1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_values.h"
51 #include "../cxgb4/t4fw_api.h"
52 #include "../cxgb4/t4_msg.h"
53
54 /*
55 * Constants ...
56 */
57 enum {
58 /*
59 * Egress Queue sizes, producer and consumer indices are all in units
60 * of Egress Context Units bytes. Note that as far as the hardware is
61 * concerned, the free list is an Egress Queue (the host produces free
62 * buffers which the hardware consumes) and free list entries are
63 * 64-bit PCI DMA addresses.
64 */
65 EQ_UNIT = SGE_EQ_IDXSIZE,
66 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68
69 /*
70 * Max number of TX descriptors we clean up at a time. Should be
71 * modest as freeing skbs isn't cheap and it happens while holding
72 * locks. We just need to free packets faster than they arrive, we
73 * eventually catch up and keep the amortized cost reasonable.
74 */
75 MAX_TX_RECLAIM = 16,
76
77 /*
78 * Max number of Rx buffers we replenish at a time. Again keep this
79 * modest, allocating buffers isn't cheap either.
80 */
81 MAX_RX_REFILL = 16,
82
83 /*
84 * Period of the Rx queue check timer. This timer is infrequent as it
85 * has something to do only when the system experiences severe memory
86 * shortage.
87 */
88 RX_QCHECK_PERIOD = (HZ / 2),
89
90 /*
91 * Period of the TX queue check timer and the maximum number of TX
92 * descriptors to be reclaimed by the TX timer.
93 */
94 TX_QCHECK_PERIOD = (HZ / 2),
95 MAX_TIMER_TX_RECLAIM = 100,
96
97 /*
98 * Suspend an Ethernet TX queue with fewer available descriptors than
99 * this. We always want to have room for a maximum sized packet:
100 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102 * (see that function and its helpers for a description of the
103 * calculation).
104 */
105 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107 ((ETHTXQ_MAX_FRAGS-1) & 1) +
108 2),
109 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110 sizeof(struct cpl_tx_pkt_lso_core) +
111 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113
114 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115
116 /*
117 * Max TX descriptor space we allow for an Ethernet packet to be
118 * inlined into a WR. This is limited by the maximum value which
119 * we can specify for immediate data in the firmware Ethernet TX
120 * Work Request.
121 */
122 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123
124 /*
125 * Max size of a WR sent through a control TX queue.
126 */
127 MAX_CTRL_WR_LEN = 256,
128
129 /*
130 * Maximum amount of data which we'll ever need to inline into a
131 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132 */
133 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134 ? MAX_IMM_TX_PKT_LEN
135 : MAX_CTRL_WR_LEN),
136
137 /*
138 * For incoming packets less than RX_COPY_THRES, we copy the data into
139 * an skb rather than referencing the data. We allocate enough
140 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141 * of the data (header).
142 */
143 RX_COPY_THRES = 256,
144 RX_PULL_LEN = 128,
145
146 /*
147 * Main body length for sk_buffs used for RX Ethernet packets with
148 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
149 * pskb_may_pull() some room.
150 */
151 RX_SKB_LEN = 512,
152 };
153
154 /*
155 * Software state per TX descriptor.
156 */
157 struct tx_sw_desc {
158 struct sk_buff *skb; /* socket buffer of TX data source */
159 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
160 };
161
162 /*
163 * Software state per RX Free List descriptor. We keep track of the allocated
164 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
165 * page size and its PCI DMA mapped state are stored in the low bits of the
166 * PCI DMA address as per below.
167 */
168 struct rx_sw_desc {
169 struct page *page; /* Free List page buffer */
170 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
171 /* and flags (see below) */
172 };
173
174 /*
175 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
176 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
181 * maintained in an inverse sense so the hardware never sees that bit high.
182 */
183 enum {
184 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
185 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
186 };
187
188 /**
189 * get_buf_addr - return DMA buffer address of software descriptor
190 * @sdesc: pointer to the software buffer descriptor
191 *
192 * Return the DMA buffer address of a software descriptor (stripping out
193 * our low-order flag bits).
194 */
get_buf_addr(const struct rx_sw_desc * sdesc)195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196 {
197 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198 }
199
200 /**
201 * is_buf_mapped - is buffer mapped for DMA?
202 * @sdesc: pointer to the software buffer descriptor
203 *
204 * Determine whether the buffer associated with a software descriptor in
205 * mapped for DMA or not.
206 */
is_buf_mapped(const struct rx_sw_desc * sdesc)207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208 {
209 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210 }
211
212 /**
213 * need_skb_unmap - does the platform need unmapping of sk_buffs?
214 *
215 * Returns true if the platform needs sk_buff unmapping. The compiler
216 * optimizes away unnecessary code if this returns true.
217 */
need_skb_unmap(void)218 static inline int need_skb_unmap(void)
219 {
220 #ifdef CONFIG_NEED_DMA_MAP_STATE
221 return 1;
222 #else
223 return 0;
224 #endif
225 }
226
227 /**
228 * txq_avail - return the number of available slots in a TX queue
229 * @tq: the TX queue
230 *
231 * Returns the number of available descriptors in a TX queue.
232 */
txq_avail(const struct sge_txq * tq)233 static inline unsigned int txq_avail(const struct sge_txq *tq)
234 {
235 return tq->size - 1 - tq->in_use;
236 }
237
238 /**
239 * fl_cap - return the capacity of a Free List
240 * @fl: the Free List
241 *
242 * Returns the capacity of a Free List. The capacity is less than the
243 * size because an Egress Queue Index Unit worth of descriptors needs to
244 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
245 * and CIDX will match and the hardware will think the FL is empty.
246 */
fl_cap(const struct sge_fl * fl)247 static inline unsigned int fl_cap(const struct sge_fl *fl)
248 {
249 return fl->size - FL_PER_EQ_UNIT;
250 }
251
252 /**
253 * fl_starving - return whether a Free List is starving.
254 * @adapter: pointer to the adapter
255 * @fl: the Free List
256 *
257 * Tests specified Free List to see whether the number of buffers
258 * available to the hardware has falled below our "starvation"
259 * threshold.
260 */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)261 static inline bool fl_starving(const struct adapter *adapter,
262 const struct sge_fl *fl)
263 {
264 const struct sge *s = &adapter->sge;
265
266 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267 }
268
269 /**
270 * map_skb - map an skb for DMA to the device
271 * @dev: the egress net device
272 * @skb: the packet to map
273 * @addr: a pointer to the base of the DMA mapping array
274 *
275 * Map an skb for DMA to the device and return an array of DMA addresses.
276 */
map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)277 static int map_skb(struct device *dev, const struct sk_buff *skb,
278 dma_addr_t *addr)
279 {
280 const skb_frag_t *fp, *end;
281 const struct skb_shared_info *si;
282
283 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284 if (dma_mapping_error(dev, *addr))
285 goto out_err;
286
287 si = skb_shinfo(skb);
288 end = &si->frags[si->nr_frags];
289 for (fp = si->frags; fp < end; fp++) {
290 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291 DMA_TO_DEVICE);
292 if (dma_mapping_error(dev, *addr))
293 goto unwind;
294 }
295 return 0;
296
297 unwind:
298 while (fp-- > si->frags)
299 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301
302 out_err:
303 return -ENOMEM;
304 }
305
unmap_sgl(struct device * dev,const struct sk_buff * skb,const struct ulptx_sgl * sgl,const struct sge_txq * tq)306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308 {
309 const struct ulptx_sge_pair *p;
310 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311
312 if (likely(skb_headlen(skb)))
313 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315 else {
316 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318 nfrags--;
319 }
320
321 /*
322 * the complexity below is because of the possibility of a wrap-around
323 * in the middle of an SGL
324 */
325 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327 unmap:
328 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332 p++;
333 } else if ((u8 *)p == (u8 *)tq->stat) {
334 p = (const struct ulptx_sge_pair *)tq->desc;
335 goto unmap;
336 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337 const __be64 *addr = (const __be64 *)tq->desc;
338
339 dma_unmap_page(dev, be64_to_cpu(addr[0]),
340 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341 dma_unmap_page(dev, be64_to_cpu(addr[1]),
342 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343 p = (const struct ulptx_sge_pair *)&addr[2];
344 } else {
345 const __be64 *addr = (const __be64 *)tq->desc;
346
347 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349 dma_unmap_page(dev, be64_to_cpu(addr[0]),
350 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351 p = (const struct ulptx_sge_pair *)&addr[1];
352 }
353 }
354 if (nfrags) {
355 __be64 addr;
356
357 if ((u8 *)p == (u8 *)tq->stat)
358 p = (const struct ulptx_sge_pair *)tq->desc;
359 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360 ? p->addr[0]
361 : *(const __be64 *)tq->desc);
362 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363 DMA_TO_DEVICE);
364 }
365 }
366
367 /**
368 * free_tx_desc - reclaims TX descriptors and their buffers
369 * @adapter: the adapter
370 * @tq: the TX queue to reclaim descriptors from
371 * @n: the number of descriptors to reclaim
372 * @unmap: whether the buffers should be unmapped for DMA
373 *
374 * Reclaims TX descriptors from an SGE TX queue and frees the associated
375 * TX buffers. Called with the TX queue lock held.
376 */
free_tx_desc(struct adapter * adapter,struct sge_txq * tq,unsigned int n,bool unmap)377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378 unsigned int n, bool unmap)
379 {
380 struct tx_sw_desc *sdesc;
381 unsigned int cidx = tq->cidx;
382 struct device *dev = adapter->pdev_dev;
383
384 const int need_unmap = need_skb_unmap() && unmap;
385
386 sdesc = &tq->sdesc[cidx];
387 while (n--) {
388 /*
389 * If we kept a reference to the original TX skb, we need to
390 * unmap it from PCI DMA space (if required) and free it.
391 */
392 if (sdesc->skb) {
393 if (need_unmap)
394 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
395 dev_consume_skb_any(sdesc->skb);
396 sdesc->skb = NULL;
397 }
398
399 sdesc++;
400 if (++cidx == tq->size) {
401 cidx = 0;
402 sdesc = tq->sdesc;
403 }
404 }
405 tq->cidx = cidx;
406 }
407
408 /*
409 * Return the number of reclaimable descriptors in a TX queue.
410 */
reclaimable(const struct sge_txq * tq)411 static inline int reclaimable(const struct sge_txq *tq)
412 {
413 int hw_cidx = be16_to_cpu(tq->stat->cidx);
414 int reclaimable = hw_cidx - tq->cidx;
415 if (reclaimable < 0)
416 reclaimable += tq->size;
417 return reclaimable;
418 }
419
420 /**
421 * reclaim_completed_tx - reclaims completed TX descriptors
422 * @adapter: the adapter
423 * @tq: the TX queue to reclaim completed descriptors from
424 * @unmap: whether the buffers should be unmapped for DMA
425 *
426 * Reclaims TX descriptors that the SGE has indicated it has processed,
427 * and frees the associated buffers if possible. Called with the TX
428 * queue locked.
