code on failure.
692 */
tb_init_port(struct tb_port * port)693 static int tb_init_port(struct tb_port *port)
694 {
695 int res;
696 int cap;
697
698 INIT_LIST_HEAD(&port->list);
699
700 /* Control adapter does not have configuration space */
701 if (!port->port)
702 return 0;
703
704 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
705 if (res) {
706 if (res == -ENODEV) {
707 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
708 port->port);
709 port->disabled = true;
710 return 0;
711 }
712 return res;
713 }
714
715 /* Port 0 is the switch itself and has no PHY. */
716 if (port->config.type == TB_TYPE_PORT) {
717 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
718
719 if (cap > 0)
720 port->cap_phy = cap;
721 else
722 tb_port_WARN(port, "non switch port without a PHY\n");
723
724 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
725 if (cap > 0)
726 port->cap_usb4 = cap;
727
728 /*
729 * USB4 ports the buffers allocated for the control path
730 * can be read from the path config space. Legacy
731 * devices we use hard-coded value.
732 */
733 if (port->cap_usb4) {
734 struct tb_regs_hop hop;
735
736 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
737 port->ctl_credits = hop.initial_credits;
738 }
739 if (!port->ctl_credits)
740 port->ctl_credits = 2;
741
742 } else {
743 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
744 if (cap > 0)
745 port->cap_adap = cap;
746 }
747
748 port->total_credits =
749 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
750 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
751
752 tb_dump_port(port->sw->tb, port);
753 return 0;
754 }
755
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)756 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
757 int max_hopid)
758 {
759 int port_max_hopid;
760 struct ida *ida;
761
762 if (in) {
763 port_max_hopid = port->config.max_in_hop_id;
764 ida = &port->in_hopids;
765 } else {
766 port_max_hopid = port->config.max_out_hop_id;
767 ida = &port->out_hopids;
768 }
769
770 /*
771 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
772 * reserved.
773 */
774 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
775 min_hopid = TB_PATH_MIN_HOPID;
776
777 if (max_hopid < 0 || max_hopid > port_max_hopid)
778 max_hopid = port_max_hopid;
779
780 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
781 }
782
783 /**
784 * tb_port_alloc_in_hopid() - Allocate input HopID from port
785 * @port: Port to allocate HopID for
786 * @min_hopid: Minimum acceptable input HopID
787 * @max_hopid: Maximum acceptable input HopID
788 *
789 * Return: HopID between @min_hopid and @max_hopid or negative errno in
790 * case of error.
791 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)792 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
793 {
794 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
795 }
796
797 /**
798 * tb_port_alloc_out_hopid() - Allocate output HopID from port
799 * @port: Port to allocate HopID for
800 * @min_hopid: Minimum acceptable output HopID
801 * @max_hopid: Maximum acceptable output HopID
802 *
803 * Return: HopID between @min_hopid and @max_hopid or negative errno in
804 * case of error.
805 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)806 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
807 {
808 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
809 }
810
811 /**
812 * tb_port_release_in_hopid() - Release allocated input HopID from port
813 * @port: Port whose HopID to release
814 * @hopid: HopID to release
815 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)816 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
817 {
818 ida_simple_remove(&port->in_hopids, hopid);
819 }
820
821 /**
822 * tb_port_release_out_hopid() - Release allocated output HopID from port
823 * @port: Port whose HopID to release
824 * @hopid: HopID to release
825 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)826 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
827 {
828 ida_simple_remove(&port->out_hopids, hopid);
829 }
830
tb_switch_is_reachable(const struct tb_switch * parent,const struct tb_switch * sw)831 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
832 const struct tb_switch *sw)
833 {
834 u64 mask = (1ULL << parent->config.depth * 8) - 1;
835 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
836 }
837
838 /**
839 * tb_next_port_on_path() - Return next port for given port on a path
840 * @start: Start port of the walk
841 * @end: End port of the walk
842 * @prev: Previous port (%NULL if this is the first)
843 *
844 * This function can be used to walk from one port to another if they
845 * are connected through zero or more switches. If the @prev is dual
846 * link port, the function follows that link and returns another end on
847 * that same link.
848 *
849 * If the @end port has been reached, return %NULL.
850 *
851 * Domain tb->lock must be held when this function is called.
852 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)853 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
854 struct tb_port *prev)
855 {
856 struct tb_port *next;
857
858 if (!prev)
859 return start;
860
861 if (prev->sw == end->sw) {
862 if (prev == end)
863 return NULL;
864 return end;
865 }
866
867 if (tb_switch_is_reachable(prev->sw, end->sw)) {
868 next = tb_port_at(tb_route(end->sw), prev->sw);
869 /* Walk down the topology if next == prev */
870 if (prev->remote &&
871 (next == prev || next->dual_link_port == prev))
872 next = prev->remote;
873 } else {
874 if (tb_is_upstream_port(prev)) {
875 next = prev->remote;
876 } else {
877 next = tb_upstream_port(prev->sw);
878 /*
879 * Keep the same link if prev and next are both
880 * dual link ports.
881 */
882 if (next->dual_link_port &&
883 next->link_nr != prev->link_nr) {
884 next = next->dual_link_port;
885 }
886 }
887 }
888
889 return next != prev ? next : NULL;
890 }
891
892 /**
893 * tb_port_get_link_speed() - Get current link speed
894 * @port: Port to check (USB4 or CIO)
895 *
896 * Returns link speed in Gb/s or negative errno in case of failure.
897 */
tb_port_get_link_speed(struct tb_port * port)898 int tb_port_get_link_speed(struct tb_port *port)
899 {
900 u32 val, speed;
901 int ret;
902
903 if (!port->cap_phy)
904 return -EINVAL;
905
906 ret = tb_port_read(port, &val, TB_CFG_PORT,
907 port->cap_phy + LANE_ADP_CS_1, 1);
908 if (ret)
909 return ret;
910
911 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
912 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
913
914 switch (speed) {
915 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
916 return 40;
917 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
918 return 20;
919 default:
920 return 10;
921 }
922 }
923
924 /**
925 * tb_port_get_link_generation() - Returns link generation
926 * @port: Lane adapter
927 *
928 * Returns link generation as number or negative errno in case of
929 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
930 * links so for those always returns 2.
931 */
tb_port_get_link_generation(struct tb_port * port)932 int tb_port_get_link_generation(struct tb_port *port)
933 {
934 int ret;
935
936 ret = tb_port_get_link_speed(port);
937 if (ret < 0)
938 return ret;
939
940 switch (ret) {
941 case 40:
942 return 4;
943 case 20:
944 return 3;
945 default:
946 return 2;
947 }
948 }
949
width_name(enum tb_link_width width)950 static const char *width_name(enum tb_link_width width)
951 {
952 switch (width) {
953 case TB_LINK_WIDTH_SINGLE:
954 return "symmetric, single lane";
955 case TB_LINK_WIDTH_DUAL:
956 return "symmetric, dual lanes";
957 case TB_LINK_WIDTH_ASYM_TX:
958 return "asymmetric, 3 transmitters, 1 receiver";
959 case TB_LINK_WIDTH_ASYM_RX:
960 return "asymmetric, 3 receivers, 1 transmitter";
961 default:
962 return "unknown";
963 }
964 }
965
966 /**
967 * tb_port_get_link_width() - Get current link width
968 * @port: Port to check (USB4 or CIO)
969 *
970 * Returns link width. Return the link width as encoded in &enum
971 * tb_link_width or negative errno in case of failure.
972 */
tb_port_get_link_width(struct tb_port * port)973 int tb_port_get_link_width(struct tb_port *port)
974 {
975 u32 val;
976 int ret;
977
978 if (!port->cap_phy)
979 return -EINVAL;
980
981 ret = tb_port_read(port, &val, TB_CFG_PORT,
982 port->cap_phy + LANE_ADP_CS_1, 1);
983 if (ret)
984 return ret;
985
986 /* Matches the values in enum tb_link_width */
987 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
988 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
989 }
990
991 /**
992 * tb_port_width_supported() - Is the given link width supported
993 * @port: Port to check
994 * @width: Widths to check (bitmask)
995 *
996 * Can be called to any lane adapter. Checks if given @width is
997 * supported by the hardware and returns %true if it is.
998 */
tb_port_width_supported(struct tb_port * port,unsigned int width)999 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
1000 {
1001 u32 phy, widths;
1002 int ret;
1003
1004 if (!port->cap_phy)
1005 return false;
1006
1007 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
1008 if (tb_port_get_link_generation(port) < 4 ||
1009 !usb4_port_asym_supported(port))
1010 return false;
1011 }
1012
1013 ret = tb_port_read(port, &phy, TB_CFG_PORT,
1014 port->cap_phy + LANE_ADP_CS_0, 1);
1015 if (ret)
1016 return false;
1017
1018 /*
1019 * The field encoding is the same as &enum tb_link_width (which is
1020 * passed to @width).
1021 */
1022 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1023 return widths & width;
1024 }
1025
1026 /**
1027 * tb_port_set_link_width() - Set target link width of the lane adapter
1028 * @port: Lane adapter
1029 * @width: Target link width
1030 *
1031 * Sets the target link width of the lane adapter to @width. Does not
1032 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1033 *
1034 * Return: %0 in case of success and negative errno in case of error
1035 */
tb_port_set_link_width(struct tb_port * port,enum tb_link_width width)1036 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1037 {
1038 u32 val;
1039 int ret;
1040
1041 if (!port->cap_phy)
1042 return -EINVAL;
1043
1044 ret = tb_port_read(port, &val, TB_CFG_PORT,
1045 port->cap_phy + LANE_ADP_CS_1, 1);
1046 if (ret)
1047 return ret;
1048
1049 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1050 switch (width) {
1051 case TB_LINK_WIDTH_SINGLE:
1052 /* Gen 4 link cannot be single */
1053 if (tb_port_get_link_generation(port) >= 4)
1054 return -EOPNOTSUPP;
1055 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1056 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1057 break;
1058
1059 case TB_LINK_WIDTH_DUAL:
1060 if (tb_port_get_link_generation(port) >= 4)
1061 return usb4_port_asym_set_link_width(port, width);
1062 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1063 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1064 break;
1065
1066 case TB_LINK_WIDTH_ASYM_TX:
1067 case TB_LINK_WIDTH_ASYM_RX:
1068 return usb4_port_asym_set_link_width(port, width);
1069
1070 default:
1071 return -EINVAL;
1072 }
1073
1074 return tb_port_write(port, &val, TB_CFG_PORT,
1075 port->cap_phy + LANE_ADP_CS_1, 1);
1076 }
1077
1078 /**
1079 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1080 * @port: Lane adapter
1081 * @bonding: enable/disable bonding
1082 *
1083 * Enables or disables lane bonding. This should be called after target
1084 * link width has been set (tb_port_set_link_width()). Note in most
1085 * cases one should use tb_port_lane_bonding_enable() instead to enable
1086 * lane bonding.
1087 *
1088 * Return: %0 in case of success and negative errno in case of error
1089 */
tb_port_set_lane_bonding(struct tb_port * port,bool bonding)1090 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1091 {
1092 u32 val;
1093 int ret;
1094
1095 if (!port->cap_phy)
1096 return -EINVAL;
1097
1098 ret = tb_port_read(port, &val, TB_CFG_PORT,
1099 port->cap_phy + LANE_ADP_CS_1, 1);
1100 if (ret)
1101 return ret;
1102
1103 if (bonding)
1104 val |= LANE_ADP_CS_1_LB;
1105 else
1106 val &= ~LANE_ADP_CS_1_LB;
1107
1108 return tb_port_write(port, &val, TB_CFG_PORT,
1109 port->cap_phy + LANE_ADP_CS_1, 1);
1110 }
1111
1112 /**
1113 * tb_port_lane_bonding_enable() - Enable bonding on port
1114 * @port: port to enable
1115 *
1116 * Enable bonding by setting the link width of the port and the other
1117 * port in case of dual link port. Does not wait for the link to
1118 * actually reach the bonded state so caller needs to call
1119 * tb_port_wait_for_link_width() before enabling any paths through the
1120 * link to make sure the link is in expected state.
