1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/rculist.h>
39 #include <linux/scatterlist.h>
40 #include <linux/set_memory.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/swiotlb.h>
44 #include <linux/types.h>
45 #ifdef CONFIG_DMA_RESTRICTED_POOL
46 #include <linux/of.h>
47 #include <linux/of_fdt.h>
48 #include <linux/of_reserved_mem.h>
49 #include <linux/slab.h>
50 #endif
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/swiotlb.h>
54
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56
57 /*
58 * Minimum IO TLB size to bother booting with. Systems with mainly
59 * 64bit capable cards will only lightly use the swiotlb. If we can't
60 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63
64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
65
66 /**
67 * struct io_tlb_slot - IO TLB slot descriptor
68 * @orig_addr: The original address corresponding to a mapped entry.
69 * @alloc_size: Size of the allocated buffer.
70 * @list: The free list describing the number of free entries available
71 * from each index.
72 * @pad_slots: Number of preceding padding slots. Valid only in the first
73 * allocated non-padding slot.
74 */
75 struct io_tlb_slot {
76 phys_addr_t orig_addr;
77 size_t alloc_size;
78 unsigned short list;
79 unsigned short pad_slots;
80 };
81
82 static bool swiotlb_force_bounce;
83 static bool swiotlb_force_disable;
84
85 #ifdef CONFIG_SWIOTLB_DYNAMIC
86
87 static void swiotlb_dyn_alloc(struct work_struct *work);
88
89 static struct io_tlb_mem io_tlb_default_mem = {
90 .lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock),
91 .pools = LIST_HEAD_INIT(io_tlb_default_mem.pools),
92 .dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc,
93 swiotlb_dyn_alloc),
94 };
95
96 #else /* !CONFIG_SWIOTLB_DYNAMIC */
97
98 static struct io_tlb_mem io_tlb_default_mem;
99
100 #endif /* CONFIG_SWIOTLB_DYNAMIC */
101
102 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
103 static unsigned long default_nareas;
104
105 /**
106 * struct io_tlb_area - IO TLB memory area descriptor
107 *
108 * This is a single area with a single lock.
109 *
110 * @used: The number of used IO TLB block.
111 * @index: The slot index to start searching in this area for next round.
112 * @lock: The lock to protect the above data structures in the map and
113 * unmap calls.
114 */
115 struct io_tlb_area {
116 unsigned long used;
117 unsigned int index;
118 spinlock_t lock;
119 };
120
121 /*
122 * Round up number of slabs to the next power of 2. The last area is going
123 * be smaller than the rest if default_nslabs is not power of two.
124 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
125 * otherwise a segment may span two or more areas. It conflicts with free
126 * contiguous slots tracking: free slots are treated contiguous no matter
127 * whether they cross an area boundary.
128 *
129 * Return true if default_nslabs is rounded up.
130 */
round_up_default_nslabs(void)131 static bool round_up_default_nslabs(void)
132 {
133 if (!default_nareas)
134 return false;
135
136 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
137 default_nslabs = IO_TLB_SEGSIZE * default_nareas;
138 else if (is_power_of_2(default_nslabs))
139 return false;
140 default_nslabs = roundup_pow_of_two(default_nslabs);
141 return true;
142 }
143
144 /**
145 * swiotlb_adjust_nareas() - adjust the number of areas and slots
146 * @nareas: Desired number of areas. Zero is treated as 1.
147 *
148 * Adjust the default number of areas in a memory pool.
149 * The default size of the memory pool may also change to meet minimum area
150 * size requirements.
151 */
swiotlb_adjust_nareas(unsigned int nareas)152 static void swiotlb_adjust_nareas(unsigned int nareas)
153 {
154 if (!nareas)
155 nareas = 1;
156 else if (!is_power_of_2(nareas))
157 nareas = roundup_pow_of_two(nareas);
158
159 default_nareas = nareas;
160
161 pr_info("area num %d.\n", nareas);
162 if (round_up_default_nslabs())
163 pr_info("SWIOTLB bounce buffer size roundup to %luMB",
164 (default_nslabs << IO_TLB_SHIFT) >> 20);
165 }
166
167 /**
168 * limit_nareas() - get the maximum number of areas for a given memory pool size
169 * @nareas: Desired number of areas.
170 * @nslots: Total number of slots in the memory pool.
171 *
172 * Limit the number of areas to the maximum possible number of areas in
173 * a memory pool of the given size.
174 *
175 * Return: Maximum possible number of areas.
176 */
limit_nareas(unsigned int nareas,unsigned long nslots)177 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots)
178 {
179 if (nslots < nareas * IO_TLB_SEGSIZE)
180 return nslots / IO_TLB_SEGSIZE;
181 return nareas;
182 }
183
184 static int __init
setup_io_tlb_npages(char * str)185 setup_io_tlb_npages(char *str)
186 {
187 if (isdigit(*str)) {
188 /* avoid tail segment of size < IO_TLB_SEGSIZE */
189 default_nslabs =
190 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
191 }
192 if (*str == ',')
193 ++str;
194 if (isdigit(*str))
195 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
196 if (*str == ',')
197 ++str;
198 if (!strcmp(str, "force"))
199 swiotlb_force_bounce = true;
200 else if (!strcmp(str, "noforce"))
201 swiotlb_force_disable = true;
202
203 return 0;
204 }
205 early_param("swiotlb", setup_io_tlb_npages);
206
swiotlb_size_or_default(void)207 unsigned long swiotlb_size_or_default(void)
208 {
209 return default_nslabs << IO_TLB_SHIFT;
210 }
211
swiotlb_adjust_size(unsigned long size)212 void __init swiotlb_adjust_size(unsigned long size)
213 {
214 /*
215 * If swiotlb parameter has not been specified, give a chance to
216 * architectures such as those supporting memory encryption to
217 * adjust/expand SWIOTLB size for their use.
218 */
219 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
220 return;
221
222 size = ALIGN(size, IO_TLB_SIZE);
223 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
224 if (round_up_default_nslabs())
225 size = default_nslabs << IO_TLB_SHIFT;
226 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
227 }
228
swiotlb_print_info(void)229 void swiotlb_print_info(void)
230 {
231 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
232
233 if (!mem->nslabs) {
234 pr_warn("No low mem\n");
235 return;
236 }
237
238 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
239 (mem->nslabs << IO_TLB_SHIFT) >> 20);
240 }
241
io_tlb_offset(unsigned long val)242 static inline unsigned long io_tlb_offset(unsigned long val)
243 {
244 return val & (IO_TLB_SEGSIZE - 1);
245 }
246
nr_slots(u64 val)247 static inline unsigned long nr_slots(u64 val)
248 {
249 return DIV_ROUND_UP(val, IO_TLB_SIZE);
250 }
251
252 /*
253 * Early SWIOTLB allocation may be too early to allow an architecture to
254 * perform the desired operations. This function allows the architecture to
255 * call SWIOTLB when the operations are possible. It needs to be called
256 * before the SWIOTLB memory is used.
