1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 #include <linux/platform_device.h>
24 
25 #include <linux/acpi.h>
26 #include <linux/io.h>
27 #include <linux/delay.h>
28 #include <linux/uaccess.h>
29 
30 #include <acpi/processor.h>
31 #include <acpi/cppc_acpi.h>
32 
33 #include <asm/msr.h>
34 #include <asm/processor.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cpu_device_id.h>
37 
38 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
39 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
40 MODULE_LICENSE("GPL");
41 
42 enum {
43 	UNDEFINED_CAPABLE = 0,
44 	SYSTEM_INTEL_MSR_CAPABLE,
45 	SYSTEM_AMD_MSR_CAPABLE,
46 	SYSTEM_IO_CAPABLE,
47 };
48 
49 #define INTEL_MSR_RANGE		(0xffff)
50 #define AMD_MSR_RANGE		(0x7)
51 #define HYGON_MSR_RANGE		(0x7)
52 
53 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
54 
55 struct acpi_cpufreq_data {
56 	unsigned int resume;
57 	unsigned int cpu_feature;
58 	unsigned int acpi_perf_cpu;
59 	cpumask_var_t freqdomain_cpus;
60 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
61 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
62 };
63 
64 /* acpi_perf_data is a pointer to percpu data. */
65 static struct acpi_processor_performance __percpu *acpi_perf_data;
66 
to_perf_data(struct acpi_cpufreq_data * data)67 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
68 {
69 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
70 }
71 
72 static struct cpufreq_driver acpi_cpufreq_driver;
73 
74 static unsigned int acpi_pstate_strict;
75 
boost_state(unsigned int cpu)76 static bool boost_state(unsigned int cpu)
77 {
78 	u32 lo, hi;
79 	u64 msr;
80 
81 	switch (boot_cpu_data.x86_vendor) {
82 	case X86_VENDOR_INTEL:
83 	case X86_VENDOR_CENTAUR:
84 	case X86_VENDOR_ZHAOXIN:
85 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
86 		msr = lo | ((u64)hi << 32);
87 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
88 	case X86_VENDOR_HYGON:
89 	case X86_VENDOR_AMD:
90 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
91 		msr = lo | ((u64)hi << 32);
92 		return !(msr & MSR_K7_HWCR_CPB_DIS);
93 	}
94 	return false;
95 }
96 
boost_set_msr(bool enable)97 static int boost_set_msr(bool enable)
98 {
99 	u32 msr_addr;
100 	u64 msr_mask, val;
101 
102 	switch (boot_cpu_data.x86_vendor) {
103 	case X86_VENDOR_INTEL:
104 	case X86_VENDOR_CENTAUR:
105 	case X86_VENDOR_ZHAOXIN:
106 		msr_addr = MSR_IA32_MISC_ENABLE;
107 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
108 		break;
109 	case X86_VENDOR_HYGON:
110 	case X86_VENDOR_AMD:
111 		msr_addr = MSR_K7_HWCR;
112 		msr_mask = MSR_K7_HWCR_CPB_DIS;
113 		break;
114 	default:
115 		return -EINVAL;
116 	}
117 
118 	rdmsrl(msr_addr, val);
119 
120 	if (enable)
121 		val &= ~msr_mask;
122 	else
123 		val |= msr_mask;
124 
125 	wrmsrl(msr_addr, val);
126 	return 0;
127 }
128 
boost_set_msr_each(void * p_en)129 static void boost_set_msr_each(void *p_en)
130 {
131 	bool enable = (bool) p_en;
132 
133 	boost_set_msr(enable);
134 }
135 
set_boost(struct cpufreq_policy * policy,int val)136 static int set_boost(struct cpufreq_policy *policy, int val)
137 {
138 	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
139 			 (void *)(long)val, 1);
140 	pr_debug("CPU %*pbl: Core Boosting %s.\n",
141 		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
142 
143 	return 0;
144 }
145 
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)146 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
147 {
148 	struct acpi_cpufreq_data *data = policy->driver_data;
149 
150 	if (unlikely(!data))
151 		return -ENODEV;
152 
153 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
154 }
155 
156 cpufreq_freq_attr_ro(freqdomain_cpus);
157 
158 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
store_cpb(struct cpufreq_policy * policy,const char * buf,size_t count)159 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
160 			 size_t count)
161 {
162 	int ret;
163 	unsigned int val = 0;
164 
165 	if (!acpi_cpufreq_driver.set_boost)
166 		return -EINVAL;
167 
168 	ret = kstrtouint(buf, 10, &val);
169 	if (ret || val > 1)
170 		return -EINVAL;
171 
172 	cpus_read_lock();
