xref: /openbmc/qemu/linux-user/signal.c (revision 48d7b47cd76b986ad360b6ba1b0889186416f1c2)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "qemu/cutils.h"
22 #include "gdbstub/user.h"
23 #include "exec/page-protection.h"
24 #include "accel/tcg/cpu-ops.h"
25 
26 #include <sys/ucontext.h>
27 #include <sys/resource.h>
28 
29 #include "qemu.h"
30 #include "user-internals.h"
31 #include "strace.h"
32 #include "loader.h"
33 #include "trace.h"
34 #include "signal-common.h"
35 #include "host-signal.h"
36 #include "user/cpu_loop.h"
37 #include "user/page-protection.h"
38 #include "user/safe-syscall.h"
39 #include "user/signal.h"
40 #include "tcg/tcg.h"
41 
42 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
43 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
44 
45 static struct target_sigaction sigact_table[TARGET_NSIG];
46 
47 static void host_signal_handler(int host_signum, siginfo_t *info,
48                                 void *puc);
49 
50 /* Fallback addresses into sigtramp page. */
51 abi_ulong default_sigreturn;
52 abi_ulong default_rt_sigreturn;
53 abi_ulong vdso_sigreturn_region_start;
54 abi_ulong vdso_sigreturn_region_end;
55 
56 /*
57  * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
58  * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
59  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
60  * a process exists without sending it a signal.
61  */
62 #ifdef __SIGRTMAX
63 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
64 #endif
65 static uint8_t host_to_target_signal_table[_NSIG] = {
66 #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig,
67         MAKE_SIGNAL_LIST
68 #undef MAKE_SIG_ENTRY
69 };
70 
71 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
72 
73 /* valid sig is between 1 and _NSIG - 1 */
74 int host_to_target_signal(int sig)
75 {
76     if (sig < 1) {
77         return sig;
78     }
79     if (sig >= _NSIG) {
80         return TARGET_NSIG + 1;
81     }
82     return host_to_target_signal_table[sig];
83 }
84 
85 /* valid sig is between 1 and TARGET_NSIG */
86 int target_to_host_signal(int sig)
87 {
88     if (sig < 1) {
89         return sig;
90     }
91     if (sig > TARGET_NSIG) {
92         return _NSIG;
93     }
94     return target_to_host_signal_table[sig];
95 }
96 
97 static inline void target_sigaddset(target_sigset_t *set, int signum)
98 {
99     signum--;
100     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
101     set->sig[signum / TARGET_NSIG_BPW] |= mask;
102 }
103 
104 static inline int target_sigismember(const target_sigset_t *set, int signum)
105 {
106     signum--;
107     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
108     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
109 }
110 
111 void host_to_target_sigset_internal(target_sigset_t *d,
112                                     const sigset_t *s)
113 {
114     int host_sig, target_sig;
115     target_sigemptyset(d);
116     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
117         target_sig = host_to_target_signal(host_sig);
118         if (target_sig < 1 || target_sig > TARGET_NSIG) {
119             continue;
120         }
121         if (sigismember(s, host_sig)) {
122             target_sigaddset(d, target_sig);
123         }
124     }
125 }
126 
127 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
128 {
129     target_sigset_t d1;
130     int i;
131 
132     host_to_target_sigset_internal(&d1, s);
133     for(i = 0;i < TARGET_NSIG_WORDS; i++)
134         d->sig[i] = tswapal(d1.sig[i]);
135 }
136 
137 void target_to_host_sigset_internal(sigset_t *d,
138                                     const target_sigset_t *s)
139 {
140     int host_sig, target_sig;
141     sigemptyset(d);
142     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
143         host_sig = target_to_host_signal(target_sig);
144         if (host_sig < 1 || host_sig >= _NSIG) {
145             continue;
146         }
147         if (target_sigismember(s, target_sig)) {
148             sigaddset(d, host_sig);
149         }
150     }
151 }
152 
153 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
154 {
155     target_sigset_t s1;
156     int i;
157 
158     for(i = 0;i < TARGET_NSIG_WORDS; i++)
159         s1.sig[i] = tswapal(s->sig[i]);
160     target_to_host_sigset_internal(d, &s1);
161 }
162 
163 void host_to_target_old_sigset(abi_ulong *old_sigset,
164                                const sigset_t *sigset)
165 {
166     target_sigset_t d;
167     host_to_target_sigset(&d, sigset);
168     *old_sigset = d.sig[0];
169 }
170 
171 void target_to_host_old_sigset(sigset_t *sigset,
172                                const abi_ulong *old_sigset)
173 {
174     target_sigset_t d;
175     int i;
176 
177     d.sig[0] = *old_sigset;
178     for(i = 1;i < TARGET_NSIG_WORDS; i++)
179         d.sig[i] = 0;
180     target_to_host_sigset(sigset, &d);
181 }
182 
183 int block_signals(void)
184 {
185     TaskState *ts = get_task_state(thread_cpu);
186     sigset_t set;
187 
188     /* It's OK to block everything including SIGSEGV, because we won't
189      * run any further guest code before unblocking signals in
190      * process_pending_signals().
191      */
192     sigfillset(&set);
193     sigprocmask(SIG_SETMASK, &set, 0);
194 
195     return qatomic_xchg(&ts->signal_pending, 1);
196 }
197 
198 /* Wrapper for sigprocmask function
199  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
200  * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
201  * a signal was already pending and the syscall must be restarted, or
202  * 0 on success.
203  * If set is NULL, this is guaranteed not to fail.
