xref: /openbmc/linux/drivers/i3c/master/svc-i3c-master.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silvaco dual-role I3C master driver
4  *
5  * Copyright (C) 2020 Silvaco
6  * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
7  * Based on a work from: Conor Culhane <conor.culhane@silvaco.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG      0x000
26 #define   SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define   SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define   SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define   SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define   SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define   SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define   SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define   SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define   SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define   SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36 
37 #define SVC_I3C_MCTRL        0x084
38 #define   SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define   SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define   SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define   SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define   SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define   SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define   SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define   SVC_I3C_MCTRL_TYPE_I3C 0
46 #define   SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define   SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define   SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define   SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define   SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define   SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define   SVC_I3C_MCTRL_DIR_WRITE 0
54 #define   SVC_I3C_MCTRL_DIR_READ 1
55 #define   SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define   SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57 
58 #define SVC_I3C_MSTATUS      0x088
59 #define   SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define   SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define   SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define   SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define   SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define   SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define   SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define   SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define   SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define   SVC_I3C_MINT_SLVSTART BIT(8)
69 #define   SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define   SVC_I3C_MINT_COMPLETE BIT(10)
71 #define   SVC_I3C_MINT_RXPEND BIT(11)
72 #define   SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define   SVC_I3C_MINT_IBIWON BIT(13)
74 #define   SVC_I3C_MINT_ERRWARN BIT(15)
75 #define   SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define   SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define   SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define   SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define   SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define   SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define   SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define   SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83 
84 #define SVC_I3C_IBIRULES     0x08C
85 #define   SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86 						       ((addr) & 0x3F) << ((slot) * 6))
87 #define   SVC_I3C_IBIRULES_ADDRS 5
88 #define   SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define   SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define   SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET      0x090
92 #define SVC_I3C_MINTCLR      0x094
93 #define SVC_I3C_MINTMASKED   0x098
94 #define SVC_I3C_MERRWARN     0x09C
95 #define   SVC_I3C_MERRWARN_NACK BIT(2)
96 #define   SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL     0x0A0
98 #define SVC_I3C_MDATACTRL    0x0AC
99 #define   SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define   SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define   SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define   SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define   SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define   SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define   SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define   SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107 
108 #define SVC_I3C_MWDATAB      0x0B0
109 #define   SVC_I3C_MWDATAB_END BIT(8)
110 
111 #define SVC_I3C_MWDATABE     0x0B4
112 #define SVC_I3C_MWDATAH      0x0B8
113 #define SVC_I3C_MWDATAHE     0x0BC
114 #define SVC_I3C_MRDATAB      0x0C0
115 #define SVC_I3C_MRDATAH      0x0C8
116 #define SVC_I3C_MWMSG_SDR    0x0D0
117 #define SVC_I3C_MRMSG_SDR    0x0D4
118 #define SVC_I3C_MWMSG_DDR    0x0D8
119 #define SVC_I3C_MRMSG_DDR    0x0DC
120 
121 #define SVC_I3C_MDYNADDR     0x0E4
122 #define   SVC_MDYNADDR_VALID BIT(0)
123 #define   SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124 
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127 
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 
131 #define SVC_I3C_EVENT_IBI	GENMASK(7, 0)
132 #define SVC_I3C_EVENT_HOTJOIN	BIT(31)
133 
134 struct svc_i3c_cmd {
135 	u8 addr;
136 	bool rnw;
137 	u8 *in;
138 	const void *out;
139 	unsigned int len;
140 	unsigned int actual_len;
141 	struct i3c_priv_xfer *xfer;
142 	bool continued;
143 };
144 
145 struct svc_i3c_xfer {
146 	struct list_head node;
147 	struct completion comp;
148 	int ret;
149 	unsigned int type;
150 	unsigned int ncmds;
151 	struct svc_i3c_cmd cmds[];
152 };
153 
154 struct svc_i3c_regs_save {
155 	u32 mconfig;
156 	u32 mdynaddr;
157 };
158 
159 /**
160  * struct svc_i3c_master - Silvaco I3C Master structure
161  * @base: I3C master controller
162  * @dev: Corresponding device
163  * @regs: Memory mapping
164  * @saved_regs: Volatile values for PM operations
165  * @free_slots: Bit array of available slots
166  * @addrs: Array containing the dynamic addresses of each attached device
167  * @descs: Array of descriptors, one per attached device
168  * @hj_work: Hot-join work
169  * @ibi_work: IBI work
170  * @irq: Main interrupt
171  * @pclk: System clock
172  * @fclk: Fast clock (bus)
173  * @sclk: Slow clock (other events)
174  * @xferqueue: Transfer queue structure
175  * @xferqueue.list: List member
176  * @xferqueue.cur: Current ongoing transfer
177  * @xferqueue.lock: Queue lock
178  * @ibi: IBI structure
179  * @ibi.num_slots: Number of slots available in @ibi.slots
180  * @ibi.slots: Available IBI slots
181  * @ibi.tbq_slot: To be queued IBI slot
182  * @ibi.lock: IBI lock
183  * @lock: Transfer lock, protect between IBI work thread and callbacks from master
184  * @enabled_events: Bit masks for enable events (IBI, HotJoin).
185  * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
186  */
187 struct svc_i3c_master {
188 	struct i3c_master_controller base;
189 	struct device *dev;
190 	void __iomem *regs;
191 	struct svc_i3c_regs_save saved_regs;
192 	u32 free_slots;
193 	u8 addrs[SVC_I3C_MAX_DEVS];
194 	struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
195 	struct work_struct hj_work;
196 	struct work_struct ibi_work;
197 	int irq;
198 	struct clk *pclk;
199 	struct clk *fclk;
200 	struct clk *sclk;
201 	struct {
202 		struct list_head list;
203 		struct svc_i3c_xfer *cur;
204 		/* Prevent races between transfers */
205 		spinlock_t lock;
206 	} xferqueue;
207 	struct {
208 		unsigned int num_slots;
209 		struct i3c_dev_desc **slots;
210 		struct i3c_ibi_slot *tbq_slot;
211 		/* Prevent races within IBI handlers */
212 		spinlock_t lock;
213 	} ibi;
214 	struct mutex lock;
215 	u32 enabled_events;
216 	u32 mctrl_config;
217 };
218 
219 /**
220  * struct svc_i3c_i2c_dev_data - Device specific data
221  * @index: Index in the master tables corresponding to this device
222  * @ibi: IBI slot index in the master structure
223  * @ibi_pool: IBI pool associated to this device
224  */
225 struct svc_i3c_i2c_dev_data {
226 	u8 index;
227 	int ibi;
228 	struct i3c_generic_ibi_pool *ibi_pool;
229 };
230 
is_events_enabled(struct svc_i3c_master * master,u32 mask)231 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
232 {
233 	return !!(master->enabled_events & mask);