173 	set_boost(policy, val);
174 	cpus_read_unlock();
175 
176 	return count;
177 }
178 
show_cpb(struct cpufreq_policy * policy,char * buf)179 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
180 {
181 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
182 }
183 
184 cpufreq_freq_attr_rw(cpb);
185 #endif
186 
check_est_cpu(unsigned int cpuid)187 static int check_est_cpu(unsigned int cpuid)
188 {
189 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
190 
191 	return cpu_has(cpu, X86_FEATURE_EST);
192 }
193 
check_amd_hwpstate_cpu(unsigned int cpuid)194 static int check_amd_hwpstate_cpu(unsigned int cpuid)
195 {
196 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197 
198 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
199 }
200 
extract_io(struct cpufreq_policy * policy,u32 value)201 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
202 {
203 	struct acpi_cpufreq_data *data = policy->driver_data;
204 	struct acpi_processor_performance *perf;
205 	int i;
206 
207 	perf = to_perf_data(data);
208 
209 	for (i = 0; i < perf->state_count; i++) {
210 		if (value == perf->states[i].status)
211 			return policy->freq_table[i].frequency;
212 	}
213 	return 0;
214 }
215 
extract_msr(struct cpufreq_policy * policy,u32 msr)216 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
217 {
218 	struct acpi_cpufreq_data *data = policy->driver_data;
219 	struct cpufreq_frequency_table *pos;
220 	struct acpi_processor_performance *perf;
221 
222 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223 		msr &= AMD_MSR_RANGE;
224 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
225 		msr &= HYGON_MSR_RANGE;
226 	else
227 		msr &= INTEL_MSR_RANGE;
228 
229 	perf = to_perf_data(data);
230 
231 	cpufreq_for_each_entry(pos, policy->freq_table)
232 		if (msr == perf->states[pos->driver_data].status)
233 			return pos->frequency;
234 	return policy->freq_table[0].frequency;
235 }
236 
extract_freq(struct cpufreq_policy * policy,u32 val)237 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
238 {
239 	struct acpi_cpufreq_data *data = policy->driver_data;
240 
241 	switch (data->cpu_feature) {
242 	case SYSTEM_INTEL_MSR_CAPABLE:
243 	case SYSTEM_AMD_MSR_CAPABLE:
244 		return extract_msr(policy, val);
245 	case SYSTEM_IO_CAPABLE:
246 		return extract_io(policy, val);
247 	default:
248 		return 0;
249 	}
250 }
251 
cpu_freq_read_intel(struct acpi_pct_register * not_used)252 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
253 {
254 	u32 val, dummy __always_unused;
255 
256 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
257 	return val;
258 }
259 
cpu_freq_write_intel(struct acpi_pct_register * not_used,u32 val)260 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
261 {
262 	u32 lo, hi;
263 
264 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
265 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
266 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
267 }
268 
cpu_freq_read_amd(struct acpi_pct_register * not_used)269 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
270 {
271 	u32 val, dummy __always_unused;
272 
273 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
274 	return val;
275 }
276 
cpu_freq_write_amd(struct acpi_pct_register * not_used,u32 val)277 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
278 {
279 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
280 }
281 
cpu_freq_read_io(struct acpi_pct_register * reg)282 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
283 {
284 	u32 val;
285 
286 	acpi_os_read_port(reg->address, &val, reg->bit_width);
287 	return val;
288 }
289 
cpu_freq_write_io(struct acpi_pct_register * reg,u32 val)290 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
291 {
292 	acpi_os_write_port(reg->address, val, reg->bit_width);
293 }
294 
295 struct drv_cmd {
296 	struct acpi_pct_register *reg;
297 	u32 val;
298 	union {
299 		void (*write)(struct acpi_pct_register *reg, u32 val);
300 		u32 (*read)(struct acpi_pct_register *reg);
301 	} func;
302 };
303 
304 /* Called via smp_call_function_single(), on the target CPU */
do_drv_read(void * _cmd)305 static void do_drv_read(void *_cmd)