204  */
205 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
206 {
207     TaskState *ts = get_task_state(thread_cpu);
208 
209     if (oldset) {
210         *oldset = ts->signal_mask;
211     }
212 
213     if (set) {
214         int i;
215 
216         if (block_signals()) {
217             return -QEMU_ERESTARTSYS;
218         }
219 
220         switch (how) {
221         case SIG_BLOCK:
222             sigorset(&ts->signal_mask, &ts->signal_mask, set);
223             break;
224         case SIG_UNBLOCK:
225             for (i = 1; i <= NSIG; ++i) {
226                 if (sigismember(set, i)) {
227                     sigdelset(&ts->signal_mask, i);
228                 }
229             }
230             break;
231         case SIG_SETMASK:
232             ts->signal_mask = *set;
233             break;
234         default:
235             g_assert_not_reached();
236         }
237 
238         /* Silently ignore attempts to change blocking status of KILL or STOP */
239         sigdelset(&ts->signal_mask, SIGKILL);
240         sigdelset(&ts->signal_mask, SIGSTOP);
241     }
242     return 0;
243 }
244 
245 /* Just set the guest's signal mask to the specified value; the
246  * caller is assumed to have called block_signals() already.
247  */
248 void set_sigmask(const sigset_t *set)
249 {
250     TaskState *ts = get_task_state(thread_cpu);
251 
252     ts->signal_mask = *set;
253 }
254 
255 /* sigaltstack management */
256 
257 int on_sig_stack(unsigned long sp)
258 {
259     TaskState *ts = get_task_state(thread_cpu);
260 
261     return (sp - ts->sigaltstack_used.ss_sp
262             < ts->sigaltstack_used.ss_size);
263 }
264 
265 int sas_ss_flags(unsigned long sp)
266 {
267     TaskState *ts = get_task_state(thread_cpu);
268 
269     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
270             : on_sig_stack(sp) ? SS_ONSTACK : 0);
271 }
272 
273 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
274 {
275     /*
276      * This is the X/Open sanctioned signal stack switching.
277      */
278     TaskState *ts = get_task_state(thread_cpu);
279 
280     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
281         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
282     }
283     return sp;
284 }
285 
286 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
287 {
288     TaskState *ts = get_task_state(thread_cpu);
289 
290     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
291     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
292     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
293 }
294 
295 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
296 {
297     TaskState *ts = get_task_state(thread_cpu);
298     size_t minstacksize = TARGET_MINSIGSTKSZ;
299     target_stack_t ss;
300 
301 #if defined(TARGET_PPC64)
302     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
303     struct image_info *image = ts->info;
304     if (get_ppc64_abi(image) > 1) {
305         minstacksize = 4096;
306     }
307 #endif
308 
309     __get_user(ss.ss_sp, &uss->ss_sp);
310     __get_user(ss.ss_size, &uss->ss_size);
311     __get_user(ss.ss_flags, &uss->ss_flags);
312 
313     if (on_sig_stack(get_sp_from_cpustate(env))) {
314         return -TARGET_EPERM;
315     }
316 
317     switch (ss.ss_flags) {
318     default:
319         return -TARGET_EINVAL;
320 
321     case TARGET_SS_DISABLE:
322         ss.ss_size = 0;
323         ss.ss_sp = 0;
324         break;
325 
326     case TARGET_SS_ONSTACK:
327     case 0:
328         if (ss.ss_size < minstacksize) {
329             return -TARGET_ENOMEM;
330         }
331         break;
332     }
333 
334     ts->sigaltstack_used.ss_sp = ss.ss_sp;
335     ts->sigaltstack_used.ss_size = ss.ss_size;
336     return 0;
337 }
338 
339 /* siginfo conversion */
340 
341 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
342                                                  const siginfo_t *info)
343 {
344     int sig = host_to_target_signal(info->si_signo);
345     int si_code = info->si_code;
346     int si_type;
347     tinfo->si_signo = sig;
348     tinfo->si_errno = 0;
349     tinfo->si_code = info->si_code;
350 
351     /* This memset serves two purposes:
352      * (1) ensure we don't leak random junk to the guest later
353      * (2) placate false positives from gcc about fields
354      *     being used uninitialized if it chooses to inline both this
355      *     function and tswap_siginfo() into host_to_target_siginfo().
356      */
357     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
358 
359     /* This is awkward, because we have to use a combination of
360      * the si_code and si_signo to figure out which of the union's
361      * members are valid. (Within the host kernel it is always possible
362      * to tell, but the kernel carefully avoids giving userspace the
363      * high 16 bits of si_code, so we don't have the information to
364      * do this the easy way...) We therefore make our best guess,
365      * bearing in mind that a guest can spoof most of the si_codes
366      * via rt_sigqueueinfo() if it likes.
367      *
368      * Once we have made our guess, we record it in the top 16 bits of
369      * the si_code, so that tswap_siginfo() later can use it.
370      * tswap_siginfo() will strip these top bits out before writing
371      * si_code to the guest (sign-extending the lower bits).
372      */
373 
374     switch (si_code) {
375     case SI_USER:
376     case SI_TKILL:
377     case SI_KERNEL:
378         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
379          * These are the only unspoofable si_code values.