1121 *
1122 * Return: %0 in case of success and negative errno in case of error
1123 */
tb_port_lane_bonding_enable(struct tb_port * port)1124 int tb_port_lane_bonding_enable(struct tb_port *port)
1125 {
1126 enum tb_link_width width;
1127 int ret;
1128
1129 /*
1130 * Enable lane bonding for both links if not already enabled by
1131 * for example the boot firmware.
1132 */
1133 width = tb_port_get_link_width(port);
1134 if (width == TB_LINK_WIDTH_SINGLE) {
1135 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1136 if (ret)
1137 goto err_lane0;
1138 }
1139
1140 width = tb_port_get_link_width(port->dual_link_port);
1141 if (width == TB_LINK_WIDTH_SINGLE) {
1142 ret = tb_port_set_link_width(port->dual_link_port,
1143 TB_LINK_WIDTH_DUAL);
1144 if (ret)
1145 goto err_lane0;
1146 }
1147
1148 /*
1149 * Only set bonding if the link was not already bonded. This
1150 * avoids the lane adapter to re-enter bonding state.
1151 */
1152 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1153 ret = tb_port_set_lane_bonding(port, true);
1154 if (ret)
1155 goto err_lane1;
1156 }
1157
1158 /*
1159 * When lane 0 bonding is set it will affect lane 1 too so
1160 * update both.
1161 */
1162 port->bonded = true;
1163 port->dual_link_port->bonded = true;
1164
1165 return 0;
1166
1167 err_lane1:
1168 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1169 err_lane0:
1170 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1171
1172 return ret;
1173 }
1174
1175 /**
1176 * tb_port_lane_bonding_disable() - Disable bonding on port
1177 * @port: port to disable
1178 *
1179 * Disable bonding by setting the link width of the port and the
1180 * other port in case of dual link port.
1181 */
tb_port_lane_bonding_disable(struct tb_port * port)1182 void tb_port_lane_bonding_disable(struct tb_port *port)
1183 {
1184 tb_port_set_lane_bonding(port, false);
1185 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1186 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1187 port->dual_link_port->bonded = false;
1188 port->bonded = false;
1189 }
1190
1191 /**
1192 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1193 * @port: Port to wait for
1194 * @width: Expected link width (bitmask)
1195 * @timeout_msec: Timeout in ms how long to wait
1196 *
1197 * Should be used after both ends of the link have been bonded (or
1198 * bonding has been disabled) to wait until the link actually reaches
1199 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1200 * within the given timeout, %0 if it did. Can be passed a mask of
1201 * expected widths and succeeds if any of the widths is reached.
1202 */
tb_port_wait_for_link_width(struct tb_port * port,unsigned int width,int timeout_msec)1203 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1204 int timeout_msec)
1205 {
1206 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1207 int ret;
1208
1209 /* Gen 4 link does not support single lane */
1210 if ((width & TB_LINK_WIDTH_SINGLE) &&
1211 tb_port_get_link_generation(port) >= 4)
1212 return -EOPNOTSUPP;
1213
1214 do {
1215 ret = tb_port_get_link_width(port);
1216 if (ret < 0) {
1217 /*
1218 * Sometimes we get port locked error when
1219 * polling the lanes so we can ignore it and
1220 * retry.
1221 */
1222 if (ret != -EACCES)
1223 return ret;
1224 } else if (ret & width) {
1225 return 0;
1226 }
1227
1228 usleep_range(1000, 2000);
1229 } while (ktime_before(ktime_get(), timeout));
1230
1231 return -ETIMEDOUT;
1232 }
1233
tb_port_do_update_credits(struct tb_port * port)1234 static int tb_port_do_update_credits(struct tb_port *port)
1235 {
1236 u32 nfc_credits;
1237 int ret;
1238
1239 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1240 if (ret)
1241 return ret;
1242
1243 if (nfc_credits != port->config.nfc_credits) {
1244 u32 total;
1245
1246 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1247 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1248
1249 tb_port_dbg(port, "total credits changed %u -> %u\n",
1250 port->total_credits, total);
1251
1252 port->config.nfc_credits = nfc_credits;
1253 port->total_credits = total;
1254 }
1255
1256 return 0;
1257 }
1258
1259 /**
1260 * tb_port_update_credits() - Re-read port total credits
1261 * @port: Port to update
1262 *
1263 * After the link is bonded (or bonding was disabled) the port total
1264 * credits may change, so this function needs to be called to re-read
1265 * the credits. Updates also the second lane adapter.
1266 */
tb_port_update_credits(struct tb_port * port)1267 int tb_port_update_credits(struct tb_port *port)
1268 {
1269 int ret;
1270
1271 ret = tb_port_do_update_credits(port);
1272 if (ret)
1273 return ret;
1274
1275 if (!port->dual_link_port)
1276 return 0;
1277 return tb_port_do_update_credits(port->dual_link_port);
1278 }
1279
tb_port_start_lane_initialization(struct tb_port * port)1280 static int tb_port_start_lane_initialization(struct tb_port *port)
1281 {
1282 int ret;
1283
1284 if (tb_switch_is_usb4(port->sw))
1285 return 0;
1286
1287 ret = tb_lc_start_lane_initialization(port);
1288 return ret == -EINVAL ? 0 : ret;
1289 }
1290
1291 /*
1292 * Returns true if the port had something (router, XDomain) connected
1293 * before suspend.
1294 */
tb_port_resume(struct tb_port * port)1295 static bool tb_port_resume(struct tb_port *port)
1296 {
1297 bool has_remote = tb_port_has_remote(port);
1298
1299 if (port->usb4) {
1300 usb4_port_device_resume(port->usb4);
1301 } else if (!has_remote) {
1302 /*
1303 * For disconnected downstream lane adapters start lane
1304 * initialization now so we detect future connects.
1305 *
1306 * For XDomain start the lane initialzation now so the
1307 * link gets re-established.
1308 *
1309 * This is only needed for non-USB4 ports.
1310 */
1311 if (!tb_is_upstream_port(port) || port->xdomain)
1312 tb_port_start_lane_initialization(port);
1313 }
1314
1315 return has_remote || port->xdomain;
1316 }
1317
1318 /**
1319 * tb_port_is_enabled() - Is the adapter port enabled
1320 * @port: Port to check
1321 */
tb_port_is_enabled(struct tb_port * port)1322 bool tb_port_is_enabled(struct tb_port *port)
1323 {
1324 switch (port->config.type) {
1325 case TB_TYPE_PCIE_UP:
1326 case TB_TYPE_PCIE_DOWN:
1327 return tb_pci_port_is_enabled(port);
1328
1329 case TB_TYPE_DP_HDMI_IN:
1330 case TB_TYPE_DP_HDMI_OUT:
1331 return tb_dp_port_is_enabled(port);
1332
1333 case TB_TYPE_USB3_UP:
1334 case TB_TYPE_USB3_DOWN:
1335 return tb_usb3_port_is_enabled(port);
1336
1337 default:
1338 return false;
1339 }
1340 }
1341
1342 /**
1343 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1344 * @port: USB3 adapter port to check
1345 */
tb_usb3_port_is_enabled(struct tb_port * port)1346 bool tb_usb3_port_is_enabled(struct tb_port *port)
1347 {
1348 u32 data;
1349
1350 if (tb_port_read(port, &data, TB_CFG_PORT,
1351 port->cap_adap + ADP_USB3_CS_0, 1))
1352 return false;
1353
1354 return !!(data & ADP_USB3_CS_0_PE);
1355 }
1356
1357 /**
1358 * tb_usb3_port_enable() - Enable USB3 adapter port
1359 * @port: USB3 adapter port to enable
1360 * @enable: Enable/disable the USB3 adapter
1361 */
tb_usb3_port_enable(struct tb_port * port,bool enable)1362 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1363 {
1364 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1365 : ADP_USB3_CS_0_V;
1366
1367 if (!port->cap_adap)
1368 return -ENXIO;
1369 return tb_port_write(port, &word, TB_CFG_PORT,
1370 port->cap_adap + ADP_USB3_CS_0, 1);
1371 }
1372
1373 /**
1374 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1375 * @port: PCIe port to check
1376 */
tb_pci_port_is_enabled(struct tb_port * port)1377 bool tb_pci_port_is_enabled(struct tb_port *port)
1378 {
1379 u32 data;
1380
1381 if (tb_port_read(port, &data, TB_CFG_PORT,
1382 port->cap_adap + ADP_PCIE_CS_0, 1))
1383 return false;
1384
1385 return !!(data & ADP_PCIE_CS_0_PE);
1386 }
1387
1388 /**
1389 * tb_pci_port_enable() - Enable PCIe adapter port
1390 * @port: PCIe port to enable
1391 * @enable: Enable/disable the PCIe adapter
1392 */
tb_pci_port_enable(struct tb_port * port,bool enable)1393 int tb_pci_port_enable(struct tb_port *port, bool enable)
1394 {
1395 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1396 if (!port->cap_adap)
1397 return -ENXIO;
1398 return tb_port_write(port, &word, TB_CFG_PORT,
1399 port->cap_adap + ADP_PCIE_CS_0, 1);
1400 }
1401
1402 /**
1403 * tb_dp_port_hpd_is_active() - Is HPD already active
1404 * @port: DP out port to check
1405 *
1406 * Checks if the DP OUT adapter port has HDP bit already set.
1407 */
tb_dp_port_hpd_is_active(struct tb_port * port)1408 int tb_dp_port_hpd_is_active(struct tb_port *port)
1409 {
1410 u32 data;
1411 int ret;
1412
1413 ret = tb_port_read(port, &data, TB_CFG_PORT,
1414 port->cap_adap + ADP_DP_CS_2, 1);
1415 if (ret)
1416 return ret;
1417
1418 return !!(data & ADP_DP_CS_2_HDP);
1419 }
1420
1421 /**
1422 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1423 * @port: Port to clear HPD
1424 *
1425 * If the DP IN port has HDP set, this function can be used to clear it.
1426 */
tb_dp_port_hpd_clear(struct tb_port * port)1427 int tb_dp_port_hpd_clear(struct tb_port *port)
1428 {
1429 u32 data;
1430 int ret;
1431
1432 ret = tb_port_read(port, &data, TB_CFG_PORT,
1433 port->cap_adap + ADP_DP_CS_3, 1);
1434 if (ret)
1435 return ret;
1436
1437 data |= ADP_DP_CS_3_HDPC;
1438 return tb_port_write(port, &data, TB_CFG_PORT,
1439 port->cap_adap + ADP_DP_CS_3, 1);
1440 }
1441
1442 /**
1443 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1444 * @port: DP IN/OUT port to set hops
1445 * @video: Video Hop ID
1446 * @aux_tx: AUX TX Hop ID
1447 * @aux_rx: AUX RX Hop ID
1448 *
1449 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1450 * router DP adapters too but does not program the values as the fields
1451 * are read-only.
1452 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)1453 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1454 unsigned int aux_tx, unsigned int aux_rx)
1455 {
1456 u32 data[2];
1457 int ret;
1458
1459 if (tb_switch_is_usb4(port->sw))
1460 return 0;
1461
1462 ret = tb_port_read(port, data, TB_CFG_PORT,
1463 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1464 if (ret)
1465 return ret;
1466
1467 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1468 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1469 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1470
1471 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1472 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1473 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1474 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1475 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1476
1477 return tb_port_write(port, data, TB_CFG_PORT,
1478 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1479 }
1480
1481 /**
1482 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1483 * @port: DP adapter port to check
1484 */
tb_dp_port_is_enabled(struct tb_port * port)1485 bool tb_dp_port_is_enabled(struct tb_port *port)
1486 {
1487 u32 data[2];
1488
1489 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1490 ARRAY_SIZE(data)))
1491 return false;
1492
1493 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1494 }
1495
1496 /**
1497 * tb_dp_port_enable() - Enables/disables DP paths of a port
1498 * @port: DP IN/OUT port
1499 * @enable: Enable/disable DP path
1500 *
1501 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1502 * calling this function.
