xref: /openbmc/linux/drivers/opp/core.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36 
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39 
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 	struct opp_device *opp_dev;
43 	bool found = false;
44 
45 	mutex_lock(&opp_table->lock);
46 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 		if (opp_dev->dev == dev) {
48 			found = true;
49 			break;
50 		}
51 
52 	mutex_unlock(&opp_table->lock);
53 	return found;
54 }
55 
_find_opp_table_unlocked(struct device * dev)56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 	struct opp_table *opp_table;
59 
60 	list_for_each_entry(opp_table, &opp_tables, node) {
61 		if (_find_opp_dev(dev, opp_table)) {
62 			_get_opp_table_kref(opp_table);
63 			return opp_table;
64 		}
65 	}
66 
67 	return ERR_PTR(-ENODEV);
68 }
69 
70 /**
71  * _find_opp_table() - find opp_table struct using device pointer
72  * @dev:	device pointer used to lookup OPP table
73  *
74  * Search OPP table for one containing matching device.
75  *
76  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77  * -EINVAL based on type of error.
78  *
79  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80  */
_find_opp_table(struct device * dev)81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 	struct opp_table *opp_table;
84 
85 	if (IS_ERR_OR_NULL(dev)) {
86 		pr_err("%s: Invalid parameters\n", __func__);
87 		return ERR_PTR(-EINVAL);
88 	}
89 
90 	mutex_lock(&opp_table_lock);
91 	opp_table = _find_opp_table_unlocked(dev);
92 	mutex_unlock(&opp_table_lock);
93 
94 	return opp_table;
95 }
96 
97 /*
98  * Returns true if multiple clocks aren't there, else returns false with WARN.
99  *
100  * We don't force clk_count == 1 here as there are users who don't have a clock
101  * representation in the OPP table and manage the clock configuration themselves
102  * in an platform specific way.
103  */
assert_single_clk(struct opp_table * opp_table,unsigned int __always_unused index)104 static bool assert_single_clk(struct opp_table *opp_table,
105 			      unsigned int __always_unused index)
106 {
107 	return !WARN_ON(opp_table->clk_count > 1);
108 }
109 
110 /*
111  * Returns true if clock table is large enough to contain the clock index.
112  */
assert_clk_index(struct opp_table * opp_table,unsigned int index)113 static bool assert_clk_index(struct opp_table *opp_table,
114 			     unsigned int index)
115 {
116 	return opp_table->clk_count > index;
117 }
118 
119 /*
120  * Returns true if bandwidth table is large enough to contain the bandwidth index.
121  */
assert_bandwidth_index(struct opp_table * opp_table,unsigned int index)122 static bool assert_bandwidth_index(struct opp_table *opp_table,
123 				   unsigned int index)
124 {
125 	return opp_table->path_count > index;
126 }
127 
128 /**
129  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130  * @opp:	opp for which voltage has to be returned for
131  *
132  * Return: voltage in micro volt corresponding to the opp, else
133  * return 0
134  *
135  * This is useful only for devices with single power supply.
136  */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)137 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp)) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->supplies[0].u_volt;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147 
148 /**
149  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150  * @opp:	opp for which voltage has to be returned for
151  * @supplies:	Placeholder for copying the supply information.
152  *
153  * Return: negative error number on failure, 0 otherwise on success after
154  * setting @supplies.
155  *
156  * This can be used for devices with any number of power supplies. The caller
157  * must ensure the @supplies array must contain space for each regulator.
158  */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)159 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 			    struct dev_pm_opp_supply *supplies)
161 {
162 	if (IS_ERR_OR_NULL(opp) || !supplies) {
163 		pr_err("%s: Invalid parameters\n", __func__);
164 		return -EINVAL;
165 	}
166 
167 	memcpy(supplies, opp->supplies,
168 	       sizeof(*supplies) * opp->opp_table->regulator_count);
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172 
173 /**
174  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175  * @opp:	opp for which power has to be returned for
176  *
177  * Return: power in micro watt corresponding to the opp, else
178  * return 0
179  *
180  * This is useful only for devices with single power supply.
181  */
dev_pm_opp_get_power(struct dev_pm_opp * opp)182 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183 {
184 	unsigned long opp_power = 0;
185 	int i;
186 
187 	if (IS_ERR_OR_NULL(opp)) {
188 		pr_err("%s: Invalid parameters\n", __func__);
189 		return 0;
190 	}
191 	for (i = 0; i < opp->opp_table->regulator_count; i++)
192 		opp_power += opp->supplies[i].u_watt;
193 
194 	return opp_power;
195 }
196 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197 
198 /**
199  * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200  *				   available opp with specified index
201  * @opp: opp for which frequency has to be returned for
202  * @index: index of the frequency within the required opp
203  *
204  * Return: frequency in hertz corresponding to the opp with specified index,
205  * else return 0
206  */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)207 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208 {
209 	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 		pr_err("%s: Invalid parameters\n", __func__);
211 		return 0;
212 	}
213 
214 	return opp->rates[index];
215 }
216 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217 
218 /**
219  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220  * @opp:	opp for which level value has to be returned for
221  *
222  * Return: level read from device tree corresponding to the opp, else
223  * return 0.
224  */
dev_pm_opp_get_level(struct dev_pm_opp * opp)225 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226 {
227 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 		pr_err("%s: Invalid parameters\n", __func__);
229 		return 0;
230 	}
231 
232 	return opp->level;
233 }
234 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235 
236 /**
237  * dev_pm_opp_get_required_pstate() - Gets the required performance state
238  *                                    corresponding to an available opp
239  * @opp:	opp for which performance state has to be returned for
240  * @index:	index of the required opp
241  *
242  * Return: performance state read from device tree corresponding to the
243  * required opp, else return 0.
244  */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)245 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 					    unsigned int index)
247 {
248 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 	    index >= opp->opp_table->required_opp_count) {
250 		pr_err("%s: Invalid parameters\n", __func__);
251 		return 0;
252 	}
253 
254 	/* required-opps not fully initialized yet */
255 	if (lazy_linking_pending(opp->opp_table))
256 		return 0;
257 
258 	/* The required OPP table must belong to a genpd */
259 	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 		return 0;
262 	}
263 
264 	return opp->required_opps[index]->level;
265 }
266 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267 
268 /**
269  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270  * @opp: opp for which turbo mode is being verified
271  *
272  * Turbo OPPs are not for normal use, and can be enabled (under certain
273  * conditions) for short duration of times to finish high throughput work
274  * quickly. Running on them for longer times may overheat the chip.
275  *
276  * Return: true if opp is turbo opp, else false.
277  */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)278 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279 {
280 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 		pr_err("%s: Invalid parameters\n", __func__);
282 		return false;
283 	}
284 
285 	return opp->turbo;
286 }
287 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288 
289 /**
290  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291  * @dev:	device for which we do this operation
292  *
293  * Return: This function returns the max clock latency in nanoseconds.
294  */
dev_pm_opp_get_max_clock_latency(struct device * dev)295 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296 {
297 	struct opp_table *opp_table;
298 	unsigned long clock_latency_ns;
299 
300 	opp_table = _find_opp_table(dev);
301 	if (IS_ERR(opp_table))
302 		return 0;
303 
304 	clock_latency_ns = opp_table->clock_latency_ns_max;
305 
306 	dev_pm_opp_put_opp_table(opp_table);
307 
308 	return clock_latency_ns;
309 }
310 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311 
312 /**
313  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314  * @dev: device for which we do this operation
315  *
316  * Return: This function returns the max voltage latency in nanoseconds.
317  */
dev_pm_opp_get_max_volt_latency(struct device * dev)318 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319 {
320 	struct opp_table *opp_table;
321 	struct dev_pm_opp *opp;
322 	struct regulator *reg;
323 	unsigned long latency_ns = 0;
324 	int ret, i, count;
325 	struct {
326 		unsigned long min;
327 		unsigned long max;
328 	} *uV;
329 
330 	opp_table = _find_opp_table(dev);
331 	if (IS_ERR(opp_table))
332 		return 0;
333 
334 	/* Regulator may not be required for the device */
335 	if (!opp_table->regulators)
336 		goto put_opp_table;
337 
338 	count = opp_table->regulator_count;
339 
340 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 	if (!uV)
342 		goto put_opp_table;
343 
344 	mutex_lock(&opp_table->lock);
345 
346 	for (i = 0; i < count; i++) {
347 		uV[i].min = ~0;
348 		uV[i].max = 0;
349 
350 		list_for_each_entry(opp, &opp_table->opp_list, node) {
351 			if (!opp->available)
352 				continue;
353 
354 			if (opp->supplies[i].u_volt_min < uV[i].min)
355 				uV[i].min = opp->supplies[i].u_volt_min;
356 			if (opp->supplies[i].u_volt_max > uV[i].max)
357 				uV[i].max = opp->supplies[i].u_volt_max;
358 		}
359 	}
360 
361 	mutex_unlock(&opp_table->lock);
362 
363 	/*
364 	 * The caller needs to ensure that opp_table (and hence the regulator)
365 	 * isn't freed, while we are executing this routine.
366 	 */
367 	for (i = 0; i < count; i++) {
368 		reg = opp_table->regulators[i];
369 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 		if (ret > 0)
371 			latency_ns += ret * 1000;
372 	}
373 
374 	kfree(uV);
375 put_opp_table:
376 	dev_pm_opp_put_opp_table(opp_table);
377 
378 	return latency_ns;
379 }
380 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381 
382 /**
383  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384  *					     nanoseconds
385  * @dev: device for which we do this operation
386  *
387  * Return: This function returns the max transition latency, in nanoseconds, to
388  * switch from one OPP to other.
389  */
dev_pm_opp_get_max_transition_latency(struct device * dev)390 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391 {
392 	return dev_pm_opp_get_max_volt_latency(dev) +
393 		dev_pm_opp_get_max_clock_latency(dev);
394 }
395 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396 
397 /**
398  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399  * @dev:	device for which we do this operation
400  *
401  * Return: This function returns the frequency of the OPP marked as suspend_opp
402  * if one is available, else returns 0;
403  */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)404 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405 {
406 	struct opp_table *opp_table;
407 	unsigned long freq = 0;
408 
409 	opp_table = _find_opp_table(dev);
410 	if (IS_ERR(opp_table))
411 		return 0;
412 
413 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415 
416 	dev_pm_opp_put_opp_table(opp_table);
417 
418 	return freq;
419 }
420 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421 
_get_opp_count(struct opp_table * opp_table)422 int _get_opp_count(struct opp_table *opp_table)
423 {
424 	struct dev_pm_opp *opp;
425 	int count = 0;
426 
427 	mutex_lock(&opp_table->lock);
428 
429 	list_for_each_entry(opp, &opp_table->opp_list, node) {
430 		if (opp->available)
431 			count++;
432 	}
433 
434 	mutex_unlock(&opp_table->lock);
435 
436 	return count;
437 }
438 
439 /**
440  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441  * @dev:	device for which we do this operation
442  *
443  * Return: This function returns the number of available opps if there are any,
444  * else returns 0 if none or the corresponding error value.