306 {
307 	struct drv_cmd *cmd = _cmd;
308 
309 	cmd->val = cmd->func.read(cmd->reg);
310 }
311 
drv_read(struct acpi_cpufreq_data * data,const struct cpumask * mask)312 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
313 {
314 	struct acpi_processor_performance *perf = to_perf_data(data);
315 	struct drv_cmd cmd = {
316 		.reg = &perf->control_register,
317 		.func.read = data->cpu_freq_read,
318 	};
319 	int err;
320 
321 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
322 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
323 	return cmd.val;
324 }
325 
326 /* Called via smp_call_function_many(), on the target CPUs */
do_drv_write(void * _cmd)327 static void do_drv_write(void *_cmd)
328 {
329 	struct drv_cmd *cmd = _cmd;
330 
331 	cmd->func.write(cmd->reg, cmd->val);
332 }
333 
drv_write(struct acpi_cpufreq_data * data,const struct cpumask * mask,u32 val)334 static void drv_write(struct acpi_cpufreq_data *data,
335 		      const struct cpumask *mask, u32 val)
336 {
337 	struct acpi_processor_performance *perf = to_perf_data(data);
338 	struct drv_cmd cmd = {
339 		.reg = &perf->control_register,
340 		.val = val,
341 		.func.write = data->cpu_freq_write,
342 	};
343 	int this_cpu;
344 
345 	this_cpu = get_cpu();
346 	if (cpumask_test_cpu(this_cpu, mask))
347 		do_drv_write(&cmd);
348 
349 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
350 	put_cpu();
351 }
352 
get_cur_val(const struct cpumask * mask,struct acpi_cpufreq_data * data)353 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
354 {
355 	u32 val;
356 
357 	if (unlikely(cpumask_empty(mask)))
358 		return 0;
359 
360 	val = drv_read(data, mask);
361 
362 	pr_debug("%s = %u\n", __func__, val);
363 
364 	return val;
365 }
366 
get_cur_freq_on_cpu(unsigned int cpu)367 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
368 {
369 	struct acpi_cpufreq_data *data;
370 	struct cpufreq_policy *policy;
371 	unsigned int freq;
372 	unsigned int cached_freq;
373 
374 	pr_debug("%s (%d)\n", __func__, cpu);
375 
376 	policy = cpufreq_cpu_get_raw(cpu);
377 	if (unlikely(!policy))
378 		return 0;
379 
380 	data = policy->driver_data;
381 	if (unlikely(!data || !policy->freq_table))
382 		return 0;
383 
384 	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
385 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
386 	if (freq != cached_freq) {
387 		/*
388 		 * The dreaded BIOS frequency change behind our back.
389 		 * Force set the frequency on next target call.
390 		 */
391 		data->resume = 1;
392 	}
393 
394 	pr_debug("cur freq = %u\n", freq);
395 
396 	return freq;
397 }
398 
check_freqs(struct cpufreq_policy * policy,const struct cpumask * mask,unsigned int freq)399 static unsigned int check_freqs(struct cpufreq_policy *policy,
400 				const struct cpumask *mask, unsigned int freq)
401 {
402 	struct acpi_cpufreq_data *data = policy->driver_data;
403 	unsigned int cur_freq;
404 	unsigned int i;
405 
406 	for (i = 0; i < 100; i++) {
407 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
408 		if (cur_freq == freq)
409 			return 1;
410 		udelay(10);
411 	}
412 	return 0;
413 }
414 
acpi_cpufreq_target(struct cpufreq_policy * policy,unsigned int index)415 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
416 			       unsigned int index)
417 {
418 	struct acpi_cpufreq_data *data = policy->driver_data;
419 	struct acpi_processor_performance *perf;
420 	const struct cpumask *mask;
421 	unsigned int next_perf_state = 0; /* Index into perf table */
422 	int result = 0;
423 
424 	if (unlikely(!data)) {
425 		return -ENODEV;
426 	}
427 
428 	perf = to_perf_data(data);
429 	next_perf_state = policy->freq_table[index].driver_data;
430 	if (perf->state == next_perf_state) {
431 		if (unlikely(data->resume)) {
432 			pr_debug("Called after resume, resetting to P%d\n",
433 				next_perf_state);
434 			data->resume = 0;
435 		} else {
436 			pr_debug("Already at target state (P%d)\n",
437 				next_perf_state);
438 			return 0;
439 		}
440 	}
441 
442 	/*
443 	 * The core won't allow CPUs to go away until the governor has been
444 	 * stopped, so we can rely on the stability of policy->cpus.