1503 */
tb_dp_port_enable(struct tb_port * port,bool enable)1504 int tb_dp_port_enable(struct tb_port *port, bool enable)
1505 {
1506 u32 data[2];
1507 int ret;
1508
1509 ret = tb_port_read(port, data, TB_CFG_PORT,
1510 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1511 if (ret)
1512 return ret;
1513
1514 if (enable)
1515 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1516 else
1517 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1518
1519 return tb_port_write(port, data, TB_CFG_PORT,
1520 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1521 }
1522
1523 /* switch utility functions */
1524
tb_switch_generation_name(const struct tb_switch * sw)1525 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1526 {
1527 switch (sw->generation) {
1528 case 1:
1529 return "Thunderbolt 1";
1530 case 2:
1531 return "Thunderbolt 2";
1532 case 3:
1533 return "Thunderbolt 3";
1534 case 4:
1535 return "USB4";
1536 default:
1537 return "Unknown";
1538 }
1539 }
1540
tb_dump_switch(const struct tb * tb,const struct tb_switch * sw)1541 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1542 {
1543 const struct tb_regs_switch_header *regs = &sw->config;
1544
1545 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1546 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1547 regs->revision, regs->thunderbolt_version);
1548 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1549 tb_dbg(tb, " Config:\n");
1550 tb_dbg(tb,
1551 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1552 regs->upstream_port_number, regs->depth,
1553 (((u64) regs->route_hi) << 32) | regs->route_lo,
1554 regs->enabled, regs->plug_events_delay);
1555 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1556 regs->__unknown1, regs->__unknown4);
1557 }
1558
tb_switch_reset_host(struct tb_switch * sw)1559 static int tb_switch_reset_host(struct tb_switch *sw)
1560 {
1561 if (sw->generation > 1) {
1562 struct tb_port *port;
1563
1564 tb_switch_for_each_port(sw, port) {
1565 int i, ret;
1566
1567 /*
1568 * For lane adapters we issue downstream port
1569 * reset and clear up path config spaces.
1570 *
1571 * For protocol adapters we disable the path and
1572 * clear path config space one by one (from 8 to
1573 * Max Input HopID of the adapter).
1574 */
1575 if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1576 ret = tb_port_reset(port);
1577 if (ret)
1578 return ret;
1579 } else if (tb_port_is_usb3_down(port) ||
1580 tb_port_is_usb3_up(port)) {
1581 tb_usb3_port_enable(port, false);
1582 } else if (tb_port_is_dpin(port) ||
1583 tb_port_is_dpout(port)) {
1584 tb_dp_port_enable(port, false);
1585 } else if (tb_port_is_pcie_down(port) ||
1586 tb_port_is_pcie_up(port)) {
1587 tb_pci_port_enable(port, false);
1588 } else {
1589 continue;
1590 }
1591
1592 /* Cleanup path config space of protocol adapter */
1593 for (i = TB_PATH_MIN_HOPID;
1594 i <= port->config.max_in_hop_id; i++) {
1595 ret = tb_path_deactivate_hop(port, i);
1596 if (ret)
1597 return ret;
1598 }
1599 }
1600 } else {
1601 struct tb_cfg_result res;
1602
1603 /* Thunderbolt 1 uses the "reset" config space packet */
1604 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1605 TB_CFG_SWITCH, 2, 2);
1606 if (res.err)
1607 return res.err;
1608 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1609 if (res.err > 0)
1610 return -EIO;
1611 else if (res.err < 0)
1612 return res.err;
1613 }
1614
1615 return 0;
1616 }
1617
tb_switch_reset_device(struct tb_switch * sw)1618 static int tb_switch_reset_device(struct tb_switch *sw)
1619 {
1620 return tb_port_reset(tb_switch_downstream_port(sw));
1621 }
1622
tb_switch_enumerated(struct tb_switch * sw)1623 static bool tb_switch_enumerated(struct tb_switch *sw)
1624 {
1625 u32 val;
1626 int ret;
1627
1628 /*
1629 * Read directly from the hardware because we use this also
1630 * during system sleep where sw->config.enabled is already set
1631 * by us.
1632 */
1633 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1634 if (ret)
1635 return false;
1636
1637 return !!(val & ROUTER_CS_3_V);
1638 }
1639
1640 /**
1641 * tb_switch_reset() - Perform reset to the router
1642 * @sw: Router to reset
1643 *
1644 * Issues reset to the router @sw. Can be used for any router. For host
1645 * routers, resets all the downstream ports and cleans up path config
1646 * spaces accordingly. For device routers issues downstream port reset
1647 * through the parent router, so as side effect there will be unplug
1648 * soon after this is finished.
1649 *
1650 * If the router is not enumerated does nothing.
1651 *
1652 * Returns %0 on success or negative errno in case of failure.
1653 */
tb_switch_reset(struct tb_switch * sw)1654 int tb_switch_reset(struct tb_switch *sw)
1655 {
1656 int ret;
1657
1658 /*
1659 * We cannot access the port config spaces unless the router is
1660 * already enumerated. If the router is not enumerated it is
1661 * equal to being reset so we can skip that here.
1662 */
1663 if (!tb_switch_enumerated(sw))
1664 return 0;
1665
1666 tb_sw_dbg(sw, "resetting\n");
1667
1668 if (tb_route(sw))
1669 ret = tb_switch_reset_device(sw);
1670 else
1671 ret = tb_switch_reset_host(sw);
1672
1673 if (ret)
1674 tb_sw_warn(sw, "failed to reset\n");
1675
1676 return ret;
1677 }
1678
1679 /**
1680 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1681 * @sw: Router to read the offset value from
1682 * @offset: Offset in the router config space to read from
1683 * @bit: Bit mask in the offset to wait for
1684 * @value: Value of the bits to wait for
1685 * @timeout_msec: Timeout in ms how long to wait
1686 *
1687 * Wait till the specified bits in specified offset reach specified value.
1688 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1689 * within the given timeout or a negative errno in case of failure.
1690 */
tb_switch_wait_for_bit(struct tb_switch * sw,u32 offset,u32 bit,u32 value,int timeout_msec)1691 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1692 u32 value, int timeout_msec)
1693 {
1694 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1695
1696 do {
1697 u32 val;
1698 int ret;
1699
1700 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1701 if (ret)
1702 return ret;
1703
1704 if ((val & bit) == value)
1705 return 0;
1706
1707 usleep_range(50, 100);
1708 } while (ktime_before(ktime_get(), timeout));
1709
1710 return -ETIMEDOUT;
1711 }
1712
1713 /*
1714 * tb_plug_events_active() - enable/disable plug events on a switch
1715 *
1716 * Also configures a sane plug_events_delay of 255ms.
1717 *
1718 * Return: Returns 0 on success or an error code on failure.
1719 */
tb_plug_events_active(struct tb_switch * sw,bool active)1720 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1721 {
1722 u32 data;
1723 int res;
1724
1725 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1726 return 0;
1727
1728 sw->config.plug_events_delay = 0xff;
1729 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1730 if (res)
1731 return res;
1732
1733 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1734 if (res)
1735 return res;
1736
1737 if (active) {
1738 data = data & 0xFFFFFF83;
1739 switch (sw->config.device_id) {
1740 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1741 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1742 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1743 break;
1744 default:
1745 /*
1746 * Skip Alpine Ridge, it needs to have vendor
1747 * specific USB hotplug event enabled for the
1748 * internal xHCI to work.
1749 */
1750 if (!tb_switch_is_alpine_ridge(sw))
1751 data |= TB_PLUG_EVENTS_USB_DISABLE;
1752 }
1753 } else {
1754 data = data | 0x7c;
1755 }
1756 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1757 sw->cap_plug_events + 1, 1);
1758 }
1759
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1760 static ssize_t authorized_show(struct device *dev,
1761 struct device_attribute *attr,
1762 char *buf)
1763 {
1764 struct tb_switch *sw = tb_to_switch(dev);
1765
1766 return sysfs_emit(buf, "%u\n", sw->authorized);
1767 }
1768
disapprove_switch(struct device * dev,void * not_used)1769 static int disapprove_switch(struct device *dev, void *not_used)
1770 {
1771 char *envp[] = { "AUTHORIZED=0", NULL };
1772 struct tb_switch *sw;
1773
1774 sw = tb_to_switch(dev);
1775 if (sw && sw->authorized) {
1776 int ret;
1777
1778 /* First children */
1779 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1780 if (ret)
1781 return ret;
1782
1783 ret = tb_domain_disapprove_switch(sw->tb, sw);
1784 if (ret)
1785 return ret;
1786
1787 sw->authorized = 0;
1788 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1789 }
1790
1791 return 0;
1792 }
1793
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1794 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1795 {
1796 char envp_string[13];
1797 int ret = -EINVAL;
1798 char *envp[] = { envp_string, NULL };
1799
1800 if (!mutex_trylock(&sw->tb->lock))
1801 return restart_syscall();
1802
1803 if (!!sw->authorized == !!val)
1804 goto unlock;
1805
1806 switch (val) {
1807 /* Disapprove switch */
1808 case 0:
1809 if (tb_route(sw)) {
1810 ret = disapprove_switch(&sw->dev, NULL);
1811 goto unlock;
1812 }
1813 break;
1814
1815 /* Approve switch */
1816 case 1:
1817 if (sw->key)
1818 ret = tb_domain_approve_switch_key(sw->tb, sw);
1819 else
1820 ret = tb_domain_approve_switch(sw->tb, sw);
1821 break;
1822
1823 /* Challenge switch */
1824 case 2:
1825 if (sw->key)
1826 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1827 break;
1828
1829 default:
1830 break;
1831 }
1832
1833 if (!ret) {
1834 sw->authorized = val;
1835 /*
1836 * Notify status change to the userspace, informing the new
1837 * value of /sys/bus/thunderbolt/devices/.../authorized.
1838 */
1839 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1840 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1841 }
1842
1843 unlock:
1844 mutex_unlock(&sw->tb->lock);
1845 return ret;
1846 }
1847
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1848 static ssize_t authorized_store(struct device *dev,
1849 struct device_attribute *attr,
1850 const char *buf, size_t count)
1851 {
1852 struct tb_switch *sw = tb_to_switch(dev);
1853 unsigned int val;
1854 ssize_t ret;
1855
1856 ret = kstrtouint(buf, 0, &val);
1857 if (ret)
1858 return ret;
1859 if (val > 2)
1860 return -EINVAL;
1861
1862 pm_runtime_get_sync(&sw->dev);
1863 ret = tb_switch_set_authorized(sw, val);
1864 pm_runtime_mark_last_busy(&sw->dev);
1865 pm_runtime_put_autosuspend(&sw->dev);
1866
1867 return ret ? ret : count;
1868 }
1869 static DEVICE_ATTR_RW(authorized);
1870
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1871 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1872 char *buf)
1873 {
1874 struct tb_switch *sw = tb_to_switch(dev);
1875
1876 return sysfs_emit(buf, "%u\n", sw->boot);
1877 }
1878 static DEVICE_ATTR_RO(boot);
1879
device_show(struct device * dev,struct device_attribute * attr,char * buf)1880 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1881 char *buf)
1882 {
1883 struct tb_switch *sw = tb_to_switch(dev);
1884
1885 return sysfs_emit(buf, "%#x\n", sw->device);
1886 }
1887 static DEVICE_ATTR_RO(device);
1888
1889 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1890 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1891 {
1892 struct tb_switch *sw = tb_to_switch(dev);
1893
1894 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1895 }
1896 static DEVICE_ATTR_RO(device_name);
1897
1898 static ssize_t
generation_show(struct device * dev,struct device_attribute * attr,char * buf)1899 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1900 {
1901 struct tb_switch *sw = tb_to_switch(dev);
1902
1903 return sysfs_emit(buf, "%u\n", sw->generation);
1904 }
1905 static DEVICE_ATTR_RO(generation);
1906
key_show(struct device * dev,struct device_attribute * attr,char * buf)1907 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1908 char *buf)
1909 {
1910 struct tb_switch *sw = tb_to_switch(dev);
1911 ssize_t ret;
1912
1913 if (!mutex_trylock(&sw->tb->lock))
1914 return restart_syscall();
1915
1916 if (sw->key)
1917 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1918 else
1919 ret = sysfs_emit(buf, "\n");
1920
1921 mutex_unlock(&sw->tb->lock);
1922 return ret;
1923 }
1924
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1925 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1926 const char *buf, size_t count)
1927 {
1928 struct tb_switch *sw = tb_to_switch(dev);
1929 u8 key[TB_SWITCH_KEY_SIZE];
1930 ssize_t ret = count;
1931 bool clear = false;
1932
1933 if (!strcmp(buf, "\n"))
1934 clear = true;
1935 else if (hex2bin(key, buf, sizeof(key)))
1936 return -EINVAL;
1937
1938 if (!mutex_trylock(&sw->tb->lock))
1939 return restart_syscall();
1940
1941 if (sw->authorized) {
1942 ret = -EBUSY;
1943 } else {
1944 kfree(sw->key);
1945 if (clear) {
1946 sw->key = NULL;
1947 } else {
1948 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1949 if (!sw->key)
1950 ret = -ENOMEM;
1951 }
1952 }
1953
1954 mutex_unlock(&sw->tb->lock);
1955 return ret;
1956 }
1957 static DEVICE_ATTR(key, 0600, key_show, key_store);
1958
speed_show(struct device * dev,struct device_attribute * attr,char * buf)1959 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1960 char *buf)
1961 {
1962 struct tb_switch *sw = tb_to_switch(dev);
1963
1964 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1965 }
1966
1967 /*
1968 * Currently all lanes must run at the same speed but we expose here
1969 * both directions to allow possible asymmetric links in the future.
