xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision f685ef2c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 
78 /**
79  * svc_reg_xprt_class - Register a server-side RPC transport class
80  * @xcl: New transport class to be registered
81  *
82  * Returns zero on success; otherwise a negative errno is returned.
83  */
svc_reg_xprt_class(struct svc_xprt_class * xcl)84 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
85 {
86 	struct svc_xprt_class *cl;
87 	int res = -EEXIST;
88 
89 	INIT_LIST_HEAD(&xcl->xcl_list);
90 	spin_lock(&svc_xprt_class_lock);
91 	/* Make sure there isn't already a class with the same name */
92 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
93 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
94 			goto out;
95 	}
96 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
97 	res = 0;
98 out:
99 	spin_unlock(&svc_xprt_class_lock);
100 	return res;
101 }
102 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
103 
104 /**
105  * svc_unreg_xprt_class - Unregister a server-side RPC transport class
106  * @xcl: Transport class to be unregistered
107  *
108  */
svc_unreg_xprt_class(struct svc_xprt_class * xcl)109 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
110 {
111 	spin_lock(&svc_xprt_class_lock);
112 	list_del_init(&xcl->xcl_list);
113 	spin_unlock(&svc_xprt_class_lock);
114 }
115 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
116 
117 /**
118  * svc_print_xprts - Format the transport list for printing
119  * @buf: target buffer for formatted address
120  * @maxlen: length of target buffer
121  *
122  * Fills in @buf with a string containing a list of transport names, each name
123  * terminated with '\n'. If the buffer is too small, some entries may be
124  * missing, but it is guaranteed that all lines in the output buffer are
125  * complete.
126  *
127  * Returns positive length of the filled-in string.
128  */
svc_print_xprts(char * buf,int maxlen)129 int svc_print_xprts(char *buf, int maxlen)
130 {
131 	struct svc_xprt_class *xcl;
132 	char tmpstr[80];
133 	int len = 0;
134 	buf[0] = '\0';
135 
136 	spin_lock(&svc_xprt_class_lock);
137 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
138 		int slen;
139 
140 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
141 				xcl->xcl_name, xcl->xcl_max_payload);
142 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
143 			break;
144 		len += slen;
145 		strcat(buf, tmpstr);
146 	}
147 	spin_unlock(&svc_xprt_class_lock);
148 
149 	return len;
150 }
151 
152 /**
153  * svc_xprt_deferred_close - Close a transport
154  * @xprt: transport instance
155  *
156  * Used in contexts that need to defer the work of shutting down
157  * the transport to an nfsd thread.
158  */
svc_xprt_deferred_close(struct svc_xprt * xprt)159 void svc_xprt_deferred_close(struct svc_xprt *xprt)
160 {
161 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 		svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165 
svc_xprt_free(struct kref * kref)166 static void svc_xprt_free(struct kref *kref)
167 {
168 	struct svc_xprt *xprt =
169 		container_of(kref, struct svc_xprt, xpt_ref);
170 	struct module *owner = xprt->xpt_class->xcl_owner;
171 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 		svcauth_unix_info_release(xprt);
173 	put_cred(xprt->xpt_cred);
174 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
176 	if (xprt->xpt_bc_xprt)
177 		xprt_put(xprt->xpt_bc_xprt);
178 	if (xprt->xpt_bc_xps)
179 		xprt_switch_put(xprt->xpt_bc_xps);
180 	trace_svc_xprt_free(xprt);
181 	xprt->xpt_ops->xpo_free(xprt);
182 	module_put(owner);
183 }
184 
svc_xprt_put(struct svc_xprt * xprt)185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 	kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190 
191 /*
192  * Called by transport drivers to initialize the transport independent
193  * portion of the transport instance.
194  */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 		   struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 	memset(xprt, 0, sizeof(*xprt));
199 	xprt->xpt_class = xcl;
200 	xprt->xpt_ops = xcl->xcl_ops;
201 	kref_init(&xprt->xpt_ref);
202 	xprt->xpt_server = serv;
203 	INIT_LIST_HEAD(&xprt->xpt_list);
204 	INIT_LIST_HEAD(&xprt->xpt_ready);
205 	INIT_LIST_HEAD(&xprt->xpt_deferred);
206 	INIT_LIST_HEAD(&xprt->xpt_users);
207 	mutex_init(&xprt->xpt_mutex);
208 	spin_lock_init(&xprt->xpt_lock);
209 	set_bit(XPT_BUSY, &xprt->xpt_flags);
210 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
211 	strcpy(xprt->xpt_remotebuf, "uninitialized");
212 }
213 EXPORT_SYMBOL_GPL(svc_xprt_init);
214 
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)215 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
216 					 struct svc_serv *serv,
217 					 struct net *net,
218 					 const int family,
219 					 const unsigned short port,
220 					 int flags)
221 {
222 	struct sockaddr_in sin = {
223 		.sin_family		= AF_INET,
224 		.sin_addr.s_addr	= htonl(INADDR_ANY),
225 		.sin_port		= htons(port),
226 	};
227 #if IS_ENABLED(CONFIG_IPV6)
228 	struct sockaddr_in6 sin6 = {
229 		.sin6_family		= AF_INET6,
230 		.sin6_addr		= IN6ADDR_ANY_INIT,
231 		.sin6_port		= htons(port),
232 	};
233 #endif
234 	struct svc_xprt *xprt;
235 	struct sockaddr *sap;
236 	size_t len;
237 
238 	switch (family) {
239 	case PF_INET:
240 		sap = (struct sockaddr *)&sin;
241 		len = sizeof(sin);
242 		break;
243 #if IS_ENABLED(CONFIG_IPV6)
244 	case PF_INET6:
245 		sap = (struct sockaddr *)&sin6;
246 		len = sizeof(sin6);
247 		break;
248 #endif
249 	default:
250 		return ERR_PTR(-EAFNOSUPPORT);
251 	}
252 
253 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
254 	if (IS_ERR(xprt))
255 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
256 					  xcl->xcl_name, sap, len, xprt);
257 	return xprt;
258 }
259 
260 /**
261  * svc_xprt_received - start next receiver thread
262  * @xprt: controlling transport
263  *
264  * The caller must hold the XPT_BUSY bit and must
265  * not thereafter touch transport data.