445 	 */
446 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
447 		cpumask_of(policy->cpu) : policy->cpus;
448 
449 	drv_write(data, mask, perf->states[next_perf_state].control);
450 
451 	if (acpi_pstate_strict) {
452 		if (!check_freqs(policy, mask,
453 				 policy->freq_table[index].frequency)) {
454 			pr_debug("%s (%d)\n", __func__, policy->cpu);
455 			result = -EAGAIN;
456 		}
457 	}
458 
459 	if (!result)
460 		perf->state = next_perf_state;
461 
462 	return result;
463 }
464 
acpi_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)465 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
466 					     unsigned int target_freq)
467 {
468 	struct acpi_cpufreq_data *data = policy->driver_data;
469 	struct acpi_processor_performance *perf;
470 	struct cpufreq_frequency_table *entry;
471 	unsigned int next_perf_state, next_freq, index;
472 
473 	/*
474 	 * Find the closest frequency above target_freq.
475 	 */
476 	if (policy->cached_target_freq == target_freq)
477 		index = policy->cached_resolved_idx;
478 	else
479 		index = cpufreq_table_find_index_dl(policy, target_freq,
480 						    false);
481 
482 	entry = &policy->freq_table[index];
483 	next_freq = entry->frequency;
484 	next_perf_state = entry->driver_data;
485 
486 	perf = to_perf_data(data);
487 	if (perf->state == next_perf_state) {
488 		if (unlikely(data->resume))
489 			data->resume = 0;
490 		else
491 			return next_freq;
492 	}
493 
494 	data->cpu_freq_write(&perf->control_register,
495 			     perf->states[next_perf_state].control);
496 	perf->state = next_perf_state;
497 	return next_freq;
498 }
499 
500 static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data * data,unsigned int cpu)501 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
502 {
503 	struct acpi_processor_performance *perf;
504 
505 	perf = to_perf_data(data);
506 	if (cpu_khz) {
507 		/* search the closest match to cpu_khz */
508 		unsigned int i;
509 		unsigned long freq;
510 		unsigned long freqn = perf->states[0].core_frequency * 1000;
511 
512 		for (i = 0; i < (perf->state_count-1); i++) {
513 			freq = freqn;
514 			freqn = perf->states[i+1].core_frequency * 1000;
515 			if ((2 * cpu_khz) > (freqn + freq)) {
516 				perf->state = i;
517 				return freq;
518 			}
519 		}
520 		perf->state = perf->state_count-1;
521 		return freqn;
522 	} else {
523 		/* assume CPU is at P0... */
524 		perf->state = 0;
525 		return perf->states[0].core_frequency * 1000;
526 	}
527 }
528 
free_acpi_perf_data(void)529 static void free_acpi_perf_data(void)
530 {
531 	unsigned int i;
532 
533 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
534 	for_each_possible_cpu(i)
535 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
536 				 ->shared_cpu_map);
537 	free_percpu(acpi_perf_data);
538 }
539 
cpufreq_boost_down_prep(unsigned int cpu)540 static int cpufreq_boost_down_prep(unsigned int cpu)
541 {
542 	/*
543 	 * Clear the boost-disable bit on the CPU_DOWN path so that
544 	 * this cpu cannot block the remaining ones from boosting.