1970 */
1971 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1972 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1973
rx_lanes_show(struct device * dev,struct device_attribute * attr,char * buf)1974 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1975 char *buf)
1976 {
1977 struct tb_switch *sw = tb_to_switch(dev);
1978 unsigned int width;
1979
1980 switch (sw->link_width) {
1981 case TB_LINK_WIDTH_SINGLE:
1982 case TB_LINK_WIDTH_ASYM_TX:
1983 width = 1;
1984 break;
1985 case TB_LINK_WIDTH_DUAL:
1986 width = 2;
1987 break;
1988 case TB_LINK_WIDTH_ASYM_RX:
1989 width = 3;
1990 break;
1991 default:
1992 WARN_ON_ONCE(1);
1993 return -EINVAL;
1994 }
1995
1996 return sysfs_emit(buf, "%u\n", width);
1997 }
1998 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1999
tx_lanes_show(struct device * dev,struct device_attribute * attr,char * buf)2000 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
2001 char *buf)
2002 {
2003 struct tb_switch *sw = tb_to_switch(dev);
2004 unsigned int width;
2005
2006 switch (sw->link_width) {
2007 case TB_LINK_WIDTH_SINGLE:
2008 case TB_LINK_WIDTH_ASYM_RX:
2009 width = 1;
2010 break;
2011 case TB_LINK_WIDTH_DUAL:
2012 width = 2;
2013 break;
2014 case TB_LINK_WIDTH_ASYM_TX:
2015 width = 3;
2016 break;
2017 default:
2018 WARN_ON_ONCE(1);
2019 return -EINVAL;
2020 }
2021
2022 return sysfs_emit(buf, "%u\n", width);
2023 }
2024 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2025
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)2026 static ssize_t nvm_authenticate_show(struct device *dev,
2027 struct device_attribute *attr, char *buf)
2028 {
2029 struct tb_switch *sw = tb_to_switch(dev);
2030 u32 status;
2031
2032 nvm_get_auth_status(sw, &status);
2033 return sysfs_emit(buf, "%#x\n", status);
2034 }
2035
nvm_authenticate_sysfs(struct device * dev,const char * buf,bool disconnect)2036 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2037 bool disconnect)
2038 {
2039 struct tb_switch *sw = tb_to_switch(dev);
2040 int val, ret;
2041
2042 pm_runtime_get_sync(&sw->dev);
2043
2044 if (!mutex_trylock(&sw->tb->lock)) {
2045 ret = restart_syscall();
2046 goto exit_rpm;
2047 }
2048
2049 if (sw->no_nvm_upgrade) {
2050 ret = -EOPNOTSUPP;
2051 goto exit_unlock;
2052 }
2053
2054 /* If NVMem devices are not yet added */
2055 if (!sw->nvm) {
2056 ret = -EAGAIN;
2057 goto exit_unlock;
2058 }
2059
2060 ret = kstrtoint(buf, 10, &val);
2061 if (ret)
2062 goto exit_unlock;
2063
2064 /* Always clear the authentication status */
2065 nvm_clear_auth_status(sw);
2066
2067 if (val > 0) {
2068 if (val == AUTHENTICATE_ONLY) {
2069 if (disconnect)
2070 ret = -EINVAL;
2071 else
2072 ret = nvm_authenticate(sw, true);
2073 } else {
2074 if (!sw->nvm->flushed) {
2075 if (!sw->nvm->buf) {
2076 ret = -EINVAL;
2077 goto exit_unlock;
2078 }
2079
2080 ret = nvm_validate_and_write(sw);
2081 if (ret || val == WRITE_ONLY)
2082 goto exit_unlock;
2083 }
2084 if (val == WRITE_AND_AUTHENTICATE) {
2085 if (disconnect)
2086 ret = tb_lc_force_power(sw);
2087 else
2088 ret = nvm_authenticate(sw, false);
2089 }
2090 }
2091 }
2092
2093 exit_unlock:
2094 mutex_unlock(&sw->tb->lock);
2095 exit_rpm:
2096 pm_runtime_mark_last_busy(&sw->dev);
2097 pm_runtime_put_autosuspend(&sw->dev);
2098
2099 return ret;
2100 }
2101
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2102 static ssize_t nvm_authenticate_store(struct device *dev,
2103 struct device_attribute *attr, const char *buf, size_t count)
2104 {
2105 int ret = nvm_authenticate_sysfs(dev, buf, false);
2106 if (ret)
2107 return ret;
2108 return count;
2109 }
2110 static DEVICE_ATTR_RW(nvm_authenticate);
2111
nvm_authenticate_on_disconnect_show(struct device * dev,struct device_attribute * attr,char * buf)2112 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2113 struct device_attribute *attr, char *buf)
2114 {
2115 return nvm_authenticate_show(dev, attr, buf);
2116 }
2117
nvm_authenticate_on_disconnect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2118 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2119 struct device_attribute *attr, const char *buf, size_t count)
2120 {
2121 int ret;
2122
2123 ret = nvm_authenticate_sysfs(dev, buf, true);
2124 return ret ? ret : count;
2125 }
2126 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2127
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)2128 static ssize_t nvm_version_show(struct device *dev,
2129 struct device_attribute *attr, char *buf)
2130 {
2131 struct tb_switch *sw = tb_to_switch(dev);
2132 int ret;
2133
2134 if (!mutex_trylock(&sw->tb->lock))
2135 return restart_syscall();
2136
2137 if (sw->safe_mode)
2138 ret = -ENODATA;
2139 else if (!sw->nvm)
2140 ret = -EAGAIN;
2141 else
2142 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2143
2144 mutex_unlock(&sw->tb->lock);
2145
2146 return ret;
2147 }
2148 static DEVICE_ATTR_RO(nvm_version);
2149
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)2150 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2151 char *buf)
2152 {
2153 struct tb_switch *sw = tb_to_switch(dev);
2154
2155 return sysfs_emit(buf, "%#x\n", sw->vendor);
2156 }
2157 static DEVICE_ATTR_RO(vendor);
2158
2159 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)2160 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2161 {
2162 struct tb_switch *sw = tb_to_switch(dev);
2163
2164 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2165 }
2166 static DEVICE_ATTR_RO(vendor_name);
2167
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)2168 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2169 char *buf)
2170 {
2171 struct tb_switch *sw = tb_to_switch(dev);
2172
2173 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2174 }
2175 static DEVICE_ATTR_RO(unique_id);
2176
2177 static struct attribute *switch_attrs[] = {
2178 &dev_attr_authorized.attr,
2179 &dev_attr_boot.attr,
2180 &dev_attr_device.attr,
2181 &dev_attr_device_name.attr,
2182 &dev_attr_generation.attr,
2183 &dev_attr_key.attr,
2184 &dev_attr_nvm_authenticate.attr,
2185 &dev_attr_nvm_authenticate_on_disconnect.attr,
2186 &dev_attr_nvm_version.attr,
2187 &dev_attr_rx_speed.attr,
2188 &dev_attr_rx_lanes.attr,
2189 &dev_attr_tx_speed.attr,
2190 &dev_attr_tx_lanes.attr,
2191 &dev_attr_vendor.attr,
2192 &dev_attr_vendor_name.attr,
2193 &dev_attr_unique_id.attr,
2194 NULL,
2195 };
2196
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)2197 static umode_t switch_attr_is_visible(struct kobject *kobj,
2198 struct attribute *attr, int n)
2199 {
2200 struct device *dev = kobj_to_dev(kobj);
2201 struct tb_switch *sw = tb_to_switch(dev);
2202
2203 if (attr == &dev_attr_authorized.attr) {
2204 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2205 sw->tb->security_level == TB_SECURITY_DPONLY)
2206 return 0;
2207 } else if (attr == &dev_attr_device.attr) {
2208 if (!sw->device)
2209 return 0;
2210 } else if (attr == &dev_attr_device_name.attr) {
2211 if (!sw->device_name)
2212 return 0;
2213 } else if (attr == &dev_attr_vendor.attr) {
2214 if (!sw->vendor)
2215 return 0;
2216 } else if (attr == &dev_attr_vendor_name.attr) {
2217 if (!sw->vendor_name)
2218 return 0;
2219 } else if (attr == &dev_attr_key.attr) {
2220 if (tb_route(sw) &&
2221 sw->tb->security_level == TB_SECURITY_SECURE &&
2222 sw->security_level == TB_SECURITY_SECURE)
2223 return attr->mode;
2224 return 0;
2225 } else if (attr == &dev_attr_rx_speed.attr ||
2226 attr == &dev_attr_rx_lanes.attr ||
2227 attr == &dev_attr_tx_speed.attr ||
2228 attr == &dev_attr_tx_lanes.attr) {
2229 if (tb_route(sw))
2230 return attr->mode;
2231 return 0;
2232 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2233 if (nvm_upgradeable(sw))
2234 return attr->mode;
2235 return 0;
2236 } else if (attr == &dev_attr_nvm_version.attr) {
2237 if (nvm_readable(sw))
2238 return attr->mode;
2239 return 0;
2240 } else if (attr == &dev_attr_boot.attr) {
2241 if (tb_route(sw))
2242 return attr->mode;
2243 return 0;
2244 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2245 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2246 return attr->mode;
2247 return 0;
2248 }
2249
2250 return sw->safe_mode ? 0 : attr->mode;
2251 }
2252
2253 static const struct attribute_group switch_group = {
2254 .is_visible = switch_attr_is_visible,
2255 .attrs = switch_attrs,
2256 };
2257
2258 static const struct attribute_group *switch_groups[] = {
2259 &switch_group,
2260 NULL,
2261 };
2262
tb_switch_release(struct device * dev)2263 static void tb_switch_release(struct device *dev)
2264 {
2265 struct tb_switch *sw = tb_to_switch(dev);
2266 struct tb_port *port;
2267
2268 dma_port_free(sw->dma_port);
2269
2270 tb_switch_for_each_port(sw, port) {
2271 ida_destroy(&port->in_hopids);
2272 ida_destroy(&port->out_hopids);
2273 }
2274
2275 kfree(sw->uuid);
2276 kfree(sw->device_name);
2277 kfree(sw->vendor_name);
2278 kfree(sw->ports);
2279 kfree(sw->drom);
2280 kfree(sw->key);
2281 kfree(sw);
2282 }
2283
tb_switch_uevent(const struct device * dev,struct kobj_uevent_env * env)2284 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2285 {
2286 const struct tb_switch *sw = tb_to_switch(dev);
2287 const char *type;
2288
2289 if (tb_switch_is_usb4(sw)) {
2290 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2291 usb4_switch_version(sw)))
2292 return -ENOMEM;
2293 }
2294
2295 if (!tb_route(sw)) {
2296 type = "host";
2297 } else {
2298 const struct tb_port *port;
2299 bool hub = false;
2300
2301 /* Device is hub if it has any downstream ports */
2302 tb_switch_for_each_port(sw, port) {
2303 if (!port->disabled && !tb_is_upstream_port(port) &&
2304 tb_port_is_null(port)) {
2305 hub = true;
2306 break;
2307 }
2308 }
2309
2310 type = hub ? "hub" : "device";
2311 }
2312
2313 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2314 return -ENOMEM;
2315 return 0;
2316 }
2317
2318 /*
2319 * Currently only need to provide the callbacks. Everything else is handled
2320 * in the connection manager.