429 */
reclaim_completed_tx(struct adapter * adapter,struct sge_txq * tq,bool unmap)430 static inline void reclaim_completed_tx(struct adapter *adapter,
431 struct sge_txq *tq,
432 bool unmap)
433 {
434 int avail = reclaimable(tq);
435
436 if (avail) {
437 /*
438 * Limit the amount of clean up work we do at a time to keep
439 * the TX lock hold time O(1).
440 */
441 if (avail > MAX_TX_RECLAIM)
442 avail = MAX_TX_RECLAIM;
443
444 free_tx_desc(adapter, tq, avail, unmap);
445 tq->in_use -= avail;
446 }
447 }
448
449 /**
450 * get_buf_size - return the size of an RX Free List buffer.
451 * @adapter: pointer to the associated adapter
452 * @sdesc: pointer to the software buffer descriptor
453 */
get_buf_size(const struct adapter * adapter,const struct rx_sw_desc * sdesc)454 static inline int get_buf_size(const struct adapter *adapter,
455 const struct rx_sw_desc *sdesc)
456 {
457 const struct sge *s = &adapter->sge;
458
459 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461 }
462
463 /**
464 * free_rx_bufs - free RX buffers on an SGE Free List
465 * @adapter: the adapter
466 * @fl: the SGE Free List to free buffers from
467 * @n: how many buffers to free
468 *
469 * Release the next @n buffers on an SGE Free List RX queue. The
470 * buffers must be made inaccessible to hardware before calling this
471 * function.
472 */
free_rx_bufs(struct adapter * adapter,struct sge_fl * fl,int n)473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474 {
475 while (n--) {
476 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477
478 if (is_buf_mapped(sdesc))
479 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
480 get_buf_size(adapter, sdesc),
481 DMA_FROM_DEVICE);
482 put_page(sdesc->page);
483 sdesc->page = NULL;
484 if (++fl->cidx == fl->size)
485 fl->cidx = 0;
486 fl->avail--;
487 }
488 }
489
490 /**
491 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492 * @adapter: the adapter
493 * @fl: the SGE Free List
494 *
495 * Unmap the current buffer on an SGE Free List RX queue. The
496 * buffer must be made inaccessible to HW before calling this function.
497 *
498 * This is similar to @free_rx_bufs above but does not free the buffer.
499 * Do note that the FL still loses any further access to the buffer.
500 * This is used predominantly to "transfer ownership" of an FL buffer
501 * to another entity (typically an skb's fragment list).
502 */
unmap_rx_buf(struct adapter * adapter,struct sge_fl * fl)503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504 {
505 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506
507 if (is_buf_mapped(sdesc))
508 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
509 get_buf_size(adapter, sdesc),
510 DMA_FROM_DEVICE);
511 sdesc->page = NULL;
512 if (++fl->cidx == fl->size)
513 fl->cidx = 0;
514 fl->avail--;
515 }
516
517 /**
518 * ring_fl_db - righ doorbell on free list
519 * @adapter: the adapter
520 * @fl: the Free List whose doorbell should be rung ...
521 *
522 * Tell the Scatter Gather Engine that there are new free list entries
523 * available.
524 */
ring_fl_db(struct adapter * adapter,struct sge_fl * fl)525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526 {
527 u32 val = adapter->params.arch.sge_fl_db;
528
529 /* The SGE keeps track of its Producer and Consumer Indices in terms
530 * of Egress Queue Units so we can only tell it about integral numbers
531 * of multiples of Free List Entries per Egress Queue Units ...
532 */
533 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534 if (is_t4(adapter->params.chip))
535 val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536 else
537 val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
538
539 /* Make sure all memory writes to the Free List queue are
540 * committed before we tell the hardware about them.
541 */
542 wmb();
543
544 /* If we don't have access to the new User Doorbell (T5+), use
545 * the old doorbell mechanism; otherwise use the new BAR2
546 * mechanism.
547 */
548 if (unlikely(fl->bar2_addr == NULL)) {
549 t4_write_reg(adapter,
550 T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
551 QID_V(fl->cntxt_id) | val);
552 } else {
553 writel(val | QID_V(fl->bar2_qid),
554 fl->bar2_addr + SGE_UDB_KDOORBELL);
555
556 /* This Write memory Barrier will force the write to
557 * the User Doorbell area to be flushed.
558 */
559 wmb();
560 }
561 fl->pend_cred %= FL_PER_EQ_UNIT;
562 }
563 }
564
565 /**
566 * set_rx_sw_desc - initialize software RX buffer descriptor
567 * @sdesc: pointer to the softwore RX buffer descriptor
568 * @page: pointer to the page data structure backing the RX buffer
569 * @dma_addr: PCI DMA address (possibly with low-bit flags)
570 */
set_rx_sw_desc(struct rx_sw_desc * sdesc,struct page * page,dma_addr_t dma_addr)571 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
572 dma_addr_t dma_addr)
573 {
574 sdesc->page = page;
575 sdesc->dma_addr = dma_addr;
576 }
577
578 /*
579 * Support for poisoning RX buffers ...
580 */
581 #define POISON_BUF_VAL -1
582
poison_buf(struct page * page,size_t sz)583 static inline void poison_buf(struct page *page, size_t sz)
584 {
585 #if POISON_BUF_VAL >= 0
586 memset(page_address(page), POISON_BUF_VAL, sz);
587 #endif
588 }
589
590 /**
591 * refill_fl - refill an SGE RX buffer ring
592 * @adapter: the adapter
593 * @fl: the Free List ring to refill
594 * @n: the number of new buffers to allocate
595 * @gfp: the gfp flags for the allocations
596 *
597 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
598 * allocated with the supplied gfp flags. The caller must assure that
599 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
600 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
601 * of buffers allocated. If afterwards the queue is found critically low,
602 * mark it as starving in the bitmap of starving FLs.
603 */
refill_fl(struct adapter * adapter,struct sge_fl * fl,int n,gfp_t gfp)604 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
605 int n, gfp_t gfp)
606 {
607 struct sge *s = &adapter->sge;
608 struct page *page;
609 dma_addr_t dma_addr;
610 unsigned int cred = fl->avail;
611 __be64 *d = &fl->desc[fl->pidx];
612 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
613
614 /*
615 * Sanity: ensure that the result of adding n Free List buffers
616 * won't result in wrapping the SGE's Producer Index around to
617 * it's Consumer Index thereby indicating an empty Free List ...
618 */
619 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
620
621 gfp |= __GFP_NOWARN;
622
623 /*
624 * If we support large pages, prefer large buffers and fail over to
625 * small pages if we can't allocate large pages to satisfy the refill.
626 * If we don't support large pages, drop directly into the small page
627 * allocation code.
628 */
629 if (s->fl_pg_order == 0)
630 goto alloc_small_pages;
631
632 while (n) {
633 page = __dev_alloc_pages(gfp, s->fl_pg_order);
634 if (unlikely(!page)) {
635 /*
636 * We've failed inour attempt to allocate a "large
637 * page". Fail over to the "small page" allocation
638 * below.
639 */
640 fl->large_alloc_failed++;
641 break;
642 }
643 poison_buf(page, PAGE_SIZE << s->fl_pg_order);
644
645 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
646 PAGE_SIZE << s->fl_pg_order,
647 DMA_FROM_DEVICE);
648 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
649 /*
650 * We've run out of DMA mapping space. Free up the
651 * buffer and return with what we've managed to put
652 * into the free list. We don't want to fail over to
653 * the small page allocation below in this case
654 * because DMA mapping resources are typically
655 * critical resources once they become scarse.
656 */
657 __free_pages(page, s->fl_pg_order);
658 goto out;
659 }
660 dma_addr |= RX_LARGE_BUF;
661 *d++ = cpu_to_be64(dma_addr);
662
663 set_rx_sw_desc(sdesc, page, dma_addr);
664 sdesc++;
665
666 fl->avail++;
667 if (++fl->pidx == fl->size) {
668 fl->pidx = 0;
669 sdesc = fl->sdesc;
670 d = fl->desc;
671 }
672 n--;
673 }
674
675 alloc_small_pages:
676 while (n--) {
677 page = __dev_alloc_page(gfp);
678 if (unlikely(!page)) {
679 fl->alloc_failed++;
680 break;
681 }
682 poison_buf(page, PAGE_SIZE);
683
684 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
685 DMA_FROM_DEVICE);
686 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
687 put_page(page);
688 break;
689 }
690 *d++ = cpu_to_be64(dma_addr);
691
692 set_rx_sw_desc(sdesc, page, dma_addr);
693 sdesc++;
694
695 fl->avail++;
696 if (++fl->pidx == fl->size) {
697 fl->pidx = 0;
698 sdesc = fl->sdesc;
699 d = fl->desc;
700 }
701 }
702
703 out:
704 /*
705 * Update our accounting state to incorporate the new Free List
706 * buffers, tell the hardware about them and return the number of
707 * buffers which we were able to allocate.
708 */
709 cred = fl->avail - cred;
710 fl->pend_cred += cred;
711 ring_fl_db(adapter, fl);
712
713 if (unlikely(fl_starving(adapter, fl))) {
714 smp_wmb();
715 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
716 }
717
718 return cred;
719 }
720
721 /*
722 * Refill a Free List to its capacity or the Maximum Refill Increment,
723 * whichever is smaller ...
724 */
__refill_fl(struct adapter * adapter,struct sge_fl * fl)725 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
726 {
727 refill_fl(adapter, fl,
728 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
729 GFP_ATOMIC);
730 }
731
732 /**
733 * alloc_ring - allocate resources for an SGE descriptor ring
734 * @dev: the PCI device's core device
735 * @nelem: the number of descriptors
736 * @hwsize: the size of each hardware descriptor
737 * @swsize: the size of each software descriptor
738 * @busaddrp: the physical PCI bus address of the allocated ring
739 * @swringp: return address pointer for software ring
740 * @stat_size: extra space in hardware ring for status information
741 *
742 * Allocates resources for an SGE descriptor ring, such as TX queues,
743 * free buffer lists, response queues, etc. Each SGE ring requires
744 * space for its hardware descriptors plus, optionally, space for software
745 * state associated with each hardware entry (the metadata). The function
746 * returns three values: the virtual address for the hardware ring (the
747 * return value of the function), the PCI bus address of the hardware
748 * ring (in *busaddrp), and the address of the software ring (in swringp).
749 * Both the hardware and software rings are returned zeroed out.
750 */
alloc_ring(struct device * dev,size_t nelem,size_t hwsize,size_t swsize,dma_addr_t * busaddrp,void * swringp,size_t stat_size)751 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
752 size_t swsize, dma_addr_t *busaddrp, void *swringp,
753 size_t stat_size)
754 {
755 /*
756 * Allocate the hardware ring and PCI DMA bus address space for said.
757 */
758 size_t hwlen = nelem * hwsize + stat_size;
759 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
760
761 if (!hwring)
762 return NULL;
763
764 /*
765 * If the caller wants a software ring, allocate it and return a
766 * pointer to it in *swringp.