380          */
381         tinfo->_sifields._kill._pid = info->si_pid;
382         tinfo->_sifields._kill._uid = info->si_uid;
383         si_type = QEMU_SI_KILL;
384         break;
385     default:
386         /* Everything else is spoofable. Make best guess based on signal */
387         switch (sig) {
388         case TARGET_SIGCHLD:
389             tinfo->_sifields._sigchld._pid = info->si_pid;
390             tinfo->_sifields._sigchld._uid = info->si_uid;
391             if (si_code == CLD_EXITED)
392                 tinfo->_sifields._sigchld._status = info->si_status;
393             else
394                 tinfo->_sifields._sigchld._status
395                     = host_to_target_signal(info->si_status & 0x7f)
396                         | (info->si_status & ~0x7f);
397             tinfo->_sifields._sigchld._utime = info->si_utime;
398             tinfo->_sifields._sigchld._stime = info->si_stime;
399             si_type = QEMU_SI_CHLD;
400             break;
401         case TARGET_SIGIO:
402             tinfo->_sifields._sigpoll._band = info->si_band;
403             tinfo->_sifields._sigpoll._fd = info->si_fd;
404             si_type = QEMU_SI_POLL;
405             break;
406         default:
407             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
408             tinfo->_sifields._rt._pid = info->si_pid;
409             tinfo->_sifields._rt._uid = info->si_uid;
410             /* XXX: potential problem if 64 bit */
411             tinfo->_sifields._rt._sigval.sival_ptr
412                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
413             si_type = QEMU_SI_RT;
414             break;
415         }
416         break;
417     }
418 
419     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
420 }
421 
422 static void tswap_siginfo(target_siginfo_t *tinfo,
423                           const target_siginfo_t *info)
424 {
425     int si_type = extract32(info->si_code, 16, 16);
426     int si_code = sextract32(info->si_code, 0, 16);
427 
428     __put_user(info->si_signo, &tinfo->si_signo);
429     __put_user(info->si_errno, &tinfo->si_errno);
430     __put_user(si_code, &tinfo->si_code);
431 
432     /* We can use our internal marker of which fields in the structure
433      * are valid, rather than duplicating the guesswork of
434      * host_to_target_siginfo_noswap() here.
435      */
436     switch (si_type) {
437     case QEMU_SI_KILL:
438         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
439         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
440         break;
441     case QEMU_SI_TIMER:
442         __put_user(info->_sifields._timer._timer1,
443                    &tinfo->_sifields._timer._timer1);
444         __put_user(info->_sifields._timer._timer2,
445                    &tinfo->_sifields._timer._timer2);
446         break;
447     case QEMU_SI_POLL:
448         __put_user(info->_sifields._sigpoll._band,
449                    &tinfo->_sifields._sigpoll._band);
450         __put_user(info->_sifields._sigpoll._fd,
451                    &tinfo->_sifields._sigpoll._fd);
452         break;
453     case QEMU_SI_FAULT:
454         __put_user(info->_sifields._sigfault._addr,
455                    &tinfo->_sifields._sigfault._addr);
456         break;
457     case QEMU_SI_CHLD:
458         __put_user(info->_sifields._sigchld._pid,
459                    &tinfo->_sifields._sigchld._pid);
460         __put_user(info->_sifields._sigchld._uid,
461                    &tinfo->_sifields._sigchld._uid);
462         __put_user(info->_sifields._sigchld._status,
463                    &tinfo->_sifields._sigchld._status);
464         __put_user(info->_sifields._sigchld._utime,
465                    &tinfo->_sifields._sigchld._utime);
466         __put_user(info->_sifields._sigchld._stime,
467                    &tinfo->_sifields._sigchld._stime);
468         break;
469     case QEMU_SI_RT:
470         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
471         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
472         __put_user(info->_sifields._rt._sigval.sival_ptr,
473                    &tinfo->_sifields._rt._sigval.sival_ptr);
474         break;
475     default:
476         g_assert_not_reached();
477     }
478 }
479 
480 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
481 {
482     target_siginfo_t tgt_tmp;
483     host_to_target_siginfo_noswap(&tgt_tmp, info);
484     tswap_siginfo(tinfo, &tgt_tmp);
485 }
486 
487 /* XXX: we support only POSIX RT signals are used. */
488 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
489 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
490 {
491     /* This conversion is used only for the rt_sigqueueinfo syscall,
492      * and so we know that the _rt fields are the valid ones.
493      */
494     abi_ulong sival_ptr;
495 
496     __get_user(info->si_signo, &tinfo->si_signo);
497     __get_user(info->si_errno, &tinfo->si_errno);
498     __get_user(info->si_code, &tinfo->si_code);
499     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
500     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
501     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
502     info->si_value.sival_ptr = (void *)(long)sival_ptr;
503 }
504 
505 /* returns 1 if given signal should dump core if not handled */
506 static int core_dump_signal(int sig)
507 {
508     switch (sig) {
509     case TARGET_SIGABRT:
510     case TARGET_SIGFPE:
511     case TARGET_SIGILL:
512     case TARGET_SIGQUIT:
513     case TARGET_SIGSEGV:
514     case TARGET_SIGTRAP:
515     case TARGET_SIGBUS:
516         return (1);
517     default:
518         return (0);
519     }
520 }
521 
522 int host_interrupt_signal;
523 
524 static void signal_table_init(const char *rtsig_map)
525 {
526     int hsig, tsig, count;
527 
528     if (rtsig_map) {
529         /*
530          * Map host RT signals to target RT signals according to the
531          * user-provided specification.
532          */
533         const char *s = rtsig_map;
534 
535         while (true) {
536             int i;
537 
538             if (qemu_strtoi(s, &s, 10, &tsig) || *s++ != ' ') {
539                 fprintf(stderr, "Malformed target signal in QEMU_RTSIG_MAP\n");
540                 exit(EXIT_FAILURE);
541             }
542             if (qemu_strtoi(s, &s, 10, &hsig) || *s++ != ' ') {
543                 fprintf(stderr, "Malformed host signal in QEMU_RTSIG_MAP\n");
544                 exit(EXIT_FAILURE);
545             }
546             if (qemu_strtoi(s, &s, 10, &count) || (*s && *s != ',')) {
547                 fprintf(stderr, "Malformed signal count in QEMU_RTSIG_MAP\n");
548                 exit(EXIT_FAILURE);
549             }
550 
551             for (i = 0; i < count; i++, tsig++, hsig++) {
552                 if (tsig < TARGET_SIGRTMIN || tsig > TARGET_NSIG) {
553                     fprintf(stderr, "%d is not a target rt signal\n", tsig);
554                     exit(EXIT_FAILURE);
555                 }
556                 if (hsig < SIGRTMIN || hsig > SIGRTMAX) {
557                     fprintf(stderr, "%d is not a host rt signal\n", hsig);
558                     exit(EXIT_FAILURE);
559                 }
560                 if (host_to_target_signal_table[hsig]) {
561                     fprintf(stderr, "%d already maps %d\n",
562                             hsig, host_to_target_signal_table[hsig]);
563                     exit(EXIT_FAILURE);
564                 }
565                 host_to_target_signal_table[hsig] = tsig;
566             }
567 
568             if (*s) {
569                 s++;
570             } else {
571                 break;
572             }
573         }
574     } else {
575         /*
576          * Default host-to-target RT signal mapping.