266  *
267  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
268  * insufficient) data.
269  */
svc_xprt_received(struct svc_xprt * xprt)270 void svc_xprt_received(struct svc_xprt *xprt)
271 {
272 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
273 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
274 		return;
275 	}
276 
277 	/* As soon as we clear busy, the xprt could be closed and
278 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
279 	 */
280 	svc_xprt_get(xprt);
281 	smp_mb__before_atomic();
282 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
283 	svc_xprt_enqueue(xprt);
284 	svc_xprt_put(xprt);
285 }
286 EXPORT_SYMBOL_GPL(svc_xprt_received);
287 
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)288 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
289 {
290 	clear_bit(XPT_TEMP, &new->xpt_flags);
291 	spin_lock_bh(&serv->sv_lock);
292 	list_add(&new->xpt_list, &serv->sv_permsocks);
293 	spin_unlock_bh(&serv->sv_lock);
294 	svc_xprt_received(new);
295 }
296 
_svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)297 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
298 			    struct net *net, const int family,
299 			    const unsigned short port, int flags,
300 			    const struct cred *cred)
301 {
302 	struct svc_xprt_class *xcl;
303 
304 	spin_lock(&svc_xprt_class_lock);
305 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
306 		struct svc_xprt *newxprt;
307 		unsigned short newport;
308 
309 		if (strcmp(xprt_name, xcl->xcl_name))
310 			continue;
311 
312 		if (!try_module_get(xcl->xcl_owner))
313 			goto err;
314 
315 		spin_unlock(&svc_xprt_class_lock);
316 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
317 		if (IS_ERR(newxprt)) {
318 			module_put(xcl->xcl_owner);
319 			return PTR_ERR(newxprt);
320 		}
321 		newxprt->xpt_cred = get_cred(cred);
322 		svc_add_new_perm_xprt(serv, newxprt);
323 		newport = svc_xprt_local_port(newxprt);
324 		return newport;
325 	}
326  err:
327 	spin_unlock(&svc_xprt_class_lock);
328 	/* This errno is exposed to user space.  Provide a reasonable
329 	 * perror msg for a bad transport. */
330 	return -EPROTONOSUPPORT;
331 }
332 
333 /**
334  * svc_xprt_create - Add a new listener to @serv
335  * @serv: target RPC service
336  * @xprt_name: transport class name
337  * @net: network namespace
338  * @family: network address family
339  * @port: listener port
340  * @flags: SVC_SOCK flags
341  * @cred: credential to bind to this transport
342  *
343  * Return values:
344  *   %0: New listener added successfully
345  *   %-EPROTONOSUPPORT: Requested transport type not supported
346  */
svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)347 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
348 		    struct net *net, const int family,
349 		    const unsigned short port, int flags,
350 		    const struct cred *cred)
351 {
352 	int err;
353 
354 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
355 	if (err == -EPROTONOSUPPORT) {
356 		request_module("svc%s", xprt_name);
357 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
358 	}
359 	return err;
360 }
361 EXPORT_SYMBOL_GPL(svc_xprt_create);
362 
363 /*
364  * Copy the local and remote xprt addresses to the rqstp structure
365  */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)366 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
367 {
368 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
369 	rqstp->rq_addrlen = xprt->xpt_remotelen;
370 
371 	/*
372 	 * Destination address in request is needed for binding the
373 	 * source address in RPC replies/callbacks later.
374 	 */
375 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
376 	rqstp->rq_daddrlen = xprt->xpt_locallen;
377 }
378 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
379 
380 /**
381  * svc_print_addr - Format rq_addr field for printing
382  * @rqstp: svc_rqst struct containing address to print
383  * @buf: target buffer for formatted address
384  * @len: length of target buffer
385  *
386  */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)387 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
388 {
389 	return __svc_print_addr(svc_addr(rqstp), buf, len);
390 }
391 EXPORT_SYMBOL_GPL(svc_print_addr);
392 
svc_xprt_slots_in_range(struct svc_xprt * xprt)393 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
394 {
395 	unsigned int limit = svc_rpc_per_connection_limit;
396 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
397 
398 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
399 }
400 
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)401 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
402 {
403 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
404 		if (!svc_xprt_slots_in_range(xprt))
405 			return false;
406 		atomic_inc(&xprt->xpt_nr_rqsts);
407 		set_bit(RQ_DATA, &rqstp->rq_flags);
408 	}
409 	return true;
410 }
411 
svc_xprt_release_slot(struct svc_rqst * rqstp)412 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
413 {
414 	struct svc_xprt	*xprt = rqstp->rq_xprt;
415 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
416 		atomic_dec(&xprt->xpt_nr_rqsts);
417 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
418 		svc_xprt_enqueue(xprt);
419 	}
420 }
421 
svc_xprt_ready(struct svc_xprt * xprt)422 static bool svc_xprt_ready(struct svc_xprt *xprt)
423 {
424 	unsigned long xpt_flags;
425 
426 	/*
427 	 * If another cpu has recently updated xpt_flags,
428 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
429 	 * know about it; otherwise it's possible that both that cpu and
430 	 * this one could call svc_xprt_enqueue() without either
431 	 * svc_xprt_enqueue() recognizing that the conditions below
432 	 * are satisfied, and we could stall indefinitely:
433 	 */
434 	smp_rmb();
435 	xpt_flags = READ_ONCE(xprt->xpt_flags);
436 
437 	trace_svc_xprt_enqueue(xprt, xpt_flags);
438 	if (xpt_flags & BIT(XPT_BUSY))
439 		return false;
440 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
441 		return true;
442 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
443 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
444 		    svc_xprt_slots_in_range(xprt))
445 			return true;
446 		trace_svc_xprt_no_write_space(xprt);
447 		return false;
448 	}
449 	return false;
450 }
451 
452 /**
453  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
454  * @xprt: transport with data pending
455  *
456  */
svc_xprt_enqueue(struct svc_xprt * xprt)457 void svc_xprt_enqueue(struct svc_xprt *xprt)
458 {
459 	struct svc_pool *pool;
460 
461 	if (!svc_xprt_ready(xprt))
462 		return;
463 
464 	/* Mark transport as busy. It will remain in this state until
465 	 * the provider calls svc_xprt_received. We update XPT_BUSY
466 	 * atomically because it also guards against trying to enqueue
467 	 * the transport twice.