545 	 */
546 	return boost_set_msr(1);
547 }
548 
549 /*
550  * acpi_cpufreq_early_init - initialize ACPI P-States library
551  *
552  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
553  * in order to determine correct frequency and voltage pairings. We can
554  * do _PDC and _PSD and find out the processor dependency for the
555  * actual init that will happen later...
556  */
acpi_cpufreq_early_init(void)557 static int __init acpi_cpufreq_early_init(void)
558 {
559 	unsigned int i;
560 	pr_debug("%s\n", __func__);
561 
562 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
563 	if (!acpi_perf_data) {
564 		pr_debug("Memory allocation error for acpi_perf_data.\n");
565 		return -ENOMEM;
566 	}
567 	for_each_possible_cpu(i) {
568 		if (!zalloc_cpumask_var_node(
569 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
570 			GFP_KERNEL, cpu_to_node(i))) {
571 
572 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
573 			free_acpi_perf_data();
574 			return -ENOMEM;
575 		}
576 	}
577 
578 	/* Do initialization in ACPI core */
579 	acpi_processor_preregister_performance(acpi_perf_data);
580 	return 0;
581 }
582 
583 #ifdef CONFIG_SMP
584 /*
585  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
586  * or do it in BIOS firmware and won't inform about it to OS. If not
587  * detected, this has a side effect of making CPU run at a different speed
588  * than OS intended it to run at. Detect it and handle it cleanly.
589  */
590 static int bios_with_sw_any_bug;
591 
sw_any_bug_found(const struct dmi_system_id * d)592 static int sw_any_bug_found(const struct dmi_system_id *d)
593 {
594 	bios_with_sw_any_bug = 1;
595 	return 0;
596 }
597 
598 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
599 	{
600 		.callback = sw_any_bug_found,
601 		.ident = "Supermicro Server X6DLP",
602 		.matches = {
603 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
604 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
605 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
606 		},
607 	},
608 	{ }
609 };
610 
acpi_cpufreq_blacklist(struct cpuinfo_x86 * c)611 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
612 {
613 	/* Intel Xeon Processor 7100 Series Specification Update
614 	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
615 	 * AL30: A Machine Check Exception (MCE) Occurring during an
616 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
617 	 * Both Processor Cores to Lock Up. */
618 	if (c->x86_vendor == X86_VENDOR_INTEL) {
619 		if ((c->x86 == 15) &&
620 		    (c->x86_model == 6) &&
621 		    (c->x86_stepping == 8)) {
622 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
623 			return -ENODEV;
624 		    }
625 		}
626 	return 0;
627 }
628 #endif
629 
630 #ifdef CONFIG_ACPI_CPPC_LIB
get_max_boost_ratio(unsigned int cpu)631 static u64 get_max_boost_ratio(unsigned int cpu)
632 {
633 	struct cppc_perf_caps perf_caps;
634 	u64 highest_perf, nominal_perf;
635 	int ret;
636 
637 	if (acpi_pstate_strict)
638 		return 0;
639 
640 	ret = cppc_get_perf_caps(cpu, &perf_caps);
641 	if (ret) {
642 		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
643 			 cpu, ret);
644 		return 0;
645 	}
646 
647 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
648 		highest_perf = amd_get_highest_perf();
649 	else
650 		highest_perf = perf_caps.highest_perf;
651 
652 	nominal_perf = perf_caps.nominal_perf;
653 
654 	if (!highest_perf || !nominal_perf) {
655 		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
656 		return 0;
657 	}
658 
659 	if (highest_perf < nominal_perf) {
660 		pr_debug("CPU%d: nominal performance above highest\n", cpu);
661 		return 0;
662 	}
663 
664 	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
665 }
666 #else
get_max_boost_ratio(unsigned int cpu)667 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
668 #endif
669 
acpi_cpufreq_cpu_init(struct cpufreq_policy * policy)670 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
671 {
672 	struct cpufreq_frequency_table *freq_table;
673 	struct acpi_processor_performance *perf;
674 	struct acpi_cpufreq_data *data;
675 	unsigned int cpu = policy->cpu;
676 	struct cpuinfo_x86 *c = &cpu_data(cpu);
677 	unsigned int valid_states = 0;
678 	unsigned int result = 0;
679 	u64 max_boost_ratio;
680 	unsigned int i;
681 #ifdef CONFIG_SMP
682 	static int blacklisted;
683 #endif
684 
685 	pr_debug("%s\n", __func__);
686 
687 #ifdef CONFIG_SMP
688 	if (blacklisted)
689 		return blacklisted;
690 	blacklisted = acpi_cpufreq_blacklist(c);
691 	if (blacklisted)
692 		return blacklisted;
693 #endif
694 
695 	data = kzalloc(sizeof(*data), GFP_KERNEL);