234 }
235 
svc_i3c_master_error(struct svc_i3c_master * master)236 static bool svc_i3c_master_error(struct svc_i3c_master *master)
237 {
238 	u32 mstatus, merrwarn;
239 
240 	mstatus = readl(master->regs + SVC_I3C_MSTATUS);
241 	if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
242 		merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
243 		writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
244 
245 		/* Ignore timeout error */
246 		if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
247 			dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
248 				mstatus, merrwarn);
249 			return false;
250 		}
251 
252 		dev_err(master->dev,
253 			"Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
254 			mstatus, merrwarn);
255 
256 		return true;
257 	}
258 
259 	return false;
260 }
261 
svc_i3c_master_enable_interrupts(struct svc_i3c_master * master,u32 mask)262 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
263 {
264 	writel(mask, master->regs + SVC_I3C_MINTSET);
265 }
266 
svc_i3c_master_disable_interrupts(struct svc_i3c_master * master)267 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
268 {
269 	u32 mask = readl(master->regs + SVC_I3C_MINTSET);
270 
271 	writel(mask, master->regs + SVC_I3C_MINTCLR);
272 }
273 
svc_i3c_master_clear_merrwarn(struct svc_i3c_master * master)274 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
275 {
276 	/* Clear pending warnings */
277 	writel(readl(master->regs + SVC_I3C_MERRWARN),
278 	       master->regs + SVC_I3C_MERRWARN);
279 }
280 
svc_i3c_master_flush_fifo(struct svc_i3c_master * master)281 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
282 {
283 	/* Flush FIFOs */
284 	writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
285 	       master->regs + SVC_I3C_MDATACTRL);
286 }
287 
svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master * master)288 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
289 {
290 	u32 reg;
291 
292 	/* Set RX and TX tigger levels, flush FIFOs */
293 	reg = SVC_I3C_MDATACTRL_FLUSHTB |
294 	      SVC_I3C_MDATACTRL_FLUSHRB |
295 	      SVC_I3C_MDATACTRL_UNLOCK_TRIG |
296 	      SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
297 	      SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
298 	writel(reg, master->regs + SVC_I3C_MDATACTRL);
299 }
300 
svc_i3c_master_reset(struct svc_i3c_master * master)301 static void svc_i3c_master_reset(struct svc_i3c_master *master)
302 {
303 	svc_i3c_master_clear_merrwarn(master);
304 	svc_i3c_master_reset_fifo_trigger(master);
305 	svc_i3c_master_disable_interrupts(master);
306 }
307 
308 static inline struct svc_i3c_master *
to_svc_i3c_master(struct i3c_master_controller * master)309 to_svc_i3c_master(struct i3c_master_controller *master)
310 {
311 	return container_of(master, struct svc_i3c_master, base);
312 }
313 
svc_i3c_master_hj_work(struct work_struct * work)314 static void svc_i3c_master_hj_work(struct work_struct *work)
315 {
316 	struct svc_i3c_master *master;
317 
318 	master = container_of(work, struct svc_i3c_master, hj_work);
319 	i3c_master_do_daa(&master->base);
320 }
321 
322 static struct i3c_dev_desc *
svc_i3c_master_dev_from_addr(struct svc_i3c_master * master,unsigned int ibiaddr)323 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
324 			     unsigned int ibiaddr)
325 {
326 	int i;
327 
328 	for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
329 		if (master->addrs[i] == ibiaddr)
330 			break;
331 
332 	if (i == SVC_I3C_MAX_DEVS)
333 		return NULL;
334 
335 	return master->descs[i];
336 }
337 
svc_i3c_master_emit_stop(struct svc_i3c_master * master)338 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
339 {
340 	writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
341 
342 	/*
343 	 * This delay is necessary after the emission of a stop, otherwise eg.
344 	 * repeating IBIs do not get detected. There is a note in the manual
345 	 * about it, stating that the stop condition might not be settled
346 	 * correctly if a start condition follows too rapidly.
347 	 */
348 	udelay(1);
349 }
350 
svc_i3c_master_handle_ibi(struct svc_i3c_master * master,struct i3c_dev_desc * dev)351 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
352 				     struct i3c_dev_desc *dev)
353 {
354 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
355 	struct i3c_ibi_slot *slot;
356 	unsigned int count;
357 	u32 mdatactrl;
358 	int ret, val;
359 	u8 *buf;
360 
361 	slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
362 	if (!slot)
363 		return -ENOSPC;
364 
365 	slot->len = 0;
366 	buf = slot->data;
367 
368 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
369 						SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
370 	if (ret) {
371 		dev_err(master->dev, "Timeout when polling for COMPLETE\n");
372 		return ret;
373 	}
374 
375 	while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS))  &&
376 	       slot->len < SVC_I3C_FIFO_SIZE) {
377 		mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
378 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
379 		readsb(master->regs + SVC_I3C_MRDATAB, buf, count);
380 		slot->len += count;
381 		buf += count;
382 	}
383 
384 	master->ibi.tbq_slot = slot;
385 
386 	return 0;
387 }
388 
svc_i3c_master_ack_ibi(struct svc_i3c_master * master,bool mandatory_byte)389 static void svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
390 				   bool mandatory_byte)
391 {
392 	unsigned int ibi_ack_nack;
393 
394 	ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
395 	if (mandatory_byte)
396 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
397 	else
398 		ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
399 
400 	writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
401 }
402 
svc_i3c_master_nack_ibi(struct svc_i3c_master * master)403 static void svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
404 {
405 	writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
406 	       SVC_I3C_MCTRL_IBIRESP_NACK,
407 	       master->regs + SVC_I3C_MCTRL);
408 }
409 
svc_i3c_master_ibi_work(struct work_struct * work)410 static void svc_i3c_master_ibi_work(struct work_struct *work)
411 {
412 	struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
413 	struct svc_i3c_i2c_dev_data *data;
414 	unsigned int ibitype, ibiaddr;
415 	struct i3c_dev_desc *dev;
416 	u32 status, val;
417 	int ret;
418 
419 	mutex_lock(&master->lock);
420 	/*
421 	 * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
422 	 * readl_relaxed_poll_timeout() to return immediately. Consequently,
423 	 * ibitype will be 0 since it was last updated only after the 8th SCL
424 	 * cycle, leading to missed client IBI handlers.
425 	 *
426 	 * A typical scenario is when IBIWON occurs and bus arbitration is lost
427 	 * at svc_i3c_master_priv_xfers().
428 	 *
429 	 * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
430 	 */
431 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
432 
433 	/* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
434 	writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
435 	       SVC_I3C_MCTRL_IBIRESP_AUTO,
436 	       master->regs + SVC_I3C_MCTRL);
437 
438 	/* Wait for IBIWON, should take approximately 100us */
439 	ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
440 					 SVC_I3C_MSTATUS_IBIWON(val), 0, 1000);
441 	if (ret) {
442 		dev_err(master->dev, "Timeout when polling for IBIWON\n");
443 		svc_i3c_master_emit_stop(master);
444 		goto reenable_ibis;
445 	}
446 
447 	status = readl(master->regs + SVC_I3C_MSTATUS);
448 	ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
449 	ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
450 
451 	/* Handle the critical responses to IBI's */
452 	switch (ibitype) {
453 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
454 		dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
455 		if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
456 			svc_i3c_master_nack_ibi(master);
457 		else
458 			svc_i3c_master_handle_ibi(master, dev);
459 		break;
460 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
461 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
462 			svc_i3c_master_ack_ibi(master, false);
463 		else
464 			svc_i3c_master_nack_ibi(master);
465 		break;
466 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
467 		svc_i3c_master_nack_ibi(master);
468 		break;
469 	default:
470 		break;
471 	}
472 
473 	/*
474 	 * If an error happened, we probably got interrupted and the exchange
475 	 * timedout. In this case we just drop everything, emit a stop and wait
476 	 * for the slave to interrupt again.