257 */
swiotlb_update_mem_attributes(void)258 void __init swiotlb_update_mem_attributes(void)
259 {
260 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
261 unsigned long bytes;
262
263 if (!mem->nslabs || mem->late_alloc)
264 return;
265 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
266 set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT);
267 }
268
swiotlb_init_io_tlb_pool(struct io_tlb_pool * mem,phys_addr_t start,unsigned long nslabs,bool late_alloc,unsigned int nareas)269 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start,
270 unsigned long nslabs, bool late_alloc, unsigned int nareas)
271 {
272 void *vaddr = phys_to_virt(start);
273 unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
274
275 mem->nslabs = nslabs;
276 mem->start = start;
277 mem->end = mem->start + bytes;
278 mem->late_alloc = late_alloc;
279 mem->nareas = nareas;
280 mem->area_nslabs = nslabs / mem->nareas;
281
282 for (i = 0; i < mem->nareas; i++) {
283 spin_lock_init(&mem->areas[i].lock);
284 mem->areas[i].index = 0;
285 mem->areas[i].used = 0;
286 }
287
288 for (i = 0; i < mem->nslabs; i++) {
289 mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i),
290 mem->nslabs - i);
291 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
292 mem->slots[i].alloc_size = 0;
293 mem->slots[i].pad_slots = 0;
294 }
295
296 memset(vaddr, 0, bytes);
297 mem->vaddr = vaddr;
298 return;
299 }
300
301 /**
302 * add_mem_pool() - add a memory pool to the allocator
303 * @mem: Software IO TLB allocator.
304 * @pool: Memory pool to be added.
305 */
add_mem_pool(struct io_tlb_mem * mem,struct io_tlb_pool * pool)306 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool)
307 {
308 #ifdef CONFIG_SWIOTLB_DYNAMIC
309 spin_lock(&mem->lock);
310 list_add_rcu(&pool->node, &mem->pools);
311 mem->nslabs += pool->nslabs;
312 spin_unlock(&mem->lock);
313 #else
314 mem->nslabs = pool->nslabs;
315 #endif
316 }
317
swiotlb_memblock_alloc(unsigned long nslabs,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))318 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
319 unsigned int flags,
320 int (*remap)(void *tlb, unsigned long nslabs))
321 {
322 size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
323 void *tlb;
324
325 /*
326 * By default allocate the bounce buffer memory from low memory, but
327 * allow to pick a location everywhere for hypervisors with guest
328 * memory encryption.
329 */
330 if (flags & SWIOTLB_ANY)
331 tlb = memblock_alloc(bytes, PAGE_SIZE);
332 else
333 tlb = memblock_alloc_low(bytes, PAGE_SIZE);
334
335 if (!tlb) {
336 pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
337 __func__, bytes);
338 return NULL;
339 }
340
341 if (remap && remap(tlb, nslabs) < 0) {
342 memblock_free(tlb, PAGE_ALIGN(bytes));
343 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
344 return NULL;
345 }
346
347 return tlb;
348 }
349
350 /*
351 * Statically reserve bounce buffer space and initialize bounce buffer data
352 * structures for the software IO TLB used to implement the DMA API.
353 */
swiotlb_init_remap(bool addressing_limit,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))354 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
355 int (*remap)(void *tlb, unsigned long nslabs))
356 {
357 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
358 unsigned long nslabs;
359 unsigned int nareas;
360 size_t alloc_size;
361 void *tlb;
362
363 if (!addressing_limit && !swiotlb_force_bounce)
364 return;
365 if (swiotlb_force_disable)
366 return;
367
368 io_tlb_default_mem.force_bounce =
369 swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
370
371 #ifdef CONFIG_SWIOTLB_DYNAMIC
372 if (!remap)
373 io_tlb_default_mem.can_grow = true;
374 if (flags & SWIOTLB_ANY)
375 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
376 else
377 io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT;
378 #endif
379
380 if (!default_nareas)
381 swiotlb_adjust_nareas(num_possible_cpus());
382
383 nslabs = default_nslabs;
384 nareas = limit_nareas(default_nareas, nslabs);
385 while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
386 if (nslabs <= IO_TLB_MIN_SLABS)
387 return;
388 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
389 nareas = limit_nareas(nareas, nslabs);
390 }
391
392 if (default_nslabs != nslabs) {
393 pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
394 default_nslabs, nslabs);
395 default_nslabs = nslabs;
396 }
397
398 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
399 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
400 if (!mem->slots) {
401 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
402 __func__, alloc_size, PAGE_SIZE);
403 return;
404 }
405
406 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
407 nareas), SMP_CACHE_BYTES);
408 if (!mem->areas) {
409 pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
410 return;
411 }
412
413 swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas);
414 add_mem_pool(&io_tlb_default_mem, mem);
415
416 if (flags & SWIOTLB_VERBOSE)
417 swiotlb_print_info();
418 }
419
swiotlb_init(bool addressing_limit,unsigned int flags)420 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
421 {
422 swiotlb_init_remap(addressing_limit, flags, NULL);
423 }
424
425 /*
426 * Systems with larger DMA zones (those that don't support ISA) can
427 * initialize the swiotlb later using the slab allocator if needed.
428 * This should be just like above, but with some error catching.
429 */
swiotlb_init_late(size_t size,gfp_t gfp_mask,int (* remap)(void * tlb,unsigned long nslabs))430 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
431 int (*remap)(void *tlb, unsigned long nslabs))
432 {
433 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
434 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
435 unsigned int nareas;
436 unsigned char *vstart = NULL;
437 unsigned int order, area_order;
438 bool retried = false;
439 int rc = 0;
440
441 if (io_tlb_default_mem.nslabs)
442 return 0;
443
444 if (swiotlb_force_disable)
445 return 0;
446
447 io_tlb_default_mem.force_bounce = swiotlb_force_bounce;
448
449 #ifdef CONFIG_SWIOTLB_DYNAMIC
450 if (!remap)
451 io_tlb_default_mem.can_grow = true;
452 if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA))
453 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits);
454 else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32))
455 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32);
456 else
457 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1);
458 #endif
459
460 if (!default_nareas)
461 swiotlb_adjust_nareas(num_possible_cpus());
462
463 retry:
464 order = get_order(nslabs << IO_TLB_SHIFT);
465 nslabs = SLABS_PER_PAGE << order;
466
467 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
468 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
469 order);
470 if (vstart)
471 break;
472 order--;
473 nslabs = SLABS_PER_PAGE << order;
474 retried = true;
475 }
476
477 if (!vstart)
478 return -ENOMEM;
479
480 if (remap)
481 rc = remap(vstart, nslabs);
482 if (rc) {
483 free_pages((unsigned long)vstart, order);
484
485 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
486 if (nslabs < IO_TLB_MIN_SLABS)
487 return rc;
488 retried = true;
489 goto retry;
490 }
491
492 if (retried) {
493 pr_warn("only able to allocate %ld MB\n",
494 (PAGE_SIZE << order) >> 20);
495 }
496
497 nareas = limit_nareas(default_nareas, nslabs);
498 area_order = get_order(array_size(sizeof(*mem->areas), nareas));
499 mem->areas = (struct io_tlb_area *)
500 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
501 if (!mem->areas)
502 goto error_area;
503
504 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
505 get_order(array_size(sizeof(*mem->slots), nslabs)));
506 if (!mem->slots)
507 goto error_slots;
508
509 set_memory_decrypted((unsigned long)vstart,
510 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
511 swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true,
512 nareas);
513 add_mem_pool(&io_tlb_default_mem, mem);
514
515 swiotlb_print_info();
516 return 0;
517
518 error_slots:
519 free_pages((unsigned long)mem->areas, area_order);
520 error_area:
521 free_pages((unsigned long)vstart, order);
522 return -ENOMEM;
523 }
524
swiotlb_exit(void)525 void __init swiotlb_exit(void)
526 {
527 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool;
528 unsigned long tbl_vaddr;
529 size_t tbl_size, slots_size;
530 unsigned int area_order;
531
532 if (swiotlb_force_bounce)
533 return;
534
535 if (!mem->nslabs)
536 return;
537
538 pr_info("tearing down default memory pool\n");
539 tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
540 tbl_size = PAGE_ALIGN(mem->end - mem->start);
541 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
542
543 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
544 if (mem->late_alloc) {
545 area_order = get_order(array_size(sizeof(*mem->areas),
546 mem->nareas));
547 free_pages((unsigned long)mem->areas, area_order);
548 free_pages(tbl_vaddr, get_order(tbl_size));
549 free_pages((unsigned long)mem->slots, get_order(slots_size));
550 } else {
551 memblock_free_late(__pa(mem->areas),
552 array_size(sizeof(*mem->areas), mem->nareas));
553 memblock_free_late(mem->start, tbl_size);
554 memblock_free_late(__pa(mem->slots), slots_size);
555 }
556
557 memset(mem, 0, sizeof(*mem));
558 }
559
560 #ifdef CONFIG_SWIOTLB_DYNAMIC
561
562 /**
563 * alloc_dma_pages() - allocate pages to be used for DMA
564 * @gfp: GFP flags for the allocation.