767 */
768 BUG_ON((swsize != 0) != (swringp != NULL));
769 if (swsize) {
770 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
771
772 if (!swring) {
773 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
774 return NULL;
775 }
776 *(void **)swringp = swring;
777 }
778
779 return hwring;
780 }
781
782 /**
783 * sgl_len - calculates the size of an SGL of the given capacity
784 * @n: the number of SGL entries
785 *
786 * Calculates the number of flits (8-byte units) needed for a Direct
787 * Scatter/Gather List that can hold the given number of entries.
788 */
sgl_len(unsigned int n)789 static inline unsigned int sgl_len(unsigned int n)
790 {
791 /*
792 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
793 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
794 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
795 * repeated sequences of { Length[i], Length[i+1], Address[i],
796 * Address[i+1] } (this ensures that all addresses are on 64-bit
797 * boundaries). If N is even, then Length[N+1] should be set to 0 and
798 * Address[N+1] is omitted.
799 *
800 * The following calculation incorporates all of the above. It's
801 * somewhat hard to follow but, briefly: the "+2" accounts for the
802 * first two flits which include the DSGL header, Length0 and
803 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
804 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
805 * finally the "+((n-1)&1)" adds the one remaining flit needed if
806 * (n-1) is odd ...
807 */
808 n--;
809 return (3 * n) / 2 + (n & 1) + 2;
810 }
811
812 /**
813 * flits_to_desc - returns the num of TX descriptors for the given flits
814 * @flits: the number of flits
815 *
816 * Returns the number of TX descriptors needed for the supplied number
817 * of flits.
818 */
flits_to_desc(unsigned int flits)819 static inline unsigned int flits_to_desc(unsigned int flits)
820 {
821 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
822 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
823 }
824
825 /**
826 * is_eth_imm - can an Ethernet packet be sent as immediate data?
827 * @skb: the packet
828 *
829 * Returns whether an Ethernet packet is small enough to fit completely as
830 * immediate data.
831 */
is_eth_imm(const struct sk_buff * skb)832 static inline int is_eth_imm(const struct sk_buff *skb)
833 {
834 /*
835 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
836 * which does not accommodate immediate data. We could dike out all
837 * of the support code for immediate data but that would tie our hands
838 * too much if we ever want to enhace the firmware. It would also
839 * create more differences between the PF and VF Drivers.
840 */
841 return false;
842 }
843
844 /**
845 * calc_tx_flits - calculate the number of flits for a packet TX WR
846 * @skb: the packet
847 *
848 * Returns the number of flits needed for a TX Work Request for the
849 * given Ethernet packet, including the needed WR and CPL headers.
850 */
calc_tx_flits(const struct sk_buff * skb)851 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
852 {
853 unsigned int flits;
854
855 /*
856 * If the skb is small enough, we can pump it out as a work request
857 * with only immediate data. In that case we just have to have the
858 * TX Packet header plus the skb data in the Work Request.
859 */
860 if (is_eth_imm(skb))
861 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
862 sizeof(__be64));
863
864 /*
865 * Otherwise, we're going to have to construct a Scatter gather list
866 * of the skb body and fragments. We also include the flits necessary
867 * for the TX Packet Work Request and CPL. We always have a firmware
868 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
869 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
870 * message or, if we're doing a Large Send Offload, an LSO CPL message
871 * with an embedded TX Packet Write CPL message.
872 */
873 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
874 if (skb_shinfo(skb)->gso_size)
875 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
876 sizeof(struct cpl_tx_pkt_lso_core) +
877 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
878 else
879 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
880 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
881 return flits;
882 }
883
884 /**
885 * write_sgl - populate a Scatter/Gather List for a packet
886 * @skb: the packet
887 * @tq: the TX queue we are writing into
888 * @sgl: starting location for writing the SGL
889 * @end: points right after the end of the SGL
890 * @start: start offset into skb main-body data to include in the SGL
891 * @addr: the list of DMA bus addresses for the SGL elements
892 *
893 * Generates a Scatter/Gather List for the buffers that make up a packet.
894 * The caller must provide adequate space for the SGL that will be written.
895 * The SGL includes all of the packet's page fragments and the data in its
896 * main body except for the first @start bytes. @pos must be 16-byte
897 * aligned and within a TX descriptor with available space. @end points
898 * write after the end of the SGL but does not account for any potential
899 * wrap around, i.e., @end > @tq->stat.
900 */
write_sgl(const struct sk_buff * skb,struct sge_txq * tq,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)901 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
902 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
903 const dma_addr_t *addr)
904 {
905 unsigned int i, len;
906 struct ulptx_sge_pair *to;
907 const struct skb_shared_info *si = skb_shinfo(skb);
908 unsigned int nfrags = si->nr_frags;
909 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
910
911 len = skb_headlen(skb) - start;
912 if (likely(len)) {
913 sgl->len0 = htonl(len);
914 sgl->addr0 = cpu_to_be64(addr[0] + start);
915 nfrags++;
916 } else {
917 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
918 sgl->addr0 = cpu_to_be64(addr[1]);
919 }
920
921 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
922 ULPTX_NSGE_V(nfrags));
923 if (likely(--nfrags == 0))
924 return;
925 /*
926 * Most of the complexity below deals with the possibility we hit the
927 * end of the queue in the middle of writing the SGL. For this case
928 * only we create the SGL in a temporary buffer and then copy it.
929 */
930 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
931
932 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
933 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
934 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
935 to->addr[0] = cpu_to_be64(addr[i]);
936 to->addr[1] = cpu_to_be64(addr[++i]);
937 }
938 if (nfrags) {
939 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
940 to->len[1] = cpu_to_be32(0);
941 to->addr[0] = cpu_to_be64(addr[i + 1]);
942 }
943 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
944 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
945
946 if (likely(part0))
947 memcpy(sgl->sge, buf, part0);
948 part1 = (u8 *)end - (u8 *)tq->stat;
949 memcpy(tq->desc, (u8 *)buf + part0, part1);
950 end = (void *)tq->desc + part1;
951 }
952 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
953 *end = 0;
954 }
955
956 /**
957 * ring_tx_db - check and potentially ring a TX queue's doorbell
958 * @adapter: the adapter
959 * @tq: the TX queue
960 * @n: number of new descriptors to give to HW
961 *
962 * Ring the doorbel for a TX queue.
963 */
ring_tx_db(struct adapter * adapter,struct sge_txq * tq,int n)964 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
965 int n)
966 {
967 /* Make sure that all writes to the TX Descriptors are committed
968 * before we tell the hardware about them.
969 */
970 wmb();
971
972 /* If we don't have access to the new User Doorbell (T5+), use the old
973 * doorbell mechanism; otherwise use the new BAR2 mechanism.
974 */
975 if (unlikely(tq->bar2_addr == NULL)) {
976 u32 val = PIDX_V(n);
977
978 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
979 QID_V(tq->cntxt_id) | val);
980 } else {
981 u32 val = PIDX_T5_V(n);
982
983 /* T4 and later chips share the same PIDX field offset within
984 * the doorbell, but T5 and later shrank the field in order to
985 * gain a bit for Doorbell Priority. The field was absurdly
986 * large in the first place (14 bits) so we just use the T5
987 * and later limits and warn if a Queue ID is too large.
988 */
989 WARN_ON(val & DBPRIO_F);
990
991 /* If we're only writing a single Egress Unit and the BAR2
992 * Queue ID is 0, we can use the Write Combining Doorbell
993 * Gather Buffer; otherwise we use the simple doorbell.
994 */
995 if (n == 1 && tq->bar2_qid == 0) {
996 unsigned int index = (tq->pidx
997 ? (tq->pidx - 1)
998 : (tq->size - 1));
999 __be64 *src = (__be64 *)&tq->desc[index];
1000 __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1001 SGE_UDB_WCDOORBELL);
1002 unsigned int count = EQ_UNIT / sizeof(__be64);
1003
1004 /* Copy the TX Descriptor in a tight loop in order to
1005 * try to get it to the adapter in a single Write
1006 * Combined transfer on the PCI-E Bus. If the Write
1007 * Combine fails (say because of an interrupt, etc.)
1008 * the hardware will simply take the last write as a
1009 * simple doorbell write with a PIDX Increment of 1
1010 * and will fetch the TX Descriptor from memory via
1011 * DMA.
1012 */
1013 while (count) {
1014 /* the (__force u64) is because the compiler
1015 * doesn't understand the endian swizzling
1016 * going on
1017 */
1018 writeq((__force u64)*src, dst);
1019 src++;
1020 dst++;
1021 count--;
1022 }
1023 } else
1024 writel(val | QID_V(tq->bar2_qid),
1025 tq->bar2_addr + SGE_UDB_KDOORBELL);
1026
1027 /* This Write Memory Barrier will force the write to the User
1028 * Doorbell area to be flushed. This is needed to prevent
1029 * writes on different CPUs for the same queue from hitting
1030 * the adapter out of order. This is required when some Work
1031 * Requests take the Write Combine Gather Buffer path (user
1032 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1033 * take the traditional path where we simply increment the
1034 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1035 * hardware DMA read the actual Work Request.
1036 */
1037 wmb();
1038 }
1039 }
1040
1041 /**
1042 * inline_tx_skb - inline a packet's data into TX descriptors
1043 * @skb: the packet
1044 * @tq: the TX queue where the packet will be inlined
1045 * @pos: starting position in the TX queue to inline the packet
1046 *
1047 * Inline a packet's contents directly into TX descriptors, starting at
1048 * the given position within the TX DMA ring.
1049 * Most of the complexity of this operation is dealing with wrap arounds
1050 * in the middle of the packet we want to inline.
1051 */
inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * tq,void * pos)1052 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1053 void *pos)
1054 {
1055 u64 *p;
1056 int left = (void *)tq->stat - pos;
1057
1058 if (likely(skb->len <= left)) {
1059 if (likely(!skb->data_len))
1060 skb_copy_from_linear_data(skb, pos, skb->len);
1061 else
1062 skb_copy_bits(skb, 0, pos, skb->len);
1063 pos += skb->len;
1064 } else {
1065 skb_copy_bits(skb, 0, pos, left);
1066 skb_copy_bits(skb, left, tq->desc, skb->len - left);
1067 pos = (void *)tq->desc + (skb->len - left);
1068 }
1069
1070 /* 0-pad to multiple of 16 */
1071 p = PTR_ALIGN(pos, 8);
1072 if ((uintptr_t)p & 8)
1073 *p = 0;
1074 }
1075
1076 /*
1077 * Figure out what HW csum a packet wants and return the appropriate control
1078 * bits.