445  */
dev_pm_opp_get_opp_count(struct device * dev)446 int dev_pm_opp_get_opp_count(struct device *dev)
447 {
448 	struct opp_table *opp_table;
449 	int count;
450 
451 	opp_table = _find_opp_table(dev);
452 	if (IS_ERR(opp_table)) {
453 		count = PTR_ERR(opp_table);
454 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 			__func__, count);
456 		return count;
457 	}
458 
459 	count = _get_opp_count(opp_table);
460 	dev_pm_opp_put_opp_table(opp_table);
461 
462 	return count;
463 }
464 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465 
466 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)467 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468 {
469 	return opp->rates[index];
470 }
471 
_read_level(struct dev_pm_opp * opp,int index)472 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473 {
474 	return opp->level;
475 }
476 
_read_bw(struct dev_pm_opp * opp,int index)477 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478 {
479 	return opp->bandwidth[index].peak;
480 }
481 
482 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)483 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 			   unsigned long opp_key, unsigned long key)
485 {
486 	if (opp_key == key) {
487 		*opp = temp_opp;
488 		return true;
489 	}
490 
491 	return false;
492 }
493 
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)494 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 			  unsigned long opp_key, unsigned long key)
496 {
497 	if (opp_key >= key) {
498 		*opp = temp_opp;
499 		return true;
500 	}
501 
502 	return false;
503 }
504 
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)505 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 			   unsigned long opp_key, unsigned long key)
507 {
508 	if (opp_key > key)
509 		return true;
510 
511 	*opp = temp_opp;
512 	return false;
513 }
514 
515 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))516 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 		unsigned long *key, int index, bool available,
518 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 				unsigned long opp_key, unsigned long key),
521 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
522 {
523 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524 
525 	/* Assert that the requirement is met */
526 	if (assert && !assert(opp_table, index))
527 		return ERR_PTR(-EINVAL);
528 
529 	mutex_lock(&opp_table->lock);
530 
531 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 		if (temp_opp->available == available) {
533 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 				break;
535 		}
536 	}
537 
538 	/* Increment the reference count of OPP */
539 	if (!IS_ERR(opp)) {
540 		*key = read(opp, index);
541 		dev_pm_opp_get(opp);
542 	}
543 
544 	mutex_unlock(&opp_table->lock);
545 
546 	return opp;
547 }
548 
549 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))550 _find_key(struct device *dev, unsigned long *key, int index, bool available,
551 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 			  unsigned long opp_key, unsigned long key),
554 	  bool (*assert)(struct opp_table *opp_table, unsigned int index))
555 {
556 	struct opp_table *opp_table;
557 	struct dev_pm_opp *opp;
558 
559 	opp_table = _find_opp_table(dev);
560 	if (IS_ERR(opp_table)) {
561 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 			PTR_ERR(opp_table));
563 		return ERR_CAST(opp_table);
564 	}
565 
566 	opp = _opp_table_find_key(opp_table, key, index, available, read,
567 				  compare, assert);
568 
569 	dev_pm_opp_put_opp_table(opp_table);
570 
571 	return opp;
572 }
573 
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))574 static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 		unsigned long key, int index, bool available,
576 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
578 {
579 	/*
580 	 * The value of key will be updated here, but will be ignored as the
581 	 * caller doesn't need it.
582 	 */
583 	return _find_key(dev, &key, index, available, read, _compare_exact,
584 			 assert);
585 }
586 
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))587 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 		unsigned long *key, int index, bool available,
589 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
591 {
592 	return _opp_table_find_key(opp_table, key, index, available, read,
593 				   _compare_ceil, assert);
594 }
595 
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))596 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 		int index, bool available,
598 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
600 {
601 	return _find_key(dev, key, index, available, read, _compare_ceil,
602 			 assert);
603 }
604 
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))605 static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 		unsigned long *key, int index, bool available,
607 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 		bool (*assert)(struct opp_table *opp_table, unsigned int index))
609 {
610 	return _find_key(dev, key, index, available, read, _compare_floor,
611 			 assert);
612 }
613 
614 /**
615  * dev_pm_opp_find_freq_exact() - search for an exact frequency
616  * @dev:		device for which we do this operation
617  * @freq:		frequency to search for
618  * @available:		true/false - match for available opp
619  *
620  * Return: Searches for exact match in the opp table and returns pointer to the
621  * matching opp if found, else returns ERR_PTR in case of error and should
622  * be handled using IS_ERR. Error return values can be:
623  * EINVAL:	for bad pointer
624  * ERANGE:	no match found for search
625  * ENODEV:	if device not found in list of registered devices
626  *
627  * Note: available is a modifier for the search. if available=true, then the
628  * match is for exact matching frequency and is available in the stored OPP
629  * table. if false, the match is for exact frequency which is not available.
630  *
631  * This provides a mechanism to enable an opp which is not available currently
632  * or the opposite as well.
633  *
634  * The callers are required to call dev_pm_opp_put() for the returned OPP after
635  * use.
636  */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)637 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 		unsigned long freq, bool available)
639 {
640 	return _find_key_exact(dev, freq, 0, available, _read_freq,
641 			       assert_single_clk);
642 }
643 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644 
645 /**
646  * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647  *					 clock corresponding to the index
648  * @dev:	Device for which we do this operation
649  * @freq:	frequency to search for
650  * @index:	Clock index
651  * @available:	true/false - match for available opp
652  *
653  * Search for the matching exact OPP for the clock corresponding to the
654  * specified index from a starting freq for a device.
655  *
656  * Return: matching *opp , else returns ERR_PTR in case of error and should be
657  * handled using IS_ERR. Error return values can be:
658  * EINVAL:	for bad pointer
659  * ERANGE:	no match found for search
660  * ENODEV:	if device not found in list of registered devices
661  *
662  * The callers are required to call dev_pm_opp_put() for the returned OPP after
663  * use.
664  */
665 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)666 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 				   u32 index, bool available)
668 {
669 	return _find_key_exact(dev, freq, index, available, _read_freq,
670 			       assert_clk_index);
671 }
672 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673 
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)674 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 						   unsigned long *freq)
676 {
677 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 					assert_single_clk);
679 }
680 
681 /**
682  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683  * @dev:	device for which we do this operation
684  * @freq:	Start frequency
685  *
686  * Search for the matching ceil *available* OPP from a starting freq
687  * for a device.
688  *
689  * Return: matching *opp and refreshes *freq accordingly, else returns
690  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691  * values can be:
692  * EINVAL:	for bad pointer
693  * ERANGE:	no match found for search
694  * ENODEV:	if device not found in list of registered devices
695  *
696  * The callers are required to call dev_pm_opp_put() for the returned OPP after
697  * use.
698  */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)699 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 					     unsigned long *freq)
701 {
702 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703 }
704 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705 
706 /**
707  * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708  *					 clock corresponding to the index
709  * @dev:	Device for which we do this operation
710  * @freq:	Start frequency
711  * @index:	Clock index
712  *
713  * Search for the matching ceil *available* OPP for the clock corresponding to
714  * the specified index from a starting freq for a device.
715  *
716  * Return: matching *opp and refreshes *freq accordingly, else returns
717  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718  * values can be:
719  * EINVAL:	for bad pointer
720  * ERANGE:	no match found for search
721  * ENODEV:	if device not found in list of registered devices
722  *
723  * The callers are required to call dev_pm_opp_put() for the returned OPP after
724  * use.
725  */
726 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)727 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 				  u32 index)
729 {
730 	return _find_key_ceil(dev, freq, index, true, _read_freq,
731 			      assert_clk_index);
732 }
733 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734 
735 /**
736  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737  * @dev:	device for which we do this operation
738  * @freq:	Start frequency
739  *
740  * Search for the matching floor *available* OPP from a starting freq
741  * for a device.
742  *
743  * Return: matching *opp and refreshes *freq accordingly, else returns
744  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745  * values can be:
746  * EINVAL:	for bad pointer
747  * ERANGE:	no match found for search
748  * ENODEV:	if device not found in list of registered devices
749  *
750  * The callers are required to call dev_pm_opp_put() for the returned OPP after
751  * use.
752  */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)753 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 					      unsigned long *freq)
755 {
756 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757 }
758 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759 
760 /**
761  * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762  *					  clock corresponding to the index
763  * @dev:	Device for which we do this operation
764  * @freq:	Start frequency
765  * @index:	Clock index
766  *
767  * Search for the matching floor *available* OPP for the clock corresponding to
768  * the specified index from a starting freq for a device.
769  *
770  * Return: matching *opp and refreshes *freq accordingly, else returns
771  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772  * values can be:
773  * EINVAL:	for bad pointer
774  * ERANGE:	no match found for search
775  * ENODEV:	if device not found in list of registered devices
776  *
777  * The callers are required to call dev_pm_opp_put() for the returned OPP after
778  * use.
779  */
780 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)781 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 				   u32 index)
783 {
784 	return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785 }
786 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787 
788 /**
789  * dev_pm_opp_find_level_exact() - search for an exact level
790  * @dev:		device for which we do this operation
791  * @level:		level to search for
792  *
793  * Return: Searches for exact match in the opp table and returns pointer to the
794  * matching opp if found, else returns ERR_PTR in case of error and should
795  * be handled using IS_ERR. Error return values can be:
796  * EINVAL:	for bad pointer
797  * ERANGE:	no match found for search
798  * ENODEV:	if device not found in list of registered devices
799  *
800  * The callers are required to call dev_pm_opp_put() for the returned OPP after
801  * use.
802  */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)803 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 					       unsigned int level)
805 {
806 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807 }
808 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809 
810 /**
811  * dev_pm_opp_find_level_ceil() - search for an rounded up level
812  * @dev:		device for which we do this operation
813  * @level:		level to search for
814  *
815  * Return: Searches for rounded up match in the opp table and returns pointer
816  * to the  matching opp if found, else returns ERR_PTR in case of error and
817  * should be handled using IS_ERR. Error return values can be:
818  * EINVAL:	for bad pointer
819  * ERANGE:	no match found for search
820  * ENODEV:	if device not found in list of registered devices
821  *
822  * The callers are required to call dev_pm_opp_put() for the returned OPP after
823  * use.
824  */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)825 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 					      unsigned int *level)
827 {
828 	unsigned long temp = *level;
829 	struct dev_pm_opp *opp;
830 
831 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 	*level = temp;
833 	return opp;
834 }
835 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
836 
837 /**
838  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
839  * @dev:	device for which we do this operation
840  * @bw:	start bandwidth
841  * @index:	which bandwidth to compare, in case of OPPs with several values
842  *
843  * Search for the matching floor *available* OPP from a starting bandwidth
844  * for a device.
845  *
846  * Return: matching *opp and refreshes *bw accordingly, else returns
847  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
848  * values can be:
849  * EINVAL:	for bad pointer
850  * ERANGE:	no match found for search
851  * ENODEV:	if device not found in list of registered devices
852  *
853  * The callers are required to call dev_pm_opp_put() for the returned OPP after
854  * use.
855  */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)856 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
857 					   int index)
858 {
859 	unsigned long temp = *bw;
860 	struct dev_pm_opp *opp;
861 
862 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
863 			     assert_bandwidth_index);
864 	*bw = temp;
865 	return opp;
866 }
867 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
868 
869 /**
870  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
871  * @dev:	device for which we do this operation
872  * @bw:	start bandwidth
873  * @index:	which bandwidth to compare, in case of OPPs with several values
874  *
875  * Search for the matching floor *available* OPP from a starting bandwidth
876  * for a device.
877  *
878  * Return: matching *opp and refreshes *bw accordingly, else returns
879  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
880  * values can be:
881  * EINVAL:	for bad pointer
882  * ERANGE:	no match found for search
883  * ENODEV:	if device not found in list of registered devices
884  *
885  * The callers are required to call dev_pm_opp_put() for the returned OPP after
886  * use.