565 * @bytes: Size of the buffer.
566 * @phys_limit: Maximum allowed physical address of the buffer.
567 *
568 * Allocate pages from the buddy allocator. If successful, make the allocated
569 * pages decrypted that they can be used for DMA.
570 *
571 * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN)
572 * if the allocated physical address was above @phys_limit.
573 */
alloc_dma_pages(gfp_t gfp,size_t bytes,u64 phys_limit)574 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit)
575 {
576 unsigned int order = get_order(bytes);
577 struct page *page;
578 phys_addr_t paddr;
579 void *vaddr;
580
581 page = alloc_pages(gfp, order);
582 if (!page)
583 return NULL;
584
585 paddr = page_to_phys(page);
586 if (paddr + bytes - 1 > phys_limit) {
587 __free_pages(page, order);
588 return ERR_PTR(-EAGAIN);
589 }
590
591 vaddr = phys_to_virt(paddr);
592 if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes)))
593 goto error;
594 return page;
595
596 error:
597 /* Intentional leak if pages cannot be encrypted again. */
598 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
599 __free_pages(page, order);
600 return NULL;
601 }
602
603 /**
604 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer
605 * @dev: Device for which a memory pool is allocated.
606 * @bytes: Size of the buffer.
607 * @phys_limit: Maximum allowed physical address of the buffer.
608 * @gfp: GFP flags for the allocation.
609 *
610 * Return: Allocated pages, or %NULL on allocation failure.
611 */
swiotlb_alloc_tlb(struct device * dev,size_t bytes,u64 phys_limit,gfp_t gfp)612 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes,
613 u64 phys_limit, gfp_t gfp)
614 {
615 struct page *page;
616
617 /*
618 * Allocate from the atomic pools if memory is encrypted and
619 * the allocation is atomic, because decrypting may block.
620 */
621 if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) {
622 void *vaddr;
623
624 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
625 return NULL;
626
627 return dma_alloc_from_pool(dev, bytes, &vaddr, gfp,
628 dma_coherent_ok);
629 }
630
631 gfp &= ~GFP_ZONEMASK;
632 if (phys_limit <= DMA_BIT_MASK(zone_dma_bits))
633 gfp |= __GFP_DMA;
634 else if (phys_limit <= DMA_BIT_MASK(32))
635 gfp |= __GFP_DMA32;
636
637 while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) {
638 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
639 phys_limit < DMA_BIT_MASK(64) &&
640 !(gfp & (__GFP_DMA32 | __GFP_DMA)))
641 gfp |= __GFP_DMA32;
642 else if (IS_ENABLED(CONFIG_ZONE_DMA) &&
643 !(gfp & __GFP_DMA))
644 gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA;
645 else
646 return NULL;
647 }
648
649 return page;
650 }
651
652 /**
653 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer
654 * @vaddr: Virtual address of the buffer.
655 * @bytes: Size of the buffer.
656 */
swiotlb_free_tlb(void * vaddr,size_t bytes)657 static void swiotlb_free_tlb(void *vaddr, size_t bytes)
658 {
659 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
660 dma_free_from_pool(NULL, vaddr, bytes))
661 return;
662
663 /* Intentional leak if pages cannot be encrypted again. */
664 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes)))
665 __free_pages(virt_to_page(vaddr), get_order(bytes));
666 }
667
668 /**
669 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool
670 * @dev: Device for which a memory pool is allocated.
671 * @minslabs: Minimum number of slabs.
672 * @nslabs: Desired (maximum) number of slabs.
673 * @nareas: Number of areas.
674 * @phys_limit: Maximum DMA buffer physical address.
675 * @gfp: GFP flags for the allocations.
676 *
677 * Allocate and initialize a new IO TLB memory pool. The actual number of
678 * slabs may be reduced if allocation of @nslabs fails. If even
679 * @minslabs cannot be allocated, this function fails.
680 *
681 * Return: New memory pool, or %NULL on allocation failure.
682 */
swiotlb_alloc_pool(struct device * dev,unsigned long minslabs,unsigned long nslabs,unsigned int nareas,u64 phys_limit,gfp_t gfp)683 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev,
684 unsigned long minslabs, unsigned long nslabs,
685 unsigned int nareas, u64 phys_limit, gfp_t gfp)
686 {
687 struct io_tlb_pool *pool;
688 unsigned int slot_order;
689 struct page *tlb;
690 size_t pool_size;
691 size_t tlb_size;
692
693 if (nslabs > SLABS_PER_PAGE << MAX_ORDER) {
694 nslabs = SLABS_PER_PAGE << MAX_ORDER;
695 nareas = limit_nareas(nareas, nslabs);
696 }
697
698 pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas);
699 pool = kzalloc(pool_size, gfp);
700 if (!pool)
701 goto error;
702 pool->areas = (void *)pool + sizeof(*pool);
703
704 tlb_size = nslabs << IO_TLB_SHIFT;
705 while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) {
706 if (nslabs <= minslabs)
707 goto error_tlb;
708 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
709 nareas = limit_nareas(nareas, nslabs);
710 tlb_size = nslabs << IO_TLB_SHIFT;
711 }
712
713 slot_order = get_order(array_size(sizeof(*pool->slots), nslabs));
714 pool->slots = (struct io_tlb_slot *)
715 __get_free_pages(gfp, slot_order);
716 if (!pool->slots)
717 goto error_slots;
718
719 swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas);
720 return pool;
721
722 error_slots:
723 swiotlb_free_tlb(page_address(tlb), tlb_size);
724 error_tlb:
725 kfree(pool);
726 error:
727 return NULL;
728 }
729
730 /**
731 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker
732 * @work: Pointer to dyn_alloc in struct io_tlb_mem.