2321 */
tb_switch_runtime_suspend(struct device * dev)2322 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2323 {
2324 struct tb_switch *sw = tb_to_switch(dev);
2325 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2326
2327 if (cm_ops->runtime_suspend_switch)
2328 return cm_ops->runtime_suspend_switch(sw);
2329
2330 return 0;
2331 }
2332
tb_switch_runtime_resume(struct device * dev)2333 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2334 {
2335 struct tb_switch *sw = tb_to_switch(dev);
2336 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2337
2338 if (cm_ops->runtime_resume_switch)
2339 return cm_ops->runtime_resume_switch(sw);
2340 return 0;
2341 }
2342
2343 static const struct dev_pm_ops tb_switch_pm_ops = {
2344 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2345 NULL)
2346 };
2347
2348 struct device_type tb_switch_type = {
2349 .name = "thunderbolt_device",
2350 .release = tb_switch_release,
2351 .uevent = tb_switch_uevent,
2352 .pm = &tb_switch_pm_ops,
2353 };
2354
tb_switch_get_generation(struct tb_switch * sw)2355 static int tb_switch_get_generation(struct tb_switch *sw)
2356 {
2357 if (tb_switch_is_usb4(sw))
2358 return 4;
2359
2360 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2361 switch (sw->config.device_id) {
2362 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2363 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2364 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2365 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2366 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2367 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2368 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2369 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2370 return 1;
2371
2372 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2373 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2374 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2375 return 2;
2376
2377 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2378 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2379 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2380 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2381 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2382 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2383 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2384 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2385 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2386 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2387 return 3;
2388 }
2389 }
2390
2391 /*
2392 * For unknown switches assume generation to be 1 to be on the
2393 * safe side.
2394 */
2395 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2396 sw->config.device_id);
2397 return 1;
2398 }
2399
tb_switch_exceeds_max_depth(const struct tb_switch * sw,int depth)2400 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2401 {
2402 int max_depth;
2403
2404 if (tb_switch_is_usb4(sw) ||
2405 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2406 max_depth = USB4_SWITCH_MAX_DEPTH;
2407 else
2408 max_depth = TB_SWITCH_MAX_DEPTH;
2409
2410 return depth > max_depth;
2411 }
2412
2413 /**
2414 * tb_switch_alloc() - allocate a switch
2415 * @tb: Pointer to the owning domain
2416 * @parent: Parent device for this switch
2417 * @route: Route string for this switch
2418 *
2419 * Allocates and initializes a switch. Will not upload configuration to
2420 * the switch. For that you need to call tb_switch_configure()
2421 * separately. The returned switch should be released by calling
2422 * tb_switch_put().
2423 *
2424 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2425 * failure.
2426 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)2427 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2428 u64 route)
2429 {
2430 struct tb_switch *sw;
2431 int upstream_port;
2432 int i, ret, depth;
2433
2434 /* Unlock the downstream port so we can access the switch below */
2435 if (route) {
2436 struct tb_switch *parent_sw = tb_to_switch(parent);
2437 struct tb_port *down;
2438
2439 down = tb_port_at(route, parent_sw);
2440 tb_port_unlock(down);
2441 }
2442
2443 depth = tb_route_length(route);
2444
2445 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2446 if (upstream_port < 0)
2447 return ERR_PTR(upstream_port);
2448
2449 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2450 if (!sw)
2451 return ERR_PTR(-ENOMEM);
2452
2453 sw->tb = tb;
2454 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2455 if (ret)
2456 goto err_free_sw_ports;
2457
2458 sw->generation = tb_switch_get_generation(sw);
2459
2460 tb_dbg(tb, "current switch config:\n");
2461 tb_dump_switch(tb, sw);
2462
2463 /* configure switch */
2464 sw->config.upstream_port_number = upstream_port;
2465 sw->config.depth = depth;
2466 sw->config.route_hi = upper_32_bits(route);
2467 sw->config.route_lo = lower_32_bits(route);
2468 sw->config.enabled = 0;
2469
2470 /* Make sure we do not exceed maximum topology limit */
2471 if (tb_switch_exceeds_max_depth(sw, depth)) {
2472 ret = -EADDRNOTAVAIL;
2473 goto err_free_sw_ports;
2474 }
2475
2476 /* initialize ports */
2477 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2478 GFP_KERNEL);
2479 if (!sw->ports) {
2480 ret = -ENOMEM;
2481 goto err_free_sw_ports;
2482 }
2483
2484 for (i = 0; i <= sw->config.max_port_number; i++) {
2485 /* minimum setup for tb_find_cap and tb_drom_read to work */
2486 sw->ports[i].sw = sw;
2487 sw->ports[i].port = i;
2488
2489 /* Control port does not need HopID allocation */
2490 if (i) {
2491 ida_init(&sw->ports[i].in_hopids);
2492 ida_init(&sw->ports[i].out_hopids);
2493 }
2494 }
2495
2496 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2497 if (ret > 0)
2498 sw->cap_plug_events = ret;
2499
2500 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2501 if (ret > 0)
2502 sw->cap_vsec_tmu = ret;
2503
2504 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2505 if (ret > 0)
2506 sw->cap_lc = ret;
2507
2508 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2509 if (ret > 0)
2510 sw->cap_lp = ret;
2511
2512 /* Root switch is always authorized */
2513 if (!route)
2514 sw->authorized = true;
2515
2516 device_initialize(&sw->dev);
2517 sw->dev.parent = parent;
2518 sw->dev.bus = &tb_bus_type;
2519 sw->dev.type = &tb_switch_type;
2520 sw->dev.groups = switch_groups;
2521 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2522
2523 return sw;
2524
2525 err_free_sw_ports:
2526 kfree(sw->ports);
2527 kfree(sw);
2528
2529 return ERR_PTR(ret);
2530 }
2531
2532 /**
2533 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2534 * @tb: Pointer to the owning domain
2535 * @parent: Parent device for this switch
2536 * @route: Route string for this switch
2537 *
2538 * This creates a switch in safe mode. This means the switch pretty much
2539 * lacks all capabilities except DMA configuration port before it is
2540 * flashed with a valid NVM firmware.
2541 *
2542 * The returned switch must be released by calling tb_switch_put().
2543 *
2544 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2545 */
2546 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)2547 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2548 {
2549 struct tb_switch *sw;
2550
2551 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2552 if (!sw)
2553 return ERR_PTR(-ENOMEM);
2554
2555 sw->tb = tb;
2556 sw->config.depth = tb_route_length(route);
2557 sw->config.route_hi = upper_32_bits(route);
2558 sw->config.route_lo = lower_32_bits(route);
2559 sw->safe_mode = true;
2560
2561 device_initialize(&sw->dev);
2562 sw->dev.parent = parent;
2563 sw->dev.bus = &tb_bus_type;
2564 sw->dev.type = &tb_switch_type;
2565 sw->dev.groups = switch_groups;
2566 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2567
2568 return sw;
2569 }
2570
2571 /**
2572 * tb_switch_configure() - Uploads configuration to the switch
2573 * @sw: Switch to configure
2574 *
2575 * Call this function before the switch is added to the system. It will
2576 * upload configuration to the switch and makes it available for the
2577 * connection manager to use. Can be called to the switch again after
2578 * resume from low power states to re-initialize it.
2579 *
2580 * Return: %0 in case of success and negative errno in case of failure
2581 */
tb_switch_configure(struct tb_switch * sw)2582 int tb_switch_configure(struct tb_switch *sw)
2583 {
2584 struct tb *tb = sw->tb;
2585 u64 route;
2586 int ret;
2587
2588 route = tb_route(sw);
2589
2590 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2591 sw->config.enabled ? "restoring" : "initializing", route,
2592 tb_route_length(route), sw->config.upstream_port_number);
2593
2594 sw->config.enabled = 1;
2595
2596 if (tb_switch_is_usb4(sw)) {
2597 /*
2598 * For USB4 devices, we need to program the CM version
2599 * accordingly so that it knows to expose all the
2600 * additional capabilities. Program it according to USB4
2601 * version to avoid changing existing (v1) routers behaviour.
2602 */
2603 if (usb4_switch_version(sw) < 2)
2604 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2605 else
2606 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2607 sw->config.plug_events_delay = 0xa;
2608
2609 /* Enumerate the switch */
2610 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2611 ROUTER_CS_1, 4);
2612 if (ret)
2613 return ret;
2614
2615 ret = usb4_switch_setup(sw);
2616 } else {
2617 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2618 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2619 sw->config.vendor_id);
2620
2621 if (!sw->cap_plug_events) {
2622 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2623 return -ENODEV;
2624 }
2625
2626 /* Enumerate the switch */
2627 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2628 ROUTER_CS_1, 3);
2629 }
2630 if (ret)
2631 return ret;
2632
2633 return tb_plug_events_active(sw, true);
2634 }
2635
2636 /**
2637 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2638 * @sw: Router to configure
2639 *
2640 * Needs to be called before any tunnels can be setup through the
2641 * router. Can be called to any router.
2642 *
2643 * Returns %0 in success and negative errno otherwise.
2644 */
tb_switch_configuration_valid(struct tb_switch * sw)2645 int tb_switch_configuration_valid(struct tb_switch *sw)
2646 {
2647 if (tb_switch_is_usb4(sw))
2648 return usb4_switch_configuration_valid(sw);
2649 return 0;
2650 }
2651
tb_switch_set_uuid(struct tb_switch * sw)2652 static int tb_switch_set_uuid(struct tb_switch *sw)
2653 {
2654 bool uid = false;
2655 u32 uuid[4];
2656 int ret;
2657
2658 if (sw->uuid)
2659 return 0;
2660
2661 if (tb_switch_is_usb4(sw)) {
2662 ret = usb4_switch_read_uid(sw, &sw->uid);
2663 if (ret)
2664 return ret;
2665 uid = true;
2666 } else {
2667 /*
2668 * The newer controllers include fused UUID as part of
2669 * link controller specific registers
2670 */
2671 ret = tb_lc_read_uuid(sw, uuid);
2672 if (ret) {
2673 if (ret != -EINVAL)
2674 return ret;
2675 uid = true;
2676 }
2677 }
2678
2679 if (uid) {
2680 /*
2681 * ICM generates UUID based on UID and fills the upper
2682 * two words with ones. This is not strictly following
2683 * UUID format but we want to be compatible with it so
2684 * we do the same here.
2685 */
2686 uuid[0] = sw->uid & 0xffffffff;
2687 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2688 uuid[2] = 0xffffffff;
2689 uuid[3] = 0xffffffff;
2690 }
2691
2692 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2693 if (!sw->uuid)
2694 return -ENOMEM;
2695 return 0;
2696 }
2697
tb_switch_add_dma_port(struct tb_switch * sw)2698 static int tb_switch_add_dma_port(struct tb_switch *sw)
2699 {
2700 u32 status;
2701 int ret;
2702
2703 switch (sw->generation) {
2704 case 2:
2705 /* Only root switch can be upgraded */
2706 if (tb_route(sw))
2707 return 0;
2708
2709 fallthrough;
2710 case 3:
2711 case 4:
2712 ret = tb_switch_set_uuid(sw);
2713 if (ret)
2714 return ret;
2715 break;
2716
2717 default:
2718 /*
2719 * DMA port is the only thing available when the switch
2720 * is in safe mode.
2721 */
2722 if (!sw->safe_mode)
2723 return 0;
2724 break;
2725 }
2726
2727 if (sw->no_nvm_upgrade)
2728 return 0;
2729
2730 if (tb_switch_is_usb4(sw)) {
2731 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2732 if (ret)
2733 return ret;
2734
2735 if (status) {
2736 tb_sw_info(sw, "switch flash authentication failed\n");
2737 nvm_set_auth_status(sw, status);
2738 }
2739
2740 return 0;
2741 }
2742
2743 /* Root switch DMA port requires running firmware */
2744 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2745 return 0;
2746
2747 sw->dma_port = dma_port_alloc(sw);
2748 if (!sw->dma_port)
2749 return 0;
2750
2751 /*
2752 * If there is status already set then authentication failed
2753 * when the dma_port_flash_update_auth() returned. Power cycling
2754 * is not needed (it was done already) so only thing we do here
2755 * is to unblock runtime PM of the root port.