887  */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)888 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
889 					    unsigned int *bw, int index)
890 {
891 	unsigned long temp = *bw;
892 	struct dev_pm_opp *opp;
893 
894 	opp = _find_key_floor(dev, &temp, index, true, _read_bw,
895 			      assert_bandwidth_index);
896 	*bw = temp;
897 	return opp;
898 }
899 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
900 
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)901 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
902 			    struct dev_pm_opp_supply *supply)
903 {
904 	int ret;
905 
906 	/* Regulator not available for device */
907 	if (IS_ERR(reg)) {
908 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
909 			PTR_ERR(reg));
910 		return 0;
911 	}
912 
913 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
914 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
915 
916 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
917 					    supply->u_volt, supply->u_volt_max);
918 	if (ret)
919 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
920 			__func__, supply->u_volt_min, supply->u_volt,
921 			supply->u_volt_max, ret);
922 
923 	return ret;
924 }
925 
926 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)927 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
928 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
929 {
930 	unsigned long *target = data;
931 	unsigned long freq;
932 	int ret;
933 
934 	/* One of target and opp must be available */
935 	if (target) {
936 		freq = *target;
937 	} else if (opp) {
938 		freq = opp->rates[0];
939 	} else {
940 		WARN_ON(1);
941 		return -EINVAL;
942 	}
943 
944 	ret = clk_set_rate(opp_table->clk, freq);
945 	if (ret) {
946 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
947 			ret);
948 	} else {
949 		opp_table->rate_clk_single = freq;
950 	}
951 
952 	return ret;
953 }
954 
955 /*
956  * Simple implementation for configuring multiple clocks. Configure clocks in
957  * the order in which they are present in the array while scaling up.
958  */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)959 int dev_pm_opp_config_clks_simple(struct device *dev,
960 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
961 		bool scaling_down)
962 {
963 	int ret, i;
964 
965 	if (scaling_down) {
966 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
967 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
968 			if (ret) {
969 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
970 					ret);
971 				return ret;
972 			}
973 		}
974 	} else {
975 		for (i = 0; i < opp_table->clk_count; i++) {
976 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
977 			if (ret) {
978 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
979 					ret);
980 				return ret;
981 			}
982 		}
983 	}
984 
985 	return 0;
986 }
987 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
988 
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)989 static int _opp_config_regulator_single(struct device *dev,
990 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
991 			struct regulator **regulators, unsigned int count)
992 {
993 	struct regulator *reg = regulators[0];
994 	int ret;
995 
996 	/* This function only supports single regulator per device */
997 	if (WARN_ON(count > 1)) {
998 		dev_err(dev, "multiple regulators are not supported\n");
999 		return -EINVAL;
1000 	}
1001 
1002 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1003 	if (ret)
1004 		return ret;
1005 
1006 	/*
1007 	 * Enable the regulator after setting its voltages, otherwise it breaks
1008 	 * some boot-enabled regulators.
1009 	 */
1010 	if (unlikely(!new_opp->opp_table->enabled)) {
1011 		ret = regulator_enable(reg);
1012 		if (ret < 0)
1013 			dev_warn(dev, "Failed to enable regulator: %d", ret);
1014 	}
1015 
1016 	return 0;
1017 }
1018 
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)1019 static int _set_opp_bw(const struct opp_table *opp_table,
1020 		       struct dev_pm_opp *opp, struct device *dev)
1021 {
1022 	u32 avg, peak;
1023 	int i, ret;
1024 
1025 	if (!opp_table->paths)
1026 		return 0;
1027 
1028 	for (i = 0; i < opp_table->path_count; i++) {
1029 		if (!opp) {
1030 			avg = 0;
1031 			peak = 0;
1032 		} else {
1033 			avg = opp->bandwidth[i].avg;
1034 			peak = opp->bandwidth[i].peak;
1035 		}
1036 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1037 		if (ret) {
1038 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1039 				opp ? "set" : "remove", i, ret);
1040 			return ret;
1041 		}
1042 	}
1043 
1044 	return 0;
1045 }
1046 
_set_performance_state(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)1047 static int _set_performance_state(struct device *dev, struct device *pd_dev,
1048 				  struct dev_pm_opp *opp, int i)
1049 {
1050 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1051 	int ret;
1052 
1053 	if (!pd_dev)
1054 		return 0;
1055 
1056 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
1057 	if (ret) {
1058 		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1059 			dev_name(pd_dev), pstate, ret);
1060 	}
1061 
1062 	return ret;
1063 }
1064 
_opp_set_required_opps_generic(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1065 static int _opp_set_required_opps_generic(struct device *dev,
1066 	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1067 {
1068 	dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1069 	return -ENOENT;
1070 }
1071 
_opp_set_required_opps_genpd(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool scaling_down)1072 static int _opp_set_required_opps_genpd(struct device *dev,
1073 	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1074 {
1075 	struct device **genpd_virt_devs =
1076 		opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1077 	int i, ret = 0;
1078 
1079 	/*
1080 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1081 	 * after it is freed from another thread.
1082 	 */
1083 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1084 
1085 	/* Scaling up? Set required OPPs in normal order, else reverse */
1086 	if (!scaling_down) {
1087 		for (i = 0; i < opp_table->required_opp_count; i++) {
1088 			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1089 			if (ret)
1090 				break;
1091 		}
1092 	} else {
1093 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1094 			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1095 			if (ret)
1096 				break;
1097 		}
1098 	}
1099 
1100 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1101 
1102 	return ret;
1103 }
1104 
1105 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1106 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1107 			      struct dev_pm_opp *opp, bool up)
1108 {
1109 	/* required-opps not fully initialized yet */
1110 	if (lazy_linking_pending(opp_table))
1111 		return -EBUSY;
1112 
1113 	if (opp_table->set_required_opps)
1114 		return opp_table->set_required_opps(dev, opp_table, opp, up);
1115 
1116 	return 0;
1117 }
1118 
1119 /* Update set_required_opps handler */
_update_set_required_opps(struct opp_table * opp_table)1120 void _update_set_required_opps(struct opp_table *opp_table)
1121 {
1122 	/* Already set */
1123 	if (opp_table->set_required_opps)
1124 		return;
1125 
1126 	/* All required OPPs will belong to genpd or none */
1127 	if (opp_table->required_opp_tables[0]->is_genpd)
1128 		opp_table->set_required_opps = _opp_set_required_opps_genpd;
1129 	else
1130 		opp_table->set_required_opps = _opp_set_required_opps_generic;
1131 }
1132 
_find_current_opp(struct device * dev,struct opp_table * opp_table)1133 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1134 {
1135 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1136 	unsigned long freq;
1137 
1138 	if (!IS_ERR(opp_table->clk)) {
1139 		freq = clk_get_rate(opp_table->clk);
1140 		opp = _find_freq_ceil(opp_table, &freq);
1141 	}
1142 
1143 	/*
1144 	 * Unable to find the current OPP ? Pick the first from the list since
1145 	 * it is in ascending order, otherwise rest of the code will need to
1146 	 * make special checks to validate current_opp.
1147 	 */
1148 	if (IS_ERR(opp)) {
1149 		mutex_lock(&opp_table->lock);
1150 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1151 		dev_pm_opp_get(opp);
1152 		mutex_unlock(&opp_table->lock);
1153 	}
1154 
1155 	opp_table->current_opp = opp;
1156 }
1157 
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1158 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1159 {
1160 	int ret;
1161 
1162 	if (!opp_table->enabled)
1163 		return 0;
1164 
1165 	/*
1166 	 * Some drivers need to support cases where some platforms may
1167 	 * have OPP table for the device, while others don't and
1168 	 * opp_set_rate() just needs to behave like clk_set_rate().
1169 	 */
1170 	if (!_get_opp_count(opp_table))
1171 		return 0;
1172 
1173 	ret = _set_opp_bw(opp_table, NULL, dev);
1174 	if (ret)
1175 		return ret;
1176 
1177 	if (opp_table->regulators)
1178 		regulator_disable(opp_table->regulators[0]);
1179 
1180 	ret = _set_required_opps(dev, opp_table, NULL, false);
1181 
1182 	opp_table->enabled = false;
1183 	return ret;
1184 }
1185 
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1186 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1187 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1188 {
1189 	struct dev_pm_opp *old_opp;
1190 	int scaling_down, ret;
1191 
1192 	if (unlikely(!opp))
1193 		return _disable_opp_table(dev, opp_table);
1194 
1195 	/* Find the currently set OPP if we don't know already */
1196 	if (unlikely(!opp_table->current_opp))
1197 		_find_current_opp(dev, opp_table);
1198 
1199 	old_opp = opp_table->current_opp;
1200 
1201 	/* Return early if nothing to do */
1202 	if (!forced && old_opp == opp && opp_table->enabled) {
1203 		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1204 		return 0;
1205 	}
1206 
1207 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1208 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1209 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1210 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1211 
1212 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1213 	if (scaling_down == -1)
1214 		scaling_down = 0;
1215 
1216 	/* Scaling up? Configure required OPPs before frequency */
1217 	if (!scaling_down) {
1218 		ret = _set_required_opps(dev, opp_table, opp, true);
1219 		if (ret) {
1220 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1221 			return ret;
1222 		}
1223 
1224 		ret = _set_opp_bw(opp_table, opp, dev);
1225 		if (ret) {
1226 			dev_err(dev, "Failed to set bw: %d\n", ret);
1227 			return ret;
1228 		}
1229 
1230 		if (opp_table->config_regulators) {
1231 			ret = opp_table->config_regulators(dev, old_opp, opp,
1232 							   opp_table->regulators,
1233 							   opp_table->regulator_count);
1234 			if (ret) {
1235 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1236 					ret);
1237 				return ret;
1238 			}
1239 		}
1240 	}
1241 
1242 	if (opp_table->config_clks) {
1243 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1244 		if (ret)
1245 			return ret;
1246 	}
1247 
1248 	/* Scaling down? Configure required OPPs after frequency */
1249 	if (scaling_down) {
1250 		if (opp_table->config_regulators) {
1251 			ret = opp_table->config_regulators(dev, old_opp, opp,
1252 							   opp_table->regulators,
1253 							   opp_table->regulator_count);
1254 			if (ret) {
1255 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1256 					ret);
1257 				return ret;
1258 			}
1259 		}
1260 
1261 		ret = _set_opp_bw(opp_table, opp, dev);
1262 		if (ret) {
1263 			dev_err(dev, "Failed to set bw: %d\n", ret);
1264 			return ret;
1265 		}
1266 
1267 		ret = _set_required_opps(dev, opp_table, opp, false);
1268 		if (ret) {
1269 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1270 			return ret;
1271 		}
1272 	}
1273 
1274 	opp_table->enabled = true;
1275 	dev_pm_opp_put(old_opp);
1276 
1277 	/* Make sure current_opp doesn't get freed */
1278 	dev_pm_opp_get(opp);
1279 	opp_table->current_opp = opp;
1280 
1281 	return ret;
1282 }
1283 
1284 /**
1285  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1286  * @dev:	 device for which we do this operation
1287  * @target_freq: frequency to achieve
1288  *
1289  * This configures the power-supplies to the levels specified by the OPP
1290  * corresponding to the target_freq, and programs the clock to a value <=
1291  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1292  * provided by the opp, should have already rounded to the target OPP's
1293  * frequency.
1294  */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1295 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1296 {
1297 	struct opp_table *opp_table;
1298 	unsigned long freq = 0, temp_freq;
1299 	struct dev_pm_opp *opp = NULL;
1300 	bool forced = false;
1301 	int ret;
1302 
1303 	opp_table = _find_opp_table(dev);
1304 	if (IS_ERR(opp_table)) {
1305 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1306 		return PTR_ERR(opp_table);
1307 	}
1308 
1309 	if (target_freq) {
1310 		/*
1311 		 * For IO devices which require an OPP on some platforms/SoCs
1312 		 * while just needing to scale the clock on some others
1313 		 * we look for empty OPP tables with just a clock handle and
1314 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1315 		 * equivalent to a clk_set_rate()
1316 		 */
1317 		if (!_get_opp_count(opp_table)) {
1318 			ret = opp_table->config_clks(dev, opp_table, NULL,
1319 						     &target_freq, false);
1320 			goto put_opp_table;
1321 		}
1322 
1323 		freq = clk_round_rate(opp_table->clk, target_freq);
1324 		if ((long)freq <= 0)
1325 			freq = target_freq;
1326 
1327 		/*
1328 		 * The clock driver may support finer resolution of the
1329 		 * frequencies than the OPP table, don't update the frequency we
1330 		 * pass to clk_set_rate() here.