733 */
swiotlb_dyn_alloc(struct work_struct * work)734 static void swiotlb_dyn_alloc(struct work_struct *work)
735 {
736 struct io_tlb_mem *mem =
737 container_of(work, struct io_tlb_mem, dyn_alloc);
738 struct io_tlb_pool *pool;
739
740 pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs,
741 default_nareas, mem->phys_limit, GFP_KERNEL);
742 if (!pool) {
743 pr_warn_ratelimited("Failed to allocate new pool");
744 return;
745 }
746
747 add_mem_pool(mem, pool);
748 }
749
750 /**
751 * swiotlb_dyn_free() - RCU callback to free a memory pool
752 * @rcu: RCU head in the corresponding struct io_tlb_pool.
753 */
swiotlb_dyn_free(struct rcu_head * rcu)754 static void swiotlb_dyn_free(struct rcu_head *rcu)
755 {
756 struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu);
757 size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs);
758 size_t tlb_size = pool->end - pool->start;
759
760 free_pages((unsigned long)pool->slots, get_order(slots_size));
761 swiotlb_free_tlb(pool->vaddr, tlb_size);
762 kfree(pool);
763 }
764
765 /**
766 * swiotlb_find_pool() - find the IO TLB pool for a physical address
767 * @dev: Device which has mapped the DMA buffer.
768 * @paddr: Physical address within the DMA buffer.
769 *
770 * Find the IO TLB memory pool descriptor which contains the given physical
771 * address, if any.
772 *
773 * Return: Memory pool which contains @paddr, or %NULL if none.
774 */
swiotlb_find_pool(struct device * dev,phys_addr_t paddr)775 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr)
776 {
777 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
778 struct io_tlb_pool *pool;
779
780 rcu_read_lock();
781 list_for_each_entry_rcu(pool, &mem->pools, node) {
782 if (paddr >= pool->start && paddr < pool->end)
783 goto out;
784 }
785
786 list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) {
787 if (paddr >= pool->start && paddr < pool->end)
788 goto out;
789 }
790 pool = NULL;
791 out:
792 rcu_read_unlock();
793 return pool;
794 }
795
796 /**
797 * swiotlb_del_pool() - remove an IO TLB pool from a device
798 * @dev: Owning device.
799 * @pool: Memory pool to be removed.
800 */
swiotlb_del_pool(struct device * dev,struct io_tlb_pool * pool)801 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool)
802 {
803 unsigned long flags;
804
805 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
806 list_del_rcu(&pool->node);
807 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
808
809 call_rcu(&pool->rcu, swiotlb_dyn_free);
810 }
811
812 #endif /* CONFIG_SWIOTLB_DYNAMIC */
813
814 /**
815 * swiotlb_dev_init() - initialize swiotlb fields in &struct device
816 * @dev: Device to be initialized.
817 */
swiotlb_dev_init(struct device * dev)818 void swiotlb_dev_init(struct device *dev)
819 {
820 dev->dma_io_tlb_mem = &io_tlb_default_mem;
821 #ifdef CONFIG_SWIOTLB_DYNAMIC
822 INIT_LIST_HEAD(&dev->dma_io_tlb_pools);
823 spin_lock_init(&dev->dma_io_tlb_lock);
824 dev->dma_uses_io_tlb = false;
825 #endif
826 }
827
828 /**
829 * swiotlb_align_offset() - Get required offset into an IO TLB allocation.
830 * @dev: Owning device.
831 * @align_mask: Allocation alignment mask.
832 * @addr: DMA address.
833 *
834 * Return the minimum offset from the start of an IO TLB allocation which is
835 * required for a given buffer address and allocation alignment to keep the
836 * device happy.
837 *
838 * First, the address bits covered by min_align_mask must be identical in the
839 * original address and the bounce buffer address. High bits are preserved by
840 * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra
841 * padding bytes before the bounce buffer.
842 *
843 * Second, @align_mask specifies which bits of the first allocated slot must
844 * be zero. This may require allocating additional padding slots, and then the
845 * offset (in bytes) from the first such padding slot is returned.
846 */
swiotlb_align_offset(struct device * dev,unsigned int align_mask,u64 addr)847 static unsigned int swiotlb_align_offset(struct device *dev,
848 unsigned int align_mask, u64 addr)
849 {
850 return addr & dma_get_min_align_mask(dev) &
851 (align_mask | (IO_TLB_SIZE - 1));
852 }
853
854 /*
855 * Bounce: copy the swiotlb buffer from or back to the original dma location
856 */
swiotlb_bounce(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)857 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
858 enum dma_data_direction dir)
859 {
860 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
861 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
862 phys_addr_t orig_addr = mem->slots[index].orig_addr;
863 size_t alloc_size = mem->slots[index].alloc_size;
864 unsigned long pfn = PFN_DOWN(orig_addr);
865 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
866 unsigned int tlb_offset, orig_addr_offset;
867
868 if (orig_addr == INVALID_PHYS_ADDR)
869 return;
870
871 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
872 orig_addr_offset = swiotlb_align_offset(dev, 0, orig_addr);
873 if (tlb_offset < orig_addr_offset) {
874 dev_WARN_ONCE(dev, 1,
875 "Access before mapping start detected. orig offset %u, requested offset %u.\n",
876 orig_addr_offset, tlb_offset);
877 return;
878 }
879
880 tlb_offset -= orig_addr_offset;
881 if (tlb_offset > alloc_size) {
882 dev_WARN_ONCE(dev, 1,
883 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
884 alloc_size, size, tlb_offset);
885 return;
886 }
887
888 orig_addr += tlb_offset;
889 alloc_size -= tlb_offset;
890
891 if (size > alloc_size) {
892 dev_WARN_ONCE(dev, 1,
893 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
894 alloc_size, size);
895 size = alloc_size;
896 }
897
898 if (PageHighMem(pfn_to_page(pfn))) {
899 unsigned int offset = orig_addr & ~PAGE_MASK;
900 struct page *page;
901 unsigned int sz = 0;
902 unsigned long flags;
903
904 while (size) {
905 sz = min_t(size_t, PAGE_SIZE - offset, size);
906
907 local_irq_save(flags);
908 page = pfn_to_page(pfn);
909 if (dir == DMA_TO_DEVICE)
910 memcpy_from_page(vaddr, page, offset, sz);
911 else
912 memcpy_to_page(page, offset, vaddr, sz);
913 local_irq_restore(flags);
914
915 size -= sz;
916 pfn++;
917 vaddr += sz;
918 offset = 0;
919 }
920 } else if (dir == DMA_TO_DEVICE) {
921 memcpy(vaddr, phys_to_virt(orig_addr), size);
922 } else {
923 memcpy(phys_to_virt(orig_addr), vaddr, size);
924 }
925 }
926
slot_addr(phys_addr_t start,phys_addr_t idx)927 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
928 {
929 return start + (idx << IO_TLB_SHIFT);
930 }
931
932 /*
933 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
934 */
get_max_slots(unsigned long boundary_mask)935 static inline unsigned long get_max_slots(unsigned long boundary_mask)
936 {
937 return (boundary_mask >> IO_TLB_SHIFT) + 1;
938 }
939
wrap_area_index(struct io_tlb_pool * mem,unsigned int index)940 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index)
941 {
942 if (index >= mem->area_nslabs)
943 return 0;
944 return index;
945 }
946
947 /*
948 * Track the total used slots with a global atomic value in order to have
949 * correct information to determine the high water mark. The mem_used()
950 * function gives imprecise results because there's no locking across
951 * multiple areas.