468 	 */
469 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
470 		return;
471 
472 	pool = svc_pool_for_cpu(xprt->xpt_server);
473 
474 	percpu_counter_inc(&pool->sp_sockets_queued);
475 	spin_lock_bh(&pool->sp_lock);
476 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
477 	spin_unlock_bh(&pool->sp_lock);
478 
479 	svc_pool_wake_idle_thread(pool);
480 }
481 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
482 
483 /*
484  * Dequeue the first transport, if there is one.
485  */
svc_xprt_dequeue(struct svc_pool * pool)486 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
487 {
488 	struct svc_xprt	*xprt = NULL;
489 
490 	if (list_empty(&pool->sp_sockets))
491 		goto out;
492 
493 	spin_lock_bh(&pool->sp_lock);
494 	if (likely(!list_empty(&pool->sp_sockets))) {
495 		xprt = list_first_entry(&pool->sp_sockets,
496 					struct svc_xprt, xpt_ready);
497 		list_del_init(&xprt->xpt_ready);
498 		svc_xprt_get(xprt);
499 	}
500 	spin_unlock_bh(&pool->sp_lock);
501 out:
502 	return xprt;
503 }
504 
505 /**
506  * svc_reserve - change the space reserved for the reply to a request.
507  * @rqstp:  The request in question
508  * @space: new max space to reserve
509  *
510  * Each request reserves some space on the output queue of the transport
511  * to make sure the reply fits.  This function reduces that reserved
512  * space to be the amount of space used already, plus @space.
513  *
514  */
svc_reserve(struct svc_rqst * rqstp,int space)515 void svc_reserve(struct svc_rqst *rqstp, int space)
516 {
517 	struct svc_xprt *xprt = rqstp->rq_xprt;
518 
519 	space += rqstp->rq_res.head[0].iov_len;
520 
521 	if (xprt && space < rqstp->rq_reserved) {
522 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
523 		rqstp->rq_reserved = space;
524 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
525 		svc_xprt_enqueue(xprt);
526 	}
527 }
528 EXPORT_SYMBOL_GPL(svc_reserve);
529 
free_deferred(struct svc_xprt * xprt,struct svc_deferred_req * dr)530 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
531 {
532 	if (!dr)
533 		return;
534 
535 	xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
536 	kfree(dr);
537 }
538 
svc_xprt_release(struct svc_rqst * rqstp)539 static void svc_xprt_release(struct svc_rqst *rqstp)
540 {
541 	struct svc_xprt	*xprt = rqstp->rq_xprt;
542 
543 	xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
544 	rqstp->rq_xprt_ctxt = NULL;
545 
546 	free_deferred(xprt, rqstp->rq_deferred);
547 	rqstp->rq_deferred = NULL;
548 
549 	svc_rqst_release_pages(rqstp);
550 	rqstp->rq_res.page_len = 0;
551 	rqstp->rq_res.page_base = 0;
552 
553 	/* Reset response buffer and release
554 	 * the reservation.
555 	 * But first, check that enough space was reserved
556 	 * for the reply, otherwise we have a bug!
557 	 */
558 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
559 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
560 		       rqstp->rq_reserved,
561 		       rqstp->rq_res.len);
562 
563 	rqstp->rq_res.head[0].iov_len = 0;
564 	svc_reserve(rqstp, 0);
565 	svc_xprt_release_slot(rqstp);
566 	rqstp->rq_xprt = NULL;
567 	svc_xprt_put(xprt);
568 }
569 
570 /**
571  * svc_wake_up - Wake up a service thread for non-transport work
572  * @serv: RPC service
573  *
574  * Some svc_serv's will have occasional work to do, even when a xprt is not
575  * waiting to be serviced. This function is there to "kick" a task in one of
576  * those services so that it can wake up and do that work. Note that we only
577  * bother with pool 0 as we don't need to wake up more than one thread for
578  * this purpose.