1079 */
hwcsum(enum chip_type chip,const struct sk_buff * skb)1080 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1081 {
1082 int csum_type;
1083 const struct iphdr *iph = ip_hdr(skb);
1084
1085 if (iph->version == 4) {
1086 if (iph->protocol == IPPROTO_TCP)
1087 csum_type = TX_CSUM_TCPIP;
1088 else if (iph->protocol == IPPROTO_UDP)
1089 csum_type = TX_CSUM_UDPIP;
1090 else {
1091 nocsum:
1092 /*
1093 * unknown protocol, disable HW csum
1094 * and hope a bad packet is detected
1095 */
1096 return TXPKT_L4CSUM_DIS_F;
1097 }
1098 } else {
1099 /*
1100 * this doesn't work with extension headers
1101 */
1102 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1103
1104 if (ip6h->nexthdr == IPPROTO_TCP)
1105 csum_type = TX_CSUM_TCPIP6;
1106 else if (ip6h->nexthdr == IPPROTO_UDP)
1107 csum_type = TX_CSUM_UDPIP6;
1108 else
1109 goto nocsum;
1110 }
1111
1112 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1113 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1114 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1115
1116 if (chip <= CHELSIO_T5)
1117 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1118 else
1119 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1120 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1121 } else {
1122 int start = skb_transport_offset(skb);
1123
1124 return TXPKT_CSUM_TYPE_V(csum_type) |
1125 TXPKT_CSUM_START_V(start) |
1126 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1127 }
1128 }
1129
1130 /*
1131 * Stop an Ethernet TX queue and record that state change.
1132 */
txq_stop(struct sge_eth_txq * txq)1133 static void txq_stop(struct sge_eth_txq *txq)
1134 {
1135 netif_tx_stop_queue(txq->txq);
1136 txq->q.stops++;
1137 }
1138
1139 /*
1140 * Advance our software state for a TX queue by adding n in use descriptors.
1141 */
txq_advance(struct sge_txq * tq,unsigned int n)1142 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1143 {
1144 tq->in_use += n;
1145 tq->pidx += n;
1146 if (tq->pidx >= tq->size)
1147 tq->pidx -= tq->size;
1148 }
1149
1150 /**
1151 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1152 * @skb: the packet
1153 * @dev: the egress net device
1154 *
1155 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1156 */
t4vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)1157 netdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1158 {
1159 u32 wr_mid;
1160 u64 cntrl, *end;
1161 int qidx, credits, max_pkt_len;
1162 unsigned int flits, ndesc;
1163 struct adapter *adapter;
1164 struct sge_eth_txq *txq;
1165 const struct port_info *pi;
1166 struct fw_eth_tx_pkt_vm_wr *wr;
1167 struct cpl_tx_pkt_core *cpl;
1168 const struct skb_shared_info *ssi;
1169 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1170 const size_t fw_hdr_copy_len = sizeof(wr->firmware);
1171
1172 /*
1173 * The chip minimum packet length is 10 octets but the firmware
1174 * command that we are using requires that we copy the Ethernet header
1175 * (including the VLAN tag) into the header so we reject anything
1176 * smaller than that ...
1177 */
1178 if (unlikely(skb->len < fw_hdr_copy_len))
1179 goto out_free;
1180
1181 /* Discard the packet if the length is greater than mtu */
1182 max_pkt_len = ETH_HLEN + dev->mtu;
1183 if (skb_vlan_tagged(skb))
1184 max_pkt_len += VLAN_HLEN;
1185 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1186 goto out_free;
1187
1188 /*
1189 * Figure out which TX Queue we're going to use.
1190 */
1191 pi = netdev_priv(dev);
1192 adapter = pi->adapter;
1193 qidx = skb_get_queue_mapping(skb);
1194 BUG_ON(qidx >= pi->nqsets);
1195 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1196
1197 if (pi->vlan_id && !skb_vlan_tag_present(skb))
1198 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1199 pi->vlan_id);
1200
1201 /*
1202 * Take this opportunity to reclaim any TX Descriptors whose DMA
1203 * transfers have completed.
1204 */
1205 reclaim_completed_tx(adapter, &txq->q, true);
1206
1207 /*
1208 * Calculate the number of flits and TX Descriptors we're going to
1209 * need along with how many TX Descriptors will be left over after
1210 * we inject our Work Request.
1211 */
1212 flits = calc_tx_flits(skb);
1213 ndesc = flits_to_desc(flits);
1214 credits = txq_avail(&txq->q) - ndesc;
1215
1216 if (unlikely(credits < 0)) {
1217 /*
1218 * Not enough room for this packet's Work Request. Stop the
1219 * TX Queue and return a "busy" condition. The queue will get
1220 * started later on when the firmware informs us that space
1221 * has opened up.
1222 */
1223 txq_stop(txq);
1224 dev_err(adapter->pdev_dev,
1225 "%s: TX ring %u full while queue awake!\n",
1226 dev->name, qidx);
1227 return NETDEV_TX_BUSY;
1228 }
1229
1230 if (!is_eth_imm(skb) &&
1231 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1232 /*
1233 * We need to map the skb into PCI DMA space (because it can't
1234 * be in-lined directly into the Work Request) and the mapping
1235 * operation failed. Record the error and drop the packet.
1236 */
1237 txq->mapping_err++;
1238 goto out_free;
1239 }
1240
1241 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1242 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1243 /*
1244 * After we're done injecting the Work Request for this
1245 * packet, we'll be below our "stop threshold" so stop the TX
1246 * Queue now and schedule a request for an SGE Egress Queue
1247 * Update message. The queue will get started later on when
1248 * the firmware processes this Work Request and sends us an
1249 * Egress Queue Status Update message indicating that space
1250 * has opened up.
1251 */
1252 txq_stop(txq);
1253 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1254 }
1255
1256 /*
1257 * Start filling in our Work Request. Note that we do _not_ handle
1258 * the WR Header wrapping around the TX Descriptor Ring. If our
1259 * maximum header size ever exceeds one TX Descriptor, we'll need to
1260 * do something else here.
1261 */
1262 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1263 wr = (void *)&txq->q.desc[txq->q.pidx];
1264 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1265 wr->r3[0] = cpu_to_be32(0);
1266 wr->r3[1] = cpu_to_be32(0);
1267 skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1268 end = (u64 *)wr + flits;
1269
1270 /*
1271 * If this is a Large Send Offload packet we'll put in an LSO CPL
1272 * message with an encapsulated TX Packet CPL message. Otherwise we
1273 * just use a TX Packet CPL message.
1274 */
1275 ssi = skb_shinfo(skb);
1276 if (ssi->gso_size) {
1277 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1278 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1279 int l3hdr_len = skb_network_header_len(skb);
1280 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1281
1282 wr->op_immdlen =
1283 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1284 FW_WR_IMMDLEN_V(sizeof(*lso) +
1285 sizeof(*cpl)));
1286 /*
1287 * Fill in the LSO CPL message.
1288 */
1289 lso->lso_ctrl =
1290 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1291 LSO_FIRST_SLICE_F |
1292 LSO_LAST_SLICE_F |
1293 LSO_IPV6_V(v6) |
1294 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1295 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1296 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1297 lso->ipid_ofst = cpu_to_be16(0);
1298 lso->mss = cpu_to_be16(ssi->gso_size);
1299 lso->seqno_offset = cpu_to_be32(0);
1300 if (is_t4(adapter->params.chip))
1301 lso->len = cpu_to_be32(skb->len);
1302 else
1303 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1304
1305 /*
1306 * Set up TX Packet CPL pointer, control word and perform
1307 * accounting.
1308 */
1309 cpl = (void *)(lso + 1);
1310
1311 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1312 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1313 else
1314 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1315
1316 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1317 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1318 TXPKT_IPHDR_LEN_V(l3hdr_len);
1319 txq->tso++;
1320 txq->tx_cso += ssi->gso_segs;
1321 } else {
1322 int len;
1323
1324 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1325 wr->op_immdlen =
1326 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1327 FW_WR_IMMDLEN_V(len));
1328
1329 /*
1330 * Set up TX Packet CPL pointer, control word and perform
1331 * accounting.
1332 */
1333 cpl = (void *)(wr + 1);
1334 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1335 cntrl = hwcsum(adapter->params.chip, skb) |
1336 TXPKT_IPCSUM_DIS_F;
1337 txq->tx_cso++;
1338 } else
1339 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1340 }
1341
1342 /*
1343 * If there's a VLAN tag present, add that to the list of things to
1344 * do in this Work Request.
1345 */
1346 if (skb_vlan_tag_present(skb)) {
1347 txq->vlan_ins++;
1348 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1349 }
1350
1351 /*
1352 * Fill in the TX Packet CPL message header.
1353 */
1354 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1355 TXPKT_INTF_V(pi->port_id) |
1356 TXPKT_PF_V(0));
1357 cpl->pack = cpu_to_be16(0);
1358 cpl->len = cpu_to_be16(skb->len);
1359 cpl->ctrl1 = cpu_to_be64(cntrl);
1360
1361 #ifdef T4_TRACE
1362 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1363 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1364 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1365 #endif
1366
1367 /*
1368 * Fill in the body of the TX Packet CPL message with either in-lined
1369 * data or a Scatter/Gather List.
1370 */
1371 if (is_eth_imm(skb)) {
1372 /*
1373 * In-line the packet's data and free the skb since we don't
1374 * need it any longer.
1375 */
1376 inline_tx_skb(skb, &txq->q, cpl + 1);
1377 dev_consume_skb_any(skb);
1378 } else {
1379 /*
1380 * Write the skb's Scatter/Gather list into the TX Packet CPL
1381 * message and retain a pointer to the skb so we can free it
1382 * later when its DMA completes. (We store the skb pointer
1383 * in the Software Descriptor corresponding to the last TX
1384 * Descriptor used by the Work Request.)
1385 *
1386 * The retained skb will be freed when the corresponding TX
1387 * Descriptors are reclaimed after their DMAs complete.
1388 * However, this could take quite a while since, in general,
1389 * the hardware is set up to be lazy about sending DMA
1390 * completion notifications to us and we mostly perform TX
1391 * reclaims in the transmit routine.
1392 *
1393 * This is good for performamce but means that we rely on new
1394 * TX packets arriving to run the destructors of completed
1395 * packets, which open up space in their sockets' send queues.
1396 * Sometimes we do not get such new packets causing TX to
1397 * stall. A single UDP transmitter is a good example of this
1398 * situation. We have a clean up timer that periodically
1399 * reclaims completed packets but it doesn't run often enough
1400 * (nor do we want it to) to prevent lengthy stalls. A
1401 * solution to this problem is to run the destructor early,
1402 * after the packet is queued but before it's DMAd. A con is
1403 * that we lie to socket memory accounting, but the amount of
1404 * extra memory is reasonable (limited by the number of TX
1405 * descriptors), the packets do actually get freed quickly by
1406 * new packets almost always, and for protocols like TCP that
1407 * wait for acks to really free up the data the extra memory
1408 * is even less. On the positive side we run the destructors
1409 * on the sending CPU rather than on a potentially different
1410 * completing CPU, usually a good thing.
1411 *
1412 * Run the destructor before telling the DMA engine about the
1413 * packet to make sure it doesn't complete and get freed
1414 * prematurely.