1331 		 */
1332 		temp_freq = freq;
1333 		opp = _find_freq_ceil(opp_table, &temp_freq);
1334 		if (IS_ERR(opp)) {
1335 			ret = PTR_ERR(opp);
1336 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1337 				__func__, freq, ret);
1338 			goto put_opp_table;
1339 		}
1340 
1341 		/*
1342 		 * An OPP entry specifies the highest frequency at which other
1343 		 * properties of the OPP entry apply. Even if the new OPP is
1344 		 * same as the old one, we may still reach here for a different
1345 		 * value of the frequency. In such a case, do not abort but
1346 		 * configure the hardware to the desired frequency forcefully.
1347 		 */
1348 		forced = opp_table->rate_clk_single != freq;
1349 	}
1350 
1351 	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1352 
1353 	if (freq)
1354 		dev_pm_opp_put(opp);
1355 
1356 put_opp_table:
1357 	dev_pm_opp_put_opp_table(opp_table);
1358 	return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1361 
1362 /**
1363  * dev_pm_opp_set_opp() - Configure device for OPP
1364  * @dev: device for which we do this operation
1365  * @opp: OPP to set to
1366  *
1367  * This configures the device based on the properties of the OPP passed to this
1368  * routine.
1369  *
1370  * Return: 0 on success, a negative error number otherwise.
1371  */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1372 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1373 {
1374 	struct opp_table *opp_table;
1375 	int ret;
1376 
1377 	opp_table = _find_opp_table(dev);
1378 	if (IS_ERR(opp_table)) {
1379 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1380 		return PTR_ERR(opp_table);
1381 	}
1382 
1383 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1384 	dev_pm_opp_put_opp_table(opp_table);
1385 
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1389 
1390 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1391 static void _remove_opp_dev(struct opp_device *opp_dev,
1392 			    struct opp_table *opp_table)
1393 {
1394 	opp_debug_unregister(opp_dev, opp_table);
1395 	list_del(&opp_dev->node);
1396 	kfree(opp_dev);
1397 }
1398 
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1399 struct opp_device *_add_opp_dev(const struct device *dev,
1400 				struct opp_table *opp_table)
1401 {
1402 	struct opp_device *opp_dev;
1403 
1404 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1405 	if (!opp_dev)
1406 		return NULL;
1407 
1408 	/* Initialize opp-dev */
1409 	opp_dev->dev = dev;
1410 
1411 	mutex_lock(&opp_table->lock);
1412 	list_add(&opp_dev->node, &opp_table->dev_list);
1413 	mutex_unlock(&opp_table->lock);
1414 
1415 	/* Create debugfs entries for the opp_table */
1416 	opp_debug_register(opp_dev, opp_table);
1417 
1418 	return opp_dev;
1419 }
1420 
_allocate_opp_table(struct device * dev,int index)1421 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1422 {
1423 	struct opp_table *opp_table;
1424 	struct opp_device *opp_dev;
1425 	int ret;
1426 
1427 	/*
1428 	 * Allocate a new OPP table. In the infrequent case where a new
1429 	 * device is needed to be added, we pay this penalty.
1430 	 */
1431 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1432 	if (!opp_table)
1433 		return ERR_PTR(-ENOMEM);
1434 
1435 	mutex_init(&opp_table->lock);
1436 	mutex_init(&opp_table->genpd_virt_dev_lock);
1437 	INIT_LIST_HEAD(&opp_table->dev_list);
1438 	INIT_LIST_HEAD(&opp_table->lazy);
1439 
1440 	opp_table->clk = ERR_PTR(-ENODEV);
1441 
1442 	/* Mark regulator count uninitialized */
1443 	opp_table->regulator_count = -1;
1444 
1445 	opp_dev = _add_opp_dev(dev, opp_table);
1446 	if (!opp_dev) {
1447 		ret = -ENOMEM;
1448 		goto err;
1449 	}
1450 
1451 	_of_init_opp_table(opp_table, dev, index);
1452 
1453 	/* Find interconnect path(s) for the device */
1454 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1455 	if (ret) {
1456 		if (ret == -EPROBE_DEFER)
1457 			goto remove_opp_dev;
1458 
1459 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1460 			 __func__, ret);
1461 	}
1462 
1463 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1464 	INIT_LIST_HEAD(&opp_table->opp_list);
1465 	kref_init(&opp_table->kref);
1466 
1467 	return opp_table;
1468 
1469 remove_opp_dev:
1470 	_of_clear_opp_table(opp_table);
1471 	_remove_opp_dev(opp_dev, opp_table);
1472 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1473 	mutex_destroy(&opp_table->lock);
1474 err:
1475 	kfree(opp_table);
1476 	return ERR_PTR(ret);
1477 }
1478 
_get_opp_table_kref(struct opp_table * opp_table)1479 void _get_opp_table_kref(struct opp_table *opp_table)
1480 {
1481 	kref_get(&opp_table->kref);
1482 }
1483 
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1484 static struct opp_table *_update_opp_table_clk(struct device *dev,
1485 					       struct opp_table *opp_table,
1486 					       bool getclk)
1487 {
1488 	int ret;
1489 
1490 	/*
1491 	 * Return early if we don't need to get clk or we have already done it
1492 	 * earlier.
1493 	 */
1494 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1495 	    opp_table->clks)
1496 		return opp_table;
1497 
1498 	/* Find clk for the device */
1499 	opp_table->clk = clk_get(dev, NULL);
1500 
1501 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1502 	if (!ret) {
1503 		opp_table->config_clks = _opp_config_clk_single;
1504 		opp_table->clk_count = 1;
1505 		return opp_table;
1506 	}
1507 
1508 	if (ret == -ENOENT) {
1509 		/*
1510 		 * There are few platforms which don't want the OPP core to
1511 		 * manage device's clock settings. In such cases neither the
1512 		 * platform provides the clks explicitly to us, nor the DT
1513 		 * contains a valid clk entry. The OPP nodes in DT may still
1514 		 * contain "opp-hz" property though, which we need to parse and
1515 		 * allow the platform to find an OPP based on freq later on.
1516 		 *
1517 		 * This is a simple solution to take care of such corner cases,
1518 		 * i.e. make the clk_count 1, which lets us allocate space for
1519 		 * frequency in opp->rates and also parse the entries in DT.
1520 		 */
1521 		opp_table->clk_count = 1;
1522 
1523 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1524 		return opp_table;
1525 	}
1526 
1527 	dev_pm_opp_put_opp_table(opp_table);
1528 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1529 
1530 	return ERR_PTR(ret);
1531 }
1532 
1533 /*
1534  * We need to make sure that the OPP table for a device doesn't get added twice,
1535  * if this routine gets called in parallel with the same device pointer.
1536  *
1537  * The simplest way to enforce that is to perform everything (find existing
1538  * table and if not found, create a new one) under the opp_table_lock, so only
1539  * one creator gets access to the same. But that expands the critical section
1540  * under the lock and may end up causing circular dependencies with frameworks
1541  * like debugfs, interconnect or clock framework as they may be direct or
1542  * indirect users of OPP core.
1543  *
1544  * And for that reason we have to go for a bit tricky implementation here, which
1545  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1546  * of adding an OPP table and others should wait for it to finish.
1547  */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1548 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1549 					 bool getclk)
1550 {
1551 	struct opp_table *opp_table;
1552 
1553 again:
1554 	mutex_lock(&opp_table_lock);
1555 
1556 	opp_table = _find_opp_table_unlocked(dev);
1557 	if (!IS_ERR(opp_table))
1558 		goto unlock;
1559 
1560 	/*
1561 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1562 	 * another user, wait for it to finish.
1563 	 */
1564 	if (unlikely(opp_tables_busy)) {
1565 		mutex_unlock(&opp_table_lock);
1566 		cpu_relax();
1567 		goto again;
1568 	}
1569 
1570 	opp_tables_busy = true;
1571 	opp_table = _managed_opp(dev, index);
1572 
1573 	/* Drop the lock to reduce the size of critical section */
1574 	mutex_unlock(&opp_table_lock);
1575 
1576 	if (opp_table) {
1577 		if (!_add_opp_dev(dev, opp_table)) {
1578 			dev_pm_opp_put_opp_table(opp_table);
1579 			opp_table = ERR_PTR(-ENOMEM);
1580 		}
1581 
1582 		mutex_lock(&opp_table_lock);
1583 	} else {
1584 		opp_table = _allocate_opp_table(dev, index);
1585 
1586 		mutex_lock(&opp_table_lock);
1587 		if (!IS_ERR(opp_table))
1588 			list_add(&opp_table->node, &opp_tables);
1589 	}
1590 
1591 	opp_tables_busy = false;
1592 
1593 unlock:
1594 	mutex_unlock(&opp_table_lock);
1595 
1596 	return _update_opp_table_clk(dev, opp_table, getclk);
1597 }
1598 
_add_opp_table(struct device * dev,bool getclk)1599 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1600 {
1601 	return _add_opp_table_indexed(dev, 0, getclk);
1602 }
1603 
dev_pm_opp_get_opp_table(struct device * dev)1604 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1605 {
1606 	return _find_opp_table(dev);
1607 }
1608 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1609 
_opp_table_kref_release(struct kref * kref)1610 static void _opp_table_kref_release(struct kref *kref)
1611 {
1612 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1613 	struct opp_device *opp_dev, *temp;
1614 	int i;
1615 
1616 	/* Drop the lock as soon as we can */
1617 	list_del(&opp_table->node);
1618 	mutex_unlock(&opp_table_lock);
1619 
1620 	if (opp_table->current_opp)
1621 		dev_pm_opp_put(opp_table->current_opp);
1622 
1623 	_of_clear_opp_table(opp_table);
1624 
1625 	/* Release automatically acquired single clk */
1626 	if (!IS_ERR(opp_table->clk))
1627 		clk_put(opp_table->clk);
1628 
1629 	if (opp_table->paths) {
1630 		for (i = 0; i < opp_table->path_count; i++)
1631 			icc_put(opp_table->paths[i]);
1632 		kfree(opp_table->paths);
1633 	}
1634 
1635 	WARN_ON(!list_empty(&opp_table->opp_list));
1636 
1637 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1638 		_remove_opp_dev(opp_dev, opp_table);
1639 
1640 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1641 	mutex_destroy(&opp_table->lock);
1642 	kfree(opp_table);
1643 }
1644 
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1645 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1646 {
1647 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1648 		       &opp_table_lock);
1649 }
1650 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1651 
_opp_free(struct dev_pm_opp * opp)1652 void _opp_free(struct dev_pm_opp *opp)
1653 {
1654 	kfree(opp);
1655 }
1656 
_opp_kref_release(struct kref * kref)1657 static void _opp_kref_release(struct kref *kref)
1658 {
1659 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1660 	struct opp_table *opp_table = opp->opp_table;
1661 
1662 	list_del(&opp->node);
1663 	mutex_unlock(&opp_table->lock);
1664 
1665 	/*
1666 	 * Notify the changes in the availability of the operable
1667 	 * frequency/voltage list.
1668 	 */
1669 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1670 	_of_clear_opp(opp_table, opp);
1671 	opp_debug_remove_one(opp);
1672 	kfree(opp);
1673 }
1674 
dev_pm_opp_get(struct dev_pm_opp * opp)1675 void dev_pm_opp_get(struct dev_pm_opp *opp)
1676 {
1677 	kref_get(&opp->kref);
1678 }
1679 
dev_pm_opp_put(struct dev_pm_opp * opp)1680 void dev_pm_opp_put(struct dev_pm_opp *opp)
1681 {
1682 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1683 }
1684 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1685 
1686 /**
1687  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1688  * @dev:	device for which we do this operation
1689  * @freq:	OPP to remove with matching 'freq'
1690  *
1691  * This function removes an opp from the opp table.