2756 */
2757 nvm_get_auth_status(sw, &status);
2758 if (status) {
2759 if (!tb_route(sw))
2760 nvm_authenticate_complete_dma_port(sw);
2761 return 0;
2762 }
2763
2764 /*
2765 * Check status of the previous flash authentication. If there
2766 * is one we need to power cycle the switch in any case to make
2767 * it functional again.
2768 */
2769 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2770 if (ret <= 0)
2771 return ret;
2772
2773 /* Now we can allow root port to suspend again */
2774 if (!tb_route(sw))
2775 nvm_authenticate_complete_dma_port(sw);
2776
2777 if (status) {
2778 tb_sw_info(sw, "switch flash authentication failed\n");
2779 nvm_set_auth_status(sw, status);
2780 }
2781
2782 tb_sw_info(sw, "power cycling the switch now\n");
2783 dma_port_power_cycle(sw->dma_port);
2784
2785 /*
2786 * We return error here which causes the switch adding failure.
2787 * It should appear back after power cycle is complete.
2788 */
2789 return -ESHUTDOWN;
2790 }
2791
tb_switch_default_link_ports(struct tb_switch * sw)2792 static void tb_switch_default_link_ports(struct tb_switch *sw)
2793 {
2794 int i;
2795
2796 for (i = 1; i <= sw->config.max_port_number; i++) {
2797 struct tb_port *port = &sw->ports[i];
2798 struct tb_port *subordinate;
2799
2800 if (!tb_port_is_null(port))
2801 continue;
2802
2803 /* Check for the subordinate port */
2804 if (i == sw->config.max_port_number ||
2805 !tb_port_is_null(&sw->ports[i + 1]))
2806 continue;
2807
2808 /* Link them if not already done so (by DROM) */
2809 subordinate = &sw->ports[i + 1];
2810 if (!port->dual_link_port && !subordinate->dual_link_port) {
2811 port->link_nr = 0;
2812 port->dual_link_port = subordinate;
2813 subordinate->link_nr = 1;
2814 subordinate->dual_link_port = port;
2815
2816 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2817 port->port, subordinate->port);
2818 }
2819 }
2820 }
2821
tb_switch_lane_bonding_possible(struct tb_switch * sw)2822 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2823 {
2824 const struct tb_port *up = tb_upstream_port(sw);
2825
2826 if (!up->dual_link_port || !up->dual_link_port->remote)
2827 return false;
2828
2829 if (tb_switch_is_usb4(sw))
2830 return usb4_switch_lane_bonding_possible(sw);
2831 return tb_lc_lane_bonding_possible(sw);
2832 }
2833
tb_switch_update_link_attributes(struct tb_switch * sw)2834 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2835 {
2836 struct tb_port *up;
2837 bool change = false;
2838 int ret;
2839
2840 if (!tb_route(sw) || tb_switch_is_icm(sw))
2841 return 0;
2842
2843 up = tb_upstream_port(sw);
2844
2845 ret = tb_port_get_link_speed(up);
2846 if (ret < 0)
2847 return ret;
2848 if (sw->link_speed != ret)
2849 change = true;
2850 sw->link_speed = ret;
2851
2852 ret = tb_port_get_link_width(up);
2853 if (ret < 0)
2854 return ret;
2855 if (sw->link_width != ret)
2856 change = true;
2857 sw->link_width = ret;
2858
2859 /* Notify userspace that there is possible link attribute change */
2860 if (device_is_registered(&sw->dev) && change)
2861 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2862
2863 return 0;
2864 }
2865
2866 /* Must be called after tb_switch_update_link_attributes() */
tb_switch_link_init(struct tb_switch * sw)2867 static void tb_switch_link_init(struct tb_switch *sw)
2868 {
2869 struct tb_port *up, *down;
2870 bool bonded;
2871
2872 if (!tb_route(sw) || tb_switch_is_icm(sw))
2873 return;
2874
2875 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2876 tb_sw_dbg(sw, "current link width %s\n", width_name(sw->link_width));
2877
2878 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2879
2880 /*
2881 * Gen 4 links come up as bonded so update the port structures
2882 * accordingly.
2883 */
2884 up = tb_upstream_port(sw);
2885 down = tb_switch_downstream_port(sw);
2886
2887 up->bonded = bonded;
2888 if (up->dual_link_port)
2889 up->dual_link_port->bonded = bonded;
2890 tb_port_update_credits(up);
2891
2892 down->bonded = bonded;
2893 if (down->dual_link_port)
2894 down->dual_link_port->bonded = bonded;
2895 tb_port_update_credits(down);
2896 }
2897
2898 /**
2899 * tb_switch_lane_bonding_enable() - Enable lane bonding
2900 * @sw: Switch to enable lane bonding
2901 *
2902 * Connection manager can call this function to enable lane bonding of a
2903 * switch. If conditions are correct and both switches support the feature,
2904 * lanes are bonded. It is safe to call this to any switch.
2905 */
tb_switch_lane_bonding_enable(struct tb_switch * sw)2906 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2907 {
2908 struct tb_port *up, *down;
2909 unsigned int width;
2910 int ret;
2911
2912 if (!tb_switch_lane_bonding_possible(sw))
2913 return 0;
2914
2915 up = tb_upstream_port(sw);
2916 down = tb_switch_downstream_port(sw);
2917
2918 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2919 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2920 return 0;
2921
2922 /*
2923 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2924 * CL0 and check just for lane 1.
2925 */
2926 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2927 return -ENOTCONN;
2928
2929 ret = tb_port_lane_bonding_enable(up);
2930 if (ret) {
2931 tb_port_warn(up, "failed to enable lane bonding\n");
2932 return ret;
2933 }
2934
2935 ret = tb_port_lane_bonding_enable(down);
2936 if (ret) {
2937 tb_port_warn(down, "failed to enable lane bonding\n");
2938 tb_port_lane_bonding_disable(up);
2939 return ret;
2940 }
2941
2942 /* Any of the widths are all bonded */
2943 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2944 TB_LINK_WIDTH_ASYM_RX;
2945
2946 return tb_port_wait_for_link_width(down, width, 100);
2947 }
2948
2949 /**
2950 * tb_switch_lane_bonding_disable() - Disable lane bonding
2951 * @sw: Switch whose lane bonding to disable
2952 *
2953 * Disables lane bonding between @sw and parent. This can be called even
2954 * if lanes were not bonded originally.
2955 */
tb_switch_lane_bonding_disable(struct tb_switch * sw)2956 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2957 {
2958 struct tb_port *up, *down;
2959 int ret;
2960
2961 up = tb_upstream_port(sw);
2962 if (!up->bonded)
2963 return 0;
2964
2965 /*
2966 * If the link is Gen 4 there is no way to switch the link to
2967 * two single lane links so avoid that here. Also don't bother
2968 * if the link is not up anymore (sw is unplugged).
2969 */
2970 ret = tb_port_get_link_generation(up);
2971 if (ret < 0)
2972 return ret;
2973 if (ret >= 4)
2974 return -EOPNOTSUPP;
2975
2976 down = tb_switch_downstream_port(sw);
2977 tb_port_lane_bonding_disable(up);
2978 tb_port_lane_bonding_disable(down);
2979
2980 /*
2981 * It is fine if we get other errors as the router might have
2982 * been unplugged.
2983 */
2984 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2985 }
2986
2987 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
tb_switch_asym_enable(struct tb_switch * sw,enum tb_link_width width)2988 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2989 {
2990 struct tb_port *up, *down, *port;
2991 enum tb_link_width down_width;
2992 int ret;
2993
2994 up = tb_upstream_port(sw);
2995 down = tb_switch_downstream_port(sw);
2996
2997 if (width == TB_LINK_WIDTH_ASYM_TX) {
2998 down_width = TB_LINK_WIDTH_ASYM_RX;
2999 port = down;
3000 } else {
3001 down_width = TB_LINK_WIDTH_ASYM_TX;
3002 port = up;
3003 }
3004
3005 ret = tb_port_set_link_width(up, width);
3006 if (ret)
3007 return ret;
3008
3009 ret = tb_port_set_link_width(down, down_width);
3010 if (ret)
3011 return ret;
3012
3013 /*
3014 * Initiate the change in the router that one of its TX lanes is
3015 * changing to RX but do so only if there is an actual change.
3016 */
3017 if (sw->link_width != width) {
3018 ret = usb4_port_asym_start(port);
3019 if (ret)
3020 return ret;
3021
3022 ret = tb_port_wait_for_link_width(up, width, 100);
3023 if (ret)
3024 return ret;
3025 }
3026
3027 return 0;
3028 }
3029
3030 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
tb_switch_asym_disable(struct tb_switch * sw)3031 static int tb_switch_asym_disable(struct tb_switch *sw)
3032 {
3033 struct tb_port *up, *down;
3034 int ret;
3035
3036 up = tb_upstream_port(sw);
3037 down = tb_switch_downstream_port(sw);
3038
3039 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3040 if (ret)
3041 return ret;
3042
3043 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3044 if (ret)
3045 return ret;
3046
3047 /*
3048 * Initiate the change in the router that has three TX lanes and
3049 * is changing one of its TX lanes to RX but only if there is a
3050 * change in the link width.
3051 */
3052 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3053 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3054 ret = usb4_port_asym_start(up);
3055 else
3056 ret = usb4_port_asym_start(down);
3057 if (ret)
3058 return ret;
3059
3060 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3061 if (ret)
3062 return ret;
3063 }
3064
3065 return 0;
3066 }
3067
3068 /**
3069 * tb_switch_set_link_width() - Configure router link width
3070 * @sw: Router to configure
3071 * @width: The new link width
3072 *
3073 * Set device router link width to @width from router upstream port
3074 * perspective. Supports also asymmetric links if the routers boths side
3075 * of the link supports it.
3076 *
3077 * Does nothing for host router.
3078 *
3079 * Returns %0 in case of success, negative errno otherwise.
3080 */
tb_switch_set_link_width(struct tb_switch * sw,enum tb_link_width width)3081 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3082 {
3083 struct tb_port *up, *down;
3084 int ret = 0;
3085
3086 if (!tb_route(sw))
3087 return 0;
3088
3089 up = tb_upstream_port(sw);
3090 down = tb_switch_downstream_port(sw);
3091
3092 switch (width) {
3093 case TB_LINK_WIDTH_SINGLE:
3094 ret = tb_switch_lane_bonding_disable(sw);
3095 break;
3096
3097 case TB_LINK_WIDTH_DUAL:
3098 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3099 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3100 ret = tb_switch_asym_disable(sw);
3101 if (ret)
3102 break;
3103 }
3104 ret = tb_switch_lane_bonding_enable(sw);
3105 break;
3106
3107 case TB_LINK_WIDTH_ASYM_TX:
3108 case TB_LINK_WIDTH_ASYM_RX:
3109 ret = tb_switch_asym_enable(sw, width);
3110 break;
3111 }
3112
3113 switch (ret) {
3114 case 0:
3115 break;
3116
3117 case -ETIMEDOUT:
3118 tb_sw_warn(sw, "timeout changing link width\n");
3119 return ret;
3120
3121 case -ENOTCONN:
3122 case -EOPNOTSUPP:
3123 case -ENODEV:
3124 return ret;
3125
3126 default:
3127 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3128 return ret;
3129 }
3130
3131 tb_port_update_credits(down);
3132 tb_port_update_credits(up);
3133
3134 tb_switch_update_link_attributes(sw);
3135
3136 tb_sw_dbg(sw, "link width set to %s\n", width_name(width));
3137 return ret;
3138 }
3139
3140 /**
3141 * tb_switch_configure_link() - Set link configured
3142 * @sw: Switch whose link is configured
3143 *
3144 * Sets the link upstream from @sw configured (from both ends) so that
3145 * it will not be disconnected when the domain exits sleep. Can be
3146 * called for any switch.
3147 *
3148 * It is recommended that this is called after lane bonding is enabled.
3149 *
3150 * Returns %0 on success and negative errno in case of error.