696 	if (!data)
697 		return -ENOMEM;
698 
699 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
700 		result = -ENOMEM;
701 		goto err_free;
702 	}
703 
704 	perf = per_cpu_ptr(acpi_perf_data, cpu);
705 	data->acpi_perf_cpu = cpu;
706 	policy->driver_data = data;
707 
708 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
709 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
710 
711 	result = acpi_processor_register_performance(perf, cpu);
712 	if (result)
713 		goto err_free_mask;
714 
715 	policy->shared_type = perf->shared_type;
716 
717 	/*
718 	 * Will let policy->cpus know about dependency only when software
719 	 * coordination is required.
720 	 */
721 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
722 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
723 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
724 	}
725 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
726 
727 #ifdef CONFIG_SMP
728 	dmi_check_system(sw_any_bug_dmi_table);
729 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
730 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
731 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
732 	}
733 
734 	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
735 	    !acpi_pstate_strict) {
736 		cpumask_clear(policy->cpus);
737 		cpumask_set_cpu(cpu, policy->cpus);
738 		cpumask_copy(data->freqdomain_cpus,
739 			     topology_sibling_cpumask(cpu));
740 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
741 		pr_info_once("overriding BIOS provided _PSD data\n");
742 	}
743 #endif
744 
745 	/* capability check */
746 	if (perf->state_count <= 1) {
747 		pr_debug("No P-States\n");
748 		result = -ENODEV;
749 		goto err_unreg;
750 	}
751 
752 	if (perf->control_register.space_id != perf->status_register.space_id) {
753 		result = -ENODEV;
754 		goto err_unreg;
755 	}
756 
757 	switch (perf->control_register.space_id) {
758 	case ACPI_ADR_SPACE_SYSTEM_IO:
759 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
760 		    boot_cpu_data.x86 == 0xf) {
761 			pr_debug("AMD K8 systems must use native drivers.\n");
762 			result = -ENODEV;
763 			goto err_unreg;
764 		}
765 		pr_debug("SYSTEM IO addr space\n");
766 		data->cpu_feature = SYSTEM_IO_CAPABLE;
767 		data->cpu_freq_read = cpu_freq_read_io;
768 		data->cpu_freq_write = cpu_freq_write_io;
769 		break;
770 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
771 		pr_debug("HARDWARE addr space\n");
772 		if (check_est_cpu(cpu)) {
773 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
774 			data->cpu_freq_read = cpu_freq_read_intel;
775 			data->cpu_freq_write = cpu_freq_write_intel;
776 			break;
777 		}
778 		if (check_amd_hwpstate_cpu(cpu)) {
779 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
780 			data->cpu_freq_read = cpu_freq_read_amd;
781 			data->cpu_freq_write = cpu_freq_write_amd;
782 			break;
783 		}
784 		result = -ENODEV;
785 		goto err_unreg;
786 	default:
787 		pr_debug("Unknown addr space %d\n",
788 			(u32) (perf->control_register.space_id));
789 		result = -ENODEV;
790 		goto err_unreg;
791 	}
792 
793 	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
794 			     GFP_KERNEL);
795 	if (!freq_table) {
796 		result = -ENOMEM;
797 		goto err_unreg;
798 	}
799 
800 	/* detect transition latency */
801 	policy->cpuinfo.transition_latency = 0;
802 	for (i = 0; i < perf->state_count; i++) {
803 		if ((perf->states[i].transition_latency * 1000) >
804 		    policy->cpuinfo.transition_latency)
805 			policy->cpuinfo.transition_latency =
806 			    perf->states[i].transition_latency * 1000;
807 	}
808 
809 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
810 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
811 	    policy->cpuinfo.transition_latency > 20 * 1000) {
812 		policy->cpuinfo.transition_latency = 20 * 1000;
813 		pr_info_once("P-state transition latency capped at 20 uS\n");
814 	}
815 
816 	/* table init */
817 	for (i = 0; i < perf->state_count; i++) {
818 		if (i > 0 && perf->states[i].core_frequency >=
819 		    freq_table[valid_states-1].frequency / 1000)
820 			continue;
821 
822 		freq_table[valid_states].driver_data = i;
823 		freq_table[valid_states].frequency =
824 		    perf->states[i].core_frequency * 1000;
825 		valid_states++;
826 	}
827 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
828 
829 	max_boost_ratio = get_max_boost_ratio(cpu);
830 	if (max_boost_ratio) {
831 		unsigned int freq = freq_table[0].frequency;
832 
833 		/*
834 		 * Because the loop above sorts the freq_table entries in the
835 		 * descending order, freq is the maximum frequency in the table.