1692  */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1693 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1694 {
1695 	struct dev_pm_opp *opp = NULL, *iter;
1696 	struct opp_table *opp_table;
1697 
1698 	opp_table = _find_opp_table(dev);
1699 	if (IS_ERR(opp_table))
1700 		return;
1701 
1702 	if (!assert_single_clk(opp_table, 0))
1703 		goto put_table;
1704 
1705 	mutex_lock(&opp_table->lock);
1706 
1707 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1708 		if (iter->rates[0] == freq) {
1709 			opp = iter;
1710 			break;
1711 		}
1712 	}
1713 
1714 	mutex_unlock(&opp_table->lock);
1715 
1716 	if (opp) {
1717 		dev_pm_opp_put(opp);
1718 
1719 		/* Drop the reference taken by dev_pm_opp_add() */
1720 		dev_pm_opp_put_opp_table(opp_table);
1721 	} else {
1722 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1723 			 __func__, freq);
1724 	}
1725 
1726 put_table:
1727 	/* Drop the reference taken by _find_opp_table() */
1728 	dev_pm_opp_put_opp_table(opp_table);
1729 }
1730 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1731 
_opp_get_next(struct opp_table * opp_table,bool dynamic)1732 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1733 					bool dynamic)
1734 {
1735 	struct dev_pm_opp *opp = NULL, *temp;
1736 
1737 	mutex_lock(&opp_table->lock);
1738 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1739 		/*
1740 		 * Refcount must be dropped only once for each OPP by OPP core,
1741 		 * do that with help of "removed" flag.
1742 		 */
1743 		if (!temp->removed && dynamic == temp->dynamic) {
1744 			opp = temp;
1745 			break;
1746 		}
1747 	}
1748 
1749 	mutex_unlock(&opp_table->lock);
1750 	return opp;
1751 }
1752 
1753 /*
1754  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1755  * happen lock less to avoid circular dependency issues. This routine must be
1756  * called without the opp_table->lock held.
1757  */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1758 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1759 {
1760 	struct dev_pm_opp *opp;
1761 
1762 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1763 		opp->removed = true;
1764 		dev_pm_opp_put(opp);
1765 
1766 		/* Drop the references taken by dev_pm_opp_add() */
1767 		if (dynamic)
1768 			dev_pm_opp_put_opp_table(opp_table);
1769 	}
1770 }
1771 
_opp_remove_all_static(struct opp_table * opp_table)1772 bool _opp_remove_all_static(struct opp_table *opp_table)
1773 {
1774 	mutex_lock(&opp_table->lock);
1775 
1776 	if (!opp_table->parsed_static_opps) {
1777 		mutex_unlock(&opp_table->lock);
1778 		return false;
1779 	}
1780 
1781 	if (--opp_table->parsed_static_opps) {
1782 		mutex_unlock(&opp_table->lock);
1783 		return true;
1784 	}
1785 
1786 	mutex_unlock(&opp_table->lock);
1787 
1788 	_opp_remove_all(opp_table, false);
1789 	return true;
1790 }
1791 
1792 /**
1793  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1794  * @dev:	device for which we do this operation
1795  *
1796  * This function removes all dynamically created OPPs from the opp table.
1797  */
dev_pm_opp_remove_all_dynamic(struct device * dev)1798 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1799 {
1800 	struct opp_table *opp_table;
1801 
1802 	opp_table = _find_opp_table(dev);
1803 	if (IS_ERR(opp_table))
1804 		return;
1805 
1806 	_opp_remove_all(opp_table, true);
1807 
1808 	/* Drop the reference taken by _find_opp_table() */
1809 	dev_pm_opp_put_opp_table(opp_table);
1810 }
1811 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1812 
_opp_allocate(struct opp_table * opp_table)1813 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1814 {
1815 	struct dev_pm_opp *opp;
1816 	int supply_count, supply_size, icc_size, clk_size;
1817 
1818 	/* Allocate space for at least one supply */
1819 	supply_count = opp_table->regulator_count > 0 ?
1820 			opp_table->regulator_count : 1;
1821 	supply_size = sizeof(*opp->supplies) * supply_count;
1822 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1823 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1824 
1825 	/* allocate new OPP node and supplies structures */
1826 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1827 	if (!opp)
1828 		return NULL;
1829 
1830 	/* Put the supplies, bw and clock at the end of the OPP structure */
1831 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1832 
1833 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1834 
1835 	if (icc_size)
1836 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1837 
1838 	INIT_LIST_HEAD(&opp->node);
1839 
1840 	return opp;
1841 }
1842 
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1843 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1844 					 struct opp_table *opp_table)
1845 {
1846 	struct regulator *reg;
1847 	int i;
1848 
1849 	if (!opp_table->regulators)
1850 		return true;
1851 
1852 	for (i = 0; i < opp_table->regulator_count; i++) {
1853 		reg = opp_table->regulators[i];
1854 
1855 		if (!regulator_is_supported_voltage(reg,
1856 					opp->supplies[i].u_volt_min,
1857 					opp->supplies[i].u_volt_max)) {
1858 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1859 				__func__, opp->supplies[i].u_volt_min,
1860 				opp->supplies[i].u_volt_max);
1861 			return false;
1862 		}
1863 	}
1864 
1865 	return true;
1866 }
1867 
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1868 static int _opp_compare_rate(struct opp_table *opp_table,
1869 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1870 {
1871 	int i;
1872 
1873 	for (i = 0; i < opp_table->clk_count; i++) {
1874 		if (opp1->rates[i] != opp2->rates[i])
1875 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1876 	}
1877 
1878 	/* Same rates for both OPPs */
1879 	return 0;
1880 }
1881 
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1882 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1883 			   struct dev_pm_opp *opp2)
1884 {
1885 	int i;
1886 
1887 	for (i = 0; i < opp_table->path_count; i++) {
1888 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1889 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1890 	}
1891 
1892 	/* Same bw for both OPPs */
1893 	return 0;
1894 }
1895 
1896 /*
1897  * Returns
1898  * 0: opp1 == opp2
1899  * 1: opp1 > opp2
1900  * -1: opp1 < opp2
1901  */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1902 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1903 		     struct dev_pm_opp *opp2)
1904 {
1905 	int ret;
1906 
1907 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1908 	if (ret)
1909 		return ret;
1910 
1911 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1912 	if (ret)
1913 		return ret;
1914 
1915 	if (opp1->level != opp2->level)
1916 		return opp1->level < opp2->level ? -1 : 1;
1917 
1918 	/* Duplicate OPPs */
1919 	return 0;
1920 }
1921 
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1922 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1923 			     struct opp_table *opp_table,
1924 			     struct list_head **head)
1925 {
1926 	struct dev_pm_opp *opp;
1927 	int opp_cmp;
1928 
1929 	/*
1930 	 * Insert new OPP in order of increasing frequency and discard if
1931 	 * already present.
1932 	 *
1933 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1934 	 * loop, don't replace it with head otherwise it will become an infinite
1935 	 * loop.
1936 	 */
1937 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1938 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1939 		if (opp_cmp > 0) {
1940 			*head = &opp->node;
1941 			continue;
1942 		}
1943 
1944 		if (opp_cmp < 0)
1945 			return 0;
1946 
1947 		/* Duplicate OPPs */
1948 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1949 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1950 			 opp->available, new_opp->rates[0],
1951 			 new_opp->supplies[0].u_volt, new_opp->available);
1952 
1953 		/* Should we compare voltages for all regulators here ? */
1954 		return opp->available &&
1955 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
_required_opps_available(struct dev_pm_opp * opp,int count)1961 void _required_opps_available(struct dev_pm_opp *opp, int count)
1962 {
1963 	int i;
1964 
1965 	for (i = 0; i < count; i++) {
1966 		if (opp->required_opps[i]->available)
1967 			continue;
1968 
1969 		opp->available = false;
1970 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1971 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1972 		return;
1973 	}
1974 }
1975 
1976 /*
1977  * Returns:
1978  * 0: On success. And appropriate error message for duplicate OPPs.
1979  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1980  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1981  *  sure we don't print error messages unnecessarily if different parts of
1982  *  kernel try to initialize the OPP table.
1983  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1984  *  should be considered an error by the callers of _opp_add().
1985  */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1986 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1987 	     struct opp_table *opp_table)
1988 {
1989 	struct list_head *head;
1990 	int ret;
1991 
1992 	mutex_lock(&opp_table->lock);
1993 	head = &opp_table->opp_list;
1994 
1995 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1996 	if (ret) {
1997 		mutex_unlock(&opp_table->lock);
1998 		return ret;
1999 	}
2000 
2001 	list_add(&new_opp->node, head);
2002 	mutex_unlock(&opp_table->lock);
2003 
2004 	new_opp->opp_table = opp_table;
2005 	kref_init(&new_opp->kref);
2006 
2007 	opp_debug_create_one(new_opp, opp_table);
2008 
2009 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2010 		new_opp->available = false;
2011 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2012 			 __func__, new_opp->rates[0]);
2013 	}
2014 
2015 	/* required-opps not fully initialized yet */
2016 	if (lazy_linking_pending(opp_table))
2017 		return 0;
2018 
2019 	_required_opps_available(new_opp, opp_table->required_opp_count);
2020 
2021 	return 0;
2022 }
2023 
2024 /**
2025  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2026  * @opp_table:	OPP table
2027  * @dev:	device for which we do this operation
2028  * @freq:	Frequency in Hz for this OPP
2029  * @u_volt:	Voltage in uVolts for this OPP
2030  * @dynamic:	Dynamically added OPPs.
2031  *
2032  * This function adds an opp definition to the opp table and returns status.
2033  * The opp is made available by default and it can be controlled using
2034  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2035  *
2036  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2037  * and freed by dev_pm_opp_of_remove_table.
2038  *
2039  * Return:
2040  * 0		On success OR
2041  *		Duplicate OPPs (both freq and volt are same) and opp->available
2042  * -EEXIST	Freq are same and volt are different OR
2043  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2044  * -ENOMEM	Memory allocation failure
2045  */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)2046 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2047 		unsigned long freq, long u_volt, bool dynamic)
2048 {
2049 	struct dev_pm_opp *new_opp;
2050 	unsigned long tol;
2051 	int ret;
2052 
2053 	if (!assert_single_clk(opp_table, 0))
2054 		return -EINVAL;
2055 
2056 	new_opp = _opp_allocate(opp_table);
2057 	if (!new_opp)
2058 		return -ENOMEM;
2059 
2060 	/* populate the opp table */
2061 	new_opp->rates[0] = freq;
2062 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2063 	new_opp->supplies[0].u_volt = u_volt;
2064 	new_opp->supplies[0].u_volt_min = u_volt - tol;
2065 	new_opp->supplies[0].u_volt_max = u_volt + tol;
2066 	new_opp->available = true;
2067 	new_opp->dynamic = dynamic;
2068 
2069 	ret = _opp_add(dev, new_opp, opp_table);
2070 	if (ret) {
2071 		/* Don't return error for duplicate OPPs */
2072 		if (ret == -EBUSY)
2073 			ret = 0;
2074 		goto free_opp;
2075 	}
2076 
2077 	/*
2078 	 * Notify the changes in the availability of the operable
2079 	 * frequency/voltage list.
2080 	 */
2081 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2082 	return 0;
2083 
2084 free_opp:
2085 	_opp_free(new_opp);
2086 
2087 	return ret;
2088 }
2089 
2090 /**
2091  * _opp_set_supported_hw() - Set supported platforms
2092  * @dev: Device for which supported-hw has to be set.