477 	 */
478 	if (svc_i3c_master_error(master)) {
479 		if (master->ibi.tbq_slot) {
480 			data = i3c_dev_get_master_data(dev);
481 			i3c_generic_ibi_recycle_slot(data->ibi_pool,
482 						     master->ibi.tbq_slot);
483 			master->ibi.tbq_slot = NULL;
484 		}
485 
486 		svc_i3c_master_emit_stop(master);
487 
488 		goto reenable_ibis;
489 	}
490 
491 	/* Handle the non critical tasks */
492 	switch (ibitype) {
493 	case SVC_I3C_MSTATUS_IBITYPE_IBI:
494 		if (dev) {
495 			i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
496 			master->ibi.tbq_slot = NULL;
497 		}
498 		svc_i3c_master_emit_stop(master);
499 		break;
500 	case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
501 		svc_i3c_master_emit_stop(master);
502 		if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
503 			queue_work(master->base.wq, &master->hj_work);
504 		break;
505 	case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
506 		svc_i3c_master_emit_stop(master);
507 		break;
508 	default:
509 		break;
510 	}
511 
512 reenable_ibis:
513 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
514 	mutex_unlock(&master->lock);
515 }
516 
svc_i3c_master_irq_handler(int irq,void * dev_id)517 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
518 {
519 	struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
520 	u32 active = readl(master->regs + SVC_I3C_MSTATUS);
521 
522 	if (!SVC_I3C_MSTATUS_SLVSTART(active))
523 		return IRQ_NONE;
524 
525 	/* Clear the interrupt status */
526 	writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
527 
528 	svc_i3c_master_disable_interrupts(master);
529 
530 	/* Handle the interrupt in a non atomic context */
531 	queue_work(master->base.wq, &master->ibi_work);
532 
533 	return IRQ_HANDLED;
534 }
535 
svc_i3c_master_set_speed(struct i3c_master_controller * m,enum i3c_open_drain_speed speed)536 static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
537 				     enum i3c_open_drain_speed speed)
538 {
539 	struct svc_i3c_master *master = to_svc_i3c_master(m);
540 	struct i3c_bus *bus = i3c_master_get_bus(&master->base);
541 	u32 ppbaud, odbaud, odhpp, mconfig;
542 	unsigned long fclk_rate;
543 	int ret;
544 
545 	ret = pm_runtime_resume_and_get(master->dev);
546 	if (ret < 0) {
547 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
548 		return ret;
549 	}
550 
551 	switch (speed) {
552 	case I3C_OPEN_DRAIN_SLOW_SPEED:
553 		fclk_rate = clk_get_rate(master->fclk);
554 		if (!fclk_rate) {
555 			ret = -EINVAL;
556 			goto rpm_out;
557 		}
558 		/*
559 		 * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
560 		 * broadcast address is visible to all I2C/I3C devices on the I3C bus.
561 		 * I3C device working as a I2C device will turn off its 50ns Spike
562 		 * Filter to change to I3C mode.
563 		 */
564 		mconfig = master->mctrl_config;
565 		ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
566 		odhpp = 0;
567 		odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
568 		mconfig &= ~GENMASK(24, 16);
569 		mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
570 		writel(mconfig, master->regs + SVC_I3C_MCONFIG);
571 		break;
572 	case I3C_OPEN_DRAIN_NORMAL_SPEED:
573 		writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
574 		break;
575 	}
576 
577 rpm_out:
578 	pm_runtime_mark_last_busy(master->dev);
579 	pm_runtime_put_autosuspend(master->dev);
580 
581 	return ret;
582 }
583 
svc_i3c_master_bus_init(struct i3c_master_controller * m)584 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
585 {
586 	struct svc_i3c_master *master = to_svc_i3c_master(m);
587 	struct i3c_bus *bus = i3c_master_get_bus(m);
588 	struct i3c_device_info info = {};
589 	unsigned long fclk_rate, fclk_period_ns;
590 	unsigned int high_period_ns, od_low_period_ns;
591 	u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
592 	int ret;
593 
594 	ret = pm_runtime_resume_and_get(master->dev);
595 	if (ret < 0) {
596 		dev_err(master->dev,
597 			"<%s> cannot resume i3c bus master, err: %d\n",
598 			__func__, ret);
599 		return ret;
600 	}
601 
602 	/* Timings derivation */
603 	fclk_rate = clk_get_rate(master->fclk);
604 	if (!fclk_rate) {
605 		ret = -EINVAL;
606 		goto rpm_out;
607 	}
608 
609 	fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
610 
611 	/*
612 	 * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
613 	 * Simplest configuration is using a 50% duty-cycle of 40ns.
614 	 */
615 	ppbaud = DIV_ROUND_UP(40, fclk_period_ns) - 1;
616 	pplow = 0;
617 
618 	/*
619 	 * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
620 	 * duty-cycle tuned so that high levels are filetered out by
621 	 * the 50ns filter (target being 40ns).
622 	 */
623 	odhpp = 1;
624 	high_period_ns = (ppbaud + 1) * fclk_period_ns;
625 	odbaud = DIV_ROUND_UP(240 - high_period_ns, high_period_ns) - 1;
626 	od_low_period_ns = (odbaud + 1) * high_period_ns;
627 
628 	switch (bus->mode) {
629 	case I3C_BUS_MODE_PURE:
630 		i2cbaud = 0;
631 		odstop = 0;
632 		break;
633 	case I3C_BUS_MODE_MIXED_FAST:
634 	case I3C_BUS_MODE_MIXED_LIMITED:
635 		/*
636 		 * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
637 		 * between the high and low period does not really matter.
638 		 */
639 		i2cbaud = DIV_ROUND_UP(1000, od_low_period_ns) - 2;
640 		odstop = 1;
641 		break;
642 	case I3C_BUS_MODE_MIXED_SLOW:
643 		/*
644 		 * Using I2C Fm mode, target is 0.4MHz/2500ns, with the same
645 		 * constraints as the FM+ mode.
646 		 */
647 		i2cbaud = DIV_ROUND_UP(2500, od_low_period_ns) - 2;
648 		odstop = 1;
649 		break;
650 	default:
651 		goto rpm_out;
652 	}
653 
654 	reg = SVC_I3C_MCONFIG_MASTER_EN |
655 	      SVC_I3C_MCONFIG_DISTO(0) |
656 	      SVC_I3C_MCONFIG_HKEEP(0) |
657 	      SVC_I3C_MCONFIG_ODSTOP(odstop) |
658 	      SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
659 	      SVC_I3C_MCONFIG_PPLOW(pplow) |
660 	      SVC_I3C_MCONFIG_ODBAUD(odbaud) |
661 	      SVC_I3C_MCONFIG_ODHPP(odhpp) |
662 	      SVC_I3C_MCONFIG_SKEW(0) |
663 	      SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
664 	writel(reg, master->regs + SVC_I3C_MCONFIG);
665 
666 	master->mctrl_config = reg;
667 	/* Master core's registration */
668 	ret = i3c_master_get_free_addr(m, 0);
669 	if (ret < 0)
670 		goto rpm_out;
671 
672 	info.dyn_addr = ret;
673 
674 	writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
675 	       master->regs + SVC_I3C_MDYNADDR);
676 
677 	ret = i3c_master_set_info(&master->base, &info);
678 	if (ret)
679 		goto rpm_out;
680 
681 rpm_out:
682 	pm_runtime_mark_last_busy(master->dev);
683 	pm_runtime_put_autosuspend(master->dev);
684 
685 	return ret;
686 }
687 
svc_i3c_master_bus_cleanup(struct i3c_master_controller * m)688 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
689 {
690 	struct svc_i3c_master *master = to_svc_i3c_master(m);
691 	int ret;
692 
693 	ret = pm_runtime_resume_and_get(master->dev);
694 	if (ret < 0) {
695 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
696 		return;
697 	}
698 
699 	svc_i3c_master_disable_interrupts(master);
700 
701 	/* Disable master */
702 	writel(0, master->regs + SVC_I3C_MCONFIG);
703 
704 	pm_runtime_mark_last_busy(master->dev);
705 	pm_runtime_put_autosuspend(master->dev);
706 }
707 
svc_i3c_master_reserve_slot(struct svc_i3c_master * master)708 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
709 {
710 	unsigned int slot;
711 
712 	if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
713 		return -ENOSPC;
714 
715 	slot = ffs(master->free_slots) - 1;
716 
717 	master->free_slots &= ~BIT(slot);
718 
719 	return slot;
720 }
721 
svc_i3c_master_release_slot(struct svc_i3c_master * master,unsigned int slot)722 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
723 					unsigned int slot)
724 {
725 	master->free_slots |= BIT(slot);
726 }
727 
svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc * dev)728 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
729 {
730 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
731 	struct svc_i3c_master *master = to_svc_i3c_master(m);
732 	struct svc_i3c_i2c_dev_data *data;
733 	int slot;
734 
735 	slot = svc_i3c_master_reserve_slot(master);
736 	if (slot < 0)
737 		return slot;
738 
739 	data = kzalloc(sizeof(*data), GFP_KERNEL);
740 	if (!data) {
741 		svc_i3c_master_release_slot(master, slot);
742 		return -ENOMEM;
743 	}
744 
745 	data->ibi = -1;
746 	data->index = slot;
747 	master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
748 						   dev->info.static_addr;
749 	master->descs[slot] = dev;
750 
751 	i3c_dev_set_master_data(dev, data);
752 
753 	return 0;
754 }
755 
svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc * dev,u8 old_dyn_addr)756 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
757 					   u8 old_dyn_addr)
758 {
759 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