577          *
578          * Signals are supported starting from TARGET_SIGRTMIN and going up
579          * until we run out of host realtime signals.  Glibc uses the lower 2
580          * RT signals and (hopefully) nobody uses the upper ones.
581          * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
582          * To fix this properly we would need to do manual signal delivery
583          * multiplexed over a single host signal.
584          * Attempts for configure "missing" signals via sigaction will be
585          * silently ignored.
586          *
587          * Reserve two signals for internal usage (see below).
588          */
589 
590         hsig = SIGRTMIN + 2;
591         for (tsig = TARGET_SIGRTMIN;
592              hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
593              hsig++, tsig++) {
594             host_to_target_signal_table[hsig] = tsig;
595         }
596     }
597 
598     /*
599      * Remap the target SIGABRT, so that we can distinguish host abort
600      * from guest abort.  When the guest registers a signal handler or
601      * calls raise(SIGABRT), the host will raise SIG_RTn.  If the guest
602      * arrives at dump_core_and_abort(), we will map back to host SIGABRT
603      * so that the parent (native or emulated) sees the correct signal.
604      * Finally, also map host to guest SIGABRT so that the emulated
605      * parent sees the correct mapping from wait status.
606      */
607 
608     host_to_target_signal_table[SIGABRT] = 0;
609     for (hsig = SIGRTMIN; hsig <= SIGRTMAX; hsig++) {
610         if (!host_to_target_signal_table[hsig]) {
611             if (host_interrupt_signal) {
612                 host_to_target_signal_table[hsig] = TARGET_SIGABRT;
613                 break;
614             } else {
615                 host_interrupt_signal = hsig;
616             }
617         }
618     }
619     if (hsig > SIGRTMAX) {
620         fprintf(stderr,
621                 "No rt signals left for interrupt and SIGABRT mapping\n");
622         exit(EXIT_FAILURE);
623     }
624 
625     /* Invert the mapping that has already been assigned. */
626     for (hsig = 1; hsig < _NSIG; hsig++) {
627         tsig = host_to_target_signal_table[hsig];
628         if (tsig) {
629             if (target_to_host_signal_table[tsig]) {
630                 fprintf(stderr, "%d is already mapped to %d\n",
631                         tsig, target_to_host_signal_table[tsig]);
632                 exit(EXIT_FAILURE);
633             }
634             target_to_host_signal_table[tsig] = hsig;
635         }
636     }
637 
638     host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
639 
640     /* Map everything else out-of-bounds. */
641     for (hsig = 1; hsig < _NSIG; hsig++) {
642         if (host_to_target_signal_table[hsig] == 0) {
643             host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
644         }
645     }
646     for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
647         if (target_to_host_signal_table[tsig] == 0) {
648             target_to_host_signal_table[tsig] = _NSIG;
649             count++;
650         }
651     }
652 
653     trace_signal_table_init(count);
654 }
655 
656 void signal_init(const char *rtsig_map)
657 {
658     TaskState *ts = get_task_state(thread_cpu);
659     struct sigaction act, oact;
660 
661     /* initialize signal conversion tables */
662     signal_table_init(rtsig_map);
663 
664     /* Set the signal mask from the host mask. */
665     sigprocmask(0, 0, &ts->signal_mask);
666 
667     sigfillset(&act.sa_mask);
668     act.sa_flags = SA_SIGINFO;
669     act.sa_sigaction = host_signal_handler;
670 
671     /*
672      * A parent process may configure ignored signals, but all other
673      * signals are default.  For any target signals that have no host
674      * mapping, set to ignore.  For all core_dump_signal, install our
675      * host signal handler so that we may invoke dump_core_and_abort.
676      * This includes SIGSEGV and SIGBUS, which are also need our signal
677      * handler for paging and exceptions.
678      */
679     for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
680         int hsig = target_to_host_signal(tsig);
681         abi_ptr thand = TARGET_SIG_IGN;
682 
683         if (hsig >= _NSIG) {
684             continue;
685         }
686 
687         /* As we force remap SIGABRT, cannot probe and install in one step. */
688         if (tsig == TARGET_SIGABRT) {
689             sigaction(SIGABRT, NULL, &oact);
690             sigaction(hsig, &act, NULL);
691         } else {
692             struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
693             sigaction(hsig, iact, &oact);
694         }
695 
696         if (oact.sa_sigaction != (void *)SIG_IGN) {
697             thand = TARGET_SIG_DFL;
698         }
699         sigact_table[tsig - 1]._sa_handler = thand;
700     }
701 
702     sigaction(host_interrupt_signal, &act, NULL);
703 }
704 
705 /* Force a synchronously taken signal. The kernel force_sig() function
706  * also forces the signal to "not blocked, not ignored", but for QEMU
707  * that work is done in process_pending_signals().
708  */
709 void force_sig(int sig)
710 {
711     CPUState *cpu = thread_cpu;
712     target_siginfo_t info = {};
713 
714     info.si_signo = sig;
715     info.si_errno = 0;
716     info.si_code = TARGET_SI_KERNEL;
717     info._sifields._kill._pid = 0;
718     info._sifields._kill._uid = 0;
719     queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
720 }
721 
722 /*
723  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
724  * 'force' part is handled in process_pending_signals().