836 		 * Assume that it corresponds to the CPPC nominal frequency and
837 		 * use it to set cpuinfo.max_freq.
838 		 */
839 		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
840 	} else {
841 		/*
842 		 * If the maximum "boost" frequency is unknown, ask the arch
843 		 * scale-invariance code to use the "nominal" performance for
844 		 * CPU utilization scaling so as to prevent the schedutil
845 		 * governor from selecting inadequate CPU frequencies.
846 		 */
847 		arch_set_max_freq_ratio(true);
848 	}
849 
850 	policy->freq_table = freq_table;
851 	perf->state = 0;
852 
853 	switch (perf->control_register.space_id) {
854 	case ACPI_ADR_SPACE_SYSTEM_IO:
855 		/*
856 		 * The core will not set policy->cur, because
857 		 * cpufreq_driver->get is NULL, so we need to set it here.
858 		 * However, we have to guess it, because the current speed is
859 		 * unknown and not detectable via IO ports.
860 		 */
861 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
862 		break;
863 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
864 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
865 		break;
866 	default:
867 		break;
868 	}
869 
870 	/* notify BIOS that we exist */
871 	acpi_processor_notify_smm(THIS_MODULE);
872 
873 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
874 	for (i = 0; i < perf->state_count; i++)
875 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
876 			(i == perf->state ? '*' : ' '), i,
877 			(u32) perf->states[i].core_frequency,
878 			(u32) perf->states[i].power,
879 			(u32) perf->states[i].transition_latency);
880 
881 	/*
882 	 * the first call to ->target() should result in us actually
883 	 * writing something to the appropriate registers.
884 	 */
885 	data->resume = 1;
886 
887 	policy->fast_switch_possible = !acpi_pstate_strict &&
888 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
889 
890 	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
891 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
892 
893 	if (acpi_cpufreq_driver.set_boost)
894 		set_boost(policy, acpi_cpufreq_driver.boost_enabled);
895 
896 	return result;
897 
898 err_unreg:
899 	acpi_processor_unregister_performance(cpu);
900 err_free_mask:
901 	free_cpumask_var(data->freqdomain_cpus);
902 err_free:
903 	kfree(data);
904 	policy->driver_data = NULL;
905 
906 	return result;
907 }
908 
acpi_cpufreq_cpu_exit(struct cpufreq_policy * policy)909 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
910 {
911 	struct acpi_cpufreq_data *data = policy->driver_data;
912 
913 	pr_debug("%s\n", __func__);
914 
915 	cpufreq_boost_down_prep(policy->cpu);
916 	policy->fast_switch_possible = false;
917 	policy->driver_data = NULL;
918 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
919 	free_cpumask_var(data->freqdomain_cpus);
920 	kfree(policy->freq_table);
921 	kfree(data);
922 
923 	return 0;
924 }
925 
acpi_cpufreq_resume(struct cpufreq_policy * policy)926 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
927 {
928 	struct acpi_cpufreq_data *data = policy->driver_data;
929 
930 	pr_debug("%s\n", __func__);
931 
932 	data->resume = 1;
933 
934 	return 0;
935 }
936 
937 static struct freq_attr *acpi_cpufreq_attr[] = {
938 	&cpufreq_freq_attr_scaling_available_freqs,
939 	&freqdomain_cpus,