579  */
svc_wake_up(struct svc_serv * serv)580 void svc_wake_up(struct svc_serv *serv)
581 {
582 	struct svc_pool *pool = &serv->sv_pools[0];
583 
584 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
585 	svc_pool_wake_idle_thread(pool);
586 }
587 EXPORT_SYMBOL_GPL(svc_wake_up);
588 
svc_port_is_privileged(struct sockaddr * sin)589 int svc_port_is_privileged(struct sockaddr *sin)
590 {
591 	switch (sin->sa_family) {
592 	case AF_INET:
593 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
594 			< PROT_SOCK;
595 	case AF_INET6:
596 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
597 			< PROT_SOCK;
598 	default:
599 		return 0;
600 	}
601 }
602 
603 /*
604  * Make sure that we don't have too many active connections. If we have,
605  * something must be dropped. It's not clear what will happen if we allow
606  * "too many" connections, but when dealing with network-facing software,
607  * we have to code defensively. Here we do that by imposing hard limits.
608  *
609  * There's no point in trying to do random drop here for DoS
610  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
611  * attacker can easily beat that.
612  *
613  * The only somewhat efficient mechanism would be if drop old
614  * connections from the same IP first. But right now we don't even
615  * record the client IP in svc_sock.
616  *
617  * single-threaded services that expect a lot of clients will probably
618  * need to set sv_maxconn to override the default value which is based
619  * on the number of threads
620  */
svc_check_conn_limits(struct svc_serv * serv)621 static void svc_check_conn_limits(struct svc_serv *serv)
622 {
623 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
624 				(serv->sv_nrthreads+3) * 20;
625 
626 	if (serv->sv_tmpcnt > limit) {
627 		struct svc_xprt *xprt = NULL;
628 		spin_lock_bh(&serv->sv_lock);
629 		if (!list_empty(&serv->sv_tempsocks)) {
630 			/* Try to help the admin */
631 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
632 					       serv->sv_name, serv->sv_maxconn ?
633 					       "max number of connections" :
634 					       "number of threads");
635 			/*
636 			 * Always select the oldest connection. It's not fair,
637 			 * but so is life
638 			 */
639 			xprt = list_entry(serv->sv_tempsocks.prev,
640 					  struct svc_xprt,
641 					  xpt_list);
642 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
643 			svc_xprt_get(xprt);
644 		}
645 		spin_unlock_bh(&serv->sv_lock);
646 
647 		if (xprt) {
648 			svc_xprt_enqueue(xprt);
649 			svc_xprt_put(xprt);
650 		}
651 	}
652 }
653 
svc_alloc_arg(struct svc_rqst * rqstp)654 static bool svc_alloc_arg(struct svc_rqst *rqstp)
655 {
656 	struct svc_serv *serv = rqstp->rq_server;
657 	struct xdr_buf *arg = &rqstp->rq_arg;
658 	unsigned long pages, filled, ret;
659 
660 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
661 	if (pages > RPCSVC_MAXPAGES) {
662 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
663 			     pages, RPCSVC_MAXPAGES);
664 		/* use as many pages as possible */
665 		pages = RPCSVC_MAXPAGES;
666 	}
667 
668 	for (filled = 0; filled < pages; filled = ret) {
669 		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
670 					     rqstp->rq_pages);
671 		if (ret > filled)
672 			/* Made progress, don't sleep yet */
673 			continue;
674 
675 		set_current_state(TASK_IDLE);
676 		if (kthread_should_stop()) {
677 			set_current_state(TASK_RUNNING);
678 			return false;
679 		}
680 		trace_svc_alloc_arg_err(pages, ret);
681 		memalloc_retry_wait(GFP_KERNEL);
682 	}
683 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
684 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
685 
686 	/* Make arg->head point to first page and arg->pages point to rest */
687 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
688 	arg->head[0].iov_len = PAGE_SIZE;
689 	arg->pages = rqstp->rq_pages + 1;
690 	arg->page_base = 0;
691 	/* save at least one page for response */
692 	arg->page_len = (pages-2)*PAGE_SIZE;
693 	arg->len = (pages-1)*PAGE_SIZE;
694 	arg->tail[0].iov_len = 0;
695 
696 	rqstp->rq_xid = xdr_zero;
697 	return true;
698 }
699 
700 static bool
rqst_should_sleep(struct svc_rqst * rqstp)701 rqst_should_sleep(struct svc_rqst *rqstp)
702 {
703 	struct svc_pool		*pool = rqstp->rq_pool;
704 
705 	/* did someone call svc_wake_up? */
706 	if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
707 		return false;
708 
709 	/* was a socket queued? */
710 	if (!list_empty(&pool->sp_sockets))
711 		return false;
712 
713 	/* are we shutting down? */
714 	if (kthread_should_stop())
715 		return false;
716 
717 	/* are we freezing? */
718 	if (freezing(current))
719 		return false;
720 
721 	return true;
722 }
723 
svc_get_next_xprt(struct svc_rqst * rqstp)724 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp)
725 {
726 	struct svc_pool		*pool = rqstp->rq_pool;
727 
728 	/* rq_xprt should be clear on entry */
729 	WARN_ON_ONCE(rqstp->rq_xprt);
730 
731 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
732 	if (rqstp->rq_xprt)
733 		goto out_found;
734 
735 	set_current_state(TASK_IDLE);
736 	smp_mb__before_atomic();
737 	clear_bit(SP_CONGESTED, &pool->sp_flags);
738 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
739 	smp_mb__after_atomic();
740 
741 	if (likely(rqst_should_sleep(rqstp)))
742 		schedule();
743 	else
744 		__set_current_state(TASK_RUNNING);
745 
746 	try_to_freeze();
747 
748 	set_bit(RQ_BUSY, &rqstp->rq_flags);
749 	smp_mb__after_atomic();
750 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
751 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
752 	if (rqstp->rq_xprt)
753 		goto out_found;
754 
755 	if (kthread_should_stop())
756 		return NULL;
757 	return NULL;
758 out_found:
759 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
760 	/* Normally we will wait up to 5 seconds for any required
761 	 * cache information to be provided.