952 */
953 #ifdef CONFIG_DEBUG_FS
inc_used_and_hiwater(struct io_tlb_mem * mem,unsigned int nslots)954 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
955 {
956 unsigned long old_hiwater, new_used;
957
958 new_used = atomic_long_add_return(nslots, &mem->total_used);
959 old_hiwater = atomic_long_read(&mem->used_hiwater);
960 do {
961 if (new_used <= old_hiwater)
962 break;
963 } while (!atomic_long_try_cmpxchg(&mem->used_hiwater,
964 &old_hiwater, new_used));
965 }
966
dec_used(struct io_tlb_mem * mem,unsigned int nslots)967 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
968 {
969 atomic_long_sub(nslots, &mem->total_used);
970 }
971
972 #else /* !CONFIG_DEBUG_FS */
inc_used_and_hiwater(struct io_tlb_mem * mem,unsigned int nslots)973 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots)
974 {
975 }
dec_used(struct io_tlb_mem * mem,unsigned int nslots)976 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots)
977 {
978 }
979 #endif /* CONFIG_DEBUG_FS */
980
981 /**
982 * swiotlb_area_find_slots() - search for slots in one IO TLB memory area
983 * @dev: Device which maps the buffer.
984 * @pool: Memory pool to be searched.
985 * @area_index: Index of the IO TLB memory area to be searched.
986 * @orig_addr: Original (non-bounced) IO buffer address.
987 * @alloc_size: Total requested size of the bounce buffer,
988 * including initial alignment padding.
989 * @alloc_align_mask: Required alignment of the allocated buffer.
990 *
991 * Find a suitable sequence of IO TLB entries for the request and allocate
992 * a buffer from the given IO TLB memory area.
993 * This function takes care of locking.
994 *
995 * Return: Index of the first allocated slot, or -1 on error.
996 */
swiotlb_area_find_slots(struct device * dev,struct io_tlb_pool * pool,int area_index,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)997 static int swiotlb_area_find_slots(struct device *dev, struct io_tlb_pool *pool,
998 int area_index, phys_addr_t orig_addr, size_t alloc_size,
999 unsigned int alloc_align_mask)
1000 {
1001 struct io_tlb_area *area = pool->areas + area_index;
1002 unsigned long boundary_mask = dma_get_seg_boundary(dev);
1003 dma_addr_t tbl_dma_addr =
1004 phys_to_dma_unencrypted(dev, pool->start) & boundary_mask;
1005 unsigned long max_slots = get_max_slots(boundary_mask);
1006 unsigned int iotlb_align_mask = dma_get_min_align_mask(dev);
1007 unsigned int nslots = nr_slots(alloc_size), stride;
1008 unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr);
1009 unsigned int index, slots_checked, count = 0, i;
1010 unsigned long flags;
1011 unsigned int slot_base;
1012 unsigned int slot_index;
1013
1014 BUG_ON(!nslots);
1015 BUG_ON(area_index >= pool->nareas);
1016
1017 /*
1018 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be
1019 * page-aligned in the absence of any other alignment requirements.
1020 * 'alloc_align_mask' was later introduced to specify the alignment
1021 * explicitly, however this is passed as zero for streaming mappings
1022 * and so we preserve the old behaviour there in case any drivers are
1023 * relying on it.
1024 */
1025 if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE)
1026 alloc_align_mask = PAGE_SIZE - 1;
1027
1028 /*
1029 * Ensure that the allocation is at least slot-aligned and update
1030 * 'iotlb_align_mask' to ignore bits that will be preserved when
1031 * offsetting into the allocation.
1032 */
1033 alloc_align_mask |= (IO_TLB_SIZE - 1);
1034 iotlb_align_mask &= ~alloc_align_mask;
1035
1036 /*
1037 * For mappings with an alignment requirement don't bother looping to
1038 * unaligned slots once we found an aligned one.
1039 */
1040 stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask));
1041
1042 spin_lock_irqsave(&area->lock, flags);
1043 if (unlikely(nslots > pool->area_nslabs - area->used))
1044 goto not_found;
1045
1046 slot_base = area_index * pool->area_nslabs;
1047 index = area->index;
1048
1049 for (slots_checked = 0; slots_checked < pool->area_nslabs; ) {
1050 phys_addr_t tlb_addr;
1051
1052 slot_index = slot_base + index;
1053 tlb_addr = slot_addr(tbl_dma_addr, slot_index);
1054
1055 if ((tlb_addr & alloc_align_mask) ||
1056 (orig_addr && (tlb_addr & iotlb_align_mask) !=
1057 (orig_addr & iotlb_align_mask))) {
1058 index = wrap_area_index(pool, index + 1);
1059 slots_checked++;
1060 continue;
1061 }
1062
1063 if (!iommu_is_span_boundary(slot_index, nslots,
1064 nr_slots(tbl_dma_addr),
1065 max_slots)) {
1066 if (pool->slots[slot_index].list >= nslots)
1067 goto found;
1068 }
1069 index = wrap_area_index(pool, index + stride);
1070 slots_checked += stride;
1071 }
1072
1073 not_found:
1074 spin_unlock_irqrestore(&area->lock, flags);
1075 return -1;
1076
1077 found:
1078 /*
1079 * If we find a slot that indicates we have 'nslots' number of
1080 * contiguous buffers, we allocate the buffers from that slot onwards
1081 * and set the list of free entries to '0' indicating unavailable.
1082 */
1083 for (i = slot_index; i < slot_index + nslots; i++) {
1084 pool->slots[i].list = 0;
1085 pool->slots[i].alloc_size = alloc_size - (offset +
1086 ((i - slot_index) << IO_TLB_SHIFT));
1087 }
1088 for (i = slot_index - 1;
1089 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
1090 pool->slots[i].list; i--)
1091 pool->slots[i].list = ++count;
1092
1093 /*
1094 * Update the indices to avoid searching in the next round.
1095 */
1096 area->index = wrap_area_index(pool, index + nslots);
1097 area->used += nslots;
1098 spin_unlock_irqrestore(&area->lock, flags);
1099
1100 inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots);
1101 return slot_index;
1102 }
1103
1104 /**
1105 * swiotlb_pool_find_slots() - search for slots in one memory pool
1106 * @dev: Device which maps the buffer.
1107 * @pool: Memory pool to be searched.
1108 * @orig_addr: Original (non-bounced) IO buffer address.
1109 * @alloc_size: Total requested size of the bounce buffer,
1110 * including initial alignment padding.
1111 * @alloc_align_mask: Required alignment of the allocated buffer.
1112 *
1113 * Search through one memory pool to find a sequence of slots that match the
1114 * allocation constraints.
1115 *
1116 * Return: Index of the first allocated slot, or -1 on error.