2093  * @versions: Array of hierarchy of versions to match.
2094  * @count: Number of elements in the array.
2095  *
2096  * This is required only for the V2 bindings, and it enables a platform to
2097  * specify the hierarchy of versions it supports. OPP layer will then enable
2098  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2099  * property.
2100  */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2101 static int _opp_set_supported_hw(struct opp_table *opp_table,
2102 				 const u32 *versions, unsigned int count)
2103 {
2104 	/* Another CPU that shares the OPP table has set the property ? */
2105 	if (opp_table->supported_hw)
2106 		return 0;
2107 
2108 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2109 					GFP_KERNEL);
2110 	if (!opp_table->supported_hw)
2111 		return -ENOMEM;
2112 
2113 	opp_table->supported_hw_count = count;
2114 
2115 	return 0;
2116 }
2117 
2118 /**
2119  * _opp_put_supported_hw() - Releases resources blocked for supported hw
2120  * @opp_table: OPP table returned by _opp_set_supported_hw().
2121  *
2122  * This is required only for the V2 bindings, and is called for a matching
2123  * _opp_set_supported_hw(). Until this is called, the opp_table structure
2124  * will not be freed.
2125  */
_opp_put_supported_hw(struct opp_table * opp_table)2126 static void _opp_put_supported_hw(struct opp_table *opp_table)
2127 {
2128 	if (opp_table->supported_hw) {
2129 		kfree(opp_table->supported_hw);
2130 		opp_table->supported_hw = NULL;
2131 		opp_table->supported_hw_count = 0;
2132 	}
2133 }
2134 
2135 /**
2136  * _opp_set_prop_name() - Set prop-extn name
2137  * @dev: Device for which the prop-name has to be set.
2138  * @name: name to postfix to properties.
2139  *
2140  * This is required only for the V2 bindings, and it enables a platform to
2141  * specify the extn to be used for certain property names. The properties to
2142  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2143  * should postfix the property name with -<name> while looking for them.
2144  */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2145 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2146 {
2147 	/* Another CPU that shares the OPP table has set the property ? */
2148 	if (!opp_table->prop_name) {
2149 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2150 		if (!opp_table->prop_name)
2151 			return -ENOMEM;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * _opp_put_prop_name() - Releases resources blocked for prop-name
2159  * @opp_table: OPP table returned by _opp_set_prop_name().
2160  *
2161  * This is required only for the V2 bindings, and is called for a matching
2162  * _opp_set_prop_name(). Until this is called, the opp_table structure
2163  * will not be freed.
2164  */
_opp_put_prop_name(struct opp_table * opp_table)2165 static void _opp_put_prop_name(struct opp_table *opp_table)
2166 {
2167 	if (opp_table->prop_name) {
2168 		kfree(opp_table->prop_name);
2169 		opp_table->prop_name = NULL;
2170 	}
2171 }
2172 
2173 /**
2174  * _opp_set_regulators() - Set regulator names for the device
2175  * @dev: Device for which regulator name is being set.
2176  * @names: Array of pointers to the names of the regulator.
2177  * @count: Number of regulators.
2178  *
2179  * In order to support OPP switching, OPP layer needs to know the name of the
2180  * device's regulators, as the core would be required to switch voltages as
2181  * well.
2182  *
2183  * This must be called before any OPPs are initialized for the device.
2184  */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2185 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2186 			       const char * const names[])
2187 {
2188 	const char * const *temp = names;
2189 	struct regulator *reg;
2190 	int count = 0, ret, i;
2191 
2192 	/* Count number of regulators */
2193 	while (*temp++)
2194 		count++;
2195 
2196 	if (!count)
2197 		return -EINVAL;
2198 
2199 	/* Another CPU that shares the OPP table has set the regulators ? */
2200 	if (opp_table->regulators)
2201 		return 0;
2202 
2203 	opp_table->regulators = kmalloc_array(count,
2204 					      sizeof(*opp_table->regulators),
2205 					      GFP_KERNEL);
2206 	if (!opp_table->regulators)
2207 		return -ENOMEM;
2208 
2209 	for (i = 0; i < count; i++) {
2210 		reg = regulator_get_optional(dev, names[i]);
2211 		if (IS_ERR(reg)) {
2212 			ret = dev_err_probe(dev, PTR_ERR(reg),
2213 					    "%s: no regulator (%s) found\n",
2214 					    __func__, names[i]);
2215 			goto free_regulators;
2216 		}
2217 
2218 		opp_table->regulators[i] = reg;
2219 	}
2220 
2221 	opp_table->regulator_count = count;
2222 
2223 	/* Set generic config_regulators() for single regulators here */
2224 	if (count == 1)
2225 		opp_table->config_regulators = _opp_config_regulator_single;
2226 
2227 	return 0;
2228 
2229 free_regulators:
2230 	while (i != 0)
2231 		regulator_put(opp_table->regulators[--i]);
2232 
2233 	kfree(opp_table->regulators);
2234 	opp_table->regulators = NULL;
2235 	opp_table->regulator_count = -1;
2236 
2237 	return ret;
2238 }
2239 
2240 /**
2241  * _opp_put_regulators() - Releases resources blocked for regulator
2242  * @opp_table: OPP table returned from _opp_set_regulators().
2243  */
_opp_put_regulators(struct opp_table * opp_table)2244 static void _opp_put_regulators(struct opp_table *opp_table)
2245 {
2246 	int i;
2247 
2248 	if (!opp_table->regulators)
2249 		return;
2250 
2251 	if (opp_table->enabled) {
2252 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2253 			regulator_disable(opp_table->regulators[i]);
2254 	}
2255 
2256 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2257 		regulator_put(opp_table->regulators[i]);
2258 
2259 	kfree(opp_table->regulators);
2260 	opp_table->regulators = NULL;
2261 	opp_table->regulator_count = -1;
2262 }
2263 
_put_clks(struct opp_table * opp_table,int count)2264 static void _put_clks(struct opp_table *opp_table, int count)
2265 {
2266 	int i;
2267 
2268 	for (i = count - 1; i >= 0; i--)
2269 		clk_put(opp_table->clks[i]);
2270 
2271 	kfree(opp_table->clks);
2272 	opp_table->clks = NULL;
2273 }
2274 
2275 /**
2276  * _opp_set_clknames() - Set clk names for the device
2277  * @dev: Device for which clk names is being set.
2278  * @names: Clk names.
2279  *
2280  * In order to support OPP switching, OPP layer needs to get pointers to the
2281  * clocks for the device. Simple cases work fine without using this routine
2282  * (i.e. by passing connection-id as NULL), but for a device with multiple
2283  * clocks available, the OPP core needs to know the exact names of the clks to
2284  * use.
2285  *
2286  * This must be called before any OPPs are initialized for the device.
2287  */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2288 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2289 			     const char * const names[],
2290 			     config_clks_t config_clks)
2291 {
2292 	const char * const *temp = names;
2293 	int count = 0, ret, i;
2294 	struct clk *clk;
2295 
2296 	/* Count number of clks */
2297 	while (*temp++)
2298 		count++;
2299 
2300 	/*
2301 	 * This is a special case where we have a single clock, whose connection
2302 	 * id name is NULL, i.e. first two entries are NULL in the array.
2303 	 */
2304 	if (!count && !names[1])
2305 		count = 1;
2306 
2307 	/* Fail early for invalid configurations */
2308 	if (!count || (!config_clks && count > 1))
2309 		return -EINVAL;
2310 
2311 	/* Another CPU that shares the OPP table has set the clkname ? */
2312 	if (opp_table->clks)
2313 		return 0;
2314 
2315 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2316 					GFP_KERNEL);
2317 	if (!opp_table->clks)
2318 		return -ENOMEM;
2319 
2320 	/* Find clks for the device */
2321 	for (i = 0; i < count; i++) {
2322 		clk = clk_get(dev, names[i]);
2323 		if (IS_ERR(clk)) {
2324 			ret = dev_err_probe(dev, PTR_ERR(clk),
2325 					    "%s: Couldn't find clock with name: %s\n",
2326 					    __func__, names[i]);
2327 			goto free_clks;
2328 		}
2329 
2330 		opp_table->clks[i] = clk;
2331 	}
2332 
2333 	opp_table->clk_count = count;
2334 	opp_table->config_clks = config_clks;
2335 
2336 	/* Set generic single clk set here */
2337 	if (count == 1) {
2338 		if (!opp_table->config_clks)
2339 			opp_table->config_clks = _opp_config_clk_single;
2340 
2341 		/*
2342 		 * We could have just dropped the "clk" field and used "clks"
2343 		 * everywhere. Instead we kept the "clk" field around for
2344 		 * following reasons:
2345 		 *
2346 		 * - avoiding clks[0] everywhere else.
2347 		 * - not running single clk helpers for multiple clk usecase by
2348 		 *   mistake.
2349 		 *
2350 		 * Since this is single-clk case, just update the clk pointer
2351 		 * too.
2352 		 */
2353 		opp_table->clk = opp_table->clks[0];
2354 	}
2355 
2356 	return 0;
2357 
2358 free_clks:
2359 	_put_clks(opp_table, i);
2360 	return ret;
2361 }
2362 
2363 /**
2364  * _opp_put_clknames() - Releases resources blocked for clks.
2365  * @opp_table: OPP table returned from _opp_set_clknames().
2366  */
_opp_put_clknames(struct opp_table * opp_table)2367 static void _opp_put_clknames(struct opp_table *opp_table)
2368 {
2369 	if (!opp_table->clks)
2370 		return;
2371 
2372 	opp_table->config_clks = NULL;
2373 	opp_table->clk = ERR_PTR(-ENODEV);
2374 
2375 	_put_clks(opp_table, opp_table->clk_count);
2376 }
2377 
2378 /**
2379  * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2380  * @dev: Device for which the helper is getting registered.
2381  * @config_regulators: Custom set regulator helper.
2382  *
2383  * This is useful to support platforms with multiple regulators per device.
2384  *
2385  * This must be called before any OPPs are initialized for the device.
2386  */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2387 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2388 		struct device *dev, config_regulators_t config_regulators)
2389 {
2390 	/* Another CPU that shares the OPP table has set the helper ? */
2391 	if (!opp_table->config_regulators)
2392 		opp_table->config_regulators = config_regulators;
2393 
2394 	return 0;
2395 }
2396 
2397 /**
2398  * _opp_put_config_regulators_helper() - Releases resources blocked for
2399  *					 config_regulators helper.
2400  * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2401  *
2402  * Release resources blocked for platform specific config_regulators helper.
2403  */
_opp_put_config_regulators_helper(struct opp_table * opp_table)2404 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2405 {
2406 	if (opp_table->config_regulators)
2407 		opp_table->config_regulators = NULL;
2408 }
2409 
_detach_genpd(struct opp_table * opp_table)2410 static void _detach_genpd(struct opp_table *opp_table)
2411 {
2412 	int index;
2413 
2414 	if (!opp_table->genpd_virt_devs)
2415 		return;
2416 
2417 	for (index = 0; index < opp_table->required_opp_count; index++) {
2418 		if (!opp_table->genpd_virt_devs[index])
2419 			continue;
2420 
2421 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2422 		opp_table->genpd_virt_devs[index] = NULL;
2423 	}
2424 
2425 	kfree(opp_table->genpd_virt_devs);
2426 	opp_table->genpd_virt_devs = NULL;
2427 }
2428 
2429 /**
2430  * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2431  * @dev: Consumer device for which the genpd is getting attached.
2432  * @names: Null terminated array of pointers containing names of genpd to attach.
2433  * @virt_devs: Pointer to return the array of virtual devices.
2434  *
2435  * Multiple generic power domains for a device are supported with the help of
2436  * virtual genpd devices, which are created for each consumer device - genpd
2437  * pair. These are the device structures which are attached to the power domain
2438  * and are required by the OPP core to set the performance state of the genpd.