760 	struct svc_i3c_master *master = to_svc_i3c_master(m);
761 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
762 
763 	master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
764 							  dev->info.static_addr;
765 
766 	return 0;
767 }
768 
svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc * dev)769 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
770 {
771 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
772 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
773 	struct svc_i3c_master *master = to_svc_i3c_master(m);
774 
775 	master->addrs[data->index] = 0;
776 	svc_i3c_master_release_slot(master, data->index);
777 
778 	kfree(data);
779 }
780 
svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc * dev)781 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
782 {
783 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
784 	struct svc_i3c_master *master = to_svc_i3c_master(m);
785 	struct svc_i3c_i2c_dev_data *data;
786 	int slot;
787 
788 	slot = svc_i3c_master_reserve_slot(master);
789 	if (slot < 0)
790 		return slot;
791 
792 	data = kzalloc(sizeof(*data), GFP_KERNEL);
793 	if (!data) {
794 		svc_i3c_master_release_slot(master, slot);
795 		return -ENOMEM;
796 	}
797 
798 	data->index = slot;
799 	master->addrs[slot] = dev->addr;
800 
801 	i2c_dev_set_master_data(dev, data);
802 
803 	return 0;
804 }
805 
svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc * dev)806 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
807 {
808 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
809 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
810 	struct svc_i3c_master *master = to_svc_i3c_master(m);
811 
812 	svc_i3c_master_release_slot(master, data->index);
813 
814 	kfree(data);
815 }
816 
svc_i3c_master_readb(struct svc_i3c_master * master,u8 * dst,unsigned int len)817 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
818 				unsigned int len)
819 {
820 	int ret, i;
821 	u32 reg;
822 
823 	for (i = 0; i < len; i++) {
824 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
825 						reg,
826 						SVC_I3C_MSTATUS_RXPEND(reg),
827 						0, 1000);
828 		if (ret)
829 			return ret;
830 
831 		dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
832 	}
833 
834 	return 0;
835 }
836 
svc_i3c_master_do_daa_locked(struct svc_i3c_master * master,u8 * addrs,unsigned int * count)837 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
838 					u8 *addrs, unsigned int *count)
839 {
840 	u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
841 	unsigned int dev_nb = 0, last_addr = 0;
842 	u32 reg;
843 	int ret, i;
844 
845 	svc_i3c_master_flush_fifo(master);
846 
847 	while (true) {
848 		/* Enter/proceed with DAA */
849 		writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
850 		       SVC_I3C_MCTRL_TYPE_I3C |
851 		       SVC_I3C_MCTRL_IBIRESP_NACK |
852 		       SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
853 		       master->regs + SVC_I3C_MCTRL);
854 
855 		/*
856 		 * Either one slave will send its ID, or the assignment process
857 		 * is done.
858 		 */
859 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
860 						reg,
861 						SVC_I3C_MSTATUS_RXPEND(reg) |
862 						SVC_I3C_MSTATUS_MCTRLDONE(reg),
863 						1, 1000);
864 		if (ret)
865 			return ret;
866 
867 		if (SVC_I3C_MSTATUS_RXPEND(reg)) {
868 			u8 data[6];
869 
870 			/*
871 			 * We only care about the 48-bit provisional ID yet to
872 			 * be sure a device does not nack an address twice.
873 			 * Otherwise, we would just need to flush the RX FIFO.
874 			 */
875 			ret = svc_i3c_master_readb(master, data, 6);
876 			if (ret)
877 				return ret;
878 
879 			for (i = 0; i < 6; i++)
880 				prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
881 
882 			/* We do not care about the BCR and DCR yet */
883 			ret = svc_i3c_master_readb(master, data, 2);
884 			if (ret)
885 				return ret;
886 		} else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
887 			if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
888 			    SVC_I3C_MSTATUS_COMPLETE(reg)) {
889 				/*
890 				 * All devices received and acked they dynamic
891 				 * address, this is the natural end of the DAA
892 				 * procedure.
893 				 */
894 				break;
895 			} else if (SVC_I3C_MSTATUS_NACKED(reg)) {
896 				/* No I3C devices attached */
897 				if (dev_nb == 0)
898 					break;
899 
900 				/*
901 				 * A slave device nacked the address, this is
902 				 * allowed only once, DAA will be stopped and
903 				 * then resumed. The same device is supposed to
904 				 * answer again immediately and shall ack the
905 				 * address this time.
906 				 */
907 				if (prov_id[dev_nb] == nacking_prov_id)
908 					return -EIO;
909 
910 				dev_nb--;
911 				nacking_prov_id = prov_id[dev_nb];
912 				svc_i3c_master_emit_stop(master);
913 
914 				continue;
915 			} else {
916 				return -EIO;
917 			}
918 		}
919 
920 		/* Wait for the slave to be ready to receive its address */
921 		ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
922 						reg,
923 						SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
924 						SVC_I3C_MSTATUS_STATE_DAA(reg) &&
925 						SVC_I3C_MSTATUS_BETWEEN(reg),
926 						0, 1000);
927 		if (ret)
928 			return ret;
929 
930 		/* Give the slave device a suitable dynamic address */
931 		ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
932 		if (ret < 0)
933 			return ret;
934 
935 		addrs[dev_nb] = ret;
936 		dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
937 			dev_nb, addrs[dev_nb]);
938 
939 		writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
940 		last_addr = addrs[dev_nb++];
941 	}
942 
943 	*count = dev_nb;
944 
945 	return 0;
946 }
947 
svc_i3c_update_ibirules(struct svc_i3c_master * master)948 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
949 {
950 	struct i3c_dev_desc *dev;
951 	u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
952 	unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
953 		nobyte_addr_ko = 0;
954 	bool list_mbyte = false, list_nobyte = false;
955 
956 	/* Create the IBIRULES register for both cases */
957 	i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
958 		if (!(dev->info.bcr & I3C_BCR_IBI_REQ_CAP))
959 			continue;
960 
961 		if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
962 			reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
963 							   dev->info.dyn_addr);
964 
965 			/* IBI rules cannot be applied to devices with MSb=1 */
966 			if (dev->info.dyn_addr & BIT(7))
967 				mbyte_addr_ko++;
968 			else
969 				mbyte_addr_ok++;
970 		} else {
971 			reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
972 							    dev->info.dyn_addr);
973 
974 			/* IBI rules cannot be applied to devices with MSb=1 */
975 			if (dev->info.dyn_addr & BIT(7))
976 				nobyte_addr_ko++;
977 			else
978 				nobyte_addr_ok++;
979 		}
980 	}
981 
982 	/* Device list cannot be handled by hardware */
983 	if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
984 		list_mbyte = true;
985 
986 	if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
987 		list_nobyte = true;
988 
989 	/* No list can be properly handled, return an error */
990 	if (!list_mbyte && !list_nobyte)
991 		return -ERANGE;
992 
993 	/* Pick the first list that can be handled by hardware, randomly */
994 	if (list_mbyte)
995 		writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
996 	else
997 		writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
998 
999 	return 0;
1000 }
1001 
svc_i3c_master_do_daa(struct i3c_master_controller * m)1002 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
1003 {
1004 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1005 	u8 addrs[SVC_I3C_MAX_DEVS];
1006 	unsigned long flags;
1007 	unsigned int dev_nb;
1008 	int ret, i;
1009 
1010 	ret = pm_runtime_resume_and_get(master->dev);
1011 	if (ret < 0) {
1012 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1013 		return ret;
1014 	}
1015 
1016 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1017 	ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
1018 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1019 	if (ret) {
1020 		svc_i3c_master_emit_stop(master);
1021 		svc_i3c_master_clear_merrwarn(master);
1022 		goto rpm_out;
1023 	}
1024 
1025 	/*
1026 	 * Register all devices who participated to the core
1027 	 *
1028 	 * If two devices (A and B) are detected in DAA and address 0xa is assigned to
1029 	 * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked()
1030 	 * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being
1031 	 * registered on the bus. The I3C stack might still consider 0xb a free
1032 	 * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A,
1033 	 * causing both devices A and B to use the same address 0xb, violating the I3C
1034 	 * specification.