762 	 */
763 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
764 		rqstp->rq_chandle.thread_wait = 5*HZ;
765 	else
766 		rqstp->rq_chandle.thread_wait = 1*HZ;
767 	trace_svc_xprt_dequeue(rqstp);
768 	return rqstp->rq_xprt;
769 }
770 
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)771 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
772 {
773 	spin_lock_bh(&serv->sv_lock);
774 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
775 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
776 	serv->sv_tmpcnt++;
777 	if (serv->sv_temptimer.function == NULL) {
778 		/* setup timer to age temp transports */
779 		serv->sv_temptimer.function = svc_age_temp_xprts;
780 		mod_timer(&serv->sv_temptimer,
781 			  jiffies + svc_conn_age_period * HZ);
782 	}
783 	spin_unlock_bh(&serv->sv_lock);
784 	svc_xprt_received(newxpt);
785 }
786 
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)787 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
788 {
789 	struct svc_serv *serv = rqstp->rq_server;
790 	int len = 0;
791 
792 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
793 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
794 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
795 		svc_delete_xprt(xprt);
796 		/* Leave XPT_BUSY set on the dead xprt: */
797 		goto out;
798 	}
799 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
800 		struct svc_xprt *newxpt;
801 		/*
802 		 * We know this module_get will succeed because the
803 		 * listener holds a reference too
804 		 */
805 		__module_get(xprt->xpt_class->xcl_owner);
806 		svc_check_conn_limits(xprt->xpt_server);
807 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
808 		if (newxpt) {
809 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
810 			svc_add_new_temp_xprt(serv, newxpt);
811 			trace_svc_xprt_accept(newxpt, serv->sv_name);
812 		} else {
813 			module_put(xprt->xpt_class->xcl_owner);
814 		}
815 		svc_xprt_received(xprt);
816 	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
817 		xprt->xpt_ops->xpo_handshake(xprt);
818 		svc_xprt_received(xprt);
819 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
820 		/* XPT_DATA|XPT_DEFERRED case: */
821 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
822 		if (rqstp->rq_deferred)
823 			len = svc_deferred_recv(rqstp);
824 		else
825 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
826 		rqstp->rq_reserved = serv->sv_max_mesg;
827 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
828 	} else
829 		svc_xprt_received(xprt);
830 
831 out:
832 	return len;
833 }
834 
835 /**
836  * svc_recv - Receive and process the next request on any transport
837  * @rqstp: an idle RPC service thread
838  *
839  * This code is carefully organised not to touch any cachelines in
840  * the shared svc_serv structure, only cachelines in the local
841  * svc_pool.
842  */
svc_recv(struct svc_rqst * rqstp)843 void svc_recv(struct svc_rqst *rqstp)
844 {
845 	struct svc_xprt		*xprt = NULL;
846 	struct svc_serv		*serv = rqstp->rq_server;
847 	int			len;
848 
849 	if (!svc_alloc_arg(rqstp))
850 		goto out;
851 
852 	try_to_freeze();
853 	cond_resched();
854 	if (kthread_should_stop())
855 		goto out;
856 
857 	xprt = svc_get_next_xprt(rqstp);
858 	if (!xprt)
859 		goto out;
860 
861 	len = svc_handle_xprt(rqstp, xprt);
862 
863 	/* No data, incomplete (TCP) read, or accept() */
864 	if (len <= 0)
865 		goto out_release;
866 
867 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
868 
869 	clear_bit(XPT_OLD, &xprt->xpt_flags);
870 
871 	rqstp->rq_chandle.defer = svc_defer;
872 
873 	if (serv->sv_stats)
874 		serv->sv_stats->netcnt++;
875 	percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
876 	rqstp->rq_stime = ktime_get();
877 	svc_process(rqstp);
878 out:
879 	return;
880 out_release:
881 	rqstp->rq_res.len = 0;
882 	svc_xprt_release(rqstp);
883 }
884 EXPORT_SYMBOL_GPL(svc_recv);
885 
886 /*
887  * Drop request
888  */
svc_drop(struct svc_rqst * rqstp)889 void svc_drop(struct svc_rqst *rqstp)
890 {
891 	trace_svc_drop(rqstp);
892 	svc_xprt_release(rqstp);
893 }
894 EXPORT_SYMBOL_GPL(svc_drop);
895 
896 /**
897  * svc_send - Return reply to client
898  * @rqstp: RPC transaction context
899  *
900  */
svc_send(struct svc_rqst * rqstp)901 void svc_send(struct svc_rqst *rqstp)
902 {
903 	struct svc_xprt	*xprt;
904 	struct xdr_buf	*xb;
905 	int status;
906 
907 	xprt = rqstp->rq_xprt;
908 	if (!xprt)
909 		return;
910 
911 	/* calculate over-all length */
912 	xb = &rqstp->rq_res;
913 	xb->len = xb->head[0].iov_len +
914 		xb->page_len +
915 		xb->tail[0].iov_len;
916 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
917 	trace_svc_stats_latency(rqstp);
918 
919 	status = xprt->xpt_ops->xpo_sendto(rqstp);
920 
921 	trace_svc_send(rqstp, status);
922 	svc_xprt_release(rqstp);
923 }
924 
925 /*
926  * Timer function to close old temporary transports, using
927  * a mark-and-sweep algorithm.