1117 */
swiotlb_pool_find_slots(struct device * dev,struct io_tlb_pool * pool,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)1118 static int swiotlb_pool_find_slots(struct device *dev, struct io_tlb_pool *pool,
1119 phys_addr_t orig_addr, size_t alloc_size,
1120 unsigned int alloc_align_mask)
1121 {
1122 int start = raw_smp_processor_id() & (pool->nareas - 1);
1123 int i = start, index;
1124
1125 do {
1126 index = swiotlb_area_find_slots(dev, pool, i, orig_addr,
1127 alloc_size, alloc_align_mask);
1128 if (index >= 0)
1129 return index;
1130 if (++i >= pool->nareas)
1131 i = 0;
1132 } while (i != start);
1133
1134 return -1;
1135 }
1136
1137 #ifdef CONFIG_SWIOTLB_DYNAMIC
1138
1139 /**
1140 * swiotlb_find_slots() - search for slots in the whole swiotlb
1141 * @dev: Device which maps the buffer.
1142 * @orig_addr: Original (non-bounced) IO buffer address.
1143 * @alloc_size: Total requested size of the bounce buffer,
1144 * including initial alignment padding.
1145 * @alloc_align_mask: Required alignment of the allocated buffer.
1146 * @retpool: Used memory pool, updated on return.
1147 *
1148 * Search through the whole software IO TLB to find a sequence of slots that
1149 * match the allocation constraints.
1150 *
1151 * Return: Index of the first allocated slot, or -1 on error.
1152 */
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask,struct io_tlb_pool ** retpool)1153 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1154 size_t alloc_size, unsigned int alloc_align_mask,
1155 struct io_tlb_pool **retpool)
1156 {
1157 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1158 struct io_tlb_pool *pool;
1159 unsigned long nslabs;
1160 unsigned long flags;
1161 u64 phys_limit;
1162 int index;
1163
1164 rcu_read_lock();
1165 list_for_each_entry_rcu(pool, &mem->pools, node) {
1166 index = swiotlb_pool_find_slots(dev, pool, orig_addr,
1167 alloc_size, alloc_align_mask);
1168 if (index >= 0) {
1169 rcu_read_unlock();
1170 goto found;
1171 }
1172 }
1173 rcu_read_unlock();
1174 if (!mem->can_grow)
1175 return -1;
1176
1177 schedule_work(&mem->dyn_alloc);
1178
1179 nslabs = nr_slots(alloc_size);
1180 phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit);
1181 pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit,
1182 GFP_NOWAIT | __GFP_NOWARN);
1183 if (!pool)
1184 return -1;
1185
1186 index = swiotlb_pool_find_slots(dev, pool, orig_addr,
1187 alloc_size, alloc_align_mask);
1188 if (index < 0) {
1189 swiotlb_dyn_free(&pool->rcu);
1190 return -1;
1191 }
1192
1193 pool->transient = true;
1194 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags);
1195 list_add_rcu(&pool->node, &dev->dma_io_tlb_pools);
1196 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags);
1197
1198 found:
1199 WRITE_ONCE(dev->dma_uses_io_tlb, true);
1200
1201 /*
1202 * The general barrier orders reads and writes against a presumed store
1203 * of the SWIOTLB buffer address by a device driver (to a driver private
1204 * data structure). It serves two purposes.
1205 *
1206 * First, the store to dev->dma_uses_io_tlb must be ordered before the
1207 * presumed store. This guarantees that the returned buffer address
1208 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb.
1209 *
1210 * Second, the load from mem->pools must be ordered before the same
1211 * presumed store. This guarantees that the returned buffer address
1212 * cannot be observed by another CPU before an update of the RCU list
1213 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy
1214 * atomicity).
1215 *
1216 * See also the comment in is_swiotlb_buffer().
1217 */
1218 smp_mb();
1219
1220 *retpool = pool;
1221 return index;
1222 }
1223
1224 #else /* !CONFIG_SWIOTLB_DYNAMIC */
1225
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask,struct io_tlb_pool ** retpool)1226 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
1227 size_t alloc_size, unsigned int alloc_align_mask,
1228 struct io_tlb_pool **retpool)
1229 {
1230 *retpool = &dev->dma_io_tlb_mem->defpool;
1231 return swiotlb_pool_find_slots(dev, *retpool,
1232 orig_addr, alloc_size, alloc_align_mask);
1233 }
1234
1235 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1236
1237 #ifdef CONFIG_DEBUG_FS
1238
1239 /**
1240 * mem_used() - get number of used slots in an allocator
1241 * @mem: Software IO TLB allocator.
1242 *
1243 * The result is accurate in this version of the function, because an atomic
1244 * counter is available if CONFIG_DEBUG_FS is set.
1245 *
1246 * Return: Number of used slots.
1247 */
mem_used(struct io_tlb_mem * mem)1248 static unsigned long mem_used(struct io_tlb_mem *mem)
1249 {
1250 return atomic_long_read(&mem->total_used);
1251 }
1252
1253 #else /* !CONFIG_DEBUG_FS */
1254
1255 /**
1256 * mem_pool_used() - get number of used slots in a memory pool
1257 * @pool: Software IO TLB memory pool.
1258 *
1259 * The result is not accurate, see mem_used().
1260 *
1261 * Return: Approximate number of used slots.
1262 */
mem_pool_used(struct io_tlb_pool * pool)1263 static unsigned long mem_pool_used(struct io_tlb_pool *pool)
1264 {
1265 int i;
1266 unsigned long used = 0;
1267
1268 for (i = 0; i < pool->nareas; i++)
1269 used += pool->areas[i].used;
1270 return used;
1271 }
1272
1273 /**
1274 * mem_used() - get number of used slots in an allocator
1275 * @mem: Software IO TLB allocator.
1276 *
1277 * The result is not accurate, because there is no locking of individual
1278 * areas.
1279 *
1280 * Return: Approximate number of used slots.
1281 */
mem_used(struct io_tlb_mem * mem)1282 static unsigned long mem_used(struct io_tlb_mem *mem)
1283 {
1284 #ifdef CONFIG_SWIOTLB_DYNAMIC
1285 struct io_tlb_pool *pool;
1286 unsigned long used = 0;
1287
1288 rcu_read_lock();
1289 list_for_each_entry_rcu(pool, &mem->pools, node)
1290 used += mem_pool_used(pool);
1291 rcu_read_unlock();
1292
1293 return used;
1294 #else
1295 return mem_pool_used(&mem->defpool);
1296 #endif
1297 }
1298
1299 #endif /* CONFIG_DEBUG_FS */
1300
swiotlb_tbl_map_single(struct device * dev,phys_addr_t orig_addr,size_t mapping_size,size_t alloc_size,unsigned int alloc_align_mask,enum dma_data_direction dir,unsigned long attrs)1301 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
1302 size_t mapping_size, size_t alloc_size,
1303 unsigned int alloc_align_mask, enum dma_data_direction dir,
1304 unsigned long attrs)
1305 {
1306 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1307 unsigned int offset;
1308 struct io_tlb_pool *pool;
1309 unsigned int i;
1310 int index;
1311 phys_addr_t tlb_addr;
1312 unsigned short pad_slots;
1313
1314 if (!mem || !mem->nslabs) {
1315 dev_warn_ratelimited(dev,
1316 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
1317 return (phys_addr_t)DMA_MAPPING_ERROR;
1318 }
1319
1320 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
1321 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
1322
1323 if (mapping_size > alloc_size) {
1324 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
1325 mapping_size, alloc_size);
1326 return (phys_addr_t)DMA_MAPPING_ERROR;
1327 }
1328
1329 offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr);
1330 index = swiotlb_find_slots(dev, orig_addr,
1331 alloc_size + offset, alloc_align_mask, &pool);
1332 if (index == -1) {
1333 if (!(attrs & DMA_ATTR_NO_WARN))
1334 dev_warn_ratelimited(dev,
1335 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
1336 alloc_size, mem->nslabs, mem_used(mem));
1337 return (phys_addr_t)DMA_MAPPING_ERROR;
1338 }
1339
1340 /*
1341 * Save away the mapping from the original address to the DMA address.