1035 	 *
1036 	 * The return value for i3c_master_add_i3c_dev_locked() should not be checked
1037 	 * because subsequent steps will scan the entire I3C bus, independent of
1038 	 * whether i3c_master_add_i3c_dev_locked() returns success.
1039 	 *
1040 	 * If device A registration fails, there is still a chance to register device
1041 	 * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while
1042 	 * retrieving device information.
1043 	 */
1044 	for (i = 0; i < dev_nb; i++)
1045 		i3c_master_add_i3c_dev_locked(m, addrs[i]);
1046 
1047 	/* Configure IBI auto-rules */
1048 	ret = svc_i3c_update_ibirules(master);
1049 	if (ret)
1050 		dev_err(master->dev, "Cannot handle such a list of devices");
1051 
1052 rpm_out:
1053 	pm_runtime_mark_last_busy(master->dev);
1054 	pm_runtime_put_autosuspend(master->dev);
1055 
1056 	return ret;
1057 }
1058 
svc_i3c_master_read(struct svc_i3c_master * master,u8 * in,unsigned int len)1059 static int svc_i3c_master_read(struct svc_i3c_master *master,
1060 			       u8 *in, unsigned int len)
1061 {
1062 	int offset = 0, i;
1063 	u32 mdctrl, mstatus;
1064 	bool completed = false;
1065 	unsigned int count;
1066 	unsigned long start = jiffies;
1067 
1068 	while (!completed) {
1069 		mstatus = readl(master->regs + SVC_I3C_MSTATUS);
1070 		if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
1071 			completed = true;
1072 
1073 		if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
1074 			dev_dbg(master->dev, "I3C read timeout\n");
1075 			return -ETIMEDOUT;
1076 		}
1077 
1078 		mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
1079 		count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1080 		if (offset + count > len) {
1081 			dev_err(master->dev, "I3C receive length too long!\n");
1082 			return -EINVAL;
1083 		}
1084 		for (i = 0; i < count; i++)
1085 			in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1086 
1087 		offset += count;
1088 	}
1089 
1090 	return offset;
1091 }
1092 
svc_i3c_master_write(struct svc_i3c_master * master,const u8 * out,unsigned int len)1093 static int svc_i3c_master_write(struct svc_i3c_master *master,
1094 				const u8 *out, unsigned int len)
1095 {
1096 	int offset = 0, ret;
1097 	u32 mdctrl;
1098 
1099 	while (offset < len) {
1100 		ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1101 					 mdctrl,
1102 					 !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1103 					 0, 1000);
1104 		if (ret)
1105 			return ret;
1106 
1107 		/*
1108 		 * The last byte to be sent over the bus must either have the
1109 		 * "end" bit set or be written in MWDATABE.
1110 		 */
1111 		if (likely(offset < (len - 1)))
1112 			writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1113 		else
1114 			writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
svc_i3c_master_xfer(struct svc_i3c_master * master,bool rnw,unsigned int xfer_type,u8 addr,u8 * in,const u8 * out,unsigned int xfer_len,unsigned int * actual_len,bool continued)1120 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1121 			       bool rnw, unsigned int xfer_type, u8 addr,
1122 			       u8 *in, const u8 *out, unsigned int xfer_len,
1123 			       unsigned int *actual_len, bool continued)
1124 {
1125 	int retry = 2;
1126 	u32 reg;
1127 	int ret;
1128 
1129 	/* clean SVC_I3C_MINT_IBIWON w1c bits */
1130 	writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1131 
1132 
1133 	while (retry--) {
1134 		writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1135 		       xfer_type |
1136 		       SVC_I3C_MCTRL_IBIRESP_NACK |
1137 		       SVC_I3C_MCTRL_DIR(rnw) |
1138 		       SVC_I3C_MCTRL_ADDR(addr) |
1139 		       SVC_I3C_MCTRL_RDTERM(*actual_len),
1140 		       master->regs + SVC_I3C_MCTRL);
1141 
1142 		ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1143 				 SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1144 		if (ret)
1145 			goto emit_stop;
1146 
1147 		if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1148 			/*
1149 			 * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
1150 			 * If the Controller chooses to start an I3C Message with an I3C Dynamic
1151 			 * Address, then special provisions shall be made because that same I3C
1152 			 * Target may be initiating an IBI or a Controller Role Request. So, one of
1153 			 * three things may happen: (skip 1, 2)
1154 			 *
1155 			 * 3. The Addresses match and the RnW bits also match, and so neither
1156 			 * Controller nor Target will ACK since both are expecting the other side to
1157 			 * provide ACK. As a result, each side might think it had "won" arbitration,
1158 			 * but neither side would continue, as each would subsequently see that the
1159 			 * other did not provide ACK.
1160 			 * ...
1161 			 * For either value of RnW: Due to the NACK, the Controller shall defer the
1162 			 * Private Write or Private Read, and should typically transmit the Target
1163 			 * Address again after a Repeated START (i.e., the next one or any one prior
1164 			 * to a STOP in the Frame). Since the Address Header following a Repeated
1165 			 * START is not arbitrated, the Controller will always win (see Section
1166 			 * 5.1.2.2.4).
1167 			 */
1168 			if (retry && addr != 0x7e) {
1169 				writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
1170 			} else {
1171 				ret = -ENXIO;
1172 				*actual_len = 0;
1173 				goto emit_stop;
1174 			}
1175 		} else {
1176 			break;
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a Frame
1182 	 * with I3C Target Address.
1183 	 *
1184 	 * The I3C Controller normally should start a Frame, the Address may be arbitrated, and so
1185 	 * the Controller shall monitor to see whether an In-Band Interrupt request, a Controller
1186 	 * Role Request (i.e., Secondary Controller requests to become the Active Controller), or
1187 	 * a Hot-Join Request has been made.
1188 	 *
1189 	 * If missed IBIWON check, the wrong data will be return. When IBIWON happen, return failure
1190 	 * and yield the above events handler.