725  */
726 void force_sig_fault(int sig, int code, abi_ulong addr)
727 {
728     CPUState *cpu = thread_cpu;
729     target_siginfo_t info = {};
730 
731     info.si_signo = sig;
732     info.si_errno = 0;
733     info.si_code = code;
734     info._sifields._sigfault._addr = addr;
735     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
736 }
737 
738 /* Force a SIGSEGV if we couldn't write to memory trying to set
739  * up the signal frame. oldsig is the signal we were trying to handle
740  * at the point of failure.
741  */
742 #if !defined(TARGET_RISCV)
743 void force_sigsegv(int oldsig)
744 {
745     if (oldsig == SIGSEGV) {
746         /* Make sure we don't try to deliver the signal again; this will
747          * end up with handle_pending_signal() calling dump_core_and_abort().
748          */
749         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
750     }
751     force_sig(TARGET_SIGSEGV);
752 }
753 #endif
754 
755 void cpu_loop_exit_sigsegv(CPUState *cpu, vaddr addr,
756                            MMUAccessType access_type, bool maperr, uintptr_t ra)
757 {
758     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
759 
760     if (tcg_ops->record_sigsegv) {
761         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
762     }
763 
764     force_sig_fault(TARGET_SIGSEGV,
765                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
766                     addr);
767     cpu->exception_index = EXCP_INTERRUPT;
768     cpu_loop_exit_restore(cpu, ra);
769 }
770 
771 void cpu_loop_exit_sigbus(CPUState *cpu, vaddr addr,
772                           MMUAccessType access_type, uintptr_t ra)
773 {
774     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
775 
776     if (tcg_ops->record_sigbus) {
777         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
778     }
779 
780     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
781     cpu->exception_index = EXCP_INTERRUPT;
782     cpu_loop_exit_restore(cpu, ra);
783 }
784 
785 /* abort execution with signal */
786 static G_NORETURN
787 void die_with_signal(int host_sig)
788 {
789     struct sigaction act = {
790         .sa_handler = SIG_DFL,
791     };
792 
793     /*
794      * The proper exit code for dying from an uncaught signal is -<signal>.
795      * The kernel doesn't allow exit() or _exit() to pass a negative value.
796      * To get the proper exit code we need to actually die from an uncaught
797      * signal.  Here the default signal handler is installed, we send
798      * the signal and we wait for it to arrive.
799      */
800     sigfillset(&act.sa_mask);
801     sigaction(host_sig, &act, NULL);
802 
803     kill(getpid(), host_sig);
804 
805     /* Make sure the signal isn't masked (reusing the mask inside of act). */
806     sigdelset(&act.sa_mask, host_sig);
807     sigsuspend(&act.sa_mask);
808 
809     /* unreachable */
810     _exit(EXIT_FAILURE);
811 }
812 
813 static G_NORETURN
814 void dump_core_and_abort(CPUArchState *env, int target_sig)
815 {
816     CPUState *cpu = env_cpu(env);
817     TaskState *ts = get_task_state(cpu);
818     int host_sig, core_dumped = 0;
819 
820     /* On exit, undo the remapping of SIGABRT. */
821     if (target_sig == TARGET_SIGABRT) {
822         host_sig = SIGABRT;
823     } else {
824         host_sig = target_to_host_signal(target_sig);
825     }
826     trace_user_dump_core_and_abort(env, target_sig, host_sig);
827     gdb_signalled(env, target_sig);
828 
829     /* dump core if supported by target binary format */
830     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
831         stop_all_tasks();
832         core_dumped =
833             ((*ts->bprm->core_dump)(target_sig, env) == 0);
834     }
835     if (core_dumped) {
836         /* we already dumped the core of target process, we don't want
837          * a coredump of qemu itself */
838         struct rlimit nodump;
839         getrlimit(RLIMIT_CORE, &nodump);
840         nodump.rlim_cur=0;
841         setrlimit(RLIMIT_CORE, &nodump);
842         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
843             target_sig, strsignal(host_sig), "core dumped" );
844     }
845 
846     preexit_cleanup(env, 128 + target_sig);
847     die_with_signal(host_sig);
848 }
849 
850 /* queue a signal so that it will be send to the virtual CPU as soon
851    as possible */
852 void queue_signal(CPUArchState *env, int sig, int si_type,
853                   target_siginfo_t *info)
854 {
855     CPUState *cpu = env_cpu(env);
856     TaskState *ts = get_task_state(cpu);
857 
858     trace_user_queue_signal(env, sig);
859 
860     info->si_code = deposit32(info->si_code, 16, 16, si_type);
861 
862     ts->sync_signal.info = *info;
863     ts->sync_signal.pending = sig;
864     /* signal that a new signal is pending */
865     qatomic_set(&ts->signal_pending, 1);
866 }
867 
868 
869 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
870 static inline void rewind_if_in_safe_syscall(void *puc)
871 {
872     host_sigcontext *uc = (host_sigcontext *)puc;
873     uintptr_t pcreg = host_signal_pc(uc);
874 
875     if (pcreg > (uintptr_t)safe_syscall_start
876         && pcreg < (uintptr_t)safe_syscall_end) {
877         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
878     }
879 }
880 
881 static G_NORETURN
882 void die_from_signal(siginfo_t *info)
883 {
884     char sigbuf[4], codebuf[12];
885     const char *sig, *code = NULL;
886 
887     switch (info->si_signo) {
888     case SIGSEGV:
889         sig = "SEGV";
890         switch (info->si_code) {
891         case SEGV_MAPERR:
892             code = "MAPERR";
893             break;
894         case SEGV_ACCERR:
895             code = "ACCERR";
896             break;
897         }
898         break;
899     case SIGBUS:
900         sig = "BUS";
901         switch (info->si_code) {
902         case BUS_ADRALN:
903             code = "ADRALN";
904             break;
905         case BUS_ADRERR:
906             code = "ADRERR";
907             break;
908         }
909         break;
910     case SIGILL:
911         sig = "ILL";
912         switch (info->si_code) {
913         case ILL_ILLOPC:
914             code = "ILLOPC";
915             break;
916         case ILL_ILLOPN:
917             code = "ILLOPN";
918             break;
919         case ILL_ILLADR:
920             code = "ILLADR";
921             break;
922         case ILL_PRVOPC:
923             code = "PRVOPC";
924             break;
925         case ILL_PRVREG:
926             code = "PRVREG";
927             break;
928         case ILL_COPROC:
929             code = "COPROC";
930             break;
931         }
932         break;
933     case SIGFPE:
934         sig = "FPE";
935         switch (info->si_code) {
936         case FPE_INTDIV:
937             code = "INTDIV";
938             break;
939         case FPE_INTOVF:
940             code = "INTOVF";
941             break;
942         }
943         break;
944     case SIGTRAP:
945         sig = "TRAP";
946         break;
947     default:
948         snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
949         sig = sigbuf;
950         break;
951     }
952     if (code == NULL) {
953         snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
954         code = codebuf;
955     }
956 
957     error_report("QEMU internal SIG%s {code=%s, addr=%p}",
958                  sig, code, info->si_addr);
959     die_with_signal(info->si_signo);
960 }
961 
962 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
963                                  host_sigcontext *uc)
964 {
965     uintptr_t host_addr = (uintptr_t)info->si_addr;
966     /*
967      * Convert forcefully to guest address space: addresses outside
968      * reserved_va are still valid to report via SEGV_MAPERR.