928  */
svc_age_temp_xprts(struct timer_list * t)929 static void svc_age_temp_xprts(struct timer_list *t)
930 {
931 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
932 	struct svc_xprt *xprt;
933 	struct list_head *le, *next;
934 
935 	dprintk("svc_age_temp_xprts\n");
936 
937 	if (!spin_trylock_bh(&serv->sv_lock)) {
938 		/* busy, try again 1 sec later */
939 		dprintk("svc_age_temp_xprts: busy\n");
940 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
941 		return;
942 	}
943 
944 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
945 		xprt = list_entry(le, struct svc_xprt, xpt_list);
946 
947 		/* First time through, just mark it OLD. Second time
948 		 * through, close it. */
949 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
950 			continue;
951 		if (kref_read(&xprt->xpt_ref) > 1 ||
952 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
953 			continue;
954 		list_del_init(le);
955 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
956 		dprintk("queuing xprt %p for closing\n", xprt);
957 
958 		/* a thread will dequeue and close it soon */
959 		svc_xprt_enqueue(xprt);
960 	}
961 	spin_unlock_bh(&serv->sv_lock);
962 
963 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
964 }
965 
966 /* Close temporary transports whose xpt_local matches server_addr immediately
967  * instead of waiting for them to be picked up by the timer.
968  *
969  * This is meant to be called from a notifier_block that runs when an ip
970  * address is deleted.
971  */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)972 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
973 {
974 	struct svc_xprt *xprt;
975 	struct list_head *le, *next;
976 	LIST_HEAD(to_be_closed);
977 
978 	spin_lock_bh(&serv->sv_lock);
979 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
980 		xprt = list_entry(le, struct svc_xprt, xpt_list);
981 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
982 				&xprt->xpt_local)) {
983 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
984 			list_move(le, &to_be_closed);
985 		}
986 	}
987 	spin_unlock_bh(&serv->sv_lock);
988 
989 	while (!list_empty(&to_be_closed)) {
990 		le = to_be_closed.next;
991 		list_del_init(le);
992 		xprt = list_entry(le, struct svc_xprt, xpt_list);
993 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
994 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
995 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
996 				xprt);
997 		svc_xprt_enqueue(xprt);
998 	}
999 }
1000 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1001 
call_xpt_users(struct svc_xprt * xprt)1002 static void call_xpt_users(struct svc_xprt *xprt)
1003 {
1004 	struct svc_xpt_user *u;
1005 
1006 	spin_lock(&xprt->xpt_lock);
1007 	while (!list_empty(&xprt->xpt_users)) {
1008 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1009 		list_del_init(&u->list);
1010 		u->callback(u);
1011 	}
1012 	spin_unlock(&xprt->xpt_lock);
1013 }
1014 
1015 /*
1016  * Remove a dead transport
1017  */
svc_delete_xprt(struct svc_xprt * xprt)1018 static void svc_delete_xprt(struct svc_xprt *xprt)
1019 {
1020 	struct svc_serv	*serv = xprt->xpt_server;
1021 	struct svc_deferred_req *dr;
1022 
1023 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1024 		return;
1025 
1026 	trace_svc_xprt_detach(xprt);
1027 	xprt->xpt_ops->xpo_detach(xprt);
1028 	if (xprt->xpt_bc_xprt)
1029 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1030 
1031 	spin_lock_bh(&serv->sv_lock);
1032 	list_del_init(&xprt->xpt_list);
1033 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1034 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1035 		serv->sv_tmpcnt--;
1036 	spin_unlock_bh(&serv->sv_lock);
1037 
1038 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1039 		free_deferred(xprt, dr);
1040 
1041 	call_xpt_users(xprt);
1042 	svc_xprt_put(xprt);
1043 }
1044 
1045 /**
1046  * svc_xprt_close - Close a client connection
1047  * @xprt: transport to disconnect
1048  *
1049  */
svc_xprt_close(struct svc_xprt * xprt)1050 void svc_xprt_close(struct svc_xprt *xprt)
1051 {
1052 	trace_svc_xprt_close(xprt);
1053 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1054 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1055 		/* someone else will have to effect the close */
1056 		return;
1057 	/*
1058 	 * We expect svc_close_xprt() to work even when no threads are
1059 	 * running (e.g., while configuring the server before starting
1060 	 * any threads), so if the transport isn't busy, we delete
1061 	 * it ourself:
1062 	 */
1063 	svc_delete_xprt(xprt);
1064 }
1065 EXPORT_SYMBOL_GPL(svc_xprt_close);
1066 
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1067 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1068 {
1069 	struct svc_xprt *xprt;
1070 	int ret = 0;
1071 
1072 	spin_lock_bh(&serv->sv_lock);
1073 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1074 		if (xprt->xpt_net != net)
1075 			continue;
1076 		ret++;
1077 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1078 		svc_xprt_enqueue(xprt);
1079 	}
1080 	spin_unlock_bh(&serv->sv_lock);
1081 	return ret;
1082 }
1083 
svc_dequeue_net(struct svc_serv * serv,struct net * net)1084 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1085 {
1086 	struct svc_pool *pool;
1087 	struct svc_xprt *xprt;
1088 	struct svc_xprt *tmp;
1089 	int i;
1090 
1091 	for (i = 0; i < serv->sv_nrpools; i++) {
1092 		pool = &serv->sv_pools[i];
1093 
1094 		spin_lock_bh(&pool->sp_lock);
1095 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1096 			if (xprt->xpt_net != net)
1097 				continue;
1098 			list_del_init(&xprt->xpt_ready);
1099 			spin_unlock_bh(&pool->sp_lock);
1100 			return xprt;
1101 		}
1102 		spin_unlock_bh(&pool->sp_lock);
1103 	}
1104 	return NULL;
1105 }
1106 
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1107 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1108 {
1109 	struct svc_xprt *xprt;
1110 
1111 	while ((xprt = svc_dequeue_net(serv, net))) {
1112 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1113 		svc_delete_xprt(xprt);
1114 	}
1115 }
1116 
1117 /**
1118  * svc_xprt_destroy_all - Destroy transports associated with @serv
1119  * @serv: RPC service to be shut down
1120  * @net: target network namespace
1121  *
1122  * Server threads may still be running (especially in the case where the
1123  * service is still running in other network namespaces).