1415 */
1416 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1417 struct sge_txq *tq = &txq->q;
1418 int last_desc;
1419
1420 /*
1421 * If the Work Request header was an exact multiple of our TX
1422 * Descriptor length, then it's possible that the starting SGL
1423 * pointer lines up exactly with the end of our TX Descriptor
1424 * ring. If that's the case, wrap around to the beginning
1425 * here ...
1426 */
1427 if (unlikely((void *)sgl == (void *)tq->stat)) {
1428 sgl = (void *)tq->desc;
1429 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1430 }
1431
1432 write_sgl(skb, tq, sgl, end, 0, addr);
1433 skb_orphan(skb);
1434
1435 last_desc = tq->pidx + ndesc - 1;
1436 if (last_desc >= tq->size)
1437 last_desc -= tq->size;
1438 tq->sdesc[last_desc].skb = skb;
1439 tq->sdesc[last_desc].sgl = sgl;
1440 }
1441
1442 /*
1443 * Advance our internal TX Queue state, tell the hardware about
1444 * the new TX descriptors and return success.
1445 */
1446 txq_advance(&txq->q, ndesc);
1447 netif_trans_update(dev);
1448 ring_tx_db(adapter, &txq->q, ndesc);
1449 return NETDEV_TX_OK;
1450
1451 out_free:
1452 /*
1453 * An error of some sort happened. Free the TX skb and tell the
1454 * OS that we've "dealt" with the packet ...
1455 */
1456 dev_kfree_skb_any(skb);
1457 return NETDEV_TX_OK;
1458 }
1459
1460 /**
1461 * copy_frags - copy fragments from gather list into skb_shared_info
1462 * @skb: destination skb
1463 * @gl: source internal packet gather list
1464 * @offset: packet start offset in first page
1465 *
1466 * Copy an internal packet gather list into a Linux skb_shared_info
1467 * structure.
1468 */
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)1469 static inline void copy_frags(struct sk_buff *skb,
1470 const struct pkt_gl *gl,
1471 unsigned int offset)
1472 {
1473 int i;
1474
1475 /* usually there's just one frag */
1476 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1477 gl->frags[0].offset + offset,
1478 gl->frags[0].size - offset);
1479 skb_shinfo(skb)->nr_frags = gl->nfrags;
1480 for (i = 1; i < gl->nfrags; i++)
1481 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1482 gl->frags[i].offset,
1483 gl->frags[i].size);
1484
1485 /* get a reference to the last page, we don't own it */
1486 get_page(gl->frags[gl->nfrags - 1].page);
1487 }
1488
1489 /**
1490 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1491 * @gl: the gather list
1492 * @skb_len: size of sk_buff main body if it carries fragments
1493 * @pull_len: amount of data to move to the sk_buff's main body
1494 *
1495 * Builds an sk_buff from the given packet gather list. Returns the
1496 * sk_buff or %NULL if sk_buff allocation failed.
1497 */
t4vf_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)1498 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1499 unsigned int skb_len,
1500 unsigned int pull_len)
1501 {
1502 struct sk_buff *skb;
1503
1504 /*
1505 * If the ingress packet is small enough, allocate an skb large enough
1506 * for all of the data and copy it inline. Otherwise, allocate an skb
1507 * with enough room to pull in the header and reference the rest of
1508 * the data via the skb fragment list.
1509 *
1510 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1511 * buff! size, which is expected since buffers are at least
1512 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1513 * fragment.
1514 */
1515 if (gl->tot_len <= RX_COPY_THRES) {
1516 /* small packets have only one fragment */
1517 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1518 if (unlikely(!skb))
1519 goto out;
1520 __skb_put(skb, gl->tot_len);
1521 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1522 } else {
1523 skb = alloc_skb(skb_len, GFP_ATOMIC);
1524 if (unlikely(!skb))
1525 goto out;
1526 __skb_put(skb, pull_len);
1527 skb_copy_to_linear_data(skb, gl->va, pull_len);
1528
1529 copy_frags(skb, gl, pull_len);
1530 skb->len = gl->tot_len;
1531 skb->data_len = skb->len - pull_len;
1532 skb->truesize += skb->data_len;
1533 }
1534
1535 out:
1536 return skb;
1537 }
1538
1539 /**
1540 * t4vf_pktgl_free - free a packet gather list
1541 * @gl: the gather list
1542 *
1543 * Releases the pages of a packet gather list. We do not own the last
1544 * page on the list and do not free it.
1545 */
t4vf_pktgl_free(const struct pkt_gl * gl)1546 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1547 {
1548 int frag;
1549
1550 frag = gl->nfrags - 1;
1551 while (frag--)
1552 put_page(gl->frags[frag].page);
1553 }
1554
1555 /**
1556 * do_gro - perform Generic Receive Offload ingress packet processing
1557 * @rxq: ingress RX Ethernet Queue
1558 * @gl: gather list for ingress packet
1559 * @pkt: CPL header for last packet fragment
1560 *
1561 * Perform Generic Receive Offload (GRO) ingress packet processing.
1562 * We use the standard Linux GRO interfaces for this.
1563 */
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt)1564 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1565 const struct cpl_rx_pkt *pkt)
1566 {
1567 struct adapter *adapter = rxq->rspq.adapter;
1568 struct sge *s = &adapter->sge;
1569 struct port_info *pi;
1570 int ret;
1571 struct sk_buff *skb;
1572
1573 skb = napi_get_frags(&rxq->rspq.napi);
1574 if (unlikely(!skb)) {
1575 t4vf_pktgl_free(gl);
1576 rxq->stats.rx_drops++;
1577 return;
1578 }
1579
1580 copy_frags(skb, gl, s->pktshift);
1581 skb->len = gl->tot_len - s->pktshift;
1582 skb->data_len = skb->len;
1583 skb->truesize += skb->data_len;
1584 skb->ip_summed = CHECKSUM_UNNECESSARY;
1585 skb_record_rx_queue(skb, rxq->rspq.idx);
1586 pi = netdev_priv(skb->dev);
1587
1588 if (pkt->vlan_ex && !pi->vlan_id) {
1589 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1590 be16_to_cpu(pkt->vlan));
1591 rxq->stats.vlan_ex++;
1592 }
1593 ret = napi_gro_frags(&rxq->rspq.napi);
1594
1595 if (ret == GRO_HELD)
1596 rxq->stats.lro_pkts++;
1597 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1598 rxq->stats.lro_merged++;
1599 rxq->stats.pkts++;
1600 rxq->stats.rx_cso++;
1601 }
1602
1603 /**
1604 * t4vf_ethrx_handler - process an ingress ethernet packet
1605 * @rspq: the response queue that received the packet
1606 * @rsp: the response queue descriptor holding the RX_PKT message
1607 * @gl: the gather list of packet fragments
1608 *
1609 * Process an ingress ethernet packet and deliver it to the stack.
1610 */
t4vf_ethrx_handler(struct sge_rspq * rspq,const __be64 * rsp,const struct pkt_gl * gl)1611 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1612 const struct pkt_gl *gl)
1613 {
1614 struct sk_buff *skb;
1615 const struct cpl_rx_pkt *pkt = (void *)rsp;
1616 bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1617 (rspq->netdev->features & NETIF_F_RXCSUM);
1618 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1619 struct adapter *adapter = rspq->adapter;
1620 struct sge *s = &adapter->sge;
1621 struct port_info *pi;
1622
1623 /*
1624 * If this is a good TCP packet and we have Generic Receive Offload
1625 * enabled, handle the packet in the GRO path.
1626 */
1627 if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1628 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1629 !pkt->ip_frag) {
1630 do_gro(rxq, gl, pkt);
1631 return 0;
1632 }
1633
1634 /*
1635 * Convert the Packet Gather List into an skb.
1636 */
1637 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1638 if (unlikely(!skb)) {
1639 t4vf_pktgl_free(gl);
1640 rxq->stats.rx_drops++;
1641 return 0;
1642 }
1643 __skb_pull(skb, s->pktshift);
1644 skb->protocol = eth_type_trans(skb, rspq->netdev);
1645 skb_record_rx_queue(skb, rspq->idx);
1646 pi = netdev_priv(skb->dev);
1647 rxq->stats.pkts++;
1648
1649 if (csum_ok && !pkt->err_vec &&
1650 (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1651 if (!pkt->ip_frag) {
1652 skb->ip_summed = CHECKSUM_UNNECESSARY;
1653 rxq->stats.rx_cso++;
1654 } else if (pkt->l2info & htonl(RXF_IP_F)) {
1655 __sum16 c = (__force __sum16)pkt->csum;
1656 skb->csum = csum_unfold(c);
1657 skb->ip_summed = CHECKSUM_COMPLETE;
1658 rxq->stats.rx_cso++;
1659 }
1660 } else
1661 skb_checksum_none_assert(skb);
1662
1663 if (pkt->vlan_ex && !pi->vlan_id) {
1664 rxq->stats.vlan_ex++;
1665 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1666 be16_to_cpu(pkt->vlan));
1667 }
1668
1669 netif_receive_skb(skb);
1670
1671 return 0;
1672 }
1673
1674 /**
1675 * is_new_response - check if a response is newly written
1676 * @rc: the response control descriptor
1677 * @rspq: the response queue
1678 *
1679 * Returns true if a response descriptor contains a yet unprocessed
1680 * response.
1681 */
is_new_response(const struct rsp_ctrl * rc,const struct sge_rspq * rspq)1682 static inline bool is_new_response(const struct rsp_ctrl *rc,
1683 const struct sge_rspq *rspq)
1684 {
1685 return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1686 }
1687
1688 /**
1689 * restore_rx_bufs - put back a packet's RX buffers
1690 * @gl: the packet gather list
1691 * @fl: the SGE Free List
1692 * @frags: how many fragments in @si
1693 *
1694 * Called when we find out that the current packet, @si, can't be
1695 * processed right away for some reason. This is a very rare event and
1696 * there's no effort to make this suspension/resumption process
1697 * particularly efficient.
1698 *
1699 * We implement the suspension by putting all of the RX buffers associated
1700 * with the current packet back on the original Free List. The buffers
1701 * have already been unmapped and are left unmapped, we mark them as
1702 * unmapped in order to prevent further unmapping attempts. (Effectively
1703 * this function undoes the series of @unmap_rx_buf calls which were done
1704 * to create the current packet's gather list.) This leaves us ready to
1705 * restart processing of the packet the next time we start processing the
1706 * RX Queue ...
1707 */
restore_rx_bufs(const struct pkt_gl * gl,struct sge_fl * fl,int frags)1708 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1709 int frags)
1710 {
1711 struct rx_sw_desc *sdesc;
1712
1713 while (frags--) {
1714 if (fl->cidx == 0)
1715 fl->cidx = fl->size - 1;
1716 else
1717 fl->cidx--;
1718 sdesc = &fl->sdesc[fl->cidx];
1719 sdesc->page = gl->frags[frags].page;
1720 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1721 fl->avail++;
1722 }
1723 }
1724
1725 /**
1726 * rspq_next - advance to the next entry in a response queue
1727 * @rspq: the queue
1728 *
1729 * Updates the state of a response queue to advance it to the next entry.