969      */
970     bool is_valid = h2g_valid(host_addr);
971     abi_ptr guest_addr = h2g_nocheck(host_addr);
972     uintptr_t pc = host_signal_pc(uc);
973     bool is_write = host_signal_write(info, uc);
974     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
975     bool maperr;
976 
977     /* If this was a write to a TB protected page, restart. */
978     if (is_write
979         && is_valid
980         && info->si_code == SEGV_ACCERR
981         && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
982                                        pc, guest_addr)) {
983         return;
984     }
985 
986     /*
987      * If the access was not on behalf of the guest, within the executable
988      * mapping of the generated code buffer, then it is a host bug.
989      */
990     if (access_type != MMU_INST_FETCH
991         && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
992         die_from_signal(info);
993     }
994 
995     maperr = true;
996     if (is_valid && info->si_code == SEGV_ACCERR) {
997         /*
998          * With reserved_va, the whole address space is PROT_NONE,
999          * which means that we may get ACCERR when we want MAPERR.
1000          */
1001         if (page_get_flags(guest_addr) & PAGE_VALID) {
1002             maperr = false;
1003         } else {
1004             info->si_code = SEGV_MAPERR;
1005         }
1006     }
1007 
1008     sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
1009     cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
1010 }
1011 
1012 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
1013                                 host_sigcontext *uc)
1014 {
1015     uintptr_t pc = host_signal_pc(uc);
1016     bool is_write = host_signal_write(info, uc);
1017     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
1018 
1019     /*
1020      * If the access was not on behalf of the guest, within the executable
1021      * mapping of the generated code buffer, then it is a host bug.
1022      */
1023     if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
1024         die_from_signal(info);
1025     }
1026 
1027     if (info->si_code == BUS_ADRALN) {
1028         uintptr_t host_addr = (uintptr_t)info->si_addr;
1029         abi_ptr guest_addr = h2g_nocheck(host_addr);
1030 
1031         sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
1032         cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
1033     }
1034     return pc;
1035 }
1036 
1037 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
1038 {
1039     CPUState *cpu = thread_cpu;
1040     CPUArchState *env = cpu_env(cpu);
1041     TaskState *ts = get_task_state(cpu);
1042     target_siginfo_t tinfo;
1043     host_sigcontext *uc = puc;
1044     struct emulated_sigtable *k;
1045     int guest_sig;
1046     uintptr_t pc = 0;
1047     bool sync_sig = false;
1048     void *sigmask;
1049 
1050     if (host_sig == host_interrupt_signal) {
1051         ts->signal_pending = 1;
1052         cpu_exit(thread_cpu);
1053         return;
1054     }
1055 
1056     /*
1057      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
1058      * handling wrt signal blocking and unwinding.  Non-spoofed SIGILL,
1059      * SIGFPE, SIGTRAP are always host bugs.
1060      */
1061     if (info->si_code > 0) {
1062         switch (host_sig) {
1063         case SIGSEGV:
1064             /* Only returns on handle_sigsegv_accerr_write success. */
1065             host_sigsegv_handler(cpu, info, uc);
1066             return;
1067         case SIGBUS:
1068             pc = host_sigbus_handler(cpu, info, uc);
1069             sync_sig = true;
1070             break;
1071         case SIGILL:
1072         case SIGFPE:
1073         case SIGTRAP:
1074             die_from_signal(info);
1075         }
1076     }
1077 
1078     /* get target signal number */
1079     guest_sig = host_to_target_signal(host_sig);
1080     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
1081         return;
1082     }
1083     trace_user_host_signal(env, host_sig, guest_sig);
1084 
1085     host_to_target_siginfo_noswap(&tinfo, info);
1086     k = &ts->sigtab[guest_sig - 1];
1087     k->info = tinfo;
1088     k->pending = guest_sig;
1089     ts->signal_pending = 1;
1090 
1091     /*
1092      * For synchronous signals, unwind the cpu state to the faulting
1093      * insn and then exit back to the main loop so that the signal
1094      * is delivered immediately.
1095      */
1096     if (sync_sig) {
1097         cpu->exception_index = EXCP_INTERRUPT;
1098         cpu_loop_exit_restore(cpu, pc);
1099     }
1100 
1101     rewind_if_in_safe_syscall(puc);
1102 
1103     /*
1104      * Block host signals until target signal handler entered. We
1105      * can't block SIGSEGV or SIGBUS while we're executing guest
1106      * code in case the guest code provokes one in the window between
1107      * now and it getting out to the main loop. Signals will be
1108      * unblocked again in process_pending_signals().