1342 * This is needed when we sync the memory. Then we sync the buffer if
1343 * needed.
1344 */
1345 pad_slots = offset >> IO_TLB_SHIFT;
1346 offset &= (IO_TLB_SIZE - 1);
1347 index += pad_slots;
1348 pool->slots[index].pad_slots = pad_slots;
1349 for (i = 0; i < nr_slots(alloc_size + offset); i++)
1350 pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
1351 tlb_addr = slot_addr(pool->start, index) + offset;
1352 /*
1353 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
1354 * to the tlb buffer, if we knew for sure the device will
1355 * overwrite the entire current content. But we don't. Thus
1356 * unconditional bounce may prevent leaking swiotlb content (i.e.
1357 * kernel memory) to user-space.
1358 */
1359 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
1360 return tlb_addr;
1361 }
1362
swiotlb_release_slots(struct device * dev,phys_addr_t tlb_addr)1363 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
1364 {
1365 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr);
1366 unsigned long flags;
1367 unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr);
1368 int index, nslots, aindex;
1369 struct io_tlb_area *area;
1370 int count, i;
1371
1372 index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
1373 index -= mem->slots[index].pad_slots;
1374 nslots = nr_slots(mem->slots[index].alloc_size + offset);
1375 aindex = index / mem->area_nslabs;
1376 area = &mem->areas[aindex];
1377
1378 /*
1379 * Return the buffer to the free list by setting the corresponding
1380 * entries to indicate the number of contiguous entries available.
1381 * While returning the entries to the free list, we merge the entries
1382 * with slots below and above the pool being returned.
1383 */
1384 BUG_ON(aindex >= mem->nareas);
1385
1386 spin_lock_irqsave(&area->lock, flags);
1387 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
1388 count = mem->slots[index + nslots].list;
1389 else
1390 count = 0;
1391
1392 /*
1393 * Step 1: return the slots to the free list, merging the slots with
1394 * superceeding slots
1395 */
1396 for (i = index + nslots - 1; i >= index; i--) {
1397 mem->slots[i].list = ++count;
1398 mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
1399 mem->slots[i].alloc_size = 0;
1400 mem->slots[i].pad_slots = 0;
1401 }
1402
1403 /*
1404 * Step 2: merge the returned slots with the preceding slots, if
1405 * available (non zero)
1406 */
1407 for (i = index - 1;
1408 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
1409 i--)
1410 mem->slots[i].list = ++count;
1411 area->used -= nslots;
1412 spin_unlock_irqrestore(&area->lock, flags);
1413
1414 dec_used(dev->dma_io_tlb_mem, nslots);
1415 }
1416
1417 #ifdef CONFIG_SWIOTLB_DYNAMIC
1418
1419 /**
1420 * swiotlb_del_transient() - delete a transient memory pool
1421 * @dev: Device which mapped the buffer.
1422 * @tlb_addr: Physical address within a bounce buffer.
1423 *
1424 * Check whether the address belongs to a transient SWIOTLB memory pool.
1425 * If yes, then delete the pool.
1426 *
1427 * Return: %true if @tlb_addr belonged to a transient pool that was released.
1428 */
swiotlb_del_transient(struct device * dev,phys_addr_t tlb_addr)1429 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr)
1430 {
1431 struct io_tlb_pool *pool;
1432
1433 pool = swiotlb_find_pool(dev, tlb_addr);
1434 if (!pool->transient)
1435 return false;
1436
1437 dec_used(dev->dma_io_tlb_mem, pool->nslabs);
1438 swiotlb_del_pool(dev, pool);
1439 return true;
1440 }
1441
1442 #else /* !CONFIG_SWIOTLB_DYNAMIC */
1443
swiotlb_del_transient(struct device * dev,phys_addr_t tlb_addr)1444 static inline bool swiotlb_del_transient(struct device *dev,
1445 phys_addr_t tlb_addr)
1446 {
1447 return false;
1448 }
1449
1450 #endif /* CONFIG_SWIOTLB_DYNAMIC */
1451
1452 /*
1453 * tlb_addr is the physical address of the bounce buffer to unmap.
1454 */
swiotlb_tbl_unmap_single(struct device * dev,phys_addr_t tlb_addr,size_t mapping_size,enum dma_data_direction dir,unsigned long attrs)1455 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
1456 size_t mapping_size, enum dma_data_direction dir,
1457 unsigned long attrs)
1458 {
1459 /*
1460 * First, sync the memory before unmapping the entry
1461 */
1462 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1463 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
1464 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
1465
1466 if (swiotlb_del_transient(dev, tlb_addr))
1467 return;
1468 swiotlb_release_slots(dev, tlb_addr);
1469 }
1470
swiotlb_sync_single_for_device(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)1471 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
1472 size_t size, enum dma_data_direction dir)
1473 {
1474 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
1475 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
1476 else
1477 BUG_ON(dir != DMA_FROM_DEVICE);
1478 }
1479
swiotlb_sync_single_for_cpu(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)1480 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
1481 size_t size, enum dma_data_direction dir)
1482 {
1483 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1484 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
1485 else
1486 BUG_ON(dir != DMA_TO_DEVICE);
1487 }
1488
1489 /*
1490 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
1491 * to the device copy the data into it as well.
1492 */
swiotlb_map(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)1493 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
1494 enum dma_data_direction dir, unsigned long attrs)
1495 {
1496 phys_addr_t swiotlb_addr;
1497 dma_addr_t dma_addr;
1498
1499 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
1500
1501 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
1502 attrs);
1503 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
1504 return DMA_MAPPING_ERROR;
1505
1506 /* Ensure that the address returned is DMA'ble */
1507 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
1508 if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
1509 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
1510 attrs | DMA_ATTR_SKIP_CPU_SYNC);
1511 dev_WARN_ONCE(dev, 1,
1512 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
1513 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
1514 return DMA_MAPPING_ERROR;
1515 }
1516
1517 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1518 arch_sync_dma_for_device(swiotlb_addr, size, dir);
1519 return dma_addr;
1520 }
1521
swiotlb_max_mapping_size(struct device * dev)1522 size_t swiotlb_max_mapping_size(struct device *dev)
1523 {
1524 int min_align_mask = dma_get_min_align_mask(dev);
1525 int min_align = 0;
1526
1527 /*
1528 * swiotlb_find_slots() skips slots according to
1529 * min align mask. This affects max mapping size.
1530 * Take it into acount here.
1531 */
1532 if (min_align_mask)
1533 min_align = roundup(min_align_mask, IO_TLB_SIZE);
1534
1535 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
1536 }
1537
1538 /**
1539 * is_swiotlb_allocated() - check if the default software IO TLB is initialized
1540 */
is_swiotlb_allocated(void)1541 bool is_swiotlb_allocated(void)
1542 {
1543 return io_tlb_default_mem.nslabs;
1544 }
1545
is_swiotlb_active(struct device * dev)1546 bool is_swiotlb_active(struct device *dev)
1547 {
1548 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1549
1550 return mem && mem->nslabs;
1551 }
1552
1553 /**
1554 * default_swiotlb_base() - get the base address of the default SWIOTLB
1555 *
1556 * Get the lowest physical address used by the default software IO TLB pool.