1730 */
rspq_next(struct sge_rspq * rspq)1731 static inline void rspq_next(struct sge_rspq *rspq)
1732 {
1733 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1734 if (unlikely(++rspq->cidx == rspq->size)) {
1735 rspq->cidx = 0;
1736 rspq->gen ^= 1;
1737 rspq->cur_desc = rspq->desc;
1738 }
1739 }
1740
1741 /**
1742 * process_responses - process responses from an SGE response queue
1743 * @rspq: the ingress response queue to process
1744 * @budget: how many responses can be processed in this round
1745 *
1746 * Process responses from a Scatter Gather Engine response queue up to
1747 * the supplied budget. Responses include received packets as well as
1748 * control messages from firmware or hardware.
1749 *
1750 * Additionally choose the interrupt holdoff time for the next interrupt
1751 * on this queue. If the system is under memory shortage use a fairly
1752 * long delay to help recovery.
1753 */
process_responses(struct sge_rspq * rspq,int budget)1754 static int process_responses(struct sge_rspq *rspq, int budget)
1755 {
1756 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1757 struct adapter *adapter = rspq->adapter;
1758 struct sge *s = &adapter->sge;
1759 int budget_left = budget;
1760
1761 while (likely(budget_left)) {
1762 int ret, rsp_type;
1763 const struct rsp_ctrl *rc;
1764
1765 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1766 if (!is_new_response(rc, rspq))
1767 break;
1768
1769 /*
1770 * Figure out what kind of response we've received from the
1771 * SGE.
1772 */
1773 dma_rmb();
1774 rsp_type = RSPD_TYPE_G(rc->type_gen);
1775 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1776 struct page_frag *fp;
1777 struct pkt_gl gl;
1778 const struct rx_sw_desc *sdesc;
1779 u32 bufsz, frag;
1780 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1781
1782 /*
1783 * If we get a "new buffer" message from the SGE we
1784 * need to move on to the next Free List buffer.
1785 */
1786 if (len & RSPD_NEWBUF_F) {
1787 /*
1788 * We get one "new buffer" message when we
1789 * first start up a queue so we need to ignore
1790 * it when our offset into the buffer is 0.
1791 */
1792 if (likely(rspq->offset > 0)) {
1793 free_rx_bufs(rspq->adapter, &rxq->fl,
1794 1);
1795 rspq->offset = 0;
1796 }
1797 len = RSPD_LEN_G(len);
1798 }
1799 gl.tot_len = len;
1800
1801 /*
1802 * Gather packet fragments.
1803 */
1804 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1805 BUG_ON(frag >= MAX_SKB_FRAGS);
1806 BUG_ON(rxq->fl.avail == 0);
1807 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1808 bufsz = get_buf_size(adapter, sdesc);
1809 fp->page = sdesc->page;
1810 fp->offset = rspq->offset;
1811 fp->size = min(bufsz, len);
1812 len -= fp->size;
1813 if (!len)
1814 break;
1815 unmap_rx_buf(rspq->adapter, &rxq->fl);
1816 }
1817 gl.nfrags = frag+1;
1818
1819 /*
1820 * Last buffer remains mapped so explicitly make it
1821 * coherent for CPU access and start preloading first
1822 * cache line ...
1823 */
1824 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1825 get_buf_addr(sdesc),
1826 fp->size, DMA_FROM_DEVICE);
1827 gl.va = (page_address(gl.frags[0].page) +
1828 gl.frags[0].offset);
1829 prefetch(gl.va);
1830
1831 /*
1832 * Hand the new ingress packet to the handler for
1833 * this Response Queue.
1834 */
1835 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1836 if (likely(ret == 0))
1837 rspq->offset += ALIGN(fp->size, s->fl_align);
1838 else
1839 restore_rx_bufs(&gl, &rxq->fl, frag);
1840 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1841 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1842 } else {
1843 WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1844 ret = 0;
1845 }
1846
1847 if (unlikely(ret)) {
1848 /*
1849 * Couldn't process descriptor, back off for recovery.
1850 * We use the SGE's last timer which has the longest
1851 * interrupt coalescing value ...
1852 */
1853 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1854 rspq->next_intr_params =
1855 QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1856 break;
1857 }
1858
1859 rspq_next(rspq);
1860 budget_left--;
1861 }
1862
1863 /*
1864 * If this is a Response Queue with an associated Free List and
1865 * at least two Egress Queue units available in the Free List
1866 * for new buffer pointers, refill the Free List.
1867 */
1868 if (rspq->offset >= 0 &&
1869 fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1870 __refill_fl(rspq->adapter, &rxq->fl);
1871 return budget - budget_left;
1872 }
1873
1874 /**
1875 * napi_rx_handler - the NAPI handler for RX processing
1876 * @napi: the napi instance
1877 * @budget: how many packets we can process in this round
1878 *
1879 * Handler for new data events when using NAPI. This does not need any
1880 * locking or protection from interrupts as data interrupts are off at
1881 * this point and other adapter interrupts do not interfere (the latter
1882 * in not a concern at all with MSI-X as non-data interrupts then have
1883 * a separate handler).
1884 */
napi_rx_handler(struct napi_struct * napi,int budget)1885 static int napi_rx_handler(struct napi_struct *napi, int budget)
1886 {
1887 unsigned int intr_params;
1888 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1889 int work_done = process_responses(rspq, budget);
1890 u32 val;
1891
1892 if (likely(work_done < budget)) {
1893 napi_complete_done(napi, work_done);
1894 intr_params = rspq->next_intr_params;
1895 rspq->next_intr_params = rspq->intr_params;
1896 } else
1897 intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1898
1899 if (unlikely(work_done == 0))
1900 rspq->unhandled_irqs++;
1901
1902 val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1903 /* If we don't have access to the new User GTS (T5+), use the old
1904 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1905 */
1906 if (unlikely(!rspq->bar2_addr)) {
1907 t4_write_reg(rspq->adapter,
1908 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1909 val | INGRESSQID_V((u32)rspq->cntxt_id));
1910 } else {
1911 writel(val | INGRESSQID_V(rspq->bar2_qid),
1912 rspq->bar2_addr + SGE_UDB_GTS);
1913 wmb();
1914 }
1915 return work_done;
1916 }
1917
1918 /*
1919 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1920 * (i.e., response queue serviced by NAPI polling).
1921 */
t4vf_sge_intr_msix(int irq,void * cookie)1922 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1923 {
1924 struct sge_rspq *rspq = cookie;
1925
1926 napi_schedule(&rspq->napi);
1927 return IRQ_HANDLED;
1928 }
1929
1930 /*
1931 * Process the indirect interrupt entries in the interrupt queue and kick off
1932 * NAPI for each queue that has generated an entry.
1933 */
process_intrq(struct adapter * adapter)1934 static unsigned int process_intrq(struct adapter *adapter)
1935 {
1936 struct sge *s = &adapter->sge;
1937 struct sge_rspq *intrq = &s->intrq;
1938 unsigned int work_done;
1939 u32 val;
1940
1941 spin_lock(&adapter->sge.intrq_lock);
1942 for (work_done = 0; ; work_done++) {
1943 const struct rsp_ctrl *rc;
1944 unsigned int qid, iq_idx;
1945 struct sge_rspq *rspq;
1946
1947 /*
1948 * Grab the next response from the interrupt queue and bail
1949 * out if it's not a new response.
1950 */
1951 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1952 if (!is_new_response(rc, intrq))
1953 break;
1954
1955 /*
1956 * If the response isn't a forwarded interrupt message issue a
1957 * error and go on to the next response message. This should
1958 * never happen ...
1959 */
1960 dma_rmb();
1961 if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1962 dev_err(adapter->pdev_dev,
1963 "Unexpected INTRQ response type %d\n",
1964 RSPD_TYPE_G(rc->type_gen));
1965 continue;
1966 }
1967
1968 /*
1969 * Extract the Queue ID from the interrupt message and perform
1970 * sanity checking to make sure it really refers to one of our
1971 * Ingress Queues which is active and matches the queue's ID.
1972 * None of these error conditions should ever happen so we may
1973 * want to either make them fatal and/or conditionalized under
1974 * DEBUG.
1975 */
1976 qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1977 iq_idx = IQ_IDX(s, qid);
1978 if (unlikely(iq_idx >= MAX_INGQ)) {
1979 dev_err(adapter->pdev_dev,
1980 "Ingress QID %d out of range\n", qid);
1981 continue;
1982 }
1983 rspq = s->ingr_map[iq_idx];
1984 if (unlikely(rspq == NULL)) {
1985 dev_err(adapter->pdev_dev,
1986 "Ingress QID %d RSPQ=NULL\n", qid);
1987 continue;
1988 }
1989 if (unlikely(rspq->abs_id != qid)) {
1990 dev_err(adapter->pdev_dev,
1991 "Ingress QID %d refers to RSPQ %d\n",
1992 qid, rspq->abs_id);
1993 continue;
1994 }
1995
1996 /*
1997 * Schedule NAPI processing on the indicated Response Queue
1998 * and move on to the next entry in the Forwarded Interrupt
1999 * Queue.
2000 */
2001 napi_schedule(&rspq->napi);
2002 rspq_next(intrq);
2003 }
2004
2005 val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2006 /* If we don't have access to the new User GTS (T5+), use the old
2007 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2008 */
2009 if (unlikely(!intrq->bar2_addr)) {
2010 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2011 val | INGRESSQID_V(intrq->cntxt_id));
2012 } else {
2013 writel(val | INGRESSQID_V(intrq->bar2_qid),
2014 intrq->bar2_addr + SGE_UDB_GTS);
2015 wmb();
2016 }
2017
2018 spin_unlock(&adapter->sge.intrq_lock);
2019
2020 return work_done;
2021 }
2022
2023 /*
2024 * The MSI interrupt handler handles data events from SGE response queues as
2025 * well as error and other async events as they all use the same MSI vector.
2026 */
t4vf_intr_msi(int irq,void * cookie)2027 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2028 {
2029 struct adapter *adapter = cookie;
2030
2031 process_intrq(adapter);
2032 return IRQ_HANDLED;
2033 }
2034
2035 /**
2036 * t4vf_intr_handler - select the top-level interrupt handler
2037 * @adapter: the adapter
2038 *
2039 * Selects the top-level interrupt handler based on the type of interrupts
2040 * (MSI-X or MSI).
2041 */
t4vf_intr_handler(struct adapter * adapter)2042 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2043 {
2044 BUG_ON((adapter->flags &
2045 (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2046 if (adapter->flags & CXGB4VF_USING_MSIX)
2047 return t4vf_sge_intr_msix;
2048 else
2049 return t4vf_intr_msi;
2050 }
2051
2052 /**
2053 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2054 * @t: Rx timer
2055 *
2056 * Runs periodically from a timer to perform maintenance of SGE RX queues.
2057 *
2058 * a) Replenishes RX queues that have run out due to memory shortage.
2059 * Normally new RX buffers are added when existing ones are consumed but
2060 * when out of memory a queue can become empty. We schedule NAPI to do
2061 * the actual refill.