1109      *
1110      * WARNING: we cannot use sigfillset() here because the sigmask
1111      * field is a kernel sigset_t, which is much smaller than the
1112      * libc sigset_t which sigfillset() operates on. Using sigfillset()
1113      * would write 0xff bytes off the end of the structure and trash
1114      * data on the struct.
1115      */
1116     sigmask = host_signal_mask(uc);
1117     memset(sigmask, 0xff, SIGSET_T_SIZE);
1118     sigdelset(sigmask, SIGSEGV);
1119     sigdelset(sigmask, SIGBUS);
1120 
1121     /* interrupt the virtual CPU as soon as possible */
1122     cpu_exit(thread_cpu);
1123 }
1124 
1125 /* do_sigaltstack() returns target values and errnos. */
1126 /* compare linux/kernel/signal.c:do_sigaltstack() */
1127 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1128                         CPUArchState *env)
1129 {
1130     target_stack_t oss, *uoss = NULL;
1131     abi_long ret = -TARGET_EFAULT;
1132 
1133     if (uoss_addr) {
1134         /* Verify writability now, but do not alter user memory yet. */
1135         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1136             goto out;
1137         }
1138         target_save_altstack(&oss, env);
1139     }
1140 
1141     if (uss_addr) {
1142         target_stack_t *uss;
1143 
1144         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1145             goto out;
1146         }
1147         ret = target_restore_altstack(uss, env);
1148         if (ret) {
1149             goto out;
1150         }
1151     }
1152 
1153     if (uoss_addr) {
1154         memcpy(uoss, &oss, sizeof(oss));
1155         unlock_user_struct(uoss, uoss_addr, 1);
1156         uoss = NULL;
1157     }
1158     ret = 0;
1159 
1160  out:
1161     if (uoss) {
1162         unlock_user_struct(uoss, uoss_addr, 0);
1163     }
1164     return ret;
1165 }
1166 
1167 /* do_sigaction() return target values and host errnos */
1168 int do_sigaction(int sig, const struct target_sigaction *act,
1169                  struct target_sigaction *oact, abi_ulong ka_restorer)
1170 {
1171     struct target_sigaction *k;
1172     int host_sig;
1173     int ret = 0;
1174 
1175     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1176 
1177     if (sig < 1 || sig > TARGET_NSIG) {
1178         return -TARGET_EINVAL;
1179     }
1180 
1181     if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1182         return -TARGET_EINVAL;
1183     }
1184 
1185     if (block_signals()) {
1186         return -QEMU_ERESTARTSYS;
1187     }
1188 
1189     k = &sigact_table[sig - 1];
1190     if (oact) {
1191         __put_user(k->_sa_handler, &oact->_sa_handler);
1192         __put_user(k->sa_flags, &oact->sa_flags);
1193 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1194         __put_user(k->sa_restorer, &oact->sa_restorer);
1195 #endif
1196         /* Not swapped.  */
1197         oact->sa_mask = k->sa_mask;
1198     }
1199     if (act) {
1200         __get_user(k->_sa_handler, &act->_sa_handler);
1201         __get_user(k->sa_flags, &act->sa_flags);
1202 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1203         __get_user(k->sa_restorer, &act->sa_restorer);
1204 #endif
1205 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1206         k->ka_restorer = ka_restorer;
1207 #endif
1208         /* To be swapped in target_to_host_sigset.  */
1209         k->sa_mask = act->sa_mask;
1210 
1211         /* we update the host linux signal state */
1212         host_sig = target_to_host_signal(sig);
1213         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1214         if (host_sig > SIGRTMAX) {
1215             /* we don't have enough host signals to map all target signals */
1216             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1217                           sig);
1218             /*
1219              * we don't return an error here because some programs try to
1220              * register an handler for all possible rt signals even if they
1221              * don't need it.
1222              * An error here can abort them whereas there can be no problem
1223              * to not have the signal available later.
1224              * This is the case for golang,
1225              *   See https://github.com/golang/go/issues/33746
1226              * So we silently ignore the error.
1227              */
1228             return 0;
1229         }
1230         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1231             struct sigaction act1;
1232 
1233             sigfillset(&act1.sa_mask);
1234             act1.sa_flags = SA_SIGINFO;
1235             if (k->_sa_handler == TARGET_SIG_IGN) {
1236                 /*
1237                  * It is important to update the host kernel signal ignore
1238                  * state to avoid getting unexpected interrupted syscalls.
1239                  */
1240                 act1.sa_sigaction = (void *)SIG_IGN;
1241             } else if (k->_sa_handler == TARGET_SIG_DFL) {
1242                 if (core_dump_signal(sig)) {
1243                     act1.sa_sigaction = host_signal_handler;
1244                 } else {
1245                     act1.sa_sigaction = (void *)SIG_DFL;
1246                 }
1247             } else {
1248                 act1.sa_sigaction = host_signal_handler;
1249                 if (k->sa_flags & TARGET_SA_RESTART) {
1250                     act1.sa_flags |= SA_RESTART;
1251                 }
1252             }
1253             ret = sigaction(host_sig, &act1, NULL);
1254         }
1255     }
1256     return ret;
1257 }
1258 
1259 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1260                                   struct emulated_sigtable *k)
1261 {
1262     CPUState *cpu = env_cpu(cpu_env);
1263     abi_ulong handler;
1264     sigset_t set;
1265     target_siginfo_t unswapped;
1266     target_sigset_t target_old_set;
1267     struct target_sigaction *sa;
1268     TaskState *ts = get_task_state(cpu);
1269 
1270     trace_user_handle_signal(cpu_env, sig);
1271     /* dequeue signal */
1272     k->pending = 0;
1273 
1274     /*
1275      * Writes out siginfo values byteswapped, accordingly to the target.