1191 	 */
1192 	if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1193 		ret = -EAGAIN;
1194 		*actual_len = 0;
1195 		goto emit_stop;
1196 	}
1197 
1198 	if (rnw)
1199 		ret = svc_i3c_master_read(master, in, xfer_len);
1200 	else
1201 		ret = svc_i3c_master_write(master, out, xfer_len);
1202 	if (ret < 0)
1203 		goto emit_stop;
1204 
1205 	if (rnw)
1206 		*actual_len = ret;
1207 
1208 	ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1209 				 SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1210 	if (ret)
1211 		goto emit_stop;
1212 
1213 	writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1214 
1215 	if (!continued) {
1216 		svc_i3c_master_emit_stop(master);
1217 
1218 		/* Wait idle if stop is sent. */
1219 		readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1220 				   SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1221 	}
1222 
1223 	return 0;
1224 
1225 emit_stop:
1226 	svc_i3c_master_emit_stop(master);
1227 	svc_i3c_master_clear_merrwarn(master);
1228 
1229 	return ret;
1230 }
1231 
1232 static struct svc_i3c_xfer *
svc_i3c_master_alloc_xfer(struct svc_i3c_master * master,unsigned int ncmds)1233 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1234 {
1235 	struct svc_i3c_xfer *xfer;
1236 
1237 	xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1238 	if (!xfer)
1239 		return NULL;
1240 
1241 	INIT_LIST_HEAD(&xfer->node);
1242 	xfer->ncmds = ncmds;
1243 	xfer->ret = -ETIMEDOUT;
1244 
1245 	return xfer;
1246 }
1247 
svc_i3c_master_free_xfer(struct svc_i3c_xfer * xfer)1248 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1249 {
1250 	kfree(xfer);
1251 }
1252 
svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1253 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1254 					       struct svc_i3c_xfer *xfer)
1255 {
1256 	if (master->xferqueue.cur == xfer)
1257 		master->xferqueue.cur = NULL;
1258 	else
1259 		list_del_init(&xfer->node);
1260 }
1261 
svc_i3c_master_dequeue_xfer(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1262 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1263 					struct svc_i3c_xfer *xfer)
1264 {
1265 	unsigned long flags;
1266 
1267 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1268 	svc_i3c_master_dequeue_xfer_locked(master, xfer);
1269 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1270 }
1271 
svc_i3c_master_start_xfer_locked(struct svc_i3c_master * master)1272 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1273 {
1274 	struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1275 	int ret, i;
1276 
1277 	if (!xfer)
1278 		return;
1279 
1280 	svc_i3c_master_clear_merrwarn(master);
1281 	svc_i3c_master_flush_fifo(master);
1282 
1283 	for (i = 0; i < xfer->ncmds; i++) {
1284 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1285 
1286 		ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1287 					  cmd->addr, cmd->in, cmd->out,
1288 					  cmd->len, &cmd->actual_len,
1289 					  cmd->continued);
1290 		/* cmd->xfer is NULL if I2C or CCC transfer */
1291 		if (cmd->xfer)
1292 			cmd->xfer->actual_len = cmd->actual_len;
1293 
1294 		if (ret)
1295 			break;
1296 	}
1297 
1298 	xfer->ret = ret;
1299 	complete(&xfer->comp);
1300 
1301 	if (ret < 0)
1302 		svc_i3c_master_dequeue_xfer_locked(master, xfer);
1303 
1304 	xfer = list_first_entry_or_null(&master->xferqueue.list,
1305 					struct svc_i3c_xfer,
1306 					node);
1307 	if (xfer)
1308 		list_del_init(&xfer->node);
1309 
1310 	master->xferqueue.cur = xfer;
1311 	svc_i3c_master_start_xfer_locked(master);
1312 }
1313 
svc_i3c_master_enqueue_xfer(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1314 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1315 					struct svc_i3c_xfer *xfer)
1316 {
1317 	unsigned long flags;
1318 	int ret;
1319 
1320 	ret = pm_runtime_resume_and_get(master->dev);
1321 	if (ret < 0) {
1322 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1323 		return;
1324 	}
1325 
1326 	init_completion(&xfer->comp);
1327 	spin_lock_irqsave(&master->xferqueue.lock, flags);
1328 	if (master->xferqueue.cur) {
1329 		list_add_tail(&xfer->node, &master->xferqueue.list);
1330 	} else {
1331 		master->xferqueue.cur = xfer;
1332 		svc_i3c_master_start_xfer_locked(master);
1333 	}
1334 	spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1335 
1336 	pm_runtime_mark_last_busy(master->dev);
1337 	pm_runtime_put_autosuspend(master->dev);
1338 }
1339 
1340 static bool
svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller * master,const struct i3c_ccc_cmd * cmd)1341 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1342 				const struct i3c_ccc_cmd *cmd)
1343 {
1344 	/* No software support for CCC commands targeting more than one slave */
1345 	return (cmd->ndests == 1);
1346 }
1347 
svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master * master,struct i3c_ccc_cmd * ccc)1348 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1349 					      struct i3c_ccc_cmd *ccc)
1350 {
1351 	unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1352 	struct svc_i3c_xfer *xfer;
1353 	struct svc_i3c_cmd *cmd;
1354 	u8 *buf;
1355 	int ret;
1356 
1357 	xfer = svc_i3c_master_alloc_xfer(master, 1);
1358 	if (!xfer)
1359 		return -ENOMEM;
1360 
1361 	buf = kmalloc(xfer_len, GFP_KERNEL);
1362 	if (!buf) {
1363 		svc_i3c_master_free_xfer(xfer);
1364 		return -ENOMEM;
1365 	}
1366 
1367 	buf[0] = ccc->id;
1368 	memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1369 
1370 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1371 
1372 	cmd = &xfer->cmds[0];
1373 	cmd->addr = ccc->dests[0].addr;
1374 	cmd->rnw = ccc->rnw;
1375 	cmd->in = NULL;
1376 	cmd->out = buf;
1377 	cmd->len = xfer_len;
1378 	cmd->actual_len = 0;
1379 	cmd->continued = false;
1380 
1381 	mutex_lock(&master->lock);
1382 	svc_i3c_master_enqueue_xfer(master, xfer);
1383 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1384 		svc_i3c_master_dequeue_xfer(master, xfer);
1385 	mutex_unlock(&master->lock);
1386 
1387 	ret = xfer->ret;
1388 	kfree(buf);
1389 	svc_i3c_master_free_xfer(xfer);
1390 
1391 	return ret;
1392 }
1393 
svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master * master,struct i3c_ccc_cmd * ccc)1394 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1395 					      struct i3c_ccc_cmd *ccc)
1396 {
1397 	unsigned int xfer_len = ccc->dests[0].payload.len;
1398 	unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1399 	struct svc_i3c_xfer *xfer;
1400 	struct svc_i3c_cmd *cmd;
1401 	int ret;
1402 
1403 	xfer = svc_i3c_master_alloc_xfer(master, 2);
1404 	if (!xfer)
1405 		return -ENOMEM;
1406 
1407 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1408 
1409 	/* Broadcasted message */
1410 	cmd = &xfer->cmds[0];
1411 	cmd->addr = I3C_BROADCAST_ADDR;
1412 	cmd->rnw = 0;
1413 	cmd->in = NULL;
1414 	cmd->out = &ccc->id;
1415 	cmd->len = 1;
1416 	cmd->actual_len = 0;
1417 	cmd->continued = true;
1418 
1419 	/* Directed message */
1420 	cmd = &xfer->cmds[1];
1421 	cmd->addr = ccc->dests[0].addr;
1422 	cmd->rnw = ccc->rnw;
1423 	cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1424 	cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data,
1425 	cmd->len = xfer_len;
1426 	cmd->actual_len = actual_len;
1427 	cmd->continued = false;
1428 
1429 	mutex_lock(&master->lock);
1430 	svc_i3c_master_enqueue_xfer(master, xfer);
1431 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1432 		svc_i3c_master_dequeue_xfer(master, xfer);
1433 	mutex_unlock(&master->lock);
1434 
1435 	if (cmd->actual_len != xfer_len)
1436 		ccc->dests[0].payload.len = cmd->actual_len;
1437 
1438 	ret = xfer->ret;
1439 	svc_i3c_master_free_xfer(xfer);
1440 
1441 	return ret;
1442 }
1443 