2062 */
sge_rx_timer_cb(struct timer_list * t)2063 static void sge_rx_timer_cb(struct timer_list *t)
2064 {
2065 struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
2066 struct sge *s = &adapter->sge;
2067 unsigned int i;
2068
2069 /*
2070 * Scan the "Starving Free Lists" flag array looking for any Free
2071 * Lists in need of more free buffers. If we find one and it's not
2072 * being actively polled, then bump its "starving" counter and attempt
2073 * to refill it. If we're successful in adding enough buffers to push
2074 * the Free List over the starving threshold, then we can clear its
2075 * "starving" status.
2076 */
2077 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2078 unsigned long m;
2079
2080 for (m = s->starving_fl[i]; m; m &= m - 1) {
2081 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2082 struct sge_fl *fl = s->egr_map[id];
2083
2084 clear_bit(id, s->starving_fl);
2085 smp_mb__after_atomic();
2086
2087 /*
2088 * Since we are accessing fl without a lock there's a
2089 * small probability of a false positive where we
2090 * schedule napi but the FL is no longer starving.
2091 * No biggie.
2092 */
2093 if (fl_starving(adapter, fl)) {
2094 struct sge_eth_rxq *rxq;
2095
2096 rxq = container_of(fl, struct sge_eth_rxq, fl);
2097 if (napi_reschedule(&rxq->rspq.napi))
2098 fl->starving++;
2099 else
2100 set_bit(id, s->starving_fl);
2101 }
2102 }
2103 }
2104
2105 /*
2106 * Reschedule the next scan for starving Free Lists ...
2107 */
2108 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2109 }
2110
2111 /**
2112 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2113 * @t: Tx timer
2114 *
2115 * Runs periodically from a timer to perform maintenance of SGE TX queues.
2116 *
2117 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
2118 * packets are cleaned up by new Tx packets, this timer cleans up packets
2119 * when no new packets are being submitted. This is essential for pktgen,
2120 * at least.
2121 */
sge_tx_timer_cb(struct timer_list * t)2122 static void sge_tx_timer_cb(struct timer_list *t)
2123 {
2124 struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
2125 struct sge *s = &adapter->sge;
2126 unsigned int i, budget;
2127
2128 budget = MAX_TIMER_TX_RECLAIM;
2129 i = s->ethtxq_rover;
2130 do {
2131 struct sge_eth_txq *txq = &s->ethtxq[i];
2132
2133 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2134 int avail = reclaimable(&txq->q);
2135
2136 if (avail > budget)
2137 avail = budget;
2138
2139 free_tx_desc(adapter, &txq->q, avail, true);
2140 txq->q.in_use -= avail;
2141 __netif_tx_unlock(txq->txq);
2142
2143 budget -= avail;
2144 if (!budget)
2145 break;
2146 }
2147
2148 i++;
2149 if (i >= s->ethqsets)
2150 i = 0;
2151 } while (i != s->ethtxq_rover);
2152 s->ethtxq_rover = i;
2153
2154 /*
2155 * If we found too many reclaimable packets schedule a timer in the
2156 * near future to continue where we left off. Otherwise the next timer
2157 * will be at its normal interval.
2158 */
2159 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2160 }
2161
2162 /**
2163 * bar2_address - return the BAR2 address for an SGE Queue's Registers
2164 * @adapter: the adapter
2165 * @qid: the SGE Queue ID
2166 * @qtype: the SGE Queue Type (Egress or Ingress)
2167 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2168 *
2169 * Returns the BAR2 address for the SGE Queue Registers associated with
2170 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2171 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2172 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2173 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2174 */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)2175 static void __iomem *bar2_address(struct adapter *adapter,
2176 unsigned int qid,
2177 enum t4_bar2_qtype qtype,
2178 unsigned int *pbar2_qid)
2179 {
2180 u64 bar2_qoffset;
2181 int ret;
2182
2183 ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2184 &bar2_qoffset, pbar2_qid);
2185 if (ret)
2186 return NULL;
2187
2188 return adapter->bar2 + bar2_qoffset;
2189 }
2190
2191 /**
2192 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2193 * @adapter: the adapter
2194 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2195 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2196 * @dev: the network device associated with the new rspq
2197 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2198 * @fl: pointer to the new rxq's Free List to be filled in
2199 * @hnd: the interrupt handler to invoke for the rspq
2200 */
t4vf_sge_alloc_rxq(struct adapter * adapter,struct sge_rspq * rspq,bool iqasynch,struct net_device * dev,int intr_dest,struct sge_fl * fl,rspq_handler_t hnd)2201 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2202 bool iqasynch, struct net_device *dev,
2203 int intr_dest,
2204 struct sge_fl *fl, rspq_handler_t hnd)
2205 {
2206 struct sge *s = &adapter->sge;
2207 struct port_info *pi = netdev_priv(dev);
2208 struct fw_iq_cmd cmd, rpl;
2209 int ret, iqandst, flsz = 0;
2210 int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
2211
2212 /*
2213 * If we're using MSI interrupts and we're not initializing the
2214 * Forwarded Interrupt Queue itself, then set up this queue for
2215 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2216 * the Forwarded Interrupt Queue must be set up before any other
2217 * ingress queue ...
2218 */
2219 if ((adapter->flags & CXGB4VF_USING_MSI) &&
2220 rspq != &adapter->sge.intrq) {
2221 iqandst = SGE_INTRDST_IQ;
2222 intr_dest = adapter->sge.intrq.abs_id;
2223 } else
2224 iqandst = SGE_INTRDST_PCI;
2225
2226 /*
2227 * Allocate the hardware ring for the Response Queue. The size needs
2228 * to be a multiple of 16 which includes the mandatory status entry
2229 * (regardless of whether the Status Page capabilities are enabled or
2230 * not).
2231 */
2232 rspq->size = roundup(rspq->size, 16);
2233 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2234 0, &rspq->phys_addr, NULL, 0);
2235 if (!rspq->desc)
2236 return -ENOMEM;
2237
2238 /*
2239 * Fill in the Ingress Queue Command. Note: Ideally this code would
2240 * be in t4vf_hw.c but there are so many parameters and dependencies
2241 * on our Linux SGE state that we would end up having to pass tons of
2242 * parameters. We'll have to think about how this might be migrated
2243 * into OS-independent common code ...
2244 */
2245 memset(&cmd, 0, sizeof(cmd));
2246 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2247 FW_CMD_REQUEST_F |
2248 FW_CMD_WRITE_F |
2249 FW_CMD_EXEC_F);
2250 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2251 FW_IQ_CMD_IQSTART_F |
2252 FW_LEN16(cmd));
2253 cmd.type_to_iqandstindex =
2254 cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2255 FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2256 FW_IQ_CMD_VIID_V(pi->viid) |
2257 FW_IQ_CMD_IQANDST_V(iqandst) |
2258 FW_IQ_CMD_IQANUS_V(1) |
2259 FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2260 FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2261 cmd.iqdroprss_to_iqesize =
2262 cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2263 FW_IQ_CMD_IQGTSMODE_F |
2264 FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2265 FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2266 cmd.iqsize = cpu_to_be16(rspq->size);
2267 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2268
2269 if (fl) {
2270 unsigned int chip_ver =
2271 CHELSIO_CHIP_VERSION(adapter->params.chip);
2272 /*
2273 * Allocate the ring for the hardware free list (with space
2274 * for its status page) along with the associated software
2275 * descriptor ring. The free list size needs to be a multiple
2276 * of the Egress Queue Unit and at least 2 Egress Units larger
2277 * than the SGE's Egress Congrestion Threshold
2278 * (fl_starve_thres - 1).
2279 */
2280 if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2281 fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2282 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2283 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2284 sizeof(__be64), sizeof(struct rx_sw_desc),
2285 &fl->addr, &fl->sdesc, s->stat_len);
2286 if (!fl->desc) {
2287 ret = -ENOMEM;
2288 goto err;
2289 }
2290
2291 /*
2292 * Calculate the size of the hardware free list ring plus
2293 * Status Page (which the SGE will place after the end of the
2294 * free list ring) in Egress Queue Units.
2295 */
2296 flsz = (fl->size / FL_PER_EQ_UNIT +
2297 s->stat_len / EQ_UNIT);
2298
2299 /*
2300 * Fill in all the relevant firmware Ingress Queue Command
2301 * fields for the free list.
2302 */
2303 cmd.iqns_to_fl0congen =
2304 cpu_to_be32(
2305 FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2306 FW_IQ_CMD_FL0PACKEN_F |
2307 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2308 FW_IQ_CMD_FL0DATARO_V(relaxed) |
2309 FW_IQ_CMD_FL0PADEN_F);
2310
2311 /* In T6, for egress queue type FL there is internal overhead
2312 * of 16B for header going into FLM module. Hence the maximum
2313 * allowed burst size is 448 bytes. For T4/T5, the hardware
2314 * doesn't coalesce fetch requests if more than 64 bytes of
2315 * Free List pointers are provided, so we use a 128-byte Fetch
2316 * Burst Minimum there (T6 implements coalescing so we can use
2317 * the smaller 64-byte value there).
2318 */
2319 cmd.fl0dcaen_to_fl0cidxfthresh =
2320 cpu_to_be16(
2321 FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
2322 ? FETCHBURSTMIN_128B_X
2323 : FETCHBURSTMIN_64B_T6_X) |
2324 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
2325 FETCHBURSTMAX_512B_X :
2326 FETCHBURSTMAX_256B_X));
2327 cmd.fl0size = cpu_to_be16(flsz);
2328 cmd.fl0addr = cpu_to_be64(fl->addr);
2329 }
2330
2331 /*
2332 * Issue the firmware Ingress Queue Command and extract the results if
2333 * it completes successfully.
2334 */
2335 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2336 if (ret)
2337 goto err;
2338
2339 netif_napi_add(dev, &rspq->napi, napi_rx_handler);
2340 rspq->cur_desc = rspq->desc;
2341 rspq->cidx = 0;
2342 rspq->gen = 1;
2343 rspq->next_intr_params = rspq->intr_params;
2344 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2345 rspq->bar2_addr = bar2_address(adapter,
2346 rspq->cntxt_id,
2347 T4_BAR2_QTYPE_INGRESS,
2348 &rspq->bar2_qid);
2349 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2350 rspq->size--; /* subtract status entry */
2351 rspq->adapter = adapter;
2352 rspq->netdev = dev;
2353 rspq->handler = hnd;
2354
2355 /* set offset to -1 to distinguish ingress queues without FL */
2356 rspq->offset = fl ? 0 : -1;
2357
2358 if (fl) {
2359 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2360 fl->avail = 0;
2361 fl->pend_cred = 0;
2362 fl->pidx = 0;
2363 fl->cidx = 0;
2364 fl->alloc_failed = 0;
2365 fl->large_alloc_failed = 0;
2366 fl->starving = 0;
2367
2368 /* Note, we must initialize the BAR2 Free List User Doorbell
2369 * information before refilling the Free List!