2439  * The same API also works for the case where single genpd is available and so
2440  * we don't need to support that separately.
2441  *
2442  * This helper will normally be called by the consumer driver of the device
2443  * "dev", as only that has details of the genpd names.
2444  *
2445  * This helper needs to be called once with a list of all genpd to attach.
2446  * Otherwise the original device structure will be used instead by the OPP core.
2447  *
2448  * The order of entries in the names array must match the order in which
2449  * "required-opps" are added in DT.
2450  */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2451 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2452 			const char * const *names, struct device ***virt_devs)
2453 {
2454 	struct device *virt_dev;
2455 	int index = 0, ret = -EINVAL;
2456 	const char * const *name = names;
2457 
2458 	if (opp_table->genpd_virt_devs)
2459 		return 0;
2460 
2461 	/*
2462 	 * If the genpd's OPP table isn't already initialized, parsing of the
2463 	 * required-opps fail for dev. We should retry this after genpd's OPP
2464 	 * table is added.
2465 	 */
2466 	if (!opp_table->required_opp_count)
2467 		return -EPROBE_DEFER;
2468 
2469 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2470 
2471 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2472 					     sizeof(*opp_table->genpd_virt_devs),
2473 					     GFP_KERNEL);
2474 	if (!opp_table->genpd_virt_devs)
2475 		goto unlock;
2476 
2477 	while (*name) {
2478 		if (index >= opp_table->required_opp_count) {
2479 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2480 				*name, opp_table->required_opp_count, index);
2481 			goto err;
2482 		}
2483 
2484 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2485 		if (IS_ERR_OR_NULL(virt_dev)) {
2486 			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2487 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2488 			goto err;
2489 		}
2490 
2491 		opp_table->genpd_virt_devs[index] = virt_dev;
2492 		index++;
2493 		name++;
2494 	}
2495 
2496 	if (virt_devs)
2497 		*virt_devs = opp_table->genpd_virt_devs;
2498 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2499 
2500 	return 0;
2501 
2502 err:
2503 	_detach_genpd(opp_table);
2504 unlock:
2505 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2506 	return ret;
2507 
2508 }
2509 
2510 /**
2511  * _opp_detach_genpd() - Detach genpd(s) from the device.
2512  * @opp_table: OPP table returned by _opp_attach_genpd().
2513  *
2514  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2515  * OPP table.
2516  */
_opp_detach_genpd(struct opp_table * opp_table)2517 static void _opp_detach_genpd(struct opp_table *opp_table)
2518 {
2519 	/*
2520 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2521 	 * used in parallel.
2522 	 */
2523 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2524 	_detach_genpd(opp_table);
2525 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2526 }
2527 
_opp_clear_config(struct opp_config_data * data)2528 static void _opp_clear_config(struct opp_config_data *data)
2529 {
2530 	if (data->flags & OPP_CONFIG_GENPD)
2531 		_opp_detach_genpd(data->opp_table);
2532 	if (data->flags & OPP_CONFIG_REGULATOR)
2533 		_opp_put_regulators(data->opp_table);
2534 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2535 		_opp_put_supported_hw(data->opp_table);
2536 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2537 		_opp_put_config_regulators_helper(data->opp_table);
2538 	if (data->flags & OPP_CONFIG_PROP_NAME)
2539 		_opp_put_prop_name(data->opp_table);
2540 	if (data->flags & OPP_CONFIG_CLK)
2541 		_opp_put_clknames(data->opp_table);
2542 
2543 	dev_pm_opp_put_opp_table(data->opp_table);
2544 	kfree(data);
2545 }
2546 
2547 /**
2548  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2549  * @dev: Device for which configuration is being set.
2550  * @config: OPP configuration.
2551  *
2552  * This allows all device OPP configurations to be performed at once.
2553  *
2554  * This must be called before any OPPs are initialized for the device. This may
2555  * be called multiple times for the same OPP table, for example once for each
2556  * CPU that share the same table. This must be balanced by the same number of
2557  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2558  *
2559  * This returns a token to the caller, which must be passed to
2560  * dev_pm_opp_clear_config() to free the resources later. The value of the
2561  * returned token will be >= 1 for success and negative for errors. The minimum
2562  * value of 1 is chosen here to make it easy for callers to manage the resource.
2563  */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2564 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2565 {
2566 	struct opp_table *opp_table;
2567 	struct opp_config_data *data;
2568 	unsigned int id;
2569 	int ret;
2570 
2571 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2572 	if (!data)
2573 		return -ENOMEM;
2574 
2575 	opp_table = _add_opp_table(dev, false);
2576 	if (IS_ERR(opp_table)) {
2577 		kfree(data);
2578 		return PTR_ERR(opp_table);
2579 	}
2580 
2581 	data->opp_table = opp_table;
2582 	data->flags = 0;
2583 
2584 	/* This should be called before OPPs are initialized */
2585 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2586 		ret = -EBUSY;
2587 		goto err;
2588 	}
2589 
2590 	/* Configure clocks */
2591 	if (config->clk_names) {
2592 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2593 					config->config_clks);
2594 		if (ret)
2595 			goto err;
2596 
2597 		data->flags |= OPP_CONFIG_CLK;
2598 	} else if (config->config_clks) {
2599 		/* Don't allow config callback without clocks */
2600 		ret = -EINVAL;
2601 		goto err;
2602 	}
2603 
2604 	/* Configure property names */
2605 	if (config->prop_name) {
2606 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2607 		if (ret)
2608 			goto err;
2609 
2610 		data->flags |= OPP_CONFIG_PROP_NAME;
2611 	}
2612 
2613 	/* Configure config_regulators helper */
2614 	if (config->config_regulators) {
2615 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2616 						config->config_regulators);
2617 		if (ret)
2618 			goto err;
2619 
2620 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2621 	}
2622 
2623 	/* Configure supported hardware */
2624 	if (config->supported_hw) {
2625 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2626 					    config->supported_hw_count);
2627 		if (ret)
2628 			goto err;
2629 
2630 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2631 	}
2632 
2633 	/* Configure supplies */
2634 	if (config->regulator_names) {
2635 		ret = _opp_set_regulators(opp_table, dev,
2636 					  config->regulator_names);
2637 		if (ret)
2638 			goto err;
2639 
2640 		data->flags |= OPP_CONFIG_REGULATOR;
2641 	}
2642 
2643 	/* Attach genpds */
2644 	if (config->genpd_names) {
2645 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2646 					config->virt_devs);
2647 		if (ret)
2648 			goto err;
2649 
2650 		data->flags |= OPP_CONFIG_GENPD;
2651 	}
2652 
2653 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2654 		       GFP_KERNEL);
2655 	if (ret)
2656 		goto err;
2657 
2658 	return id;
2659 
2660 err:
2661 	_opp_clear_config(data);
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2665 
2666 /**
2667  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2668  * @opp_table: OPP table returned from dev_pm_opp_set_config().
2669  *
2670  * This allows all device OPP configurations to be cleared at once. This must be
2671  * called once for each call made to dev_pm_opp_set_config(), in order to free
2672  * the OPPs properly.
2673  *
2674  * Currently the first call itself ends up freeing all the OPP configurations,
2675  * while the later ones only drop the OPP table reference. This works well for
2676  * now as we would never want to use an half initialized OPP table and want to
2677  * remove the configurations together.
2678  */
dev_pm_opp_clear_config(int token)2679 void dev_pm_opp_clear_config(int token)
2680 {
2681 	struct opp_config_data *data;
2682 
2683 	/*
2684 	 * This lets the callers call this unconditionally and keep their code
2685 	 * simple.
2686 	 */
2687 	if (unlikely(token <= 0))
2688 		return;
2689 
2690 	data = xa_erase(&opp_configs, token);
2691 	if (WARN_ON(!data))
2692 		return;
2693 
2694 	_opp_clear_config(data);
2695 }
2696 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2697 
devm_pm_opp_config_release(void * token)2698 static void devm_pm_opp_config_release(void *token)
2699 {
2700 	dev_pm_opp_clear_config((unsigned long)token);
2701 }
2702 
2703 /**
2704  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2705  * @dev: Device for which configuration is being set.
2706  * @config: OPP configuration.
2707  *
2708  * This allows all device OPP configurations to be performed at once.
2709  * This is a resource-managed variant of dev_pm_opp_set_config().
2710  *
2711  * Return: 0 on success and errorno otherwise.
2712  */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2713 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2714 {
2715 	int token = dev_pm_opp_set_config(dev, config);
2716 
2717 	if (token < 0)
2718 		return token;
2719 
2720 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2721 					(void *) ((unsigned long) token));
2722 }
2723 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2724 
2725 /**
2726  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2727  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2728  * @dst_table: Required OPP table of the @src_table.
2729  * @src_opp: OPP from the @src_table.
2730  *
2731  * This function returns the OPP (present in @dst_table) pointed out by the
2732  * "required-opps" property of the @src_opp (present in @src_table).
2733  *
2734  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2735  * use.
2736  *
2737  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2738  */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2739 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2740 						 struct opp_table *dst_table,
2741 						 struct dev_pm_opp *src_opp)
2742 {
2743 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2744 	int i;
2745 
2746 	if (!src_table || !dst_table || !src_opp ||
2747 	    !src_table->required_opp_tables)
2748 		return ERR_PTR(-EINVAL);
2749 
2750 	/* required-opps not fully initialized yet */
2751 	if (lazy_linking_pending(src_table))
2752 		return ERR_PTR(-EBUSY);
2753 
2754 	for (i = 0; i < src_table->required_opp_count; i++) {
2755 		if (src_table->required_opp_tables[i] == dst_table) {
2756 			mutex_lock(&src_table->lock);
2757 
2758 			list_for_each_entry(opp, &src_table->opp_list, node) {
2759 				if (opp == src_opp) {
2760 					dest_opp = opp->required_opps[i];
2761 					dev_pm_opp_get(dest_opp);
2762 					break;
2763 				}
2764 			}
2765 
2766 			mutex_unlock(&src_table->lock);
2767 			break;
2768 		}
2769 	}
2770 
2771 	if (IS_ERR(dest_opp)) {
2772 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2773 		       src_table, dst_table);
2774 	}
2775 
2776 	return dest_opp;
2777 }
2778 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2779 
2780 /**
2781  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2782  * @src_table: OPP table which has dst_table as one of its required OPP table.
2783  * @dst_table: Required OPP table of the src_table.
2784  * @pstate: Current performance state of the src_table.
2785  *
2786  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2787  * "required-opps" property of the OPP (present in @src_table) which has
2788  * performance state set to @pstate.
2789  *
2790  * Return: Zero or positive performance state on success, otherwise negative
2791  * value on errors.
2792  */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2793 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2794 				       struct opp_table *dst_table,
2795 				       unsigned int pstate)
2796 {
2797 	struct dev_pm_opp *opp;
2798 	int dest_pstate = -EINVAL;
2799 	int i;
2800 
2801 	/*
2802 	 * Normally the src_table will have the "required_opps" property set to
2803 	 * point to one of the OPPs in the dst_table, but in some cases the
2804 	 * genpd and its master have one to one mapping of performance states
2805 	 * and so none of them have the "required-opps" property set. Return the
2806 	 * pstate of the src_table as it is in such cases.