svc_i3c_master_send_ccc_cmd(struct i3c_master_controller * m,struct i3c_ccc_cmd * cmd)1444 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1445 				       struct i3c_ccc_cmd *cmd)
1446 {
1447 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1448 	bool broadcast = cmd->id < 0x80;
1449 	int ret;
1450 
1451 	if (broadcast)
1452 		ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1453 	else
1454 		ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1455 
1456 	if (ret)
1457 		cmd->err = I3C_ERROR_M2;
1458 
1459 	return ret;
1460 }
1461 
svc_i3c_master_priv_xfers(struct i3c_dev_desc * dev,struct i3c_priv_xfer * xfers,int nxfers)1462 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1463 				     struct i3c_priv_xfer *xfers,
1464 				     int nxfers)
1465 {
1466 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1467 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1468 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1469 	struct svc_i3c_xfer *xfer;
1470 	int ret, i;
1471 
1472 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1473 	if (!xfer)
1474 		return -ENOMEM;
1475 
1476 	xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1477 
1478 	for (i = 0; i < nxfers; i++) {
1479 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1480 
1481 		cmd->xfer = &xfers[i];
1482 		cmd->addr = master->addrs[data->index];
1483 		cmd->rnw = xfers[i].rnw;
1484 		cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1485 		cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1486 		cmd->len = xfers[i].len;
1487 		cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1488 		cmd->continued = (i + 1) < nxfers;
1489 	}
1490 
1491 	mutex_lock(&master->lock);
1492 	svc_i3c_master_enqueue_xfer(master, xfer);
1493 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1494 		svc_i3c_master_dequeue_xfer(master, xfer);
1495 	mutex_unlock(&master->lock);
1496 
1497 	ret = xfer->ret;
1498 	svc_i3c_master_free_xfer(xfer);
1499 
1500 	return ret;
1501 }
1502 
svc_i3c_master_i2c_xfers(struct i2c_dev_desc * dev,const struct i2c_msg * xfers,int nxfers)1503 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1504 				    const struct i2c_msg *xfers,
1505 				    int nxfers)
1506 {
1507 	struct i3c_master_controller *m = i2c_dev_get_master(dev);
1508 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1509 	struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1510 	struct svc_i3c_xfer *xfer;
1511 	int ret, i;
1512 
1513 	xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1514 	if (!xfer)
1515 		return -ENOMEM;
1516 
1517 	xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1518 
1519 	for (i = 0; i < nxfers; i++) {
1520 		struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1521 
1522 		cmd->addr = master->addrs[data->index];
1523 		cmd->rnw = xfers[i].flags & I2C_M_RD;
1524 		cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1525 		cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1526 		cmd->len = xfers[i].len;
1527 		cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1528 		cmd->continued = (i + 1 < nxfers);
1529 	}
1530 
1531 	mutex_lock(&master->lock);
1532 	svc_i3c_master_enqueue_xfer(master, xfer);
1533 	if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1534 		svc_i3c_master_dequeue_xfer(master, xfer);
1535 	mutex_unlock(&master->lock);
1536 
1537 	ret = xfer->ret;
1538 	svc_i3c_master_free_xfer(xfer);
1539 
1540 	return ret;
1541 }
1542 
svc_i3c_master_request_ibi(struct i3c_dev_desc * dev,const struct i3c_ibi_setup * req)1543 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1544 				      const struct i3c_ibi_setup *req)
1545 {
1546 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1547 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1548 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1549 	unsigned long flags;
1550 	unsigned int i;
1551 
1552 	if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1553 		dev_err(master->dev, "IBI max payload %d should be < %d\n",
1554 			dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1555 		return -ERANGE;
1556 	}
1557 
1558 	data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1559 	if (IS_ERR(data->ibi_pool))
1560 		return PTR_ERR(data->ibi_pool);
1561 
1562 	spin_lock_irqsave(&master->ibi.lock, flags);
1563 	for (i = 0; i < master->ibi.num_slots; i++) {
1564 		if (!master->ibi.slots[i]) {
1565 			data->ibi = i;
1566 			master->ibi.slots[i] = dev;
1567 			break;
1568 		}
1569 	}
1570 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1571 
1572 	if (i < master->ibi.num_slots)
1573 		return 0;
1574 
1575 	i3c_generic_ibi_free_pool(data->ibi_pool);
1576 	data->ibi_pool = NULL;
1577 
1578 	return -ENOSPC;
1579 }
1580 
svc_i3c_master_free_ibi(struct i3c_dev_desc * dev)1581 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1582 {
1583 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1584 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1585 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1586 	unsigned long flags;
1587 
1588 	spin_lock_irqsave(&master->ibi.lock, flags);
1589 	master->ibi.slots[data->ibi] = NULL;
1590 	data->ibi = -1;
1591 	spin_unlock_irqrestore(&master->ibi.lock, flags);
1592 
1593 	i3c_generic_ibi_free_pool(data->ibi_pool);
1594 }
1595 
svc_i3c_master_enable_ibi(struct i3c_dev_desc * dev)1596 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1597 {
1598 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1599 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1600 	int ret;
1601 
1602 	ret = pm_runtime_resume_and_get(master->dev);
1603 	if (ret < 0) {
1604 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1605 		return ret;
1606 	}
1607 
1608 	master->enabled_events++;
1609 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1610 
1611 	return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1612 }
1613 
svc_i3c_master_disable_ibi(struct i3c_dev_desc * dev)1614 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1615 {
1616 	struct i3c_master_controller *m = i3c_dev_get_master(dev);
1617 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1618 	int ret;
1619 
1620 	master->enabled_events--;
1621 	if (!master->enabled_events)
1622 		svc_i3c_master_disable_interrupts(master);
1623 
1624 	ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1625 
1626 	pm_runtime_mark_last_busy(master->dev);
1627 	pm_runtime_put_autosuspend(master->dev);
1628 
1629 	return ret;
1630 }
1631 
svc_i3c_master_enable_hotjoin(struct i3c_master_controller * m)1632 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1633 {
1634 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1635 	int ret;
1636 
1637 	ret = pm_runtime_resume_and_get(master->dev);
1638 	if (ret < 0) {
1639 		dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1640 		return ret;
1641 	}
1642 
1643 	master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1644 
1645 	svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1646 
1647 	return 0;
1648 }
1649 
svc_i3c_master_disable_hotjoin(struct i3c_master_controller * m)1650 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1651 {
1652 	struct svc_i3c_master *master = to_svc_i3c_master(m);
1653 
1654 	master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1655 
1656 	if (!master->enabled_events)
1657 		svc_i3c_master_disable_interrupts(master);
1658 
1659 	pm_runtime_mark_last_busy(master->dev);
1660 	pm_runtime_put_autosuspend(master->dev);
1661 
1662 	return 0;
1663 }
1664 
svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc * dev,struct i3c_ibi_slot * slot)1665 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1666 					    struct i3c_ibi_slot *slot)
1667 {
1668 	struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1669 