2370 */
2371 fl->bar2_addr = bar2_address(adapter,
2372 fl->cntxt_id,
2373 T4_BAR2_QTYPE_EGRESS,
2374 &fl->bar2_qid);
2375
2376 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2377 }
2378
2379 return 0;
2380
2381 err:
2382 /*
2383 * An error occurred. Clean up our partial allocation state and
2384 * return the error.
2385 */
2386 if (rspq->desc) {
2387 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2388 rspq->desc, rspq->phys_addr);
2389 rspq->desc = NULL;
2390 }
2391 if (fl && fl->desc) {
2392 kfree(fl->sdesc);
2393 fl->sdesc = NULL;
2394 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2395 fl->desc, fl->addr);
2396 fl->desc = NULL;
2397 }
2398 return ret;
2399 }
2400
2401 /**
2402 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2403 * @adapter: the adapter
2404 * @txq: pointer to the new txq to be filled in
2405 * @dev: the network device
2406 * @devq: the network TX queue associated with the new txq
2407 * @iqid: the relative ingress queue ID to which events relating to
2408 * the new txq should be directed
2409 */
t4vf_sge_alloc_eth_txq(struct adapter * adapter,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * devq,unsigned int iqid)2410 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2411 struct net_device *dev, struct netdev_queue *devq,
2412 unsigned int iqid)
2413 {
2414 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
2415 struct port_info *pi = netdev_priv(dev);
2416 struct fw_eq_eth_cmd cmd, rpl;
2417 struct sge *s = &adapter->sge;
2418 int ret, nentries;
2419
2420 /*
2421 * Calculate the size of the hardware TX Queue (including the Status
2422 * Page on the end of the TX Queue) in units of TX Descriptors.
2423 */
2424 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2425
2426 /*
2427 * Allocate the hardware ring for the TX ring (with space for its
2428 * status page) along with the associated software descriptor ring.
2429 */
2430 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2431 sizeof(struct tx_desc),
2432 sizeof(struct tx_sw_desc),
2433 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2434 if (!txq->q.desc)
2435 return -ENOMEM;
2436
2437 /*
2438 * Fill in the Egress Queue Command. Note: As with the direct use of
2439 * the firmware Ingress Queue COmmand above in our RXQ allocation
2440 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2441 * have to see if there's some reasonable way to parameterize it
2442 * into the common code ...
2443 */
2444 memset(&cmd, 0, sizeof(cmd));
2445 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2446 FW_CMD_REQUEST_F |
2447 FW_CMD_WRITE_F |
2448 FW_CMD_EXEC_F);
2449 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2450 FW_EQ_ETH_CMD_EQSTART_F |
2451 FW_LEN16(cmd));
2452 cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2453 FW_EQ_ETH_CMD_VIID_V(pi->viid));
2454 cmd.fetchszm_to_iqid =
2455 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2456 FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2457 FW_EQ_ETH_CMD_IQID_V(iqid));
2458 cmd.dcaen_to_eqsize =
2459 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
2460 ? FETCHBURSTMIN_64B_X
2461 : FETCHBURSTMIN_64B_T6_X) |
2462 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2463 FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2464 CIDXFLUSHTHRESH_32_X) |
2465 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2466 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2467
2468 /*
2469 * Issue the firmware Egress Queue Command and extract the results if
2470 * it completes successfully.
2471 */
2472 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2473 if (ret) {
2474 /*
2475 * The girmware Ingress Queue Command failed for some reason.
2476 * Free up our partial allocation state and return the error.
2477 */
2478 kfree(txq->q.sdesc);
2479 txq->q.sdesc = NULL;
2480 dma_free_coherent(adapter->pdev_dev,
2481 nentries * sizeof(struct tx_desc),
2482 txq->q.desc, txq->q.phys_addr);
2483 txq->q.desc = NULL;
2484 return ret;
2485 }
2486
2487 txq->q.in_use = 0;
2488 txq->q.cidx = 0;
2489 txq->q.pidx = 0;
2490 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2491 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2492 txq->q.bar2_addr = bar2_address(adapter,
2493 txq->q.cntxt_id,
2494 T4_BAR2_QTYPE_EGRESS,
2495 &txq->q.bar2_qid);
2496 txq->q.abs_id =
2497 FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2498 txq->txq = devq;
2499 txq->tso = 0;
2500 txq->tx_cso = 0;
2501 txq->vlan_ins = 0;
2502 txq->q.stops = 0;
2503 txq->q.restarts = 0;
2504 txq->mapping_err = 0;
2505 return 0;
2506 }
2507
2508 /*
2509 * Free the DMA map resources associated with a TX queue.
2510 */
free_txq(struct adapter * adapter,struct sge_txq * tq)2511 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2512 {
2513 struct sge *s = &adapter->sge;
2514
2515 dma_free_coherent(adapter->pdev_dev,
2516 tq->size * sizeof(*tq->desc) + s->stat_len,
2517 tq->desc, tq->phys_addr);
2518 tq->cntxt_id = 0;
2519 tq->sdesc = NULL;
2520 tq->desc = NULL;
2521 }
2522
2523 /*
2524 * Free the resources associated with a response queue (possibly including a
2525 * free list).
2526 */
free_rspq_fl(struct adapter * adapter,struct sge_rspq * rspq,struct sge_fl * fl)2527 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2528 struct sge_fl *fl)
2529 {
2530 struct sge *s = &adapter->sge;
2531 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2532
2533 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2534 rspq->cntxt_id, flid, 0xffff);
2535 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2536 rspq->desc, rspq->phys_addr);
2537 netif_napi_del(&rspq->napi);
2538 rspq->netdev = NULL;
2539 rspq->cntxt_id = 0;
2540 rspq->abs_id = 0;
2541 rspq->desc = NULL;
2542
2543 if (fl) {
2544 free_rx_bufs(adapter, fl, fl->avail);
2545 dma_free_coherent(adapter->pdev_dev,
2546 fl->size * sizeof(*fl->desc) + s->stat_len,
2547 fl->desc, fl->addr);
2548 kfree(fl->sdesc);
2549 fl->sdesc = NULL;
2550 fl->cntxt_id = 0;
2551 fl->desc = NULL;
2552 }
2553 }
2554
2555 /**
2556 * t4vf_free_sge_resources - free SGE resources
2557 * @adapter: the adapter
2558 *
2559 * Frees resources used by the SGE queue sets.
2560 */
t4vf_free_sge_resources(struct adapter * adapter)2561 void t4vf_free_sge_resources(struct adapter *adapter)
2562 {
2563 struct sge *s = &adapter->sge;
2564 struct sge_eth_rxq *rxq = s->ethrxq;
2565 struct sge_eth_txq *txq = s->ethtxq;
2566 struct sge_rspq *evtq = &s->fw_evtq;
2567 struct sge_rspq *intrq = &s->intrq;
2568 int qs;
2569
2570 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2571 if (rxq->rspq.desc)
2572 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2573 if (txq->q.desc) {
2574 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2575 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2576 kfree(txq->q.sdesc);
2577 free_txq(adapter, &txq->q);
2578 }
2579 }
2580 if (evtq->desc)
2581 free_rspq_fl(adapter, evtq, NULL);
2582 if (intrq->desc)
2583 free_rspq_fl(adapter, intrq, NULL);
2584 }
2585
2586 /**
2587 * t4vf_sge_start - enable SGE operation
2588 * @adapter: the adapter
2589 *
2590 * Start tasklets and timers associated with the DMA engine.
2591 */
t4vf_sge_start(struct adapter * adapter)2592 void t4vf_sge_start(struct adapter *adapter)
2593 {
2594 adapter->sge.ethtxq_rover = 0;
2595 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2596 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2597 }
2598
2599 /**
2600 * t4vf_sge_stop - disable SGE operation
2601 * @adapter: the adapter
2602 *
2603 * Stop tasklets and timers associated with the DMA engine. Note that
2604 * this is effective only if measures have been taken to disable any HW
2605 * events that may restart them.
2606 */
t4vf_sge_stop(struct adapter * adapter)2607 void t4vf_sge_stop(struct adapter *adapter)
2608 {
2609 struct sge *s = &adapter->sge;
2610
2611 if (s->rx_timer.function)
2612 del_timer_sync(&s->rx_timer);
2613 if (s->tx_timer.function)
2614 del_timer_sync(&s->tx_timer);
2615 }
2616
2617 /**
2618 * t4vf_sge_init - initialize SGE
2619 * @adapter: the adapter
2620 *
2621 * Performs SGE initialization needed every time after a chip reset.
2622 * We do not initialize any of the queue sets here, instead the driver
2623 * top-level must request those individually. We also do not enable DMA
2624 * here, that should be done after the queues have been set up.
2625 */
t4vf_sge_init(struct adapter * adapter)2626 int t4vf_sge_init(struct adapter *adapter)
2627 {
2628 struct sge_params *sge_params = &adapter->params.sge;
2629 u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
2630 u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
2631 struct sge *s = &adapter->sge;
2632
2633 /*
2634 * Start by vetting the basic SGE parameters which have been set up by
2635 * the Physical Function Driver. Ideally we should be able to deal
2636 * with _any_ configuration. Practice is different ...
2637 */
2638
2639 /* We only bother using the Large Page logic if the Large Page Buffer
2640 * is larger than our Page Size Buffer.
2641 */
2642 if (fl_large_pg <= fl_small_pg)
2643 fl_large_pg = 0;
2644
2645 /* The Page Size Buffer must be exactly equal to our Page Size and the
2646 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2647 */
2648 if (fl_small_pg != PAGE_SIZE ||
2649 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2650 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2651 fl_small_pg, fl_large_pg);
2652 return -EINVAL;
2653 }
2654 if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2655 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2656 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2657 return -EINVAL;
2658 }
2659
2660 /*
2661 * Now translate the adapter parameters into our internal forms.
2662 */
2663 if (fl_large_pg)
2664 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2665 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2666 ? 128 : 64);
2667 s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2668 s->fl_align = t4vf_fl_pkt_align(adapter);
2669
2670 /* A FL with <= fl_starve_thres buffers is starving and a periodic
2671 * timer will attempt to refill it. This needs to be larger than the
2672 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2673 * stuck waiting for new packets while the SGE is waiting for us to
2674 * give it more Free List entries. (Note that the SGE's Egress
2675 * Congestion Threshold is in units of 2 Free List pointers.)
2676 */
2677 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2678 case CHELSIO_T4:
2679 s->fl_starve_thres =
2680 EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2681 break;
2682 case CHELSIO_T5:
2683 s->fl_starve_thres =
2684 EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2685 break;
2686 case CHELSIO_T6:
2687 default:
2688 s->fl_starve_thres =
2689 T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2690 break;
2691 }
2692 s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2693
2694 /*
2695 * Set up tasklet timers.
2696 */
2697 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
2698 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2699
2700 /*
2701 * Initialize Forwarded Interrupt Queue lock.
2702 */
2703 spin_lock_init(&s->intrq_lock);
2704
2705 return 0;
2706 }
2707