2807 	 */
2808 	if (!src_table || !src_table->required_opp_count)
2809 		return pstate;
2810 
2811 	/* Both OPP tables must belong to genpds */
2812 	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2813 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2814 		return -EINVAL;
2815 	}
2816 
2817 	/* required-opps not fully initialized yet */
2818 	if (lazy_linking_pending(src_table))
2819 		return -EBUSY;
2820 
2821 	for (i = 0; i < src_table->required_opp_count; i++) {
2822 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2823 			break;
2824 	}
2825 
2826 	if (unlikely(i == src_table->required_opp_count)) {
2827 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2828 		       __func__, src_table, dst_table);
2829 		return -EINVAL;
2830 	}
2831 
2832 	mutex_lock(&src_table->lock);
2833 
2834 	list_for_each_entry(opp, &src_table->opp_list, node) {
2835 		if (opp->level == pstate) {
2836 			dest_pstate = opp->required_opps[i]->level;
2837 			goto unlock;
2838 		}
2839 	}
2840 
2841 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2842 	       dst_table);
2843 
2844 unlock:
2845 	mutex_unlock(&src_table->lock);
2846 
2847 	return dest_pstate;
2848 }
2849 
2850 /**
2851  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2852  * @dev:	device for which we do this operation
2853  * @freq:	Frequency in Hz for this OPP
2854  * @u_volt:	Voltage in uVolts for this OPP
2855  *
2856  * This function adds an opp definition to the opp table and returns status.
2857  * The opp is made available by default and it can be controlled using
2858  * dev_pm_opp_enable/disable functions.
2859  *
2860  * Return:
2861  * 0		On success OR
2862  *		Duplicate OPPs (both freq and volt are same) and opp->available
2863  * -EEXIST	Freq are same and volt are different OR
2864  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2865  * -ENOMEM	Memory allocation failure
2866  */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2867 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2868 {
2869 	struct opp_table *opp_table;
2870 	int ret;
2871 
2872 	opp_table = _add_opp_table(dev, true);
2873 	if (IS_ERR(opp_table))
2874 		return PTR_ERR(opp_table);
2875 
2876 	/* Fix regulator count for dynamic OPPs */
2877 	opp_table->regulator_count = 1;
2878 
2879 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2880 	if (ret)
2881 		dev_pm_opp_put_opp_table(opp_table);
2882 
2883 	return ret;
2884 }
2885 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2886 
2887 /**
2888  * _opp_set_availability() - helper to set the availability of an opp
2889  * @dev:		device for which we do this operation
2890  * @freq:		OPP frequency to modify availability
2891  * @availability_req:	availability status requested for this opp
2892  *
2893  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2894  * which is isolated here.
2895  *
2896  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2897  * copy operation, returns 0 if no modification was done OR modification was
2898  * successful.
2899  */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2900 static int _opp_set_availability(struct device *dev, unsigned long freq,
2901 				 bool availability_req)
2902 {
2903 	struct opp_table *opp_table;
2904 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2905 	int r = 0;
2906 
2907 	/* Find the opp_table */
2908 	opp_table = _find_opp_table(dev);
2909 	if (IS_ERR(opp_table)) {
2910 		r = PTR_ERR(opp_table);
2911 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2912 		return r;
2913 	}
2914 
2915 	if (!assert_single_clk(opp_table, 0)) {
2916 		r = -EINVAL;
2917 		goto put_table;
2918 	}
2919 
2920 	mutex_lock(&opp_table->lock);
2921 
2922 	/* Do we have the frequency? */
2923 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2924 		if (tmp_opp->rates[0] == freq) {
2925 			opp = tmp_opp;
2926 			break;
2927 		}
2928 	}
2929 
2930 	if (IS_ERR(opp)) {
2931 		r = PTR_ERR(opp);
2932 		goto unlock;
2933 	}
2934 
2935 	/* Is update really needed? */
2936 	if (opp->available == availability_req)
2937 		goto unlock;
2938 
2939 	opp->available = availability_req;
2940 
2941 	dev_pm_opp_get(opp);
2942 	mutex_unlock(&opp_table->lock);
2943 
2944 	/* Notify the change of the OPP availability */
2945 	if (availability_req)
2946 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2947 					     opp);
2948 	else
2949 		blocking_notifier_call_chain(&opp_table->head,
2950 					     OPP_EVENT_DISABLE, opp);
2951 
2952 	dev_pm_opp_put(opp);
2953 	goto put_table;
2954 
2955 unlock:
2956 	mutex_unlock(&opp_table->lock);
2957 put_table:
2958 	dev_pm_opp_put_opp_table(opp_table);
2959 	return r;
2960 }
2961 
2962 /**
2963  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2964  * @dev:		device for which we do this operation
2965  * @freq:		OPP frequency to adjust voltage of
2966  * @u_volt:		new OPP target voltage
2967  * @u_volt_min:		new OPP min voltage
2968  * @u_volt_max:		new OPP max voltage
2969  *
2970  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2971  * copy operation, returns 0 if no modifcation was done OR modification was
2972  * successful.
2973  */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2974 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2975 			      unsigned long u_volt, unsigned long u_volt_min,
2976 			      unsigned long u_volt_max)
2977 
2978 {
2979 	struct opp_table *opp_table;
2980 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2981 	int r = 0;
2982 
2983 	/* Find the opp_table */
2984 	opp_table = _find_opp_table(dev);
2985 	if (IS_ERR(opp_table)) {
2986 		r = PTR_ERR(opp_table);
2987 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2988 		return r;
2989 	}
2990 
2991 	if (!assert_single_clk(opp_table, 0)) {
2992 		r = -EINVAL;
2993 		goto put_table;
2994 	}
2995 
2996 	mutex_lock(&opp_table->lock);
2997 
2998 	/* Do we have the frequency? */
2999 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3000 		if (tmp_opp->rates[0] == freq) {
3001 			opp = tmp_opp;
3002 			break;
3003 		}
3004 	}
3005 
3006 	if (IS_ERR(opp)) {
3007 		r = PTR_ERR(opp);
3008 		goto adjust_unlock;
3009 	}
3010 
3011 	/* Is update really needed? */
3012 	if (opp->supplies->u_volt == u_volt)
3013 		goto adjust_unlock;
3014 
3015 	opp->supplies->u_volt = u_volt;
3016 	opp->supplies->u_volt_min = u_volt_min;
3017 	opp->supplies->u_volt_max = u_volt_max;
3018 
3019 	dev_pm_opp_get(opp);
3020 	mutex_unlock(&opp_table->lock);
3021 
3022 	/* Notify the voltage change of the OPP */
3023 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3024 				     opp);
3025 
3026 	dev_pm_opp_put(opp);
3027 	goto put_table;
3028 
3029 adjust_unlock:
3030 	mutex_unlock(&opp_table->lock);
3031 put_table:
3032 	dev_pm_opp_put_opp_table(opp_table);
3033 	return r;
3034 }
3035 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3036 
3037 /**
3038  * dev_pm_opp_enable() - Enable a specific OPP
3039  * @dev:	device for which we do this operation
3040  * @freq:	OPP frequency to enable
3041  *
3042  * Enables a provided opp. If the operation is valid, this returns 0, else the
3043  * corresponding error value. It is meant to be used for users an OPP available
3044  * after being temporarily made unavailable with dev_pm_opp_disable.
3045  *
3046  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3047  * copy operation, returns 0 if no modification was done OR modification was
3048  * successful.
3049  */
dev_pm_opp_enable(struct device * dev,unsigned long freq)3050 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3051 {
3052 	return _opp_set_availability(dev, freq, true);
3053 }
3054 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3055 
3056 /**
3057  * dev_pm_opp_disable() - Disable a specific OPP
3058  * @dev:	device for which we do this operation
3059  * @freq:	OPP frequency to disable
3060  *
3061  * Disables a provided opp. If the operation is valid, this returns
3062  * 0, else the corresponding error value. It is meant to be a temporary
3063  * control by users to make this OPP not available until the circumstances are
3064  * right to make it available again (with a call to dev_pm_opp_enable).
3065  *
3066  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3067  * copy operation, returns 0 if no modification was done OR modification was
3068  * successful.
3069  */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3070 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3071 {
3072 	return _opp_set_availability(dev, freq, false);
3073 }
3074 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3075 
3076 /**
3077  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3078  * @dev:	Device for which notifier needs to be registered
3079  * @nb:		Notifier block to be registered
3080  *
3081  * Return: 0 on success or a negative error value.
3082  */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3083 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3084 {
3085 	struct opp_table *opp_table;
3086 	int ret;
3087 
3088 	opp_table = _find_opp_table(dev);
3089 	if (IS_ERR(opp_table))
3090 		return PTR_ERR(opp_table);
3091 
3092 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3093 
3094 	dev_pm_opp_put_opp_table(opp_table);
3095 
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3099 
3100 /**
3101  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3102  * @dev:	Device for which notifier needs to be unregistered
3103  * @nb:		Notifier block to be unregistered
3104  *
3105  * Return: 0 on success or a negative error value.
3106  */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3107 int dev_pm_opp_unregister_notifier(struct device *dev,
3108 				   struct notifier_block *nb)
3109 {
3110 	struct opp_table *opp_table;
3111 	int ret;
3112 
3113 	opp_table = _find_opp_table(dev);
3114 	if (IS_ERR(opp_table))
3115 		return PTR_ERR(opp_table);
3116 
3117 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3118 
3119 	dev_pm_opp_put_opp_table(opp_table);
3120 
3121 	return ret;
3122 }
3123 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3124 
3125 /**
3126  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3127  * @dev:	device pointer used to lookup OPP table.
3128  *
3129  * Free both OPPs created using static entries present in DT and the
3130  * dynamically added entries.
3131  */
dev_pm_opp_remove_table(struct device * dev)3132 void dev_pm_opp_remove_table(struct device *dev)
3133 {
3134 	struct opp_table *opp_table;
3135 
3136 	/* Check for existing table for 'dev' */
3137 	opp_table = _find_opp_table(dev);
3138 	if (IS_ERR(opp_table)) {
3139 		int error = PTR_ERR(opp_table);
3140 
3141 		if (error != -ENODEV)
3142 			WARN(1, "%s: opp_table: %d\n",
3143 			     IS_ERR_OR_NULL(dev) ?
3144 					"Invalid device" : dev_name(dev),
3145 			     error);
3146 		return;
3147 	}
3148 
3149 	/*
3150 	 * Drop the extra reference only if the OPP table was successfully added
3151 	 * with dev_pm_opp_of_add_table() earlier.
3152 	 **/
3153 	if (_opp_remove_all_static(opp_table))
3154 		dev_pm_opp_put_opp_table(opp_table);
3155 
3156 	/* Drop reference taken by _find_opp_table() */
3157 	dev_pm_opp_put_opp_table(opp_table);
3158 }
3159 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3160 
3161 /**
3162  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3163  * @dev:	device for which we do this operation
3164  *
3165  * Sync voltage state of the OPP table regulators.
3166  *
3167  * Return: 0 on success or a negative error value.
3168  */
dev_pm_opp_sync_regulators(struct device * dev)3169 int dev_pm_opp_sync_regulators(struct device *dev)
3170 {
3171 	struct opp_table *opp_table;
3172 	struct regulator *reg;
3173 	int i, ret = 0;
3174 
3175 	/* Device may not have OPP table */
3176 	opp_table = _find_opp_table(dev);
3177 	if (IS_ERR(opp_table))
3178 		return 0;
3179 
3180 	/* Regulator may not be required for the device */
3181 	if (unlikely(!opp_table->regulators))
3182 		goto put_table;
3183 
3184 	/* Nothing to sync if voltage wasn't changed */
3185 	if (!opp_table->enabled)
3186 		goto put_table;
3187 
3188 	for (i = 0; i < opp_table->regulator_count; i++) {
3189 		reg = opp_table->regulators[i];
3190 		ret = regulator_sync_voltage(reg);
3191 		if (ret)
3192 			break;
3193 	}
3194 put_table:
3195 	/* Drop reference taken by _find_opp_table() */
3196 	dev_pm_opp_put_opp_table(opp_table);
3197 
3198 	return ret;
3199 }
3200 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3201