1124  *
1125  * So we shut down sockets the same way we would on a running server, by
1126  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1127  * the close.  In the case there are no such other threads,
1128  * threads running, svc_clean_up_xprts() does a simple version of a
1129  * server's main event loop, and in the case where there are other
1130  * threads, we may need to wait a little while and then check again to
1131  * see if they're done.
1132  */
svc_xprt_destroy_all(struct svc_serv * serv,struct net * net)1133 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1134 {
1135 	int delay = 0;
1136 
1137 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1138 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1139 
1140 		svc_clean_up_xprts(serv, net);
1141 		msleep(delay++);
1142 	}
1143 }
1144 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1145 
1146 /*
1147  * Handle defer and revisit of requests
1148  */
1149 
svc_revisit(struct cache_deferred_req * dreq,int too_many)1150 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1151 {
1152 	struct svc_deferred_req *dr =
1153 		container_of(dreq, struct svc_deferred_req, handle);
1154 	struct svc_xprt *xprt = dr->xprt;
1155 
1156 	spin_lock(&xprt->xpt_lock);
1157 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1158 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1159 		spin_unlock(&xprt->xpt_lock);
1160 		trace_svc_defer_drop(dr);
1161 		free_deferred(xprt, dr);
1162 		svc_xprt_put(xprt);
1163 		return;
1164 	}
1165 	dr->xprt = NULL;
1166 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1167 	spin_unlock(&xprt->xpt_lock);
1168 	trace_svc_defer_queue(dr);
1169 	svc_xprt_enqueue(xprt);
1170 	svc_xprt_put(xprt);
1171 }
1172 
1173 /*
1174  * Save the request off for later processing. The request buffer looks
1175  * like this:
1176  *
1177  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1178  *
1179  * This code can only handle requests that consist of an xprt-header
1180  * and rpc-header.
1181  */
svc_defer(struct cache_req * req)1182 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1183 {
1184 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1185 	struct svc_deferred_req *dr;
1186 
1187 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1188 		return NULL; /* if more than a page, give up FIXME */
1189 	if (rqstp->rq_deferred) {
1190 		dr = rqstp->rq_deferred;
1191 		rqstp->rq_deferred = NULL;
1192 	} else {
1193 		size_t skip;
1194 		size_t size;
1195 		/* FIXME maybe discard if size too large */
1196 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1197 		dr = kmalloc(size, GFP_KERNEL);
1198 		if (dr == NULL)
1199 			return NULL;
1200 
1201 		dr->handle.owner = rqstp->rq_server;
1202 		dr->prot = rqstp->rq_prot;
1203 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1204 		dr->addrlen = rqstp->rq_addrlen;
1205 		dr->daddr = rqstp->rq_daddr;
1206 		dr->argslen = rqstp->rq_arg.len >> 2;
1207 
1208 		/* back up head to the start of the buffer and copy */
1209 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1210 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1211 		       dr->argslen << 2);
1212 	}
1213 	dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1214 	rqstp->rq_xprt_ctxt = NULL;
1215 	trace_svc_defer(rqstp);
1216 	svc_xprt_get(rqstp->rq_xprt);
1217 	dr->xprt = rqstp->rq_xprt;
1218 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1219 
1220 	dr->handle.revisit = svc_revisit;
1221 	return &dr->handle;
1222 }
1223 
1224 /*
1225  * recv data from a deferred request into an active one
1226  */
svc_deferred_recv(struct svc_rqst * rqstp)1227 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1228 {
1229 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1230 
1231 	trace_svc_defer_recv(dr);
1232 
1233 	/* setup iov_base past transport header */
1234 	rqstp->rq_arg.head[0].iov_base = dr->args;
1235 	/* The iov_len does not include the transport header bytes */
1236 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1237 	rqstp->rq_arg.page_len = 0;
1238 	/* The rq_arg.len includes the transport header bytes */
1239 	rqstp->rq_arg.len     = dr->argslen << 2;
1240 	rqstp->rq_prot        = dr->prot;
1241 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1242 	rqstp->rq_addrlen     = dr->addrlen;
1243 	/* Save off transport header len in case we get deferred again */
1244 	rqstp->rq_daddr       = dr->daddr;
1245 	rqstp->rq_respages    = rqstp->rq_pages;
1246 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1247 
1248 	dr->xprt_ctxt = NULL;
1249 	svc_xprt_received(rqstp->rq_xprt);
1250 	return dr->argslen << 2;
1251 }
1252 
1253 
svc_deferred_dequeue(struct svc_xprt * xprt)1254 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1255 {
1256 	struct svc_deferred_req *dr = NULL;
1257 
1258 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1259 		return NULL;
1260 	spin_lock(&xprt->xpt_lock);
1261 	if (!list_empty(&xprt->xpt_deferred)) {
1262 		dr = list_entry(xprt->xpt_deferred.next,
1263 				struct svc_deferred_req,
1264 				handle.recent);
1265 		list_del_init(&dr->handle.recent);
1266 	} else
1267 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1268 	spin_unlock(&xprt->xpt_lock);
1269 	return dr;
1270 }
1271 
1272 /**
1273  * svc_find_xprt - find an RPC transport instance
1274  * @serv: pointer to svc_serv to search
1275  * @xcl_name: C string containing transport's class name
1276  * @net: owner net pointer
1277  * @af: Address family of transport's local address
1278  * @port: transport's IP port number
1279  *
1280  * Return the transport instance pointer for the endpoint accepting
1281  * connections/peer traffic from the specified transport class,
1282  * address family and port.