1670 	i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1671 }
1672 
1673 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1674 	.bus_init = svc_i3c_master_bus_init,
1675 	.bus_cleanup = svc_i3c_master_bus_cleanup,
1676 	.attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1677 	.detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1678 	.reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1679 	.attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1680 	.detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1681 	.do_daa = svc_i3c_master_do_daa,
1682 	.supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1683 	.send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1684 	.priv_xfers = svc_i3c_master_priv_xfers,
1685 	.i2c_xfers = svc_i3c_master_i2c_xfers,
1686 	.request_ibi = svc_i3c_master_request_ibi,
1687 	.free_ibi = svc_i3c_master_free_ibi,
1688 	.recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1689 	.enable_ibi = svc_i3c_master_enable_ibi,
1690 	.disable_ibi = svc_i3c_master_disable_ibi,
1691 	.enable_hotjoin = svc_i3c_master_enable_hotjoin,
1692 	.disable_hotjoin = svc_i3c_master_disable_hotjoin,
1693 	.set_speed = svc_i3c_master_set_speed,
1694 };
1695 
svc_i3c_master_prepare_clks(struct svc_i3c_master * master)1696 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1697 {
1698 	int ret = 0;
1699 
1700 	ret = clk_prepare_enable(master->pclk);
1701 	if (ret)
1702 		return ret;
1703 
1704 	ret = clk_prepare_enable(master->fclk);
1705 	if (ret) {
1706 		clk_disable_unprepare(master->pclk);
1707 		return ret;
1708 	}
1709 
1710 	ret = clk_prepare_enable(master->sclk);
1711 	if (ret) {
1712 		clk_disable_unprepare(master->pclk);
1713 		clk_disable_unprepare(master->fclk);
1714 		return ret;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
svc_i3c_master_unprepare_clks(struct svc_i3c_master * master)1720 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1721 {
1722 	clk_disable_unprepare(master->pclk);
1723 	clk_disable_unprepare(master->fclk);
1724 	clk_disable_unprepare(master->sclk);
1725 }
1726 
svc_i3c_master_probe(struct platform_device * pdev)1727 static int svc_i3c_master_probe(struct platform_device *pdev)
1728 {
1729 	struct device *dev = &pdev->dev;
1730 	struct svc_i3c_master *master;
1731 	int ret;
1732 
1733 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1734 	if (!master)
1735 		return -ENOMEM;
1736 
1737 	master->regs = devm_platform_ioremap_resource(pdev, 0);
1738 	if (IS_ERR(master->regs))
1739 		return PTR_ERR(master->regs);
1740 
1741 	master->pclk = devm_clk_get(dev, "pclk");
1742 	if (IS_ERR(master->pclk))
1743 		return PTR_ERR(master->pclk);
1744 
1745 	master->fclk = devm_clk_get(dev, "fast_clk");
1746 	if (IS_ERR(master->fclk))
1747 		return PTR_ERR(master->fclk);
1748 
1749 	master->sclk = devm_clk_get(dev, "slow_clk");
1750 	if (IS_ERR(master->sclk))
1751 		return PTR_ERR(master->sclk);
1752 
1753 	master->irq = platform_get_irq(pdev, 0);
1754 	if (master->irq < 0)
1755 		return master->irq;
1756 
1757 	master->dev = dev;
1758 
1759 	ret = svc_i3c_master_prepare_clks(master);
1760 	if (ret)
1761 		return ret;
1762 
1763 	INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1764 	INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1765 	mutex_init(&master->lock);
1766 
1767 	ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1768 			       IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1769 	if (ret)
1770 		goto err_disable_clks;
1771 
1772 	master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1773 
1774 	spin_lock_init(&master->xferqueue.lock);
1775 	INIT_LIST_HEAD(&master->xferqueue.list);
1776 
1777 	spin_lock_init(&master->ibi.lock);
1778 	master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1779 	master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1780 					 sizeof(*master->ibi.slots),
1781 					 GFP_KERNEL);
1782 	if (!master->ibi.slots) {
1783 		ret = -ENOMEM;
1784 		goto err_disable_clks;
1785 	}
1786 
1787 	platform_set_drvdata(pdev, master);
1788 
1789 	pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1790 	pm_runtime_use_autosuspend(&pdev->dev);
1791 	pm_runtime_get_noresume(&pdev->dev);
1792 	pm_runtime_set_active(&pdev->dev);
1793 	pm_runtime_enable(&pdev->dev);
1794 
1795 	svc_i3c_master_reset(master);
1796 
1797 	/* Register the master */
1798 	ret = i3c_master_register(&master->base, &pdev->dev,
1799 				  &svc_i3c_master_ops, false);
1800 	if (ret)
1801 		goto rpm_disable;
1802 
1803 	pm_runtime_mark_last_busy(&pdev->dev);
1804 	pm_runtime_put_autosuspend(&pdev->dev);
1805 
1806 	return 0;
1807 
1808 rpm_disable:
1809 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1810 	pm_runtime_put_noidle(&pdev->dev);
1811 	pm_runtime_disable(&pdev->dev);
1812 	pm_runtime_set_suspended(&pdev->dev);
1813 
1814 err_disable_clks:
1815 	svc_i3c_master_unprepare_clks(master);
1816 
1817 	return ret;
1818 }
1819 
svc_i3c_master_remove(struct platform_device * pdev)1820 static void svc_i3c_master_remove(struct platform_device *pdev)
1821 {
1822 	struct svc_i3c_master *master = platform_get_drvdata(pdev);
1823 
1824 	cancel_work_sync(&master->hj_work);
1825 	i3c_master_unregister(&master->base);
1826 
1827 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1828 	pm_runtime_disable(&pdev->dev);
1829 }
1830 
svc_i3c_save_regs(struct svc_i3c_master * master)1831 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1832 {
1833 	master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1834 	master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1835 }
1836 
svc_i3c_restore_regs(struct svc_i3c_master * master)1837 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1838 {
1839 	if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1840 	    master->saved_regs.mdynaddr) {
1841 		writel(master->saved_regs.mconfig,
1842 		       master->regs + SVC_I3C_MCONFIG);
1843 		writel(master->saved_regs.mdynaddr,
1844 		       master->regs + SVC_I3C_MDYNADDR);
1845 	}
1846 }
1847 
svc_i3c_runtime_suspend(struct device * dev)1848 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1849 {
1850 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1851 
1852 	svc_i3c_save_regs(master);
1853 	svc_i3c_master_unprepare_clks(master);
1854 	pinctrl_pm_select_sleep_state(dev);
1855 
1856 	return 0;
1857 }
1858 
svc_i3c_runtime_resume(struct device * dev)1859 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1860 {
1861 	struct svc_i3c_master *master = dev_get_drvdata(dev);
1862 
1863 	pinctrl_pm_select_default_state(dev);
1864 	svc_i3c_master_prepare_clks(master);
1865 
1866 	svc_i3c_restore_regs(master);
1867 
1868 	return 0;
1869 }
1870 
1871 static const struct dev_pm_ops svc_i3c_pm_ops = {
1872 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1873 				      pm_runtime_force_resume)
1874 	SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1875 			   svc_i3c_runtime_resume, NULL)
1876 };
1877 
1878 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1879 	{ .compatible = "silvaco,i3c-master" },
1880 	{ /* sentinel */ },
1881 };
1882 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1883 
1884 static struct platform_driver svc_i3c_master = {
1885 	.probe = svc_i3c_master_probe,
1886 	.remove_new = svc_i3c_master_remove,
1887 	.driver = {
1888 		.name = "silvaco-i3c-master",
1889 		.of_match_table = svc_i3c_master_of_match_tbl,
1890 		.pm = &svc_i3c_pm_ops,
1891 	},
1892 };
1893 module_platform_driver(svc_i3c_master);
1894 
1895 MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>");
1896 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1897 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1898 MODULE_LICENSE("GPL v2");
1899