3151 */
tb_switch_configure_link(struct tb_switch * sw)3152 int tb_switch_configure_link(struct tb_switch *sw)
3153 {
3154 struct tb_port *up, *down;
3155 int ret;
3156
3157 if (!tb_route(sw) || tb_switch_is_icm(sw))
3158 return 0;
3159
3160 up = tb_upstream_port(sw);
3161 if (tb_switch_is_usb4(up->sw))
3162 ret = usb4_port_configure(up);
3163 else
3164 ret = tb_lc_configure_port(up);
3165 if (ret)
3166 return ret;
3167
3168 down = up->remote;
3169 if (tb_switch_is_usb4(down->sw))
3170 return usb4_port_configure(down);
3171 return tb_lc_configure_port(down);
3172 }
3173
3174 /**
3175 * tb_switch_unconfigure_link() - Unconfigure link
3176 * @sw: Switch whose link is unconfigured
3177 *
3178 * Sets the link unconfigured so the @sw will be disconnected if the
3179 * domain exists sleep.
3180 */
tb_switch_unconfigure_link(struct tb_switch * sw)3181 void tb_switch_unconfigure_link(struct tb_switch *sw)
3182 {
3183 struct tb_port *up, *down;
3184
3185 if (!tb_route(sw) || tb_switch_is_icm(sw))
3186 return;
3187
3188 /*
3189 * Unconfigure downstream port so that wake-on-connect can be
3190 * configured after router unplug. No need to unconfigure upstream port
3191 * since its router is unplugged.
3192 */
3193 up = tb_upstream_port(sw);
3194 down = up->remote;
3195 if (tb_switch_is_usb4(down->sw))
3196 usb4_port_unconfigure(down);
3197 else
3198 tb_lc_unconfigure_port(down);
3199
3200 if (sw->is_unplugged)
3201 return;
3202
3203 up = tb_upstream_port(sw);
3204 if (tb_switch_is_usb4(up->sw))
3205 usb4_port_unconfigure(up);
3206 else
3207 tb_lc_unconfigure_port(up);
3208 }
3209
tb_switch_credits_init(struct tb_switch * sw)3210 static void tb_switch_credits_init(struct tb_switch *sw)
3211 {
3212 if (tb_switch_is_icm(sw))
3213 return;
3214 if (!tb_switch_is_usb4(sw))
3215 return;
3216 if (usb4_switch_credits_init(sw))
3217 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3218 }
3219
tb_switch_port_hotplug_enable(struct tb_switch * sw)3220 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3221 {
3222 struct tb_port *port;
3223
3224 if (tb_switch_is_icm(sw))
3225 return 0;
3226
3227 tb_switch_for_each_port(sw, port) {
3228 int res;
3229
3230 if (!port->cap_usb4)
3231 continue;
3232
3233 res = usb4_port_hotplug_enable(port);
3234 if (res)
3235 return res;
3236 }
3237 return 0;
3238 }
3239
3240 /**
3241 * tb_switch_add() - Add a switch to the domain
3242 * @sw: Switch to add
3243 *
3244 * This is the last step in adding switch to the domain. It will read
3245 * identification information from DROM and initializes ports so that
3246 * they can be used to connect other switches. The switch will be
3247 * exposed to the userspace when this function successfully returns. To
3248 * remove and release the switch, call tb_switch_remove().
3249 *
3250 * Return: %0 in case of success and negative errno in case of failure
3251 */
tb_switch_add(struct tb_switch * sw)3252 int tb_switch_add(struct tb_switch *sw)
3253 {
3254 int i, ret;
3255
3256 /*
3257 * Initialize DMA control port now before we read DROM. Recent
3258 * host controllers have more complete DROM on NVM that includes
3259 * vendor and model identification strings which we then expose
3260 * to the userspace. NVM can be accessed through DMA
3261 * configuration based mailbox.
3262 */
3263 ret = tb_switch_add_dma_port(sw);
3264 if (ret) {
3265 dev_err(&sw->dev, "failed to add DMA port\n");
3266 return ret;
3267 }
3268
3269 if (!sw->safe_mode) {
3270 tb_switch_credits_init(sw);
3271
3272 /* read drom */
3273 ret = tb_drom_read(sw);
3274 if (ret)
3275 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3276 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3277
3278 ret = tb_switch_set_uuid(sw);
3279 if (ret) {
3280 dev_err(&sw->dev, "failed to set UUID\n");
3281 return ret;
3282 }
3283
3284 for (i = 0; i <= sw->config.max_port_number; i++) {
3285 if (sw->ports[i].disabled) {
3286 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3287 continue;
3288 }
3289 ret = tb_init_port(&sw->ports[i]);
3290 if (ret) {
3291 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3292 return ret;
3293 }
3294 }
3295
3296 tb_check_quirks(sw);
3297
3298 tb_switch_default_link_ports(sw);
3299
3300 ret = tb_switch_update_link_attributes(sw);
3301 if (ret)
3302 return ret;
3303
3304 tb_switch_link_init(sw);
3305
3306 ret = tb_switch_clx_init(sw);
3307 if (ret)
3308 return ret;
3309
3310 ret = tb_switch_tmu_init(sw);
3311 if (ret)
3312 return ret;
3313 }
3314
3315 ret = tb_switch_port_hotplug_enable(sw);
3316 if (ret)
3317 return ret;
3318
3319 ret = device_add(&sw->dev);
3320 if (ret) {
3321 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3322 return ret;
3323 }
3324
3325 if (tb_route(sw)) {
3326 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3327 sw->vendor, sw->device);
3328 if (sw->vendor_name && sw->device_name)
3329 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3330 sw->device_name);
3331 }
3332
3333 ret = usb4_switch_add_ports(sw);
3334 if (ret) {
3335 dev_err(&sw->dev, "failed to add USB4 ports\n");
3336 goto err_del;
3337 }
3338
3339 ret = tb_switch_nvm_add(sw);
3340 if (ret) {
3341 dev_err(&sw->dev, "failed to add NVM devices\n");
3342 goto err_ports;
3343 }
3344
3345 /*
3346 * Thunderbolt routers do not generate wakeups themselves but
3347 * they forward wakeups from tunneled protocols, so enable it
3348 * here.
3349 */
3350 device_init_wakeup(&sw->dev, true);
3351
3352 pm_runtime_set_active(&sw->dev);
3353 if (sw->rpm) {
3354 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3355 pm_runtime_use_autosuspend(&sw->dev);
3356 pm_runtime_mark_last_busy(&sw->dev);
3357 pm_runtime_enable(&sw->dev);
3358 pm_request_autosuspend(&sw->dev);
3359 }
3360
3361 tb_switch_debugfs_init(sw);
3362 return 0;
3363
3364 err_ports:
3365 usb4_switch_remove_ports(sw);
3366 err_del:
3367 device_del(&sw->dev);
3368
3369 return ret;
3370 }
3371
3372 /**
3373 * tb_switch_remove() - Remove and release a switch
3374 * @sw: Switch to remove
3375 *
3376 * This will remove the switch from the domain and release it after last
3377 * reference count drops to zero. If there are switches connected below
3378 * this switch, they will be removed as well.
3379 */
tb_switch_remove(struct tb_switch * sw)3380 void tb_switch_remove(struct tb_switch *sw)
3381 {
3382 struct tb_port *port;
3383
3384 tb_switch_debugfs_remove(sw);
3385
3386 if (sw->rpm) {
3387 pm_runtime_get_sync(&sw->dev);
3388 pm_runtime_disable(&sw->dev);
3389 }
3390
3391 /* port 0 is the switch itself and never has a remote */
3392 tb_switch_for_each_port(sw, port) {
3393 if (tb_port_has_remote(port)) {
3394 tb_switch_remove(port->remote->sw);
3395 port->remote = NULL;
3396 } else if (port->xdomain) {
3397 port->xdomain->is_unplugged = true;
3398 tb_xdomain_remove(port->xdomain);
3399 port->xdomain = NULL;
3400 }
3401
3402 /* Remove any downstream retimers */
3403 tb_retimer_remove_all(port);
3404 }
3405
3406 if (!sw->is_unplugged)
3407 tb_plug_events_active(sw, false);
3408
3409 tb_switch_nvm_remove(sw);
3410 usb4_switch_remove_ports(sw);
3411
3412 if (tb_route(sw))
3413 dev_info(&sw->dev, "device disconnected\n");
3414 device_unregister(&sw->dev);
3415 }
3416
3417 /**
3418 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3419 * @sw: Router to mark unplugged
3420 */
tb_sw_set_unplugged(struct tb_switch * sw)3421 void tb_sw_set_unplugged(struct tb_switch *sw)
3422 {
3423 struct tb_port *port;
3424
3425 if (sw == sw->tb->root_switch) {
3426 tb_sw_WARN(sw, "cannot unplug root switch\n");
3427 return;
3428 }
3429 if (sw->is_unplugged) {
3430 tb_sw_WARN(sw, "is_unplugged already set\n");
3431 return;
3432 }
3433 sw->is_unplugged = true;
3434 tb_switch_for_each_port(sw, port) {
3435 if (tb_port_has_remote(port))
3436 tb_sw_set_unplugged(port->remote->sw);
3437 else if (port->xdomain)
3438 port->xdomain->is_unplugged = true;
3439 }
3440 }
3441
tb_switch_set_wake(struct tb_switch * sw,unsigned int flags)3442 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3443 {
3444 if (flags)
3445 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3446 else
3447 tb_sw_dbg(sw, "disabling wakeup\n");
3448
3449 if (tb_switch_is_usb4(sw))
3450 return usb4_switch_set_wake(sw, flags);
3451 return tb_lc_set_wake(sw, flags);
3452 }
3453
tb_switch_check_wakes(struct tb_switch * sw)3454 static void tb_switch_check_wakes(struct tb_switch *sw)
3455 {
3456 if (device_may_wakeup(&sw->dev)) {
3457 if (tb_switch_is_usb4(sw))
3458 usb4_switch_check_wakes(sw);
3459 }
3460 }
3461
3462 /**
3463 * tb_switch_resume() - Resume a switch after sleep
3464 * @sw: Switch to resume
3465 * @runtime: Is this resume from runtime suspend or system sleep
3466 *
3467 * Resumes and re-enumerates router (and all its children), if still plugged
3468 * after suspend. Don't enumerate device router whose UID was changed during
3469 * suspend. If this is resume from system sleep, notifies PM core about the
3470 * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3471 * upstream port for USB4 routers that shall be always enabled.
3472 */
tb_switch_resume(struct tb_switch * sw,bool runtime)3473 int tb_switch_resume(struct tb_switch *sw, bool runtime)
3474 {
3475 struct tb_port *port;
3476 int err;
3477
3478 tb_sw_dbg(sw, "resuming switch\n");
3479
3480 /*
3481 * Check for UID of the connected switches except for root
3482 * switch which we assume cannot be removed.
3483 */
3484 if (tb_route(sw)) {
3485 u64 uid;
3486
3487 /*
3488 * Check first that we can still read the switch config
3489 * space. It may be that there is now another domain
3490 * connected.
3491 */
3492 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3493 if (err < 0) {
3494 tb_sw_info(sw, "switch not present anymore\n");
3495 return err;
3496 }
3497
3498 /* We don't have any way to confirm this was the same device */
3499 if (!sw->uid)
3500 return -ENODEV;
3501
3502 if (tb_switch_is_usb4(sw))
3503 err = usb4_switch_read_uid(sw, &uid);
3504 else
3505 err = tb_drom_read_uid_only(sw, &uid);
3506 if (err) {
3507 tb_sw_warn(sw, "uid read failed\n");
3508 return err;
3509 }
3510 if (sw->uid != uid) {
3511 tb_sw_info(sw,
3512 "changed while suspended (uid %#llx -> %#llx)\n",
3513 sw->uid, uid);
3514 return -ENODEV;
3515 }
3516 }
3517
3518 err = tb_switch_configure(sw);
3519 if (err)
3520 return err;
3521
3522 if (!runtime)
3523 tb_switch_check_wakes(sw);
3524
3525 /* Disable wakes */
3526 tb_switch_set_wake(sw, 0);
3527
3528 err = tb_switch_tmu_init(sw);
3529 if (err)
3530 return err;
3531
3532 /* check for surviving downstream switches */
3533 tb_switch_for_each_port(sw, port) {
3534 if (!tb_port_is_null(port))
3535 continue;
3536
3537 if (!tb_port_resume(port))
3538 continue;
3539
3540 if (tb_wait_for_port(port, true) <= 0) {
3541 tb_port_warn(port,
3542 "lost during suspend, disconnecting\n");
3543 if (tb_port_has_remote(port))
3544 tb_sw_set_unplugged(port->remote->sw);
3545 else if (port->xdomain)
3546 port->xdomain->is_unplugged = true;
3547 } else {
3548 /*
3549 * Always unlock the port so the downstream
3550 * switch/domain is accessible.