1283  *
1284  * Specifying 0 for the address family or port is effectively a
1285  * wild-card, and will result in matching the first transport in the
1286  * service's list that has a matching class name.
1287  */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1288 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1289 			       struct net *net, const sa_family_t af,
1290 			       const unsigned short port)
1291 {
1292 	struct svc_xprt *xprt;
1293 	struct svc_xprt *found = NULL;
1294 
1295 	/* Sanity check the args */
1296 	if (serv == NULL || xcl_name == NULL)
1297 		return found;
1298 
1299 	spin_lock_bh(&serv->sv_lock);
1300 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1301 		if (xprt->xpt_net != net)
1302 			continue;
1303 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1304 			continue;
1305 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1306 			continue;
1307 		if (port != 0 && port != svc_xprt_local_port(xprt))
1308 			continue;
1309 		found = xprt;
1310 		svc_xprt_get(xprt);
1311 		break;
1312 	}
1313 	spin_unlock_bh(&serv->sv_lock);
1314 	return found;
1315 }
1316 EXPORT_SYMBOL_GPL(svc_find_xprt);
1317 
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1318 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1319 			     char *pos, int remaining)
1320 {
1321 	int len;
1322 
1323 	len = snprintf(pos, remaining, "%s %u\n",
1324 			xprt->xpt_class->xcl_name,
1325 			svc_xprt_local_port(xprt));
1326 	if (len >= remaining)
1327 		return -ENAMETOOLONG;
1328 	return len;
1329 }
1330 
1331 /**
1332  * svc_xprt_names - format a buffer with a list of transport names
1333  * @serv: pointer to an RPC service
1334  * @buf: pointer to a buffer to be filled in
1335  * @buflen: length of buffer to be filled in
1336  *
1337  * Fills in @buf with a string containing a list of transport names,
1338  * each name terminated with '\n'.
1339  *
1340  * Returns positive length of the filled-in string on success; otherwise
1341  * a negative errno value is returned if an error occurs.
1342  */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1343 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1344 {
1345 	struct svc_xprt *xprt;
1346 	int len, totlen;
1347 	char *pos;
1348 
1349 	/* Sanity check args */
1350 	if (!serv)
1351 		return 0;
1352 
1353 	spin_lock_bh(&serv->sv_lock);
1354 
1355 	pos = buf;
1356 	totlen = 0;
1357 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1358 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1359 		if (len < 0) {
1360 			*buf = '\0';
1361 			totlen = len;
1362 		}
1363 		if (len <= 0)
1364 			break;
1365 
1366 		pos += len;
1367 		totlen += len;
1368 	}
1369 
1370 	spin_unlock_bh(&serv->sv_lock);
1371 	return totlen;
1372 }
1373 EXPORT_SYMBOL_GPL(svc_xprt_names);
1374 
1375 
1376 /*----------------------------------------------------------------------------*/
1377 
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1378 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1379 {
1380 	unsigned int pidx = (unsigned int)*pos;
1381 	struct svc_serv *serv = m->private;
1382 
1383 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1384 
1385 	if (!pidx)
1386 		return SEQ_START_TOKEN;
1387 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1388 }
1389 
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1390 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1391 {
1392 	struct svc_pool *pool = p;
1393 	struct svc_serv *serv = m->private;
1394 
1395 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1396 
1397 	if (p == SEQ_START_TOKEN) {
1398 		pool = &serv->sv_pools[0];
1399 	} else {
1400 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1401 		if (pidx < serv->sv_nrpools-1)
1402 			pool = &serv->sv_pools[pidx+1];
1403 		else
1404 			pool = NULL;
1405 	}
1406 	++*pos;
1407 	return pool;
1408 }
1409 
svc_pool_stats_stop(struct seq_file * m,void * p)1410 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1411 {
1412 }
1413 
svc_pool_stats_show(struct seq_file * m,void * p)1414 static int svc_pool_stats_show(struct seq_file *m, void *p)
1415 {
1416 	struct svc_pool *pool = p;
1417 
1418 	if (p == SEQ_START_TOKEN) {
1419 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1420 		return 0;
1421 	}
1422 
1423 	seq_printf(m, "%u %llu %llu %llu 0\n",
1424 		   pool->sp_id,
1425 		   percpu_counter_sum_positive(&pool->sp_messages_arrived),
1426 		   percpu_counter_sum_positive(&pool->sp_sockets_queued),
1427 		   percpu_counter_sum_positive(&pool->sp_threads_woken));
1428 
1429 	return 0;
1430 }
1431 
1432 static const struct seq_operations svc_pool_stats_seq_ops = {
1433 	.start	= svc_pool_stats_start,
1434 	.next	= svc_pool_stats_next,
1435 	.stop	= svc_pool_stats_stop,
1436 	.show	= svc_pool_stats_show,
1437 };
1438 
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1439 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1440 {
1441 	int err;
1442 
1443 	err = seq_open(file, &svc_pool_stats_seq_ops);
1444 	if (!err)
1445 		((struct seq_file *) file->private_data)->private = serv;
1446 	return err;
1447 }
1448 EXPORT_SYMBOL(svc_pool_stats_open);
1449 
1450 /*----------------------------------------------------------------------------*/
1451