940 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
941 	&cpb,
942 #endif
943 	NULL,
944 };
945 
946 static struct cpufreq_driver acpi_cpufreq_driver = {
947 	.verify		= cpufreq_generic_frequency_table_verify,
948 	.target_index	= acpi_cpufreq_target,
949 	.fast_switch	= acpi_cpufreq_fast_switch,
950 	.bios_limit	= acpi_processor_get_bios_limit,
951 	.init		= acpi_cpufreq_cpu_init,
952 	.exit		= acpi_cpufreq_cpu_exit,
953 	.resume		= acpi_cpufreq_resume,
954 	.name		= "acpi-cpufreq",
955 	.attr		= acpi_cpufreq_attr,
956 };
957 
acpi_cpufreq_boost_init(void)958 static void __init acpi_cpufreq_boost_init(void)
959 {
960 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
961 		pr_debug("Boost capabilities not present in the processor\n");
962 		return;
963 	}
964 
965 	acpi_cpufreq_driver.set_boost = set_boost;
966 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
967 }
968 
acpi_cpufreq_probe(struct platform_device * pdev)969 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
970 {
971 	int ret;
972 
973 	if (acpi_disabled)
974 		return -ENODEV;
975 
976 	/* don't keep reloading if cpufreq_driver exists */
977 	if (cpufreq_get_current_driver())
978 		return -ENODEV;
979 
980 	pr_debug("%s\n", __func__);
981 
982 	ret = acpi_cpufreq_early_init();
983 	if (ret)
984 		return ret;
985 
986 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
987 	/* this is a sysfs file with a strange name and an even stranger
988 	 * semantic - per CPU instantiation, but system global effect.
989 	 * Lets enable it only on AMD CPUs for compatibility reasons and
990 	 * only if configured. This is considered legacy code, which
991 	 * will probably be removed at some point in the future.
992 	 */
993 	if (!check_amd_hwpstate_cpu(0)) {
994 		struct freq_attr **attr;
995 
996 		pr_debug("CPB unsupported, do not expose it\n");
997 
998 		for (attr = acpi_cpufreq_attr; *attr; attr++)
999 			if (*attr == &cpb) {
1000 				*attr = NULL;
1001 				break;
1002 			}
1003 	}
1004 #endif
1005 	acpi_cpufreq_boost_init();
1006 
1007 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1008 	if (ret) {
1009 		free_acpi_perf_data();
1010 	}
1011 	return ret;
1012 }
1013 
acpi_cpufreq_remove(struct platform_device * pdev)1014 static void acpi_cpufreq_remove(struct platform_device *pdev)
1015 {
1016 	pr_debug("%s\n", __func__);
1017 
1018 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1019 
1020 	free_acpi_perf_data();
1021 }
1022 
1023 static struct platform_driver acpi_cpufreq_platdrv = {
1024 	.driver = {
1025 		.name	= "acpi-cpufreq",
1026 	},
1027 	.remove_new	= acpi_cpufreq_remove,
1028 };
1029 
acpi_cpufreq_init(void)1030 static int __init acpi_cpufreq_init(void)
1031 {
1032 	return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1033 }
1034 
acpi_cpufreq_exit(void)1035 static void __exit acpi_cpufreq_exit(void)
1036 {
1037 	platform_driver_unregister(&acpi_cpufreq_platdrv);
1038 }
1039 
1040 module_param(acpi_pstate_strict, uint, 0644);
1041 MODULE_PARM_DESC(acpi_pstate_strict,
1042 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1043 	"performed during frequency changes.");
1044 
1045 late_initcall(acpi_cpufreq_init);
1046 module_exit(acpi_cpufreq_exit);
1047 
1048 MODULE_ALIAS("platform:acpi-cpufreq");
1049