3551 */
3552 if (tb_port_unlock(port))
3553 tb_port_warn(port, "failed to unlock port\n");
3554 if (port->remote &&
3555 tb_switch_resume(port->remote->sw, runtime)) {
3556 tb_port_warn(port,
3557 "lost during suspend, disconnecting\n");
3558 tb_sw_set_unplugged(port->remote->sw);
3559 }
3560 }
3561 }
3562 return 0;
3563 }
3564
3565 /**
3566 * tb_switch_suspend() - Put a switch to sleep
3567 * @sw: Switch to suspend
3568 * @runtime: Is this runtime suspend or system sleep
3569 *
3570 * Suspends router and all its children. Enables wakes according to
3571 * value of @runtime and then sets sleep bit for the router. If @sw is
3572 * host router the domain is ready to go to sleep once this function
3573 * returns.
3574 */
tb_switch_suspend(struct tb_switch * sw,bool runtime)3575 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3576 {
3577 unsigned int flags = 0;
3578 struct tb_port *port;
3579 int err;
3580
3581 tb_sw_dbg(sw, "suspending switch\n");
3582
3583 /*
3584 * Actually only needed for Titan Ridge but for simplicity can be
3585 * done for USB4 device too as CLx is re-enabled at resume.
3586 */
3587 tb_switch_clx_disable(sw);
3588
3589 err = tb_plug_events_active(sw, false);
3590 if (err)
3591 return;
3592
3593 tb_switch_for_each_port(sw, port) {
3594 if (tb_port_has_remote(port))
3595 tb_switch_suspend(port->remote->sw, runtime);
3596 }
3597
3598 if (runtime) {
3599 /* Trigger wake when something is plugged in/out */
3600 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3601 flags |= TB_WAKE_ON_USB4;
3602 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3603 } else if (device_may_wakeup(&sw->dev)) {
3604 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3605 }
3606
3607 tb_switch_set_wake(sw, flags);
3608
3609 if (tb_switch_is_usb4(sw))
3610 usb4_switch_set_sleep(sw);
3611 else
3612 tb_lc_set_sleep(sw);
3613 }
3614
3615 /**
3616 * tb_switch_query_dp_resource() - Query availability of DP resource
3617 * @sw: Switch whose DP resource is queried
3618 * @in: DP IN port
3619 *
3620 * Queries availability of DP resource for DP tunneling using switch
3621 * specific means. Returns %true if resource is available.
3622 */
tb_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)3623 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3624 {
3625 if (tb_switch_is_usb4(sw))
3626 return usb4_switch_query_dp_resource(sw, in);
3627 return tb_lc_dp_sink_query(sw, in);
3628 }
3629
3630 /**
3631 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3632 * @sw: Switch whose DP resource is allocated
3633 * @in: DP IN port
3634 *
3635 * Allocates DP resource for DP tunneling. The resource must be
3636 * available for this to succeed (see tb_switch_query_dp_resource()).
3637 * Returns %0 in success and negative errno otherwise.
3638 */
tb_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3639 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3640 {
3641 int ret;
3642
3643 if (tb_switch_is_usb4(sw))
3644 ret = usb4_switch_alloc_dp_resource(sw, in);
3645 else
3646 ret = tb_lc_dp_sink_alloc(sw, in);
3647
3648 if (ret)
3649 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3650 in->port);
3651 else
3652 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3653
3654 return ret;
3655 }
3656
3657 /**
3658 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3659 * @sw: Switch whose DP resource is de-allocated
3660 * @in: DP IN port
3661 *
3662 * De-allocates DP resource that was previously allocated for DP
3663 * tunneling.
3664 */
tb_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3665 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3666 {
3667 int ret;
3668
3669 if (tb_switch_is_usb4(sw))
3670 ret = usb4_switch_dealloc_dp_resource(sw, in);
3671 else
3672 ret = tb_lc_dp_sink_dealloc(sw, in);
3673
3674 if (ret)
3675 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3676 in->port);
3677 else
3678 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3679 }
3680
3681 struct tb_sw_lookup {
3682 struct tb *tb;
3683 u8 link;
3684 u8 depth;
3685 const uuid_t *uuid;
3686 u64 route;
3687 };
3688
tb_switch_match(struct device * dev,const void * data)3689 static int tb_switch_match(struct device *dev, const void *data)
3690 {
3691 struct tb_switch *sw = tb_to_switch(dev);
3692 const struct tb_sw_lookup *lookup = data;
3693
3694 if (!sw)
3695 return 0;
3696 if (sw->tb != lookup->tb)
3697 return 0;
3698
3699 if (lookup->uuid)
3700 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3701
3702 if (lookup->route) {
3703 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3704 sw->config.route_hi == upper_32_bits(lookup->route);
3705 }
3706
3707 /* Root switch is matched only by depth */
3708 if (!lookup->depth)
3709 return !sw->depth;
3710
3711 return sw->link == lookup->link && sw->depth == lookup->depth;
3712 }
3713
3714 /**
3715 * tb_switch_find_by_link_depth() - Find switch by link and depth
3716 * @tb: Domain the switch belongs
3717 * @link: Link number the switch is connected
3718 * @depth: Depth of the switch in link
3719 *
3720 * Returned switch has reference count increased so the caller needs to
3721 * call tb_switch_put() when done with the switch.
3722 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)3723 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3724 {
3725 struct tb_sw_lookup lookup;
3726 struct device *dev;
3727
3728 memset(&lookup, 0, sizeof(lookup));
3729 lookup.tb = tb;
3730 lookup.link = link;
3731 lookup.depth = depth;
3732
3733 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3734 if (dev)
3735 return tb_to_switch(dev);
3736
3737 return NULL;
3738 }
3739
3740 /**
3741 * tb_switch_find_by_uuid() - Find switch by UUID
3742 * @tb: Domain the switch belongs
3743 * @uuid: UUID to look for
3744 *
3745 * Returned switch has reference count increased so the caller needs to
3746 * call tb_switch_put() when done with the switch.
3747 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)3748 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3749 {
3750 struct tb_sw_lookup lookup;
3751 struct device *dev;
3752
3753 memset(&lookup, 0, sizeof(lookup));
3754 lookup.tb = tb;
3755 lookup.uuid = uuid;
3756
3757 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3758 if (dev)
3759 return tb_to_switch(dev);
3760
3761 return NULL;
3762 }
3763
3764 /**
3765 * tb_switch_find_by_route() - Find switch by route string
3766 * @tb: Domain the switch belongs
3767 * @route: Route string to look for
3768 *
3769 * Returned switch has reference count increased so the caller needs to
3770 * call tb_switch_put() when done with the switch.
3771 */
tb_switch_find_by_route(struct tb * tb,u64 route)3772 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3773 {
3774 struct tb_sw_lookup lookup;
3775 struct device *dev;
3776
3777 if (!route)
3778 return tb_switch_get(tb->root_switch);
3779
3780 memset(&lookup, 0, sizeof(lookup));
3781 lookup.tb = tb;
3782 lookup.route = route;
3783
3784 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3785 if (dev)
3786 return tb_to_switch(dev);
3787
3788 return NULL;
3789 }
3790
3791 /**
3792 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3793 * @sw: Switch to find the port from
3794 * @type: Port type to look for
3795 */
tb_switch_find_port(struct tb_switch * sw,enum tb_port_type type)3796 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3797 enum tb_port_type type)
3798 {
3799 struct tb_port *port;
3800
3801 tb_switch_for_each_port(sw, port) {
3802 if (port->config.type == type)
3803 return port;
3804 }
3805
3806 return NULL;
3807 }
3808
3809 /*
3810 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3811 * device. For now used only for Titan Ridge.
3812 */
tb_switch_pcie_bridge_write(struct tb_switch * sw,unsigned int bridge,unsigned int pcie_offset,u32 value)3813 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3814 unsigned int pcie_offset, u32 value)
3815 {
3816 u32 offset, command, val;
3817 int ret;
3818
3819 if (sw->generation != 3)
3820 return -EOPNOTSUPP;
3821
3822 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3823 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3824 if (ret)
3825 return ret;
3826
3827 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3828 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3829 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3830 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3831 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3832 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3833
3834 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3835
3836 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3837 if (ret)
3838 return ret;
3839
3840 ret = tb_switch_wait_for_bit(sw, offset,
3841 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3842 if (ret)
3843 return ret;
3844
3845 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3846 if (ret)
3847 return ret;
3848
3849 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3850 return -ETIMEDOUT;
3851
3852 return 0;
3853 }
3854
3855 /**
3856 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3857 * @sw: Router to enable PCIe L1
3858 *
3859 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3860 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3861 * was configured. Due to Intel platforms limitation, shall be called only
3862 * for first hop switch.
3863 */
tb_switch_pcie_l1_enable(struct tb_switch * sw)3864 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3865 {
3866 struct tb_switch *parent = tb_switch_parent(sw);
3867 int ret;
3868
3869 if (!tb_route(sw))
3870 return 0;
3871
3872 if (!tb_switch_is_titan_ridge(sw))
3873 return 0;
3874
3875 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3876 if (tb_route(parent))
3877 return 0;
3878
3879 /* Write to downstream PCIe bridge #5 aka Dn4 */
3880 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3881 if (ret)
3882 return ret;
3883
3884 /* Write to Upstream PCIe bridge #0 aka Up0 */
3885 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3886 }
3887
3888 /**
3889 * tb_switch_xhci_connect() - Connect internal xHCI
3890 * @sw: Router whose xHCI to connect
3891 *
3892 * Can be called to any router. For Alpine Ridge and Titan Ridge
3893 * performs special flows that bring the xHCI functional for any device
3894 * connected to the type-C port. Call only after PCIe tunnel has been
3895 * established. The function only does the connect if not done already
3896 * so can be called several times for the same router.
3897 */
tb_switch_xhci_connect(struct tb_switch * sw)3898 int tb_switch_xhci_connect(struct tb_switch *sw)
3899 {
3900 struct tb_port *port1, *port3;
3901 int ret;
3902
3903 if (sw->generation != 3)
3904 return 0;
3905
3906 port1 = &sw->ports[1];
3907 port3 = &sw->ports[3];
3908
3909 if (tb_switch_is_alpine_ridge(sw)) {
3910 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3911
3912 usb_port1 = tb_lc_is_usb_plugged(port1);
3913 usb_port3 = tb_lc_is_usb_plugged(port3);
3914 xhci_port1 = tb_lc_is_xhci_connected(port1);
3915 xhci_port3 = tb_lc_is_xhci_connected(port3);
3916
3917 /* Figure out correct USB port to connect */
3918 if (usb_port1 && !xhci_port1) {
3919 ret = tb_lc_xhci_connect(port1);
3920 if (ret)
3921 return ret;
3922 }
3923 if (usb_port3 && !xhci_port3)
3924 return tb_lc_xhci_connect(port3);
3925 } else if (tb_switch_is_titan_ridge(sw)) {
3926 ret = tb_lc_xhci_connect(port1);
3927 if (ret)
3928 return ret;
3929 return tb_lc_xhci_connect(port3);
3930 }
3931
3932 return 0;
3933 }
3934
3935 /**
3936 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3937 * @sw: Router whose xHCI to disconnect
3938 *
3939 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3940 * ports.
3941 */
tb_switch_xhci_disconnect(struct tb_switch * sw)3942 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3943 {
3944 if (sw->generation == 3) {
3945 struct tb_port *port1 = &sw->ports[1];
3946 struct tb_port *port3 = &sw->ports[3];
3947
3948 tb_lc_xhci_disconnect(port1);
3949 tb_port_dbg(port1, "disconnected xHCI\n");
3950 tb_lc_xhci_disconnect(port3);
3951 tb_port_dbg(port3, "disconnected xHCI\n");
3952 }
3953 }
3954