1557 */
default_swiotlb_base(void)1558 phys_addr_t default_swiotlb_base(void)
1559 {
1560 #ifdef CONFIG_SWIOTLB_DYNAMIC
1561 io_tlb_default_mem.can_grow = false;
1562 #endif
1563 return io_tlb_default_mem.defpool.start;
1564 }
1565
1566 /**
1567 * default_swiotlb_limit() - get the address limit of the default SWIOTLB
1568 *
1569 * Get the highest physical address used by the default software IO TLB pool.
1570 */
default_swiotlb_limit(void)1571 phys_addr_t default_swiotlb_limit(void)
1572 {
1573 #ifdef CONFIG_SWIOTLB_DYNAMIC
1574 return io_tlb_default_mem.phys_limit;
1575 #else
1576 return io_tlb_default_mem.defpool.end - 1;
1577 #endif
1578 }
1579
1580 #ifdef CONFIG_DEBUG_FS
1581
io_tlb_used_get(void * data,u64 * val)1582 static int io_tlb_used_get(void *data, u64 *val)
1583 {
1584 struct io_tlb_mem *mem = data;
1585
1586 *val = mem_used(mem);
1587 return 0;
1588 }
1589
io_tlb_hiwater_get(void * data,u64 * val)1590 static int io_tlb_hiwater_get(void *data, u64 *val)
1591 {
1592 struct io_tlb_mem *mem = data;
1593
1594 *val = atomic_long_read(&mem->used_hiwater);
1595 return 0;
1596 }
1597
io_tlb_hiwater_set(void * data,u64 val)1598 static int io_tlb_hiwater_set(void *data, u64 val)
1599 {
1600 struct io_tlb_mem *mem = data;
1601
1602 /* Only allow setting to zero */
1603 if (val != 0)
1604 return -EINVAL;
1605
1606 atomic_long_set(&mem->used_hiwater, val);
1607 return 0;
1608 }
1609
1610 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
1611 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get,
1612 io_tlb_hiwater_set, "%llu\n");
1613
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)1614 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1615 const char *dirname)
1616 {
1617 atomic_long_set(&mem->total_used, 0);
1618 atomic_long_set(&mem->used_hiwater, 0);
1619
1620 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
1621 if (!mem->nslabs)
1622 return;
1623
1624 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
1625 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem,
1626 &fops_io_tlb_used);
1627 debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem,
1628 &fops_io_tlb_hiwater);
1629 }
1630
swiotlb_create_default_debugfs(void)1631 static int __init swiotlb_create_default_debugfs(void)
1632 {
1633 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
1634 return 0;
1635 }
1636
1637 late_initcall(swiotlb_create_default_debugfs);
1638
1639 #else /* !CONFIG_DEBUG_FS */
1640
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)1641 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
1642 const char *dirname)
1643 {
1644 }
1645
1646 #endif /* CONFIG_DEBUG_FS */
1647
1648 #ifdef CONFIG_DMA_RESTRICTED_POOL
1649
swiotlb_alloc(struct device * dev,size_t size)1650 struct page *swiotlb_alloc(struct device *dev, size_t size)
1651 {
1652 struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
1653 struct io_tlb_pool *pool;
1654 phys_addr_t tlb_addr;
1655 unsigned int align;
1656 int index;
1657
1658 if (!mem)
1659 return NULL;
1660
1661 align = (1 << (get_order(size) + PAGE_SHIFT)) - 1;
1662 index = swiotlb_find_slots(dev, 0, size, align, &pool);
1663 if (index == -1)
1664 return NULL;
1665
1666 tlb_addr = slot_addr(pool->start, index);
1667 if (unlikely(!PAGE_ALIGNED(tlb_addr))) {
1668 dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n",
1669 &tlb_addr);
1670 swiotlb_release_slots(dev, tlb_addr);
1671 return NULL;
1672 }
1673
1674 return pfn_to_page(PFN_DOWN(tlb_addr));
1675 }
1676
swiotlb_free(struct device * dev,struct page * page,size_t size)1677 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
1678 {
1679 phys_addr_t tlb_addr = page_to_phys(page);
1680
1681 if (!is_swiotlb_buffer(dev, tlb_addr))
1682 return false;
1683
1684 swiotlb_release_slots(dev, tlb_addr);
1685
1686 return true;
1687 }
1688
rmem_swiotlb_device_init(struct reserved_mem * rmem,struct device * dev)1689 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
1690 struct device *dev)
1691 {
1692 struct io_tlb_mem *mem = rmem->priv;
1693 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1694
1695 /* Set Per-device io tlb area to one */
1696 unsigned int nareas = 1;
1697
1698 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1699 dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping.");
1700 return -EINVAL;
1701 }
1702
1703 /*
1704 * Since multiple devices can share the same pool, the private data,
1705 * io_tlb_mem struct, will be initialized by the first device attached
1706 * to it.
1707 */
1708 if (!mem) {
1709 struct io_tlb_pool *pool;
1710
1711 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1712 if (!mem)
1713 return -ENOMEM;
1714 pool = &mem->defpool;
1715
1716 pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL);
1717 if (!pool->slots) {
1718 kfree(mem);
1719 return -ENOMEM;
1720 }
1721
1722 pool->areas = kcalloc(nareas, sizeof(*pool->areas),
1723 GFP_KERNEL);
1724 if (!pool->areas) {
1725 kfree(pool->slots);
1726 kfree(mem);
1727 return -ENOMEM;
1728 }
1729
1730 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1731 rmem->size >> PAGE_SHIFT);
1732 swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs,
1733 false, nareas);
1734 mem->force_bounce = true;
1735 mem->for_alloc = true;
1736 #ifdef CONFIG_SWIOTLB_DYNAMIC
1737 spin_lock_init(&mem->lock);
1738 INIT_LIST_HEAD_RCU(&mem->pools);
1739 #endif
1740 add_mem_pool(mem, pool);
1741
1742 rmem->priv = mem;
1743
1744 swiotlb_create_debugfs_files(mem, rmem->name);
1745 }
1746
1747 dev->dma_io_tlb_mem = mem;
1748
1749 return 0;
1750 }
1751
rmem_swiotlb_device_release(struct reserved_mem * rmem,struct device * dev)1752 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1753 struct device *dev)
1754 {
1755 dev->dma_io_tlb_mem = &io_tlb_default_mem;
1756 }
1757
1758 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1759 .device_init = rmem_swiotlb_device_init,
1760 .device_release = rmem_swiotlb_device_release,
1761 };
1762
rmem_swiotlb_setup(struct reserved_mem * rmem)1763 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1764 {
1765 unsigned long node = rmem->fdt_node;
1766
1767 if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1768 of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1769 of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1770 of_get_flat_dt_prop(node, "no-map", NULL))
1771 return -EINVAL;
1772
1773 rmem->ops = &rmem_swiotlb_ops;
1774 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1775 &rmem->base, (unsigned long)rmem->size / SZ_1M);
1776 return 0;
1777 }
1778
1779 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1780 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1781