1276      * It also cleans the si_type from si_code making it correct for
1277      * the target.  We must hold on to the original unswapped copy for
1278      * strace below, because si_type is still required there.
1279      */
1280     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1281         unswapped = k->info;
1282     }
1283     tswap_siginfo(&k->info, &k->info);
1284 
1285     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
1286     if (!sig) {
1287         sa = NULL;
1288         handler = TARGET_SIG_IGN;
1289     } else {
1290         sa = &sigact_table[sig - 1];
1291         handler = sa->_sa_handler;
1292     }
1293 
1294     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1295         print_taken_signal(sig, &unswapped);
1296     }
1297 
1298     if (handler == TARGET_SIG_DFL) {
1299         /* default handler : ignore some signal. The other are job control or fatal */
1300         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1301             kill(getpid(),SIGSTOP);
1302         } else if (sig != TARGET_SIGCHLD &&
1303                    sig != TARGET_SIGURG &&
1304                    sig != TARGET_SIGWINCH &&
1305                    sig != TARGET_SIGCONT) {
1306             dump_core_and_abort(cpu_env, sig);
1307         }
1308     } else if (handler == TARGET_SIG_IGN) {
1309         /* ignore sig */
1310     } else if (handler == TARGET_SIG_ERR) {
1311         dump_core_and_abort(cpu_env, sig);
1312     } else {
1313         /* compute the blocked signals during the handler execution */
1314         sigset_t *blocked_set;
1315 
1316         target_to_host_sigset(&set, &sa->sa_mask);
1317         /* SA_NODEFER indicates that the current signal should not be
1318            blocked during the handler */
1319         if (!(sa->sa_flags & TARGET_SA_NODEFER))
1320             sigaddset(&set, target_to_host_signal(sig));
1321 
1322         /* save the previous blocked signal state to restore it at the
1323            end of the signal execution (see do_sigreturn) */
1324         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1325 
1326         /* block signals in the handler */
1327         blocked_set = ts->in_sigsuspend ?
1328             &ts->sigsuspend_mask : &ts->signal_mask;
1329         sigorset(&ts->signal_mask, blocked_set, &set);
1330         ts->in_sigsuspend = 0;
1331 
1332         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1333 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1334         {
1335             CPUX86State *env = cpu_env;
1336             if (env->eflags & VM_MASK)
1337                 save_v86_state(env);
1338         }
1339 #endif
1340         /* prepare the stack frame of the virtual CPU */
1341 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1342         if (sa->sa_flags & TARGET_SA_SIGINFO) {
1343             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1344         } else {
1345             setup_frame(sig, sa, &target_old_set, cpu_env);
1346         }
1347 #else
1348         /* These targets do not have traditional signals.  */
1349         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1350 #endif
1351         if (sa->sa_flags & TARGET_SA_RESETHAND) {
1352             sa->_sa_handler = TARGET_SIG_DFL;
1353         }
1354     }
1355 }
1356 
1357 void process_pending_signals(CPUArchState *cpu_env)
1358 {
1359     CPUState *cpu = env_cpu(cpu_env);
1360     int sig;
1361     TaskState *ts = get_task_state(cpu);
1362     sigset_t set;
1363     sigset_t *blocked_set;
1364 
1365     while (qatomic_read(&ts->signal_pending)) {
1366         sigfillset(&set);
1367         sigprocmask(SIG_SETMASK, &set, 0);
1368 
1369     restart_scan:
1370         sig = ts->sync_signal.pending;
1371         if (sig) {
1372             /* Synchronous signals are forced,
1373              * see force_sig_info() and callers in Linux
1374              * Note that not all of our queue_signal() calls in QEMU correspond
1375              * to force_sig_info() calls in Linux (some are send_sig_info()).
1376              * However it seems like a kernel bug to me to allow the process
1377              * to block a synchronous signal since it could then just end up
1378              * looping round and round indefinitely.
1379              */
1380             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1381                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1382                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1383                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1384             }
1385 
1386             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1387         }
1388 
1389         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1390             blocked_set = ts->in_sigsuspend ?
1391                 &ts->sigsuspend_mask : &ts->signal_mask;
1392 
1393             if (ts->sigtab[sig - 1].pending &&
1394                 (!sigismember(blocked_set,
1395                               target_to_host_signal_table[sig]))) {
1396                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1397                 /* Restart scan from the beginning, as handle_pending_signal
1398                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1399                  */
1400                 goto restart_scan;
1401             }
1402         }
1403 
1404         /* if no signal is pending, unblock signals and recheck (the act
1405          * of unblocking might cause us to take another host signal which
1406          * will set signal_pending again).
1407          */
1408         qatomic_set(&ts->signal_pending, 0);
1409         ts->in_sigsuspend = 0;
1410         set = ts->signal_mask;
1411         sigdelset(&set, SIGSEGV);
1412         sigdelset(&set, SIGBUS);
1413         sigprocmask(SIG_SETMASK, &set, 0);
1414     }
1415     ts->in_sigsuspend = 0;
1416 }
1417 
1418 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1419                             target_ulong sigsize)
1420 {
1421     TaskState *ts = get_task_state(thread_cpu);
1422     sigset_t *host_set = &ts->sigsuspend_mask;
1423     target_sigset_t *target_sigset;
1424 
1425     if (sigsize != sizeof(*target_sigset)) {
1426         /* Like the kernel, we enforce correct size sigsets */
1427         return -TARGET_EINVAL;
1428     }
1429 
1430     target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1431     if (!target_sigset) {
1432         return -TARGET_EFAULT;
1433     }
1434     target_to_host_sigset(host_set, target_sigset);
1435     unlock_user(target_sigset, sigset, 0);
1436 
1437     *pset = host_set;
1438     return 0;
1439 }
1440